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ABSTRACT. Infinite dimensional discrete time dissipative scattering systems
are introduced in terms of generalized (possibly unbounded) solutions of the
Kalman-Yakubovich-Popov inequality (KYP-inequality). It is shown that for
a minimal system the KYP-inequality has a generalized solution if and only if
the transfer function of the system coincides with a Schur class function θ in
a neighborhood of zero. The set of solutions of the KYP-inequality, its order
structure, and the corresponding contractive systems are studied in terms of
θ. Also using the KYP-inequality a number of stability theorems are derived.
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1. INTRODUCTION

Consider the linear time-invariant system with discrete time n:

(1.1) Σ

{
xn+1 = Axn + Bun,

yn = Cxn + Dun,
(n > 0).

Here A : X → X , B : U → X , C : X → Y and D : U → Y are bounded
linear operators acting between separable Hilbert spaces. We refer to A as the
state operator of Σ, and to D as the external operator. Starting from the initial state
x0, one computes the output y0, y1, y2, . . . of the system Σ from the input sequence
u0, u1, u2, . . . via the system equations (1.1). In fact, for k = 0, 1, 2, . . . we have

yk = CAkx0 +
k−1

∑
j=0

CAjBuk−j−1 + Duk.

To simplify notation we will write Σ = (A, B, C, D; X ,U ,Y). The spaces X , U ,
and Y are called the state space, the input space, and the output space, respectively.

Since the fundamental work of Kalman [24], Yakubovich [34], and Popov
[29] in optimal control theory and the stability theory for non-linear systems, the
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notion of a dissipative system has become a classical object. To introduce dissi-
pativity in our setting we follow [33] and use the concepts of a supply rate and
storage function. Let Σ = (A, B, C, D;X ,U ,Y) be a system. A supply rate function
for Σ is a function

(1.2) w(u, y) = 〈Φ(u, y), (u, y)〉,
defined on the Hilbert space direct sum U ⊕ Y , where Φ is a bounded selfadjoint
operator acting on U ⊕Y . A first example, which originates from network theory,
concerns the case of impedance systems when the input space U coincides with
the output space Y and the function w is given by w(u1, u2) = Re 〈u1, u2〉. In this
case the selfadjoint operator Φ in (1.2) equals 1

2 J, where J is the signature operator

J =
[

0 IU
IU 0

]
,

acting on U ⊕ U .
In this paper we will deal with the scattering supply rate function

(1.3) w(u, y) = ‖u‖2 − ‖y‖2,

which plays an important role in scattering theory and also in the analysis of
H∞- optimal control problems. In (1.3) the norms ‖ · ‖ are the usual Hilbert space
norms on the input space U and output space Y , respectively. The corresponding
selfadjoint operator Φ is given by

Φ =
[

IU 0
0 −IY

]
.

A system Σ = (A, B, C, D;X ,U ,Y) is called dissipative with respect to the
supply rate function w if there exists a (possibly unbounded) positive operator H
in X such that

(1.4) AD(H1/2) ⊂ D(H1/2), BU ⊂ D(H1/2),

and for each initial state x0 ∈ D(H1/2) and each sequence of inputs u0, u1, u2, . . .
from U we have

(1.5) w(un, yn) > ‖H1/2xn+1‖2 − ‖H1/2xn‖2, n = 0, 1, 2, . . . .

Throughout this paper a (possibly unbounded) operator H acting in a Hilbert
space X is said to be positive if H is selfadjoint and 〈Hx, x〉 > 0 for each x 6= 0 in
the domain D(H) of H.

Here H1/2 is the square root of H, i.e., the unique non-negative selfadjoint
operator Y in X such that Y2 = H. For n = 0, 1, 2, . . . the vectors xn+1 and yn
in (1.5) are derived from the initial vector x0 and the input sequence u0, u1, u2, . . .
via the system equations. It follows from (1.4) that the state vectors xn, n > 0, all
belong to the domain D(H1/2) of H1/2. For a positive operator H in X satisfying
(1.4) we refer to the function

QH(x) = ‖H1/2x‖2, x ∈ D(H1/2),



THE INFINITE DIMENSIONAL KALMAN-YAKUBOVICH-POPOV INEQUALITY 395

as the storage function for Σ defined by H.
By rewriting the system equations (1.1) in the following form

(1.6)
[

xn+1
yn

]
=

[
A B
C D

] [
xn
un

]
(n = 0, 1, 2, . . .)

we see that for the scattering supply rate function (1.3) the dissipativity condition
(1.5) is just equivalent to the requirement that there exists a positive operator H
in X satisfying (1.4) and

(1.7) KΣ(H)(x, u) > 0, x ∈ D(H1/2), u ∈ U ,

where

KΣ(H)(x, u)(1.8)

=
∥∥∥∥[

H1/2 0
0 IU

] [
x
u

]∥∥∥∥2

−
∥∥∥∥[

H1/2 0
0 IY

] [
A B
C D

] [
x
u

]∥∥∥∥2

.

If the state space X is finite dimensional, then the operator H is automat-
ically defined on the whole space and is a bounded (and boundedly invertible)
positive selfadjoint operator. In the latter case the inequality (1.7) reduces to the
usual Kalman-Yakubovich-Popov inequality

(1.9)
[

H − A∗HA− C∗C −C∗D− A∗HB
−D∗C− B∗HA I − D∗D− B∗HB

]
> 0.

However for systems with an infinite dimensional state space, it may happen (an
example is given in Section 4.5) that no bounded positive operator H satisfies
(1.9) while there exist unbounded positive operators H satisfying (1.4) and (1.7).
Moreover, it may happen that H−1 is unbounded too.

This connection between (1.7) and the Kalman-Yakubovich-Popov inequal-
ity justifies the following terminology. We say that a (possibly unbounded) pos-
itive operator H in X is a generalized solution of the Kalman-Yakubovich-Popov in-
equality (for short, KYP-inequality) for Σ if (1.4) and (1.7) are satisfied. Summa-
rizing: a system Σ is dissipative with respect to the supply rate (1.3) if and only if the
KYP-inequality for Σ has a generalized solution.

The main purpose of this paper is to present a generalization to the infinite
dimensional case of the classical Kalman-Yakubovich-Popov lemma which can be
found in textbooks (see, e.g., [35]). Here we state this lemma for the case when
the supply rate function is given by (1.3) and the state space is finite dimensional.
The terminology from the theory of systems will be explained in the next section.

LEMMA 1.1. Let Σ = (A, B, C, D;X ,U ,Y) be a minimal system with finite di-
mensional state space X . Then the set

(1.10) KΣ = {H : H > 0 and H satisfies (1.9)}
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is non-empty if and only if the transfer function θΣ of the system Σ belongs to the Schur
class S(U ,Y). In that case KΣ contains an element H0 and an element H• such that

H0 6 H 6 H• , H ∈ KΣ.

The Schur class S(U ,Y) is the set of functions θ, which are analytic in the
open unit disk D = {λ : |λ| < 1}, and of which the values are contractive linear
operators acting between the separable Hilbert spaces U and Y , i.e.,

(1.11) S(U ,Y) = {θ : θ ∈ H∞(U ,Y), ‖θ‖∞ 6 1},

where ‖θ‖∞ = sup {‖θ(λ)‖ : λ ∈ D}.
We remark that in Lemma 1.1 for the case when the spectrum of A is con-

tained in the closed unit disk the set KΣ in (1.10) does not change if the condition
H > 0 is replaced by the requirement that H is selfadjoint and invertible (see, for
instance, page 550 of [28]).

There exist various generalizations of this lemma for the case that the state
space of Σ is infinite dimensional (see [20]). In each of these generalizations the
positive solution H to the inequality (1.7) is required to be a bounded operator.
Nevertheless, the unbounded solutions to (1.7) are interesting and important in
their own right. In this paper we obtain a generalization of Lemma 1.1 in which
the solutions H may be unbounded selfadjoint operators. Moreover, the transfer
function of the system Σ can be an arbitrary operator valued function, which is
analytic in a neighborhood of 0, and which coincides with a Schur class function
in this neighborhood. The next theorem is our first main result.

THEOREM 1.2. Let Σ = (A, B, C, D;X ,U ,Y) be a minimal system. Then the
KYP-inequality for Σ has a generalized solution if and only if its transfer function θΣ

coincides with a Schur class function in a neighborhood of zero.

In our second main result (Theorem 5.1 in Section 5) we identify solutions of
the KYP-inequality that play the same role (relative to an appropriate ordering of
positive operators that may be unbounded) as the minimal and maximal elements
H◦ and H• in Lemma 1.1.

An important aspect of the KYP-inequality is its connection to stability. For
systems with an infinite dimensional state space this connection is subtle and
very different from what is known for systems with a finite dimensional state
space. For instance, if H is a generalized solution to the KYP-inequality of the
minimal system Σ = (A, B, C, D;X ,U ,Y), then from the finite dimensional case
one would expect that

(1.12) lim
n→∞

‖H1/2 Anx‖ = 0, x ∈ D(H1/2).

In Section 6 we shall see that in general for systems with an infinite dimensional
state space this is not true. In fact, it may happen that Σ is a dissipative minimal
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system, and that (1.12) does not hold for any generalized solution H to the KYP-
inequality of Σ. Since in the finite dimensional case all solutions H of the KYP-
inequality are bounded and strictly positive, it follows that for this case (1.12)
holds for all solutions H of the KYP-inequality whenever it holds for one. The
latter property also does not carry over to the infinite dimensional case. Further-
more, in general in the infinite dimensional case, formula (1.12) does not imply
stability in the usual sense. In Section 6 we shall also present a number of positive
stability results based on [4].

This paper consists of seven sections, this introduction being the first. In
the second section we review the general theory of infinite dimensional discrete
time systems, and define notions as transfer function, dilation, restriction and
minimality. In the third section we introduce the notion of pseudo-similarity, and
prove that minimal systems with the same transfer function in a neighborhood
of zero are pseudo-similar. In the fourth section we show that a system is dis-
sipative with respect to the supply rate (1.3) if and only if it is pseudo-similar
to a contractive system. The fourth section also contains the proof of Theorem
1.2. Our second main theorem (Theorem 5.1) is stated and proved in the fifth
section. The sixth section concerns the connection between the solvability of the
KYP-inequality and stability of the corresponding systems. In the final section we
present some additional information on the set of solutions of the KYP-inequality
and the corresponding contractive systems, using results from [8] and [9]. A pre-
liminary version of this paper is the report [6].

In conclusion we mention that the results derived in this paper also hold
with appropriate modifications for scattering dissipative continuous time sys-
tems and for dissipative systems with other supply rate functions (impedance
and transmission systems), both in discrete time and in continuous time. In fact
(see, e.g., [3]) there are standard ways to translate results about discrete time dissi-
pative scattering systems into results about other dissipative systems of the above
mentioned type (by using the Cayley transform, the Potapov-Ginzburg trans-
form). The connection between solutions of the KYP-inequality and the solutions
of the algebraic Ricatti inequality and equality will be developed in a further pa-
per.

2. PRELIMINARIES ABOUT INFINITE DIMENSIONAL DISCRETE TIME SYSTEMS

In this section we review a number of fundamental concepts of the theory of
infinite dimensional discrete time Hilbert space systems that are used throughout
this paper. The main source for this section are the papers [22] and [3]. Some of
the material can also be found in books; see, e.g., [11], and pages 79ff of [23].
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2.1. TRANSFER FUNCTION AND REALIZATION. The transfer function of the system
Σ = (A, B, C, D;X ,U ,Y) is the operator valued function θΣ given by

(2.1) θΣ(λ) = D + λC(I − λA)−1B,

which is defined on the set consisting of all λ ∈ C such that I − λA is boundedly
invertible. Its values are bounded linear operators acting between the Hilbert
spaces U and Y . Obviously, θΣ is analytic at 0. Given a sequence of inputs
u0, u1, u2, . . . and initial state x0 = 0, one can obtain the sequence of outputs
y0, y1, y2, . . . from the transfer function by multiplication of the following two for-
mal power series

θΣ(λ) = D + ∑
j>1

CAj−1Bλj, u(λ) = ∑
j>0

ujλ
j.

Indeed, θΣ(λ)u(λ) = y(λ), where y(λ) is the formal power series ∑
j>0

yjλ
j. If the

series ∑
j>0

uj is convergent, i.e., if u(λ) is analytic at 0, then y(λ) is analytic at 0

too.
Let θ(λ) : U → Y be an operator valued function which is analytic in a

neighborhood of 0. Then there exists a system Σ = (A, B, C, D;X ,U ,Y) with
transfer function θ (see [2], [11], [16], and [22]). In that case the system Σ is called
a realization of θ.

In this connection, we introduce the following notation. Let θ and θ1 be two
operator valued functions which are analytic in a neighborhood of 0. We write
θ ∼ θ1 if θ(λ) = θ1(λ) in a neighborhood of 0. In this case we say that θ and θ1
coincide in a neighborhood of 0.

The equivalence relation ∼ of transfer functions might seem to be weak,
however, if θΣ and θΣ′ coincide in a neighborhood of zero and their state operators
are contractions, then θΣ(λ) = θΣ′(λ) for each λ in the open unit disc. More
refined statements of this type involve the complement of the spectra of the state
operators.

2.2. DILATION AND RESTRICTION. Let Σ = (A, B, C, D;X ,U ,Y) and Σ̃ = (Ã, B̃,
C̃, D̃; X̃ , Ũ , Ỹ) be two given systems. Then Σ̃ is called a dilation of the system Σ if
Ũ = U , Ỹ = Y , D̃ = D, and the state space X̃ admits an orthogonal sum decom-
position X̃ = E ⊕ H ⊕ E∗ such that relative to this decomposition the system Σ̃
can be written as

(2.2) Σ̃ =

 A1 A3 A4
0 A A5
0 0 A2

 ,

 B1
B
0

 ,
[

0 C C1
]

, D; E ⊕ X ⊕ E∗,U ,Y

 .

Explicitly,

A = PX Ã|X , B = PX B̃, C = C̃|X ,(2.3)

AE ⊂ E , A∗E∗ ⊂ E∗, CE = {0}, B∗E∗ = {0}.(2.4)
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If Σ̃ is a dilation of Σ, then the system Σ is called a restriction of Σ̃.
Notice that dilating or restricting a system does not change the Taylor coef-

ficients of its transfer function at zero. Since these Taylor coefficients determine
the transfer function in a neighborhood of zero, it follows that dilating or restrict-
ing a system does not change its transfer function in a neighborhood of zero. In
other words, if Σ̃ is a dilation of Σ, then θΣ̃ ∼ θΣ.

2.3. MINIMALITY. A system is called minimal if it is not a dilation of any other
(different) system. In other words a system is minimal if and only if it does not
have a proper restriction. Minimality can be characterized in term of controlla-
bility and observability. For this purpose we need the following notation and
terminology.

Let Σ = (A, B, C, D;X ,U ,Y) be a system. The linear manifold

(2.5) Im (A|B) = span {AnBu : u ∈ U , n ∈ N0}

consists of all vectors in the state space which can be reached in finite time. We
call the set Im (A|B) the reachable manifold of Σ. The controllable subspace is by defi-
nition the closure of this set. The system Σ is said to be (approximately) controllable
if the controllable subspace is equal to X or, equivalently, the reachable manifold
is dense in X .

