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ABSTRACT. We construct a Banach space bounded linear operator T which is
not E(T)-subscalar but ‖(T − z)−1‖ 6 (|z| − 1)−1 for |z| > 1 and m(T − z) >
const · (1− |z|)3 for |z| < 1 (here m denotes the minimum modulus). This gives
a negative answer to a variant of a problem of K.B. Laursen and M.