The unobservable subspace of Σ = (A, B, C, D;X ,U ,Y) is by definition the
subspace

(2.6) Ker (C|A) =
⋂

n>0
Ker CAn.

The system Σ is called observable if Ker (C|A) = {0}.
The next theorem is classical for finite dimensional systems (see, e.g., [23]

and the references therein) and can be found in [3], [4] for infinite dimensional
time invariant systems. The result also has a time variant analog (see [18]).

THEOREM 2.1. A system is minimal if and only if it is controllable and observable.

2.4. THE FIRST AND SECOND MINIMAL RESTRICTION. Each system appears in
two fundamental ways as a dilation of a minimal system (see also [5]). In the
proof of the next theorem one such construction is carried out.

THEOREM 2.2. Each system is a dilation of a minimal system.

Proof. Introduce the subspaces:

X1 = Ker (C|A), X0 =
(

Ker (C|A) + Im (A|B)
)
	Ker (C|A),

X2 =
(

Ker (C|A) + Im (A|B)
)⊥

.
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Then X = X1 ⊕ X0 ⊕ X2 and relative to this decomposition A, B, and C parti-
tion as:

A =

 ∗ ∗ ∗
0 A0 ∗
0 0 ∗

 , B =

 ∗
B0
0

 , C =
[

0 C0 ∗
]

.

The system Σres,1 = (A0, B0, C0, D;X0,U ,Y) is a restriction of Σ, and is mini-
mal.

The system Σres,1 defined in the above proof will be referred to as the first
minimal restriction of Σ. There is also a second minimal restriction, which is de-
fined as follows.

Given Σ = (A, B, C, D;X ,U ,Y) introduce the subspaces:

X̃1 = Ker (C|A) ∩ Im (A|B), X̃0 = Im (A|B)	 (Ker (C|A) ∩ Im (A|B)),

X̃2 =
(

Im (A|B)
)⊥

.

Then X = X̃1 ⊕ X̃0 ⊕ X̃2, and relative to this decomposition A, B, and C partition
as

A =

 ∗ ∗ ∗
0 Ã0 ∗
0 0 ∗

 , B =

 ∗
B̃0
0

 , C =
[

0 C̃0 ∗
]

.

The system Σres,2 := (Ã0, B̃0, C̃0, D; X̃0,U ,Y) is a restriction of Σ, and is minimal.
We call Σres,2 the second minimal restriction of Σ.

2.5. ADJOINT SYSTEMS. Given Σ = (A, B, C, D;X ,U ,Y) we define its adjoint Σ∗

to be the system
Σ∗ = (A∗, C∗, B∗, D∗;X ,Y ,U ).

Notice that Σ̃ is a dilation of Σ if and only if (Σ̃)∗ is a dilation of Σ∗. Hence the
system Σ is minimal if and only if the same is true for Σ∗. Also, Σ is observable
(controllable) if and only if Σ∗ is controllable (observable).

The construction of the second minimal restriction given in the previous
subsection is the dual of that of the first minimal restriction, in the sense that

(2.7) Σres,2 = ((Σ∗)res,1)∗.

2.6. SIMILARITY AND UNITARY EQUIVALENCE. Two systems Σ = (A, B, C, D;X ,
U , Y) and Σ̃ = (Ã, B̃, C̃, D̃; X̃ , Ũ , Ỹ) are called similar if Ũ = U , Ỹ = Y , D̃ = D,
and

(2.8) Ã = SAS−1, B̃ = SB, C̃ = CS−1,

for some bounded and boundedly invertible operator S from X onto X̃ . The
systems Σ and Σ̃ are said to be unitarily equivalent if D̃ = D and there exists a
unitary operator S : X → X̃ such that the identities in (2.8) hold true.
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If two systems Σ and Σ̃ are similar, then their transfer functions coincide
in a neighborhood of 0, that is, θΣ̃ ∼ θΣ. The converse is also true for minimal
systems with a finite dimensional state space. More precisely, if the transfer func-
tions of two minimal systems Σi = (Ai, Bi, Ci, Di;Xi,Ui,Yi), i = 1, 2, with finite
dimensional state spaces coincide in a neighborhood of 0, then these systems are
similar. It is known (see, e.g., page 267 of [16]) that this result does not carry over
to the infinite dimensional case; in the next subsection we present an example
(related to but somewhat different from the one in [16]) that also will be used in
Subsection 4.4 for other purposes.

2.7. AN EXAMPLE OF NON-SIMILAR MINIMAL SYSTEMS OF WHICH THE TRANS-
FER FUNCTIONS COINCIDE IN A NEIGHBORHOOD OF ZERO. Let θ be the entire
function θ(z) = ez−1. Notice that for t real we have

|θ(eit)| = ecos t−1 = e−2 sin2 1
2 t 6 1.

This together with the analyticity of θ shows that θ is a scalar Schur class function.
We shall show that θ has minimal realizations that are not similar.

Let T be the backward shift on the Hardy space H2(D), that is,

(Th)(z) = z−1(h(z)− h(0)), z ∈ D.

Recall that H2(D) consists of all analytic functions h on D with square summable
Taylor coefficients. For each ρ > 0 consider the system Σρ = (Aρ, Bρ, C, D; H2(D),
C, C), where

Aρ = ρT, (Bρc)(z) =
θ(ρ−1z)− θ(0)

ρ−1z
c (c ∈ C)(2.9)

Ch = h(0) (h ∈ H2(D)), Dc = θ(0)c (c ∈ C).(2.10)

The operators Aρ, Bρ, C, and D are bounded linear operators, and the spectrum
of Aρ is equal to the closed disk with center zero and radius ρ. A straightforward
computation shows that

(2.11) C(I − λAρ)−1h = h(ρλ), |λ| < ρ−1.

It follows that

D + λC(I − λAρ)−1Bρ = D + λ
θ(λ)− θ(0)

λ
= θ(λ), |λ| < ρ−1.

Hence for each ρ the system Σρ is a realization of θ.
All these realizations are non-similar. Indeed, if Σρ1 and Σρ2 are similar,

then the operators Aρ1 and Aρ2 are similar, and hence in that case Aρ1 and Aρ2

must have the same spectra. Since the spectrum of Aρ is equal to the closed disk
with center zero and radius ρ, it follows that Σρ1 and Σρ2 are similar if and only
if ρ1 = ρ2.
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Next we show (using Theorem 2.1) that the systems Σρ are all minimal. It is
straightforward to check (use (2.11)) that Σρ is observable. To prove controllabil-
ity, let φρ = Bρ1. Then

Im
[

Bρ AρBρ A2
ρBρ . . . Ak−1

ρ Bρ

]
= span {φρ, ρTφρ, ρ2T2φρ, . . . , ρk−1Tk−1φρ}

= span {φρ, Tφρ, T2φρ, . . . , Tk−1φρ}.

It follows that Σρ is controllable if and only if function φρ is cyclic with respect to
backward shift T on H2(D). According to a well-known theorem of Douglas,
Shields and Shapiro ([14], Theorem 2.2.1) the latter happens if and only if φρ

does not allow for a pseudo-continuation across the circle T. Recall that a mero-
morphic function η on De, where De = {z ∈ C : |z| > 1} ∪ {∞}, is called a
pseudo-continuation of ψ ∈ H2(D) if η is of bounded Nevanlinna type, i.e., η is the
quotient of two functions in H∞(De), and the non-tangential boundary values of
ψ and η coincide on the unit circle almost everywhere (see pages 267ff. of [15],
pages 285ff. of [26], pages 81ff. of [27], and [13]). Since

φρ(z) =
θ(ρ−1z)− θ(0)

ρ−1z
=

eρ−1z−1 − e−1

ρ−1z

has an essential singularity at infinity, the function φρ does not have a pseudo-
continuation across the circle T, and therefore Σρ is controllable. (One can prove
the cyclicity of φρ also by using the condition appearing in Problem and Solution
160 of [19].)

Summarizing we have that for each ρ > 0 the system Σρ is a minimal real-
ization of the Schur class function θ, and that all these realizations are mutually
non-similar.

In conclusion let us mention that in this subsection the special form of θ
is not important; one only has to require that θ is a non-rational entire function
which is bounded by one on the unit disk. More generally, if we restrict the
values of ρ to ρ > 1, then it suffices to require that the function θ̃, given by θ̃(z) =
θ(ρ−1z), does not have a pseudo-continuation across the circle.

3. PSEUDO-SIMILARITY

Consider two systems Σν = (Aν, Bν, Cν, Dν;Xν,U ,Y), ν = 1, 2. We say that
Σ1 and Σ2 are pseudo-similar, if D1 = D2, and there exists an injective closed linear
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operator S(X1 → X2) such that

D(S) = X1, Im (S) = X2,(3.1)

A1D(S) ⊂ D(S), SA1|D(S) = A2S,(3.2)

B1U ⊂ D(S), B2 = SB1,(3.3)

C1|D(S) = C2S.(3.4)

In this case we call S a pseudo-similarity from Σ1 to Σ2. (Some authors use the
term weak similarity, see e.g., [30]; the term quasi-similarity is usually used for
the case when D(S) is the full space and hence S is bounded). The vertical bar |
in conditions (3.2) and (3.4) means restriction to; for instance, C1|D(S) stands for
the restriction of the operator C1 to the linear manifold D(S).

Conditions (3.2) and (3.3) imply that Aj
1B1U ⊂ D(S) and SAj

1B1 = Aj
2B2 for

each j > 0, and thus

(3.5) Im (A1|B1) ⊂ D(S), S[Im (A1|B1)] = Im (A2|B2).

From (3.2) – (3.4) we get that C1 Aj
1B1 = C2SAj

1B1 = C2 Aj
2B2 for each j > 0. Hence

if two systems Σ and Σ̃ are pseudo-similar, then θΣ̃ ∼ θΣ.

3.1. BASIC PROPERTIES. The following proposition establishes some basic prop-
erties of pseudo-similarity of systems.

PROPOSITION 3.1. Consider two systems Σν = (Aν, Bν, Cν, D;Xν,U ,Y), ν =
1, 2. Suppose S(X1 → X2) is a densely defined closed injective operator with dense
range. Then S is a pseudo-similarity from Σ1 to Σ2 if and only if the graph of S

G(S) =
{[

x
Sx

]
: x ∈ D(S)

}
satisfies the following inclusions:[

A1 0
0 A2

]
G(S) ⊂ G(S), Im

[
B1
B2

]
⊂ G(S) ⊂ Ker

[
C1 −C2

]
.(3.6)

Moreover, if S(X1 → X2) is a pseudo-similarity from Σ1 to Σ2, then S−1(X2 → X1)
is a pseudo-similarity from Σ2 to Σ1, and S∗(X2 → X1) is a pseudo-similarity from Σ∗

2
to Σ∗

1 .

Proof. It is straightforward to check the first part of the proposition. Indeed,
it suffices to note that the first inclusion in (3.6) is equivalent to condition (3.2),
and that the two other inclusions in (3.6) are equivalent to conditions (3.3) and
(3.4).

It remains to prove the statements appearing after formula (3.6). Therefore
in what follows we assume that S(X1 → X2) is a pseudo-similarity from Σ1 to
Σ2.

Let us prove that S−1(X2 → X1) is pseudo-similarity from Σ2 to Σ1. Obvi-
ously, S−1 is a densely defined closed injective operator with dense range. Take
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y S−1y

]t in G(S−1). Thus y ∈ Im S and
[

y S−1y
]t =

[
Sx x

]t for some
x ∈ D(S). Then[

A2 0
0 A1

] [
y

S−1y

]
=

[
0 I
I 0

] [
A1 0
0 A2

] [
x

Sx

]
⊂

[
0 I
I 0

]
G(S)=G(S−1).

Take u ∈ U . Then[
B2
B1

]
u =

[
0 I
I 0

] [
B1
B2

]
u ⊂

[
0 I
I 0

]
G(S) = G(S−1).

Finally,

G(S−1) =
[

0 I
I 0

]
G(S) ⊂

[
0 I
I 0

]
Ker

[
C1 −C2

]
= Ker

[
C2 −C1

]
.

From these inclusions and the first part of the above proposition it follows that
S−1(X2 → X1) is a pseudo-similarity from Σ2 to Σ1.

To prove the final statement we first note that S∗(X2 → X1) is a densely
defined closed injective operator with dense range (see, for instance, Chapter 3,
Section 5.5 of [25]). Next, observe that G(S)⊥ = G′(−S∗), where

G′(−S∗) =
{[

−S∗y
y

]
: y ∈ D(S∗)

}
.

Since(
Im

[
B1
B2

])⊥
= Ker

[
B∗1 B∗2

]
,

(
Ker

[
C1 −C2

])⊥ = Im
[

C∗1
−C∗2

]
,

it is now simple to see by taking orthogonal complements in (3.6) that S∗ is a
pseudo-similarity from Σ∗

2 to Σ∗
1 .

3.2. THE STATE SPACE PSEUDO-SIMILARITY THEOREM. The next theorem, which
is an analog of the classical state space similarity theorem, has appeared as The-
orem 3b.1 in [22], and Theorem 3.2 in [10] (see Theorem 9.2.3 in [30] for a contin-
uous time version). The closedness of the constructed similarity has been proved
in Proposition 6 of [2].

THEOREM 3.2. Let Σ1 and Σ2 be minimal systems, and suppose that their transfer
functions coincide in a neighborhood of zero. Then the two systems are pseudo-similar.

From the above theorem it follows that for minimal systems pseudo-simi-
larity is transitive. Indeed, if Σ1, Σ2, and Σ3 are minimal systems such that Σ1
and Σ2 are pseudo-similar, and Σ2 and Σ3 are pseudo-similar, then Σ1 and Σ3 are
pseudo-similar. To see this, notice that we have θΣ1 ∼ θΣ2 , and θΣ2 ∼ θΣ3 , so
θΣ1 ∼ θΣ3 . Since Σ1 and Σ3 are minimal, they are pseudo-similar by Theorem 3.2.

REMARK. In general, in contrast to systems with a finite dimensional state
space, minimality of a system is not preserved under pseudo-similarity, and a
pseudo-similarity between two systems does not have to be unique.
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We shall see that the above statements can already be proved for systems for
which the state operator and external operator are both zero, that is for systems
with a transfer function of the form Θ(λ) = λK. In fact, for minimal systems with
transfer functions of this simple form the statements in the above remark reduce
to statements about minimal representations of K as a product of two bounded
linear operators which we derived in [7]. For this purpose we need the following
lemma.

LEMMA 3.3. Let Θ(λ) = λK, where K is a bounded linear operator form U into
Y . Then Σ is a minimal realization of Θ(λ) = λK if and only if

(3.7) Σ = (0, B, C, 0;X ,U ,Y), Im B = X , Ker C = {0}, and K = CB.

Proof. First we construct a special minimal realization of Θ(λ) = λK. Put
X◦ = KU ⊂ Y , and let τ◦ be the canonical embedding of X◦ into Y . Consider the
system

(3.8) Σ◦K = (0, B◦, C◦, 0;X◦,U ,Y), B◦ = τ∗◦K, C◦ = τ◦.

Since τ◦τ∗◦ acts as the identity operator on Im K, we have C◦B◦ = K, and hence
Σ◦K is a realization of Θ. This realization is minimal. Indeed, Im B◦ = Im K and
hence Im B◦ = X◦. Obviously, Ker C◦ = {0}. Thus Σ◦K is controllable and ob-
servable, and hence minimal. Next, let Σ = (A, B, C, D;X ,U ,Y) be an arbitrary
minimal realization of Θ(λ) = λK. Then the transfer functions of Σ and Σ◦K coin-
cide in the neighborhood of zero. By Theorem 3.2 there exists a pseudo-similarity
S from Σ to Σ◦K. It follows that D = 0 (because the external operator of Σ◦K is
zero), and SAx = 0 for each x ∈ D(S) (because the state operator of Σ◦K is zero).
Since S is one to one, we see that Ax = 0 for each x ∈ D(S). But D(S) is dense in
X and A is bounded. So A = 0. Thus the state operator and the external operator
of Σ are zero as desired. The fact that A = 0 implies that Im (A|B) = Im B and
Ker (C|A) = ker C. Thus minimality of Σ implies Im B = X and Ker C = {0}.
Formula (3.7) is proved. The reverse implication is trivial.

From the previous lemma it follows that Σ = (0, B, C, 0;X ,U ,Y) is a mini-
mal realization of Θ(λ) = λK if and only if (B, C;X ) is a minimal multiplicative
representation of the operator K as defined in [7]. But then we can use the exam-
ples in Sections 2.3.1 and 2.3.2 of [7] to derive the statements in the above remark.

3.3. NON-UNIQUENESS IN THE STATE SPACE PSEUDO-SIMILARITY THEOREM. As
we have seen in the previous section a pseudo-similarity between two systems
does not have to be unique. The next two propositions present a full descrip-
tion of the freedom one has in the choice of the pseudo-similarity in the state
space pseudo-similarity theorem. Recall (see page 166 of [25]) that a linear sub-
manifold M in the domain D(T) of a closed linear operator T(X → Y) is said to
be a core of T if the closure of T|M is equal to T. In particular, in that case M is
dense in D(T).
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PROPOSITION 3.4. Let Σ1 and Σ2 be minimal systems, and suppose their transfer
functions coincide in a neighborhood of zero. Then there exist unique pseudo-similarities
S0 and S1 from Σ1 to Σ2 such that

(3.9) G(S0) ⊂ G(S) ⊂ G(S1)

for each pseudo-similarity S from Σ1 to Σ2. In fact, S0 is the unique pseudo-similarity
from Σ1 to Σ2 such that Im (A1|B1) is a core for S0, and S1 is the unique pseudo-
similarity determined by

G(S1) =
∞⋂

j=0

Ker
[

C1 Aj
1 −C2 Aj

2

]
.

Proof. Let S be an arbitrary pseudo-similarity from Σ1 to Σ2, and define S0 to
be the closure of S|Im (A1|B1). Obviously, S0 is a closed operator and Im (A1|B1)
is a core for S0. Since G(S) is closed and G(S0) is the closure of G(S|Im (A1|B1)),
we have G(S0) ⊂ G(S), which proves the first inclusion in (3.9). It remains to
prove that S0 is a pseudo-similarity. Since S is a pseudo-similarity, we have

SAj
1B1u = Aj

2B2u, u ∈ U , j = 0, 1, 2, . . . ,

and hence S0Im (A1|B1) = Im (A2|B2). We proceed by showing that (3.1)–(3.4)
are fulfilled. By definition, Im (A1|B1) ⊂ D(S0), and thus the minimality of Σ1

yields D(S0) = X1. Similarly, Im S0 ⊃ Im (A2|B2), and thus Im S0 = X2 because
of the minimality of Σ2. Thus (3.1) holds. Next, take x ∈ D(S0). So there exist
x1, x2, . . . in Im (A1|B1) such that xn → x and S0xn → S0x for n → ∞. Now

A1xn ∈ Im (A1|B1) ⊂ D(S0), A1xn → A1x (n → ∞);

S0 A1xn = SA1xn = A2Sxn = A2S0xn → A2S0x (n → ∞).

Since S0 is closed, this shows that A1x ∈ D(S0) and S0 A1x = A2S0x. Thus (3.2)
holds. Since B1U ⊂ Im (A1|B1), we have B1U ⊂ D(S0) and S0B1 = SB1 = B2,
because S is a pseudo-similarity. Finally, to prove (3.4), take x ∈ D(S0). Again
there exist x1, x2, . . . in Im (A1|B1) such that xn → x and S0xn → S0x for n → ∞.
For the vectors xn formula (3.4) is valid and S0xn = Sxn. It follows that

C1x = lim
n→∞

C1xn = lim
n→∞

C2Sxn = lim
n→∞

C2S0xn = C2S0x,

which proves (3.4).
To define S1, put

G1 =
∞⋂

j=0

Ker
[

C1 Aj
1 −C2 Aj

2

]
.

From the definition of a pseudo-similarity it follows that C1 Aj
1x = C2 Aj

2Sx for
each x ∈ D(S). Thus G(S) ⊂ G1. Obviously, G1 is closed. We claim that G1 is a
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graph space. Indeed, we have[
0
x

]
∈ G1 ⇔ C2 Aj

2x = 0 (j > 0) ⇔ x = 0,

because Σ2 is minimal (and hence observable). Thus there exists an operator
S1(X1 → X2) such that G1 = G(S1). With this choice of S1 formula (3.9) is
proved.

Let us prove that S1 is a pseudo-similarity. From G(S) ⊂ G(S1) we see that
D(S) ⊂ D(S1) and Im S ⊂ Im S1, and thus the domain and range of S1 are dense
in X1 and X2, respectively. Notice that[

x
0

]
∈ G(S1) = G1 ⇔ C1 Aj

1x = 0 (j > 0) ⇔ x = 0,

because Σ1 is minimal. Thus S1 is injective. From the definition of G1 = G(S1)
and (3.9) we immediately see that (3.6) holds for S1 in place of S. Thus S1 is a
pseudo-similarity from Σ1 to Σ2. Finally, notice that (3.9) determines S0 and S1
uniquely.

Let Σ1 and Σ2 be minimal systems, and suppose their transfer functions
coincide in a neighborhood of zero. Let us write Smin for the pseudo-similarity
S0 and Smax for the pseudo-similarity S1 appearing in (3.9). We shall refer to
Smin and Smax as the minimal and maximal pseudo-similarities from Σ1 to Σ2 with
respect to graph space inclusion. We write S∗,min and S∗,max for the minimal and
maximal pseudo-similarities from (Σ2)∗ to (Σ1)∗. We claim that

(3.10) (Smin)∗ = S∗,max , (Smax)∗ = S∗,min .

Indeed, an arbitrary pseudo-similarity E from (Σ2)∗ to (Σ1)∗ is of the form E =
S∗, where S is a pseudo-similarity from Σ1 to Σ2. Thus, by taking orthogonal
complements in (3.9), we see that

G((Smax)∗) ⊂ G(E) ⊂ G((Smin)∗).

Since (Smax)∗ and (Smin)∗ are pseudo-similarities from (Σ2)∗ to (Σ1)∗ and E is an
arbitrary one, the above inclusions yield (3.10) because of Proposition 3.4.

PROPOSITION 3.5. Let Σ1 and Σ2 be minimal systems, and suppose their transfer
functions coincide in a neighborhood of zero. Let G be a closed subspace of X1 ⊕ X2,
where X1 and X2 are the state spaces of Σ1 and Σ2, respectively. Then G = G(S) for
some pseudo-similarity S from Σ1 to Σ2 if and only if

(3.11) G(Smin) ⊂ G ⊂ G(Smax),
[

A1 0
0 A2

]
G ⊂ G.

Here Smin and Smax are the minimal and maximal pseudo-similarities from Σ1 to Σ2
with respect to graph space inclusion, and A1 and A2 are the state operators of Σ1 and
Σ2, respectively.
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Proof. Assume G = G(S) for some pseudo-similarity from Σ1 to Σ2. Then
the first part of (3.11) is covered by (3.9). The first inclusion in (3.6) yields the
second part of (3.11).

To prove the converse, assume (3.11) holds. Since G ⊂ G(Smax) and G is a
linear space, it follows that G is a graph space, that is, there exists an operator S
with domain D(S) in X1 and range in X2 such that G = G(S). The fact that G is
closed implies that S is a closed operator. From G(Smin) ⊂ G(S) it follows that
D(Smin) ⊂ D(S) and Im Smin ⊂ Im S. Thus, as Smin, the operator S is densely
defined and has a dense range. On the other hand the inclusion G(S) ⊂ G(Smax)
shows that S is injective. Thus in order to show that S is a pseudo-similarity it
suffices to show that S satisfies (3.6). The first inclusion in (3.6) is fulfilled because
we assume (3.11) holds. By applying the second part of (3.6) to Smin and Smax we
see that

Im
[

B1
B2

]
⊂ G(Smin) ⊂ G(S), G(S) ⊂ G(Smax) ⊂ Ker

[
C1 −C2

]
.

From these inclusions it follows that S satisfies the second part of (3.6) too. Thus
S is a pseudo-similarity.

COROLLARY 3.6. Let Σ1 and Σ2 be minimal systems, and let S be a pseudo-
similarity from Σ1 to Σ2. If D(S) = X1 (and hence S ∈ L(X1,X2)) or Im S = X2
(and hence S−1 ∈ L(X2,X1)), then S is the only pseudo-similarity from Σ1 to Σ2.

Proof. Since S−1 is a pseudo-similarity from Σ2 to Σ1 and D(S−1) = Im S, it
suffices to prove the corollary for D(S) = X1.

So assume D(S) = X1. Let Smin and Smax be the minimal and maximal
pseudo-similarities from Σ1 to Σ2 with respect to graph space inclusion. Since S
is closed, the assumption D(S) = X1 implies that S is bounded. According to
(3.9) we have G(Smin) ⊂ G(S), and thus

‖Sminx‖ = ‖Sx‖ 6 ‖S‖‖x‖, x ∈ D(Smin).

Thus Smin is bounded too. This can only happen when D(Smin) = X1, because
Smin is closed and densely defined. Thus Smin = S. On the other hand, from
D(S) = X1 and G(S) ⊂ G(Smax) it also follows that D(Smax) = X1. Therefore
S = Smax, and hence S is the only pseudo-similarity from Σ1 to Σ2.

One can construct an example (use Lemma 3.3 and the operators S and Ŝ in
Section 2.3.2 of [7]) such that G(Smax)/G(Smin) has dimension one, and hence in
that case Smin and Smax are the only two pseudo-similarities.

To conclude this chapter let us return to the systems

Σρ = (Aρ, Bρ, C, D; H2(D), C, C), ρ > 0,

considered in Subsection 2.7. Thus Aρ, Bρ, C, and D are the operators defined
in (2.9) and (2.10). Recall that for each ρ > 0 the system Σρ is minimal and in
a neighborhood of zero its transfer function coincides with the function θ(z) =
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ez−1. Nevertheless, as we have seen in Subsection 2.7, the systems Σρ, ρ > 0, are
not mutually similar. On the other hand, according to Theorem 3.2, they must be
mutually pseudo-similar. In fact, in this case the pseudo-similarity from Σρ1 to
Σρ2 is unique and easy to describe. Indeed, assume ρ1 6= ρ2 and put η = ρ1/ρ2.
Let S be the operator in H2(D) defined by

D(S) = {h ∈ H2(D) : λ 7→ h(ηλ) belongs to H2(D)},

(Sh)(λ) = h(ηλ), λ ∈ D.

For 0 < η < 1 we have D(S) = H2(D) and for η > 1 we have Im S = H2(D).
It is straightforward to check that S is a pseudo-similarity from Σρ1 to Σρ2 . Since
either D(S) or Im S is equal to the state space H2(D), there are no other pseudo-
similarities from Σρ1 to Σρ2 by Corollary 3.6.

4. THE KALMAN-YAKUBOVICH-POPOV INEQUALITY FOR THE SCATTERING CASE

In this section we will prove the first main theorem of this article (Theo-
rem 1.2). First we will introduce contractive systems, and give some elementary
properties. A system Σ = (A, B, C, D;X ,U ,Y) is called contractive if for each
initial state x0 ∈ H and each input sequence (uk)k>0 we have

‖un‖2 − ‖yn‖2 > ‖xn+1‖2 − ‖xn‖2 (n > 0).(4.1)

Here for n > 0 the vectors xn+1 and yn are determined from un and xn via the
equations (1.1) from the introduction. In this case the adjoint system Σ∗ is also
contractive. To see this, notice that the system Σ is contractive if and only if its
system matrix MΣ,

MΣ =
[

A B
C D

]
,

is contractive. Since M(Σ∗) = (MΣ)∗, it follows that Σ is contractive if and only if
Σ∗ is contractive. We will show the following theorem.

THEOREM 4.1. A system is dissipative with respect to the supply rate function
(1.3) if and only if it is pseudo-similar to a contractive system.

In the above theorem one cannot replace the word pseudo-similar by just
similar. Indeed, it is possible that a system which is dissipative with respect to
the supply rate w(u, y) = ‖u‖2 − ‖y‖2 is not similar to any contractive system.
An example will be given in Subsection 4.4.

In the next subsection we show that with each generalized solution of the
Kalman-Yakubovich-Popov inequality we can associate in a canonical way a con-
tractive system. The proof of the above theorem is given in the second subsection.
In the third subsection we use Theorem 4.1 to prove Theorem 1.2.
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4.1. THE SYSTEM ASSOCIATED WITH THE KYP-INEQUALITY. Let Σ = (A, B, C, D;
X , U ,Y) be a dissipative system with respect to the supply rate function (1.3). In
other words, there exists a generalized solution H to the Kalman-Yakubovich-
Popov inequality for Σ. With Σ and H, we shall associate a system ΣH in a
canonical way. Since H(X → X ) is a positive operator, the same is true for
H1/2(X → X ). Moreover, since H is injective, H1/2 is injective, and Im H1/2 is
dense in X . By specifying (1.7) for the vectors (x, 0) and (0, u) we see that

‖H1/2x‖2 − ‖H1/2 Ax‖2 − ‖Cx‖2 > 0, ‖u‖2 − ‖Du‖2 − ‖H1/2Bu‖2 > 0,(4.2)

for each x ∈ D(H1/2) and each u ∈ U . Introduce the operator

(4.3) AH : Im H1/2 → X ; AH(H1/2x) = H1/2 Ax (x ∈ D(H1/2)).

Then AH is well-defined, because H1/2 is injective. Since

‖AH(H1/2x)‖ = ‖H1/2 Ax‖ 6 ‖H1/2x‖, x ∈ D(H1/2),

the operator AH is contractive on Im H1/2. We extend AH by continuity to a
contraction, also denoted by AH , on X = Im H1/2. Define BH : U → X by
BHu = H1/2Bu. Then

‖BHu‖ = ‖H1/2Bu‖ 6 ‖u‖, u ∈ U ,

hence BH is a contractive operator. Define CH : Im H1/2 → Y by CH H1/2x = Cx,
for x ∈ D(H1/2). Then

‖CH H1/2x‖ = ‖Cx‖ 6 ‖H1/2x‖,

hence CH is a contractive operator. The operator CH extends by continuity to
a contraction from X = Im H1/2 into Y . The system ΣH = (AH , BH , CH , D;X ,
U , Y) is well-defined, and will be called the system associated to the generalized
solution H of the KYP-inequality for Σ. Sometimes we also refer to ΣH as the system
associated to H and Σ.

PROPOSITION 4.2. Assume H is a generalized solution to the Kalman-Yakubo-
vich-Popov inequality for the system Σ, and let ΣH = (AH , BH , CH , D;X ,U ,Y) be the
associated system. Then ΣH is contractive, the systems Σ and ΣH are pseudo-similar,
and H1/2 is a pseudo-similarity from Σ to ΣH .
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Proof. The system ΣH is contractive, because for each x ∈ D(H1/2) and
u ∈ U we have

0 6 KΣ(H)
[

x
u

]
=

∥∥∥∥[
H1/2x

u

]∥∥∥∥2

−
∥∥∥∥[

H1/2 0
0 IY

] [
A B
C D

] [
x
u

]∥∥∥∥2

=
∥∥∥∥[

H1/2x
u

]∥∥∥∥2

−
∥∥∥∥[

H1/2 A H1/2B
C D

] [
x
u

]∥∥∥∥2

=
∥∥∥∥[

H1/2x
u

]∥∥∥∥2

−
∥∥∥∥[

AH H1/2 BH
CH H1/2 D

] [
x
u

]∥∥∥∥2

=
∥∥∥∥[

H1/2x
u

]∥∥∥∥2

−
∥∥∥∥[

AH BH
CH D

] [
H1/2x

u

]∥∥∥∥2

.

By continuity it follows that ΣH is a contractive system.
The operator H1/2(X → X ) is closed, injective, and densely defined. Since

H1/2 is selfadjoint, Im H1/2 is dense in X . Take x ∈ D(H1/2). Then[
A 0
0 AH

] [
x

H1/2x

]
=

[
Ax

AH H1/2x

]
=

[
Ax

H1/2 Ax

]
∈ G(H1/2),

by the first inclusion in (1.4). The second inclusion of (1.4) yields[
B

BH

]
u =

[
Bu

H1/2Bu

]
∈ G(H1/2).

Take x ∈ D(H1/2). From[
C −CH

] [
x

H1/2x

]
= Cx− CH H1/2x = Cx− Cx = 0,

it follows that G(H1/2) ⊂ Ker
[

C −CH
]
. Thus, the operator H1/2 establishes

a pseudo-similarity from Σ to ΣH .

PROPOSITION 4.3. Let H be a generalized solution to the KYP-inequality for the
system Σ = (A, B, C, D;X ,U ,Y), and let ΣH be the associated system. Then ΣH is
minimal if and only if

(4.4) H1/2Im (A|B) = X , (H1/2)−1Im (A∗|C∗) = X .

Proof. From the identity

(4.5) Im (AH |BH) = span
n>0

Im An
H BH = H1/2Im (A|B),

we see that ΣH is controllable if and only if H1/2Im (A|B) is dense in X .
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Since, by Proposition 4.2, the operator H1/2 is a pseudo-similarity from Σ

to ΣH , we know that (H1/2)∗ = H1/2 is a pseudo-similarity from (ΣH)∗ to Σ∗.
Consequently,

A∗n
H C∗HY ⊂ D(H1/2) and H1/2 A∗n

H C∗H = A∗nC∗

for each n > 0. We conclude that H1/2Im (A∗
H |C∗H) = Im (A∗|C∗). It follows that

the system ΣH is observable if and only if (H1/2)−1Im (A∗|C∗) is dense in X .

PROPOSITION 4.4. Let H be a generalized solution to the KYP-inequality for the
system Σ = (A, B, C, D;X ,U ,Y), and assume that Im (A|B) is a core for H1/2. Then
H1/2Im (A|B) = X .

Proof. Since Im H1/2 is dense in X , it suffices to show that

(4.6) Im H1/2 ⊂ H1/2Im (A|B).

Take y ∈ Im H1/2. Thus y = H1/2x for some x ∈ D(H1/2). Since Im (A|B) is a
core for H1/2, there exists a sequence x1, x2, . . . in Im (A|B) such that xn → x and
H1/2xn → y. Obviously, H1/2xn ∈ H1/2Im (A|B). Thus y ∈ H1/2Im (A|B), and
(4.6) is proved.

4.2. PROOF OF THEOREM 4.1.

Proof. Assume the system Σ is dissipative with respect to (1.3). Thus there
exists a generalized solution H to the KYP-inequality for Σ. Let ΣH be the system
associated to H and Σ. By Proposition 4.2, the system ΣH is contractive, and Σ
and ΣH are pseudo-similar. Thus Σ is pseudo-similar to contractive system.

To prove the converse implication, let Σ = (A, B, C, D;X ,U ,Y) be pseudo-
similar to the contractive system Υ = (Ã, B̃, C̃, D; X̃ ,U ,Y), and let the pseudo-
similarity be given by S(X → X̃ ). We shall show that H = S∗S is a generalized
solution to the KYP-inequality with respect to Σ. Since S is closed and densely
defined, the operator H(X → X ) is selfadjoint (by Chapter 5, Theorem 3.24 in
[25]). The operator S is injective, hence

〈Hx, x〉 = ‖Sx‖2 > 0, (x ∈ D(H), x 6= 0)

and the operator H is positive. Since D(H1/2) = D(S) (see Chapter 6, Theo-
rem 2.23 of [25], and also formula (2.22) in the same chapter), the similarity con-
ditions (3.2) and (3.3) yield

AD(H1/2) ⊂ D(H1/2), BU ⊂ D(H1/2).

By the polar decomposition (see page 334 of [25]), we have UH1/2 = S, where U :
X → X̃ is a partial isometry with initial space Im H1/2 and final space Im S. Since
S is a pseudo-similarity, Im S = X̃ , and since H1/2 is injective and selfadjoint,
Im H1/2 = X . It follows that U is unitary.
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Take x ∈ D(H1/2) and u ∈ U . Then

KΣ(H)
[

x
u

]
=

∥∥∥∥[
H1/2x

u

]∥∥∥∥2

−
∥∥∥∥[

H1/2 0
0 IY

] [
A B
C D

] [
x
u

]∥∥∥∥2

=
∥∥∥∥[

Sx
u

]∥∥∥∥2

−
∥∥∥∥[

SA SB
C D

] [
x
u

]∥∥∥∥2

=
∥∥∥∥[

Sx
u

]∥∥∥∥2

−
∥∥∥∥∥
[

Ã B̃
C̃ D

] [
Sx
u

]∥∥∥∥∥
2

> 0,

because Υ is a contractive system. Thus H is a generalized solution to the KYP-
inequality for Σ.

The proof of Theorem 4.1 also yields the first part of the following proposi-
tion.

PROPOSITION 4.5. Let S be a pseudo-similarity from Σ to Σ1, and assume that
Σ1 is contractive. Then H = S∗S is a generalized solution to the KYP-inequality for Σ.
Moreover, the polar decomposition of S is given by S = UH1/2, with U : X → X1 being
a unitary operator, and the system ΣH associated to H and Σ is unitarily equivalent to
Σ1 with U providing the unitary equivalence. In particular, if S = H1/2, then ΣH = Σ1.

Proof. The proof of the first statement is contained in (the second and third
paragraph of) the proof of Theorem 4.1. In the proof of this theorem it was also
shown that S = UH1/2, with U : X → X1 a unitary operator. Let Σ = (A, B, C, D;
X , U ,Y). We show that the system ΣH = (AH , BH , CH , D;X ,U ,Y) associated to
H and Σ, and the system Σ1 = (A1, B1, C1, D;X1,U ,Y) are unitarily equivalent
to the unitary equivalence being provided by U. For x ∈ D(H1/2) = D(S) the
identities

AH(H1/2x) = H1/2 Ax = U∗SAx = U∗A1Sx = U∗A1U(H1/2x)(4.7)

CH H1/2x = Cx = C1Sx = C1U(H1/2x)(4.8)

hold, and since H1/2 is densely defined, it follows by continuity that AH =
U∗A1U, and CH = C1U. Finally, for u ∈ U we have UBHu = UH1/2Bu =
SBu = B1u. The proposition follows.

PROPOSITION 4.6. If H is a generalized solution to the KYP-inequality for the
system Σ, then H−1 is a generalized solution to the KYP-inequality for the system Σ∗,

(4.9) (ΣH)∗ = (Σ∗)H−1 .

Proof. By Proposition 4.2 the selfadjoint operator H1/2 establishes a pseudo-
similarity from Σ to ΣH . Hence (H1/2)∗ = H1/2 is a pseudo-similarity from
(ΣH)∗ to Σ∗, and thus (H1/2)−1 is a pseudo-similarity from Σ∗ to (ΣH)∗. The
operator H1/2 is defined as the unique non-negative selfadjoint operator such
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that (H1/2)2 = H (see Chapter 5, Theorem 3.35 of [25]). Hence D(H) = {x ∈
D(H1/2) : H1/2x ∈ D(H1/2)}. It follows that

(H1/2)−1(H1/2)−1Hx = (H1/2)−1H1/2x = x, x ∈ D(H).

Put K = (H1/2)−1(H1/2)−1. The previous identity shows that K is an extension of
H−1. Since K = S∗S, where S is the selfadjoint operator (H1/2)−1, we know that
K is selfadjoint. Thus K is a selfadjoint extension of the selfadjoint operator H−1,
which implies that K = H−1, that is, H−1 = (H1/2)−1(H1/2)−1. Since (ΣH)∗ is a
contractive system, we can use Proposition 4.5 to show that H−1 is a generalized
solution to the KYP-inequality for Σ∗.

It remains to prove (4.9). From H−1 = (H1/2)−1(H1/2)−1 and (H1/2)−1

nonnegative it follows that (H1/2)−1 = (H−1)1/2. As we have shown in the pre-
vious paragraph, the operator (H−1)1/2 is a pseudo-similarity from Σ∗ to (ΣH)∗.
Now apply Proposition 4.5 with S = (H−1)1/2. It follows that (4.9) holds, and the
proof is complete.

4.3. PROOF OF THEOREM 1.2.

Proof. Let Σ = (A, B, C, D;X ,U ,Y) be a minimal system. Assume first that
the KYP-inequality for Σ has a generalized solution. In other words, assume Σ
is dissipative with respect to (1.3). By Theorem 4.1 this implies that Σ is pseudo-
similar to a contractive system Σ̃. Because of the pseudo-similarity, the transfer
function θΣ coincides with a Schur class function θΣ̃ in a neighborhood of zero.

Assume now that the transfer function θΣ coincides with a Schur class func-
tion θ in a neighborhood of 0. Let Σ̃ be a minimal contractive realization of θ.
Since Σ and Σ̃ are both minimal, the fact that θΣ ∼ θΣ̃(= θ) in a neighborhood
of zero implies (see Theorem 3.2) that there exists a pseudo-similarity S from Σ

to Σ̃. Proposition 4.5 shows that H = S∗S is a generalized solution to the KYP-
inequality for Σ.

4.4. PSEUDO-SIMILARITY VERSUS ORDINARY SIMILARITY. In Theorem 4.1 it is
shown that a system is dissipative with respect to the supply rate (1.3) if and
only if it is pseudo-similar to a contractive system. In this statement the condi-
tion of pseudo-similarity cannot be replaced by ordinary similarity (i.e., with a
bounded and boundedly invertible similarity operator). In fact, it may happen
that a system Σ which is dissipative with respect to the supply rate function (1.3)
is not similar (with a bounded and bounded invertible similarity) to any contrac-
tive system. To present an example, take ρ > 1, and consider the system

(4.10) Σρ = (Aρ, Bρ, C, D; H2(D), C, C),

where Aρ, Bρ, C, and D are the operators defined in (2.9) and (2.10). Notice that
the spectrum σ(Aρ) = ρD contains points outside the closed unit disk (because
ρ > 1). Thus Σρ is not similar to any contractive system. Next we show that
Σρ is dissipative with respect to the supply rate (1.3). To do this, notice that the
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transfer function of Σρ coincides with the Schur class function θ(z) = ez−1 in
a neighborhood of 0 (see Subsection 2.7). From Subsection 2.7 we also know
that Σρ is minimal. By Theorem 1.2 the KYP-inequality for the system Σρ has
a generalized solution. By Proposition 4.2 the system Σρ is pseudo-similar to a
contractive system. By Theorem 4.1 the system Σρ is dissipative with respect to
the supply rate (1.3).

4.5. AN EXAMPLE OF A KYP-INEQUALITY WITH ALL GENERALIZED SOLUTIONS

UNBOUNDED. Let Σ be the system Σρ in (4.10), with ρ > 1 being fixed. We con-
clude this section by showing that all generalized solutions to the KYP-inequality
for this Σ are unbounded. Indeed, let H be a generalized solution to the KYP-
inequality for Σ, and assume H ∈ L(X ), where X is the state space of Σ = Σρ.
Then H1/2 is a pseudo-similarity from Σ to ΣH . In particular, using D(H) = X ,
we have

(4.11) AH H1/2φ = H1/2 Aρφ = H1/2ρTφ, φ ∈ X .

Recall that the state space X of Σ = Σρ is the Hardy space H2(D), and T is the
backward shift on this space. It follows that every point z in C with |z| < ρ is an
eigenvalue of ρT with φz(λ) = (1− ρ−1zλ)−1 as corresponding eigenvector. So,
for 1 < |z| < ρ the function H1/2φz is an eigenvector of AH with eigenvalue z,
because of (4.11). This is impossible. Indeed, AH is a contraction and hence the
eigenvalues of A are in the closed unit disk. Thus H cannot be bounded. One can
construct more elaborate examples showing that both H and H−1 are unbounded
operators.

5. ORDER PROPERTIES OF THE GENERALIZED SOLUTIONS OF THE KYP-INEQUALITY

To state our second main theorem we need the following partial ordering on
the set of non-negative selfadjoint operators, which is taken from page 330, for-
mula (2.17), and the remark below, in [25]. Let H1, H2 be non-negative selfadjoint
operators acting in X . We define

H1 ≺ H2

if D(H1/2
2 ) ⊂ D(H1/2

1 ) and ‖H1/2
1 x‖ 6 ‖H1/2

2 x‖ for each x ∈ D(H1/2
2 ). Notice

that if H1 and H2 are bounded, then H1 ≺ H2 means H1 6 H2. The next theorem
is the main theorem of this section.

THEOREM 5.1. Let Σ = (A, B, C, D;X ,U ,Y) be a minimal system, which is
dissipative with respect to the supply rate (1.3). Then the set of all generalized solutions
H to the KYP-inequality for Σ which have the following two additional properties

(i) H1/2Im (A|B) and (H1/2)−1Im (A∗|C∗) are dense in X ,
(ii) Im (A|B) is a core for the operator H1/2,
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is not empty and this set contains a minimal element H◦ and a maximal element H• with
respect to the ordering ≺.

The conditions (i) and (ii) in the above theorem are not independent. In
fact, if (ii) holds, then H1/2Im (A|B) is dense in X by Proposition 4.4. On the
other hand, condition (ii) does not imply (i). To see the latter, we note that from
the examples in Section 2.3 in [7] we can obtain (using Lemma 3.3) two pseudo-
similar contractive systems,

Σ1 = (0, B1, C1, 0;X1,U ,Y) and Σ2 = (0, B2, C2, 0;X2,U ,Y)

such that Σ1 is minimal while Σ2 is not. Furthermore, we can choose (see formu-
las (2.8) and (2.9) in [7]) a pseudo-similarity Ŝ from Σ1 to Σ2 such that Ŝ∗ = C∗1 ,
and hence Im Ŝ∗ = Im C∗1 . Now put Σ = Σ∗

1 . Notice that (Ŝ−1)∗ is a pseudo-
similarity from Σ to Σ∗

2 . Put H = (Ŝ−1)(Ŝ−1)∗. Since Σ2 is contractive, the same
holds true for Σ∗

2 , and hence we can apply Proposition 4.5 to show that H is a
generalized solution to the KYP-inequality for Σ, and that ΣH is unitarily equiv-
alent to Σ∗

2 . Thus ΣH is not minimal, because Σ∗
2 is not minimal. According to

Proposition 4.3, this implies that for this choice of Σ and H condition (i) in the
above theorem is not satisfied. Next, notice that Σ = Σ∗

1 = (0, C∗1 , B∗1 , 0;X1,Y ,U ).
Using (Ŝ−1)∗ = (Ŝ∗)−1, we have

Im C∗1 = Im Ŝ∗ = D((Ŝ∗)−1) = D((Ŝ−1)∗).

In particular (see Proposition 4.5) the domain of H1/2 is equal to Im C∗1 , and hence
condition (ii) in Theorem 5.1 is trivially satisfied. Thus (ii) does not imply (i).

We proceed with some notation. Let Σ = (A, B, C, D;X ,U ,Y) be a minimal
system. The set of all generalized solutions H of the KYP-inequality for Σ will
be denoted by GKΣ, and we write CKΣ for all classical solutions H of the KYP-
inequality for Σ, i.e., all generalized solutions H that are bounded and boundedly
invertible. When the state space X is finite dimensional, then the sets GKΣ and
CKΣ coincide, and are equal to the set KΣ defined by (1.10). The following two
subsets of GKΣ will be important in the sequel:

GKmin
Σ = {H ∈ GKΣ : ΣH is minimal},(5.1)

GKmin
Σ, core = {H ∈ GKmin

Σ : Im (A|B) is a core for the operator H1/2}.(5.2)

Recall (see Proposition 4.3) that ΣH is minimal if and only if condition (i) in Theo-
rem 5.1 is satisfied. Thus, using the above notation, Theorem 5.1 can be reformu-
lated as follows. If Σ is minimal and dissipative with respect to the supply rate (1.3),
then the set GKmin

Σ, core is non-empty and with respect to the ordering ≺ this set has a
minimal and a maximal element.

Let Σ = (A, B, C, D;X ,U ,Y) be a minimal system, and let H be a general-
ized solution of the KYP-inequality for Σ which is bounded and boundedly in-
vertible, i.e., H is a classical solution. Then, trivially, Im (A|B) is a core for H1/2.
Furthermore, H1/2 is a usual (i.e., bounded and boundedly invertible) similarity
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from Σ to ΣH . Since Σ is assumed to be minimal, the same holds true for ΣH . We
conclude that H ∈ GKmin

Σ, core. Hence we have the following inclusions:

(5.3) CKΣ ⊂ GKmin
Σ, core ⊂ GKmin

Σ ⊂ GKΣ.

However, notice that for a minimal dissipative system it may happen (as we
know from Subsection 4.5) that CKΣ is empty while for such a system GKmin

Σ, core
is always non-empty. In particular, the first inclusion in (5.3) can be strict. The
second inclusion in (5.3) can also be strict (see Subsection 5.5).

As a first step towards the proof of Theorem 5.1 we shall establish the fol-
lowing result.

THEOREM 5.2. Let Σ be a minimal system which is dissipative with respect to
the supply rate (1.3), and let θ be the Schur class function coinciding with the transfer
function of Σ in a neighborhood of 0. Then each minimal and contractive realization of θ is
unitarily equivalent to a system ΣH for some unique generalized solution H ∈ GKmin

Σ, core.

For the case when the state operator and external operator of Σ are both
zero, Theorems 5.1 and 5.2 reduce to Theorems 1.4 and 1.3 in [7], respectively.

In the proof of the second main theorem optimal and star optimal systems
play an essential role. We review the theory of these systems in the next subsec-
tion. Some auxiliary results on the ordering≺will be presented in Subsection 5.2.

5.1. OPTIMAL AND STAR-OPTIMAL SYSTEMS. In this subsection we consider two
classes of contractive systems that have extremal properties. A contractive system
Σ◦ = (A◦, B◦, C◦, D,X◦,U ,Y) with transfer function θ is called optimal if for each
contractive realization Σ = (A, B, C, D;X ,U ,Y) of θ the estimate

(5.4)
∥∥∥ n

∑
j=0

An−j
◦ B◦uj

∥∥∥ 6
∥∥∥ n

∑
j=0

An−jBuj

∥∥∥
holds for each u0, u1, . . . , un ∈ U and each n > 0. To prove that Σ◦ is optimal
it suffices to check (5.4) for minimal contractive realizations of θ. Each Schur
class function θ appears as the transfer function of a minimal and optimal system,
which is determined by θ up to unitary equivalence (see [4]). Moreover, given a
Schur class function θ, a minimal and optimal realization can be constructed as
follows. Let Σ = (A, B, C, D;X ,U ,Y) be a unitary realization of θ. Define the
subspace

X◦ = PKer (C|A)⊥ Im (A|B),

let τX◦ be the canonical embedding of X◦ into X , and consider the operators

A◦ = τ∗X◦ AτX◦ : X◦ → X◦, B◦ = τ∗X◦B : U → X◦, B◦ = CτX◦ : X◦ → Y .

Then (see [5]) the system Σ◦ = (A◦, B◦, C◦, D;X◦,U ,Y) is a minimal and optimal
realization of θ. Notice that we obtained the minimal and optimal system as the
first minimal restriction of a unitary system.
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The other class of contractive systems is defined as follows. Let Σ• =
(A•, B•, C•, D;X•, U , Y) be an observable contractive system with transfer func-
tion θ. The system Σ• is called star-optimal if for each observable contractive real-
ization Σ = (A, B, C, D;X , U ,Y) of θ and for each input sequence u0, u1, u2, . . . , un
in U , we have

(5.5)
∥∥∥ n

∑
j=0

An−j
• B•uj

∥∥∥ >
∥∥∥ n

∑
j=0

An−jBuj

∥∥∥ (n > 0).

Each Schur class function θ admits a minimal and star-optimal realization, which
is determined by θ up to unitary equivalence (see [4]). Given a Schur class func-
tion θ, a minimal and star-optimal realization can be constructed as follows (see
[5]): let Σ = (A, B, C, D;X ,U ,Y) be a unitary realization of θ. Define the subspace

X• = PIm (A|B)Ker (C|A)⊥,

and the operators

A• = τ∗X• AτX• : X• → X•, B• = τ∗X•B : U → X•, B• = CτX• : X• → Y .

Then the system Σ• = (A•, B•, C•, D;X•,U ,Y) is a minimal and star-optimal
realization of θ. Notice again, that we obtained the minimal and star-optimal
system as the second minimal restriction of a unitary system. Using (2.7) we see
that Σ is minimal and star-optimal if and only if the adjoint system Σ∗ is minimal
and optimal. For further information on optimal and star-optimal systems, see
[4] and [5].

5.2. AUXILIARY RESULTS ON THE ORDERING ≺. In this subsection we present
a few auxiliary results on the ordering ≺ that will play a role in the proofs of
Theorems 5.1 and 5.2 or that will be useful in later sections. It is straightforward
to check that the relation ≺ is transitive. The first of the next two propositions
shows that the ordering ≺ is also antisymmetric.

PROPOSITION 5.3. Let H1 and H2 be non-negative selfadjoint operators acting in
X such that H1 ≺ H2 and H2 ≺ H1. Then H1 = H2.

PROPOSITION 5.4. Let H1 and H2 be positive selfadjoint operators acting in X .
Then H1 ≺ H2 is equivalent to H−1

2 ≺ H−1
1 .

The above propositions and their proofs can be found in Section 3.2 of [7].
In the sequel we shall need the following lemma.

LEMMA 5.5. For ν = 1, 2, let Hν(X → X ) be a non-negative selfadjoint operator,
and let D be a linear sub-manifold of both D(H1) and D(H2). If ‖H1/2

1 x‖ 6 ‖H1/2
2 x‖

for each x ∈ D, and D is a core for H1/2
2 , then H1 ≺ H2.

Proof. Take x ∈ D(H1/2
2 ). Since D is a core for H1/2

2 , there exists a sequence
x1, x2, . . . in D such that xn → x and H1/2

2 xn → H1/2
2 x if n → ∞. The second

limit and the assumption that ‖H1/2
1 x‖ 6 ‖H1/2

2 x‖ for each x ∈ D imply that
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(H1/2
1 xn)∞

n=1 is a Cauchy sequence in X . Thus y = lim
n→∞

H1/2
1 xn exists. But H1/2

1

is closed. Therefore, x ∈ D(H1/2
1 ) and H1/2

1 x = y. We have now proved that
D(H1/2

2 ) ⊂ D(H1/2
1 ). Furthermore, again using that ‖H1/2

1 x‖ 6 ‖H1/2
2 x‖ for

each x ∈ D, we see that

‖H1/2
1 x‖ = lim

n→∞
‖H1/2

1 xn‖ 6 lim
n→∞

‖H1/2
2 xn‖ = ‖H1/2

2 x‖.

Thus H1 ≺ H2.

PROPOSITION 5.6. Let Σ = (A, B, C, D;X ,U ,Y) be a minimal system which is
dissipative with respect to the supply rate (1.3), and let H1 and H2 belong to GKmin

Σ, core.
Then H1 ≺ H2 if and only if there exists a contraction R on X such that

(5.6) RAH2 = AH1 R, RBH2 = BH1 , CH2 = CH1 R.

Moreover, (5.6) determines R uniquely.

Proof. Notice that both ΣH1 and ΣH2 are minimal. For each H ∈ GKΣ and
each set of vectors u0, u1, . . . , uN in U we have

(5.7)
N

∑
j=0

AjBuj ∈ D(H1/2),
N

∑
j=0

Aj
H BHuj = H1/2

( N

∑
j=0

AjBuj

)
.

Now assume H1 ≺ H2. Then using the definition of ≺, we obtain

(5.8)
∥∥∥ N

∑
j=0

Aj
H1

BH1 uj

∥∥∥ 6
∥∥∥ N

∑
j=0

Aj
H2

BH2 uj

∥∥∥, u0, u1, . . . , uN in U .

From (5.8) and the fact that Im (AH2 |BH2) is dense in X (because ΣH2 is minimal)
it follows that there exists a unique contraction R on X such that

(5.9) R
( N

∑
j=0

Aj
H2

BH2 uj

)
=

N

∑
j=0

Aj
H1

BH1 uj, u0, u1, . . . , uN in U .

Again using the density of Im (AH2 |BH2) in X , we see that (5.9) yields the first
two identities in (5.6). Next, recall that the transfer functions of ΣH1 and ΣH2

coincide in a neighborhood of zero. Thus CH2 Aj
H2

BH2 = CH1 Aj
H1

BH1 for each
j = 0, 1, 2, . . .. By using (5.9) it follows that

CH1 R
( N

∑
j=0

Aj
H2

BH2 uj

)
=

N

∑
j=0

CH1 Aj
H1

BH1 uj =
N

∑
j=0

CH2 Aj
H2

BH2 uj

= CH2

( N

∑
j=0

Aj
H2

BH2 uj

)
.

Using Im (AH2 |BH2) is dense in X , we get CH1 R = CH2 , and (5.6) is proved.
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To prove the reverse implication, assume that R is a contraction such that
(5.6) holds. Then we also have

R
( N

∑
j=0

Aj
H2

BH2 uj

)
=

N

∑
j=0

Aj
H1

BH1 uj, u0, u1, . . . , uN in U .

Since Im (AH2 |BH2) is dense in X this determines R uniquely. The fact that R is a
contraction implies∥∥∥ N

∑
j=0

Aj
H1

BH1 uj

∥∥∥ 6
∥∥∥ N

∑
j=0

Aj
H2

BH2 uj

∥∥∥, u0, u1, . . . , uN in U .

Now put D = Im (A|B). Using (5.7) and the preceding norm inequality, we see
that ‖H1/2

1 x‖ 6 ‖H1/2
2 x‖ for each x ∈ D. From the definition of GKmin

Σ, core we
know that D is a core for H1/2

2 . Thus Lemma 5.5 shows that H1 ≺ H2.

REMARK. Notice that in the first paragraph of the above proof we did not
use that Im (A|B) is a core for H1 and H2. Thus if H1 and H2 are generalized
solutions to the KYP-inequality for the minimal system Σ, such that H1 ≺ H2,
and the associated systems ΣH1 and ΣH2 are minimal, then there exists a unique
contraction R on X such that (5.6) holds.

COROLLARY 5.7. Let Σ be a minimal system which is dissipative with respect to
the supply rate (1.3), and let H1 and H2 belong to GKmin

Σ, core. Then ΣH1 and ΣH2 are
unitarily equivalent if and only if H1 = H2.

Proof. Assume ΣH1 and ΣH2 are unitarily equivalent. Then there exists a
unitary operator R on X such that (5.6) holds. Since R is contractive, it follows
that H1 ≺ H2. Interchanging the roles of ΣH1 and ΣH2 we also get H2 ≺ H1.
Hence H1 = H2 by Proposition 5.3. The reverse implication is trivial.

5.3. PROOFS OF THEOREMS 5.1 AND 5.2.

Proof of Theorem 5.2. Let Σ be a minimal system which is dissipative with
respect to the supply rate (1.3), and let θ be the Schur class function coinciding
with the transfer function of Σ in a neighborhood of 0. Let Υ be a minimal and
contractive realization of θ. Let S be the unique pseudo-similarity from Σ to Υ
such that Im (A|B) is a core for S. Put H = S∗S. By Proposition 4.5, the operator
H is a generalized solution to the KYP-inequality for Σ. Let ΣH denote the system
associated to the generalized solution H of the KYP-inequality for Σ. By Proposi-
tion 4.5, the systems ΣH and Υ are unitarily equivalent, and the unitary operator
U, that establishes the unitary equivalence, satisfies S = UH1/2. It follows by
unitary equivalence that ΣH is minimal. This is equivalent to the requirement
that

H1/2Im (A|B) = X , (H1/2)−1Im (A∗|C∗) = X ,
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by Proposition 4.3. Since Im (A|B) is a core for S, the linear manifold Im (A|B) is
also a core for H1/2, because H1/2 = U−1S. Thus H ∈ GKmin

Σ, core, and ΣH and Υ

are unitarily equivalent.
It remains to prove the uniqueness of H. Let H′ be a second operator in

GKmin
Σ, core such that ΣH′ and Υ are unitarily equivalent. Then ΣH′ and ΣH are

unitarily equivalent, and we can apply Corollary 5.7 to show that H′ = H, which
completes the proof.

The proof of Theorem 5.1 follows from the first two statements of the next
proposition.

PROPOSITION 5.8. Let Σ = (A, B, C, D;X ,U ,Y) be a minimal system, which
is dissipative with respect to the supply rate (1.3), and let θ be a Schur class function
coinciding with the transfer function of Σ in a neighborhood of zero.

(i) If Σ◦ is a minimal and optimal realization of θ, and S◦ is the unique pseudo-
similarity from Σ to Σ◦ such that Im (A|B) is a core for S◦, then S∗◦S◦ is the minimal
element of GKmin

Σ, core.
(ii) If Σ• is a minimal and star-optimal realization of θ, and S• is the unique pseudo-

similarity from Σ to Σ• such that Im (A|B) is a core for S•, then S∗•S• is the maximal
element of GKmin

Σ, core. Conversely, if H◦ is the minimal and H• is the maximal element
in GKmin

Σ, core, then ΣH◦ is a minimal and optimal system, and ΣH• is a minimal and
star-optimal system.

Proof. We split the proof in three parts. In each one of these parts, we show
the corresponding statement of the theorem.

Part (a). Let Σ◦ = (A◦, B◦, C◦, D;X◦,U ,Y) be a minimal and optimal realiza-
tion of θ. Let S◦ be the unique pseudo-similarity from Σ to Σ◦ such that Im (A|B)
is a core for S◦, which exists by Proposition 3.4. Put H◦ = S∗◦S◦. The proof of
Theorem 5.2 shows that H◦ ∈ GKmin

Σ, core.
We will show that H◦ is minimal with respect to the ordering ≺. Take

H ∈ GKmin
Σ, core, and construct ΣH = (AH , BH , CH , D;X ,U ,Y). The system ΣH

is minimal. Notice that Im (A|B) is in the domain of both H1/2 and H1/2
◦ . Thus∥∥∥H1/2

◦

( n

∑
j=0

AjBuj

)∥∥∥ =
∥∥∥ n

∑
j=0

Aj
◦B◦uj

∥∥∥ 6
∥∥∥ n

∑
j=0

Aj
H BHuj

∥∥∥ =
∥∥∥H1/2

( n

∑
j=0

AjBuj

)∥∥∥.

The inequality follows from the optimality of Σ◦, and the last equality follows
from Proposition 4.2. Since the linear manifold Im (A|B) is a core for H1/2, and
since the inequality ‖H1/2

◦ x‖ 6 ‖H1/2x‖ holds for each for each x ∈ Im (A|B), by
Lemma 5.5 we conclude that H◦ ≺ H.

Part (b). Let Σ• = (A•, B•, C•, D;X•,U ,Y) be a minimal and star-optimal
realization of θ. Let S• be the unique pseudo-similarity from Σ to Σ• such that
Im (A|B) is a core for S•. Put H• = S∗•S•. The proof of Theorem 5.2 shows that
H• ∈ GKmin

Σ, core.
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We will show that H• is maximal in GKmin
Σ, core with respect to the ordering

≺. Take H ∈ GKmin
Σ, core, and construct ΣH = (AH , BH , CH , D;X ,U ,Y). The system

ΣH is minimal. Notice that Im (A|B) is in the domain of both the operators H1/2

and H1/2
• . By star-optimality of Σ• we obtain the inequality∥∥∥H1/2

•

( n

∑
j=0

AjBuj

)∥∥∥ =
∥∥∥ n

∑
j=0

Aj
•B•uj

∥∥∥ >
∥∥∥ n

∑
j=0

Aj
H BHuj

∥∥∥ =
∥∥∥H1/2

( n

∑
j=0

AjBuj

)∥∥∥.

The last equality follows from Proposition 4.2. Since the linear manifold Im (A|B)
is a core for H1/2

• and the inequality ‖H1/2x‖ 6 ‖H1/2
• x‖ holds for each for each

x ∈ Im (A|B), we conclude again by Lemma 5.5 that H ≺ H•.
Part (c). It remains to show the last statement of the proposition. Let H◦ be

the minimal element in GKmin
Σ, core. We have to show, that the system ΣH◦ is min-

imal and optimal. It is a minimal system, because H◦ is an element in GKmin
Σ, core.

Let Υ = (α, β, γ, D;X ,U ,Y) be an arbitrary minimal contractive realization of the
Schur class function θ. By Theorem 5.2 the system Υ is unitarily equivalent to ΣH
with H ∈ GKmin

Σ, core. The optimality of ΣH◦ follows from the inequality∥∥∥ n

∑
j=0

Aj
H◦

B◦uj

∥∥∥ =
∥∥∥H1/2

◦

( n

∑
j=0

AjBuj

)∥∥∥ 6
∥∥∥H1/2

( n

∑
j=0

AjBuj

)∥∥∥ =
∥∥∥ n

∑
j=0

αjaβuj

∥∥∥.

The proof that H• is the maximal element in GKmin
Σ, core is obtained in an analogous

way.

Proof of Theorem 5.1. The theorem follows from the first two statements in
Proposition 5.8.

The last statement of Proposition 5.8 is summarized in the following propo-
sition.

PROPOSITION 5.9. Let Σ be a minimal system which is dissipative with respect
to the supply rate (1.3). Let H◦ be the minimal element and H• be the maximal element
in GKmin

Σ, core with respect to the ordering ≺. Then ΣH◦ is a minimal and optimal system,
and ΣH• is a minimal and star-optimal system.

5.4. FURTHER PROPERTIES OF THE SET GKmin
Σ, core. Let Σ and Σ̃ be pseudo-similar

minimal systems which are dissipative with respect to the supply rate (1.3). The
first result of this subsection shows that the sets GKmin

Σ, core and GKmin
Σ̃, core

are order
isomorphic with respect to the ordering ≺.

To define the order isomorphism referred to in the previous paragraph, take
H in GKmin

Σ, core. Then ΣH is a minimal contractive realization of the Schur class
function θ coinciding with the transfer function of Σ in a neighborhood of zero.
Since Σ and Σ̃ are pseudo-similar, the transfer function of Σ̃ also coincides with
θ in a neighborhood of zero. Now, apply Theorem 5.2 to Σ̃. The fact that ΣH
is a minimal contractive realization of θ implies that there exists a unique H̃ ∈
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GKmin
Σ̃, core

such that ΣH and ΣH̃ are unitarily equivalent. Let J be the map given
by

(5.10) J : GKmin
Σ, core → GKmin

Σ̃, core
, J(H) = H̃.

The next proposition shows that J is an order isomorphism with respect to ≺.

PROPOSITION 5.10. Let Σ = (A, B, C, D;X ,U ,Y) and Σ̃ = (Ã, B̃, C̃, D; X̃ ,U ,
Y) be pseudo-similar minimal systems, which are dissipative with respect to the supply
rate (1.3), and let J be the map defined by (5.10). Then J is a bijective map preserving
the order relation ≺, that is,

(5.11) H1 ≺ H2 ⇐⇒ J(H1) ≺ J(H2).

Proof. Let us write JΣ, Σ̃ for the map J defined by (5.10). By interchanging

the roles of Σ and Σ̃ we can also consider the map JΣ̃, Σ which transforms GKmin
Σ̃, core

into GKmin
Σ, core. Using the uniqueness statements in Theorem 5.2 and Corollary 5.7

it is straightforward to show the products JΣ, Σ̃ JΣ̃, Σ and JΣ̃, Σ JΣ, Σ̃ are the identity
maps on GKmin

Σ, core and GKmin
Σ̃, core

, respectively. In particular, the map J = JΣ, Σ̃ is a
bijection.

Next, we prove (5.11). Since JΣ, Σ̃ = (JΣ̃, Σ)−1, it suffices to show that H1 ≺
H2 implies J(H1) ≺ J(H2). For i = 1, 2 put H̃i = J(Hi), and consider the systems

ΣHi = (AHi , BHi , CHi , D;X ,U ,Y), ΣH̃i
= (ÃH̃i

, B̃H̃i
, C̃H̃i

, D; X̃ ,U ,Y).

Here X and X̃ are the state spaces of the systems Σ and Σ̃, respectively. Let
Ui : X → X̃ , i = 1, 2, be the unitary operator providing the unitary equivalence
from ΣHi to ΣH̃i

. Thus

(5.12) Ui AHi = ÃH̃i
Ui, UiBHi = B̃H̃i

, CHi = CH̃i
Ui, i = 1, 2.

Recall that we assume that H1 ≺ H2. Thus, by Proposition 5.6, there exists a con-
traction R on X such that (5.6) holds. Now, let R̃ be the contraction on X̃ defined
by R̃ = U1RU−1

2 . Then using the identities in (5.6) and (5.12) it is straightforward
to check that

R̃ÃH̃2
= ÃH̃1

R̃, R̃B̃H̃2
= B̃H̃1

, C̃H̃2
= C̃H̃1

R̃.

According to Proposition 5.6 this implies that H̃1 ≺ H̃2, which completes the
proof.

The following similarity result will be used in the next section.

PROPOSITION 5.11. Let Σ be a minimal system which is dissipative with respect
to the supply rate (1.3), and let H◦ be the minimal and H• the maximal element in
GKmin

Σ, core with respect to the ordering ≺. Then all ΣH with H ∈ GKmin
Σ, core are mutually

similar if and only if H• ≺ γH◦ for some γ > 0.
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Proof. Since H◦ ≺ H•, by Proposition 5.6 there exists a unique contraction
R on X such that

(5.13) RAH• = AH◦R, RBH• = BH◦ , CH• = CH◦R.

Now assume that all ΣH with H ∈ GKmin
Σ, core are mutually similar. In particu-

lar, ΣH◦ and ΣH• are similar. It follows that the unique R in (5.13) is bound-
edly invertible. Put γ = ‖R−1‖2. For u0, . . . , uN in U and using (5.13) we have
N
∑

j=0
Aj

H•
BH•uj = R−1

N
∑

j=0
Aj

H◦
BH◦uj, and hence

∥∥∥ N

∑
j=0

Aj
H•

BH•uj

∥∥∥ 6 g1/2
∥∥∥ N

∑
j=0

Aj
H◦

BH◦uj

∥∥∥.

Put D = Im (A|B). Using (5.7) and the previous norm inequality we see that

‖H1/2
• x‖ 6 ‖γ1/2H1/2

◦ x‖, x ∈ D.

Since D is a core for γ1/2H1/2
◦ , we can apply Lemma 5.5 to show that H• ≺ γH◦.

Conversely, assume that H• ≺ γH◦ for some γ > 0. Let H be an arbitrary
operator from GKmin

Σ, core. It suffices to show that ΣH is similar to ΣH◦ . Since H◦ ≺
H we know from Proposition 5.6 that the exists a unique contraction R◦ on X
such that

R◦AH = AH◦R◦, R◦BH = BH◦ , CH = CH◦R◦.

Notice that H ≺ H• ≺ γH◦. Thus we also have H ≺ γH◦. It follows that∥∥∥ N

∑
j=0

Aj
H BHuj

∥∥∥ 6 γ1/2
∥∥∥ N

∑
j=0

Aj
H◦

BH◦uj

∥∥∥ = γ1/2
∥∥∥R◦

( N

∑
j=0

Aj
H BHuj

)∥∥∥
for u0, . . . , uN in U . Thus ‖R◦w‖ > γ1/2‖w‖ for each w ∈ Im (AH |BH). Since
Im (AH |BH) is dense in X , we conclude that R◦ is one to one and has closed
range. But the range of R◦ contains the set Im (AH◦ |BH◦) which is also dense in
X . Thus R◦ is boundedly invertible, and hence ΣH◦ and ΣH are similar.

Proposition 5.10 above shows that the order properties of the set GKmin
Σ, core

are determined by the transfer function of the system Σ, and do not depend on
the particular choice of the Σ. This fact will be developed further in Section 7.

5.5. THE SET GKmin
Σ AND ITS EXTREMAL ELEMENTS. Throughout this subsection

Σ = (A, B, C, D;X ,U ,Y) is a minimal system which is dissipative with respect to
the supply rate function (1.3). Recall (compare with (5.1)) that

(5.14) GKmin
Σ = {H ∈ GKΣ : ΣH minimal}.

Thus GKmin
Σ denotes the set of all generalized solutions H of the KYP-inequality

for Σ such that ΣH is minimal while Im (A|B) is not required to be a core for H1/2.
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Obviously, GKmin
Σ ⊃ GKmin

Σ, core. The two sets can be different. To see this,
recall (see the paragraph directly after Theorem 5.1) that there exist two pseudo-
similar contractive systems

Σ1 = (0, B1, C1, 0;X1,U ,Y) and Σ2 = (0, B2, C2, 0;X2,U ,Y)

such that Σ1 is minimal while Σ2 is not. Furthermore, we can choose (see formu-
las (2.8) and (2.9) in [7]) a pseudo-similarity Ŝ from Σ1 to Σ2 such that Im B1 is
not a core for Ŝ. In particular, Σ1 is a minimal system which is dissipative with
respect to the supply rate function (1.3). Now take Σ = Σ1, and let H = Ŝ∗Ŝ.
Then H is a generalized solution to the KYP-inequality for Σ, and ΣH is mini-
mal (because ΣH is unitarily equivalent to Σ2, by Proposition 4.5). We know that
Im (A|B) = Im (A1|B1) = Im B1 is not a core for Ŝ. Thus H belongs to GKmin

Σ

but not to GKmin
Σ, core. Thus for this choice of Σ the sets GKmin

Σ and GKmin
Σ, core are

different. We shall prove the following theorem.

THEOREM 5.12. Given H′ in GKmin
Σ , there exists a unique H in GKmin

Σ, core such
that ΣH′ and ΣH are unitarily equivalent. Moreover, H′ ≺ H. Finally, with respect to
the ordering ≺ the maximal element of GKmin

Σ, core is also maximal in GKmin
Σ .

In Proposition 5.16 below we shall identify the minimal element in GKmin
Σ .

Before we prove Theorem 5.12 we make some preparations. Let Σ̃ be any minimal
contractive system with the property that in a neighborhood of zero the transfer
function of Σ̃ coincides with the transfer function of Σ. From Theorem 3.2 we
know that Σ and Σ̃ are pseudo-similar. By PΣ, Σ̃ we denote the set of all pseudo-

similarities from Σ to Σ̃. Since a pseudo-similarity between two minimal systems
does not have to be unique, it can happen that the set PΣ, Σ̃ consists of more than
one element.

Given S ∈ PΣ, Σ̃, put HS = S∗S. According to Proposition 4.5 the operator
HS is a generalized solution to the KYP-inequality for Σ. Let ΣHS be the system
associated to HS and Σ. From Proposition 4.5 we also know that ΣHS is unitarily
equivalent to Σ̃. Hence HS ∈ GKmin

Σ .

PROPOSITION 5.13. All systems ΣHS with S ∈ PΣ, Σ̃ are mutually unitarily
equivalent.

Proof. The statement follows from the fact that ΣHS is unitarily equivalent to
Σ̃, by Proposition 4.5, and from the fact that unitary equivalence is transitive.

As we have seen in Proposition 3.4, with respect to graph space inclusion,
the set PΣ, Σ̃ contains a minimal and a maximal element, which we shall denote
by Smin and Smax, respectively.

PROPOSITION 5.14. For S ∈ PΣ, Σ̃ we have HS ∈ GKmin
Σ, core if and only if S =

Smin.
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Proof. Since ΣHS and Σ̃ are unitarily equivalent (by Proposition 4.5) and Σ̃

is minimal, we have HS ∈ GKmin
Σ, core if and only if Im (A|B) is a core for H1/2

S .
But S = UH1/2

S for some unitary operator U from X onto X̃ , where X̃ is the
state space of Σ̃; see Proposition 4.5. It follows that HS ∈ GKmin

Σ, core if and only if
Im (A|B) is a core for S, or, equivalently, S = Smin.

Next we show that

(5.15) HSmax ≺ HS ≺ HSmin , S ∈ PΣ, Σ̃.

In fact, this order relation is a corollary of the following proposition.

PROPOSITION 5.15. For S1 and S2 in PΣ, Σ̃ we have

(5.16) G(S2) ⊂ G(S1) =⇒ HS1 ≺ HS2 .

Proof. From Proposition 4.5 we know that S1 = U1H1/2
S1

and S2 = U2H1/2
S2

for some unitary operators U1 and U2. In particular, D(H1/2
S1

) = D(S1) and

D(H1/2
S2

) = D(S2). Now, assume that G(S2) ⊂ G(S1). Then D(S2) ⊂ D(S1), and

the operators S1 and S2 coincide on D(S2). It follows that D(H1/2
S2

) ⊂ D(H1/2
S1

),
and

‖H1/2
S1

x‖ = ‖S1x‖ = ‖S2x‖ = ‖H1/2
S2

x‖, x ∈ D(H1/2
S2

).

This shows that HS1 ≺ HS2 .

Proof of Theorem 5.12. Let H′ ∈ GKmin
Σ , and consider ΣH′ . From Proposi-

tion 4.2 we know that S = (H′)1/2 is a pseudo-similarity from Σ to ΣH′ . Notice
that HS = H′. Now put Σ̃ = ΣH′ , which is minimal and contractive, and con-
sider the corresponding set PΣ, Σ̃. Let Smin be the minimal element of PΣ, Σ̃ with
respect to graph space inclusion. Put H = HSmin . Then H ∈ GKmin

Σ, core, by Propo-
sition 5.14, and the systems ΣH′ and ΣH are unitarily equivalent, by Proposition
5.13.

Next, let Ĥ be an arbitrary element in GKmin
Σ, core such that the systems ΣĤ

and ΣH′ are unitarily equivalent. Then ΣĤ and ΣH are unitarily equivalent, and
we can apply Corollary 5.7 to show that Ĥ = H. According to formula (5.15) we
have H′ = HS ≺ HSmin = H. Thus H′ ≺ H.

Finally, let H• be the maximal element in GKmin
Σ, core relative to the ordering

≺. Thus H = HSmin ≺ H•. Therefore, since ≺ is transitive, H′ ≺ H•.

PROPOSITION 5.16. Let Σ = (A, B, C, D;X ,U , Y) be a minimal system, which
is dissipative with respect to the supply rate (1.3), and let Σ◦ = (A◦, B◦, C◦, D;X◦, U ,
Y) be an optimal minimal realization of θΣ. Let Ŝ◦ be the unique pseudo-similarity from
Σ to Σ◦ such that

(5.17) G(Ŝ◦) =
⋂
j>0

Ker
[

CAj −C◦Aj
◦

]
.
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Then Ĥ◦ = Ŝ∗◦Ŝ◦ is the minimal element of GKmin
Σ .

Proof. Notice that (Ŝ−1
◦ )∗ is a pseudo-similarity from Σ∗ to (Σ◦)∗ = (Σ∗)•.

Since Σ◦ is minimal and optimal, the system (Σ∗)• is minimal and star optimal.
Moreover, from (5.17) we obtain that

G((Ŝ−1
◦ )∗) = G((Ŝ∗◦)

−1) = G((Ŝ−1
◦ )∗) = G′(Ŝ∗◦)

= G(−Ŝ◦)⊥ = Im
( [

A∗ 0
0 A∗

◦

] [
C∗

C∗◦

] )
.

In particular, Im (A∗|C∗) is a core for (Ŝ−1
◦ )∗. Thus (cf., Part (c) of the proof of

Theorem 5.1) the map K = (Ŝ−1
◦ )(Ŝ−1

◦ )∗ is the maximal element of GKmin
Σ∗ ,core.

According to Theorem 5.12 this implies that K is the maximal element of GKmin
Σ∗ .

Notice that K = Ŝ−1
◦ (Ŝ∗◦)−1 = Ĥ−1

◦ .
Thus Ĥ−1

◦ is the maximal element of GKmin
Σ∗ . Now, let H ∈ GKmin

Σ be ar-
bitrary. Then, by Proposition 4.6, H−1 ∈ GKmin

Σ∗ . Thus H−1 ≺ Ĥ−1
◦ . But then

Ĥ◦ ≺ H by Proposition 5.4. Thus Ĥ◦ is the minimal element of GKmin
Σ .

We don’t know whether or not the minimal elements of GKmin
Σ, core and GKmin

Σ
coincide. The next proposition shows that under certain additional conditions
the two minimal elements are the same. We conjecture that in general they will
be different.

PROPOSITION 5.17. Let Σ be a minimal system which is dissipative with respect
to the supply rate (1.3). If H ∈ GKmin

Σ is bounded, then H ∈ GKmin
Σ, core. Furthermore, if

the minimal element H◦ of GKmin
Σ, core is bounded, then H◦ is also the minimal element of

GKmin
Σ .

Proof. Since Σ is minimal, Im (A|B) is dense in the state space X . Thus, if H
is bounded on X , then trivially Im (A|B) is a core for the bounded operator H1/2.
Thus H ∈ GKmin

Σ and H bounded imply that H ∈ GKmin
Σ, core.

Now assume that the minimal element of H◦ of GKmin
Σ, core is bounded. We

want to show that H◦ is minimal in GKmin
Σ . Take H ∈ GKmin

Σ , and assume H ≺
H◦. This implies that D(H1/2

◦ ) ⊂ D(H1/2). From H◦ is bounded, it follows that
H1/2
◦ is also bounded. In particular, D(H1/2

◦ ) = X . But then D(H1/2) = X too.
Thus H1/2 is bounded. It follows that H is bounded, and by the result of the first
paragraph H ∈ GKmin

Σ, core. But then H◦ ≺ H. Since the relation≺ is antisymmetric
(Proposition 5.3) we conclude that H = H◦. Thus H◦ is the minimal element of
GKmin

Σ .
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6. STABILITY AND THE KALMAN-YAKUBOVICH-POPOV INEQUALITY

An important aspect of the KYP-inequality is the connection with stability.
In this section we describe these connections and some of their corollaries. We
begin by defining the notions of stability involved.

6.1. VARIOUS NOTIONS OF STABILITY. An operator A on a Hilbert space X is
called exponentially stable if there exists constants M > 0, 0 < q < 1, such that

(6.1) ‖Anx‖ 6 Mqn‖x‖, n = 0, 1, 2, . . . , x ∈ X ,

and A on X is called (pointwise) stable if

(6.2) lim
n→∞

‖Anx‖ = 0, x ∈ X .

In the sequel we shall omit the word pointwise, and simply speak about stable
operators. Finally, the operator A is called star-stable if A∗ is stable, i.e.,

(6.3) lim
n→∞

‖(A∗)nx‖ = 0, x ∈ X .

In the finite dimensional case these three conditions of stability are the same, but
in the infinite dimensional case all three are different. Of course, (6.1) implies (6.2)
and (6.3), but the converse is not true. Also, (6.2) and (6.3) are not equivalent, not
even when A is a contraction. For instance, the forward shift on the Hardy space
H2(D) is star-stable but not stable, and the backward shift is stable but not star-
stable. The following lemma will play useful role later.

LEMMA 6.1. Let A on X be power bounded, that is, ‖An‖ 6 M < ∞ for n > 0.
Then A is stable whenever A is stable on a dense subset L of X , that is

(6.4) lim
n→∞

‖Any‖ = 0, y ∈ L.

Proof. Take x ∈ X , and let ε > 0. First we choose y ∈ L such that ‖x− y‖ <
(M + 1)−1ε. From (6.4) we know that there exists a positive integer N such that
‖Any‖ < ε for each n > N. Now

‖Anx‖ 6 ‖Anx− Any‖+ ‖Any‖ 6 M‖x− y‖+ ‖Any‖ < 2ε (n > N).

Hence Anx → 0 for n → ∞. Thus A is stable.

In the sequel we shall say that a system Σ = (A, B, C, D;X ,U ,Y) is expo-
nentially stable, stable or star-stable if its state operator A has the corresponding
property.

For a minimal system Σ = (A, B, C, D;X ,U ,Y) with finite dimensional state
space X the fact that it is dissipative with respect to the supply rate (1.3) im-
plies that the system is exponentially stable. This statement is also known as
the bounded real lemma (see, for instance, page 549 of [35]). In the infinite di-
mensional case the connection between stability and the KYP-inequality is much
more subtle. For instance, in the infinite dimensional case it may happen (see
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below for further details) that a minimal system which is dissipative with respect
to the supply rate (1.3) is neither stable nor star-stable.

Another difficulty is that in the infinite dimensional case the stability de-
pends on the solution of the KYP-inequality one is dealing with, that is, the state
operator A may be stable (or star-stable) in the inner product defined by one so-
lution of the KYP-inequality but not with respect to the inner product defined by
another solution. More precisely, given a minimal system which is dissipative
with respect to the supply rate (1.3) it can happen that for two solutions H1 and
H2 of the KYP-inequality for Σ the associated system ΣH1 is stable while ΣH2 is
not stable. In the finite dimensional case this phenomenon does not appear be-
cause in that case all solutions of the KYP-inequality are bounded and boundedly
invertible.

The following proposition explains what stability and star-stability means
for a system ΣH .

PROPOSITION 6.2. Let Σ = (A, B, C, D;X ,U ,Y) be a system which is dissi-
pative with respect to the supply rate (1.3), and let H be a generalized solution to the
KYP-inequality for Σ. Then ΣH is stable if and only if

(6.5) lim
n→∞

‖H1/2 Anx‖ = 0, x ∈ D(H1/2),

and ΣH is star-stable if and only if

(6.6) lim
n→∞

‖H−1/2(A∗)nx‖ = 0, x ∈ D(H−1/2).

Proof. From Proposition 4.2 we know that ΣH is contractive. In particular,
AH is a contraction, and hence AH is power bounded. Let L = Im H1/2. Then L
is dense in X , and by Lemma 6.1 the operator AH is stable if and only if AH is
stable on L, that is,

(6.7) lim
n→∞

‖(AH)n H1/2x‖ = 0, x ∈ D(H1/2).

From the definition of AH in (4.3) we conclude that (AH)nH1/2x = H1/2 Anx
for each n > 0 and each x ∈ D(H1/2). Thus (6.7) is equivalent to (6.5) which
completes the proof of the first statement.

By definition ΣH is star-stable if and only if (ΣH)∗ is stable. From Propo-
sition 4.6 we know that H−1 is a generalized solution of the KYP-inequality for
Σ∗ (which mean that Σ∗ is dissipative with respect to the scattering supply rate
function), and that (Σ∗)H−1 = (ΣH)∗. Thus we have to consider the stability of
(Σ∗)H−1 . Since (H−1)1/2 = (H1/2)−1 = H−1/2 (see the proof of Proposition 4.6),
the result of the first paragraph yields that (Σ∗)H−1 is stable if and only if (6.6)
holds.

6.2. MAIN STABILITY THEOREMS. To describe in more detail the connection be-
tween the KYP-inequality and stability we shall combine results from [4] with
those of the preceding sections. To do this we need the following notions.
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Let θ be an element of the Schur class S(U ,Y). Then the factorization prob-
lem

(6.8) φ(ζ)∗φ(ζ) = I − θ(ζ)∗θ(ζ) (a.e. for |ζ| = 1)

is said to have a solution φ if there exists an auxiliary Hilbert space Yφ, and a Schur
class function φ ∈ S(U ,Yφ) such that (6.8) holds almost everywhere on the unit
circle. In that case, by inner-outer factorization, the factorization problem has
also an outer solution, which after an appropriate normalization is unique. This
unique outer solution will be denoted by φθ . The normalization of φθ means that
φθ is required to satisfy the following additional conditions:

(6.9) Yφθ
⊂ U , φθ(0)|Yφθ

is a positive operator on Yφθ .

Analogously, the factorization problem

(6.10) ψ(ζ)ψ(ζ)∗ = I − θ(ζ)θ(ζ)∗

is said to have a solution ψ if there exists an auxiliary Hilbert space Uψ, and a Schur
class function ψ ∈ S(Uψ,Y) such that (6.10) holds almost everywhere on the unit
circle. By outer-inner factorization the factorization problem (6.10) has also a star-
outer solution which is unique after an appropriate normalization. This unique
star-outer solution will be denoted by ψθ . In this case the normalization of ψθ

means that ψθ is required to satisfy the following additional conditions:

(6.11) Uψθ
⊂ Y , ψθ(0)∗|Uψθ

is a positive operator on Uψθ .

For the definitions of outer, star-outer and inner functions, and for the existence
of inner-outer and outer-inner factorizations we refer the reader to the book [32].

Now suppose equations (6.8) and (6.10) have solutions, and let φθ and ψθ be
the unique normalized outer and star-outer solutions introduced in the previous
paragraph. Then there exists hθ ∈ L∞(T,L(Uψθ

,Yφθ
)) a unique operator valued

function defined on the unit circle, such that

(6.12) hθ(ζ)∗φθ(ζ) = −ψθ(ζ)∗θ(ζ)

almost everywhere on the unit circle (see formula 11 of [4]).
In the following three theorems Σ is a minimal system which is dissipative

with respect to the supply rate (1.3). Thus by Theorem 1.2 the transfer function
of Σ coincides with a Schur class function θ in a neighborhood of 0. Furthermore,
by Theorem 5.1, the set GKmin

Σ, core is non-empty, and with respect to the ordering
≺ it contains a minimal and a maximal element which are denoted by H◦ and H•,
respectively. Recall that GKmin

Σ, core ⊂ GKmin
Σ , where GKmin

Σ is defined by (5.14).

THEOREM 6.3. Let Σ be a minimal system which is dissipative with respect to the
supply rate (1.3), and let θ be the Schur class function coinciding in a neighborhood of 0
with the transfer function of Σ. Then there exists an element H ∈ GKmin

Σ such that ΣH
is stable if and only if for θ the factorization problem (6.8) has a solution, and in that case,
the system ΣH◦ , where H◦ is the minimal element of GKmin

Σ, core, is also stable. Moreover,
the system ΣH◦ is stable and star-stable if and only if the following two conditions are
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satisfied: (I) the factorization problems (6.8) and (6.10) both have solutions, and (II) the
unique function hθ defined in (6.12) can be represented as

(6.13) hθ(ζ) = s◦(ζ)b◦(ζ)∗,

where b◦ is a bi-inner function and s◦ is a Schur class function.

THEOREM 6.4. Let Σ and θ be as in Theorem 6.3. Then there exists an element
H ∈ GKmin

Σ such that ΣH is star-stable if and only if the factorization problem (6.10)
has a solution, and in this case, the system ΣH• , where H• is the maximal element of
GKmin

Σ, core, is also star-stable. Moreover, the system ΣH• is both stable and star-stable if
and only if the following two conditions are satisfied: (I) the two factorization problems
(6.8) and (6.10) have solutions, and (II) the unique function hθ defined in (6.12) has a
representation

(6.14) hθ(ζ) = b•(ζ)∗s•(ζ),

where b• is a bi-inner function and s• is a Schur class function.

THEOREM 6.5. Let Σ and θ be as in Theorem 6.3. Then for each H ∈ GKmin
Σ the

system ΣH is both stable and star-stable if and only if two factorization problems (6.8)
and (6.10) have solutions and the unique function hθ defined in (6.12) has representations
(6.13) and (6.14).

Formulas (6.12), (6.13), and (6.14) are closely related to the notion of Darling-
ton synthesis. Indeed, let the factorization problems (6.8) and (6.10) be solvable,
let φθ and ψθ be the unique normalized outer and star-outer solutions, and let h
be defined by (6.12). Then the operator-valued function[

ψθ(ζ) θ(ζ)
hθ(ζ) φθ(ζ)

]
is well-defined and its values are unitary almost everywhere on the unit circle.
Now assume that condition (6.13) is fulfilled. Then[

ψθ(ζ)b◦(ζ) θ(ζ)
s◦(ζ) φθ(ζ)

]
is bi-inner. Furthermore, the function ψ̃θ = ψθb◦ is a Schur class function, and is
a solution to the factorization problem (6.10). In this case, one says that the triple
φθ , ψ̃θ , s◦ is a solution for the Darlington synthesis problem for θ. A similar remark
applies to condition (6.14). See [4] for further details.

6.3. PROOFS OF THE MAIN STABILITY THEOREMS. To prove Theorems 6.3, 6.4,
and 6.5 the following results will be useful.

LEMMA 6.6. Let Σ = (A, B, C, D;X ,U ,Y) be a contractive controllable system.
Then Σ is stable whenever

(6.15) lim
n→∞

‖AnBu‖ = 0 (u ∈ U ).
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Proof. We apply Lemma 6.1. Since Σ is contractive, the state operator A is
a contraction, and hence it is power bounded. The controllability of Σ means
that the set L = Im (A|B) is dense in X . Now, take y ∈ L. Then we can find

u0, u1, . . . , uN such that y =
N
∑

j=0
AjBuj. Thus (6.15) implies that (6.4) holds for

L = Im (A|B). But then Lemma 6.1 shows that Σ is stable.

COROLLARY 6.7. If the operator valued function θ has a stable contractive real-
ization, then any optimal minimal realization of θ is stable too.

Proof. Let Σ = (A, B, C, D;X ,U ,Y) be a stable contractive realization of θ,
and let Σ◦ = (A◦, B◦, C◦, D;X◦,U ,Y) be an optimal minimal realization of θ. By
the previous lemma, since Σ◦ is contractive and controllable, it suffices to show
that for each u ∈ U we have An

◦B◦u → 0 if n → ∞. According to (5.4) we have
‖An

◦B◦u‖ 6 ‖AnBu‖. Since Σ is stable, AnBu → 0 if n → ∞, and thus An
◦B◦u → 0

for n → ∞ too. Hence Σ◦ is stable.

PROPOSITION 6.8. Let Σ = (A, B, C, D;X ,U ,Y) be a minimal system which is
dissipative with respect to the supply rate (1.3), and let H1 and H2 belong to GKmin

Σ .
Assume that H1 ≺ H2. Then the following holds:

(i) ΣH2 is stable implies that ΣH1 is stable;
(ii) ΣH1 is star-stable implies that ΣH2 is star-stable.

Proof. (i). Assume H1 ≺ H2 and ΣH2 is stable. Since ΣH1 is minimal (because
H ∈ GKmin

Σ ) and contractive (by Proposition 4.2), we see from Lemma 6.6 that
it suffices to show that lim

n→∞
An

H1
BH1 u = 0 for each u ∈ U . Fix u ∈ U . Since

AnBU ⊂ D(H1/2
2 ) for each n and H1 ≺ H1/2

2 , we have

‖An
H1

BH1 u‖ = ‖H1/2
1 AnBu‖ 6 ‖H1/2

2 AnBu‖ = ‖An
H2

BH2 u‖.

Now use that ΣH2 is stable. Thus An
H2

BH2 u → 0 when n → ∞. It follows that
An

H1
BH1 u goes to 0 if n → ∞, and hence ΣH1 .

(ii). Assume H1 ≺ H2 and ΣH1 is star-stable. It suffices to show that (ΣH2)
∗

is stable. Since H1 ≺ H2, we know from the first paragraph of the proof of Propo-
sition 5.6 (see the remark preceding Corollary 5.7) that there exists a contraction
R on X such that

RAH2 = AH1 R, RBH2 = BH1 , CH2 = CH1 R.

By taking the adjoint of the first and third identity in the preceding formula we
obtain

R∗(AH1)
∗ = (AH2)

∗R∗, R∗(CH1)
∗ = (CH2)

∗.

Thus

R∗(AH1)
∗n(CH1)

∗y = (AH2)
∗n(CH2)

∗y (y ∈ Y).
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Since R∗ is a contraction, it follows that

(6.16) ‖(AH2)
∗n(CH2)

∗y‖ 6 ‖(AH1)
∗n(CH1)

∗y‖ (y ∈ Y).

Since ΣH2 is minimal and contractive, the same holds true for (ΣH2)
∗, and hence

by Lemma 6.6 it suffices to show that for each y ∈ Y we have

lim
n→∞

(AH2)
∗n(CH2)

∗y = 0.

Since (ΣH1)
∗ is stable, the latter limit holds with H1 in place of H2. But then we

can use the inequality (6.16) to show that it holds for H2 too. Hence (ΣH2)
∗ is

stable.

Proof of Theorem 6.3. Assume there exists an element H ∈ GKmin
Σ such that

ΣH is stable. Since ΣH is a stable and contractive system, we can use Proposition 4
of [4], to show that the factorization problem (6.8) has a solution. To show the
reverse implication, assume the problem (6.8) has a solution φ. Then θ has a
contractive stable realization Σ by Proposition 4 of [4]. According to Corollary 6.7
any optimal realization of θ is stable. In particular, by Corollary 5.9, the system
ΣH◦ is stable.

The final statement of the theorem is a reformulation of Theorem 8 from
[4].

Proof of Theorem 6.4. The proof follows by employing the duality between
optimal and star-optimal systems, and using Theorem 6.3 together with Theo-
rem 8 from [4].

Proof of Theorem 6.5. We claim that for each H ∈ GKmin
Σ the system ΣH is

stable and star-stable if and only if the two systems ΣH◦ and ΣH• are both stable
and star-stable. Since H◦ and H• belong to GKmin

Σ, core, and GKmin
Σ, core is contained

in GKmin
Σ , the ‘only if’ part is trivial. The ‘if’ part follows from Proposition 6.8.

Indeed, by Proposition 6.8 (i), stability of ΣH• implies stability of ΣH for each
H ∈ GKmin

Σ, core because H ≺ H•. Similarly, by Proposition 6.8 (ii), star-stability
of ΣH◦ implies star-stability of ΣH for each H ∈ GKmin

Σ, core because H◦ ≺ H. By
applying Theorem 6.3 and Theorem 6.4 we see that stability and star-stability of
both ΣH◦ and ΣH• implies that ΣH is stable and star-stable for each H ∈ GKmin

Σ, core.
Now take an arbitrary H′ ∈ GKmin

Σ . Then ΣH′ is unitarily equivalent to ΣH for
some H ∈ GKmin

Σ, core by Theorem 5.12. Thus ΣH′ is stable and star-stable whenever
ΣH has these properties. This completes the proof.

6.4. COROLLARIES OF THE MAIN STABILITY THEOREMS. For the next two corol-
laries we need the notion of pseudo-continuation across the unit circle for an
operator valued Schur class function. To define this notion let De = {z ∈ C :
|z| > 1} ∪ {∞}. Recall that a meromorphic L(U ,Y)-valued function φ is of
bounded Nevanlinna type on De if φ = φ−1

1 φ2, where φ1 and φ2 are bounded an-
alytic functions on De, the function φ1 is scalar-valued and φ2 is L(U ,Y)-valued
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(cf., Subsection 2.7, where the scalar case is considered). Such a function φ has
non-tangential boundary values almost everywhere on the unit circle. A Schur
class function θ is said to admit a pseudo-continuation across the unit circle if there
exists a L(U ,Y)-valued function φ of bounded Nevanlinna type on De such that
θ and φ have the same non-tangential boundary values almost everywhere on the
unit circle, that is, θ(ζ) = φ(ζ) for almost every ζ ∈ T.

COROLLARY 6.9. Let Σ = (A, B, C, D;X ,U ,Y) be a minimal system which is
dissipative with respect to the supply rate (1.3), and let θ be the (unique) Schur class
function coinciding with the transfer function θΣ in a neighborhood of zero. If θ admits
a pseudo-continuation across the unit circle, then for each H ∈ GKmin

Σ the system ΣH is
stable and star-stable.

Proof. Let θ be a Schur class function that has a pseudo-continuation across
the unit circle. In Section 3 of [4] it is shown that both factorization problems
(6.8) and (6.10) have a solution and the unique function hθ defined in (6.12) has
representations (6.13) and (6.14). Thus the result follows from Theorem 6.5.

Let Σ, θΣ, and θ be as in the previous corollary, and assume that θ admits a
pseudo-continuation across the unit circle. Then from [4] we also know that the
spectrum σ(AH), with H from GKmin

Σ , does not depend on the particular choice
of H. Moreover, taking into account the property of pseudo-continuation, we
have

θ(λ) = D + λCH(I − λAH)−1BH for all λ such that I − λAH is invertible.

COROLLARY 6.10. Let Σ = (A, B, C, D;X , Cp, Cm) be a minimal system (with
finite dimensional input and output spaces) which is dissipative with respect to the supply
rate (1.3). Then the following statements are equivalent:

(i) ΣH is stable and star-stable for each H ∈ GKmin
Σ ;

(ii) ΣH◦ is stable and star-stable;
(iii) ΣH• is stable and star-stable;
(iv) the transfer function θΣ coincides with a Schur class function θ in a neighborhood

of zero that has a pseudo-continuation across the unit circle.

Proof. The equivalence of (i) and (iv) follows from the previous corollary
and the fact that a matrix-valued Schur class function θ admits a pseudo-conti-
nuation across the unit circle if and only if the two factorization problems (6.8)
and (6.10) have solutions and the unique function hθ defined in (6.12) has repre-
sentations (6.13) and (6.14) (see [4]).

Next we use again a result from [4] which shows that the representation
(6.13) exists if and only if (6.14) exists whenever the input and output spaces are
finite dimensional. Using this result and our main stability theorems it is then
straightforward to prove the remaining equivalences.
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7. ADDITIONAL INFORMATION ON GKmin
Σ, core

Let Σ be a minimal system which is dissipative with respect to the supply
rate (1.3). In this section we combine results from the present paper with results
from [8] and [9] to derive criteria in order that GKmin

Σ, core consists of one element
only (i.e., H◦ = H•) or that all systems ΣH with H ∈ GKmin

Σ, core are mutually sim-
ilar (i.e., H• ≺ γH◦ for some γ > 0). The criteria will be stated in terms of the
Schur class function θ coinciding with the transfer function of Σ in a neighbor-
hood of 0.

To formulate these criteria we need the inner scattering sub-operator function
sθ associated with θ. For the definition of this notion we refer to [12]. (See also Sec-
tion 3.1 in [9].) Here we only mention that sθ is an L(Uθ ,Yθ)-valued L∞-function
on the unit circle (where Uθ and Yθ are auxiliary Hilbert spaces) which coincides
with the function hθ defined in (6.12) provided the two factorization problems
(6.8) and (6.10) have solutions.

THEOREM 7.1. Let Σ be a minimal system which is dissipative with respect to
the supply rate (1.3), and let θ be the Schur class function coinciding with the transfer
function of Σ in a neighborhood of 0. Let sθ be the inner scattering sub-operator function
associated with θ. Then GKmin

Σ, core consists of one element only if and only if sθ is the
boundary value function of a Schur class function.

Proof. Notice that the statement GKmin
Σ, core consists of one element only is

equivalent to the statement that H◦ = H•. From Theorem 5.2 and Corollary 5.7
we know that GKmin

Σ, core consists of one element only is equivalent to the statement
that all minimal contractive systems with transfer function θ are unitarily equiv-
alent. From [8] (see, also Theorem 2 in [9]) we know that the latter happens if and
only if sθ is the boundary value function of a Schur class function.

Let Σ and θ be as in the previous theorem, and assume that the two factor-
ization problems (6.8) and (6.10) have solutions, and hence sθ = hθ . If H◦ = H•,
then ΣH◦ is stable and star-stable. This follows from Theorems 6.3 and 6.4 and the
fact that hθ is the boundary value function of a Schur class function (according to
the previous theorem).

For the next theorem we need the Hankel operator with symbol sθ , that is,
the operator

(7.1) Γsθ
: H2(Uθ) → K2(Yθ), Γsθ

= PK2(Yθ)Msθ
|H2(Uθ).

Here Msθ
is the operator of multiplication by sθ from L2(T,Uθ) into L2(T,Yθ),

the space H2(Uθ) is the Hardy space consisting of all functions in L2(T,Uθ) of
which the Fourier coefficients with negative index are zero, the space K2(Yθ) is
the orthogonal complement of the Hardy space H2(Yθ) in L2(T,Yθ), and PK2(Yθ)
is the orthogonal projection of L2(T,Yφθ

) onto K2(Yθ). If one of the (or both)
spaces Uθ or Yθ are zero, then we define Γsθ

= 0.
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THEOREM 7.2. Let Σ be a minimal system which is dissipative with respect to
the supply rate (1.3), and let θ be the Schur class function coinciding with the transfer
function of Σ in a neighborhood of 0. Let sθ be the inner scattering sub-operator function
associated with θ. Then all systems ΣH with H ∈ GKmin

Σ, core are mutually similar if and
only if the Hankel operator Γsθ

in (7.1) associated with sθ has closed range.

Proof. The condition that all systems ΣH with H ∈ GKmin
Σ, core are mutually

similar is equivalent to the condition that all minimal contractive realizations of θ
are mutually similar. But then we can use Theorem 3 in [9] to finish the proof.

When one applies Theorems 7.1 and 7.2 to θ(λ) = λK, where K : U → Y is
a contraction, one obtains Corollary 3.7 and Proposition 3.8 in [7]; see Section 8 in
[6] for further details.
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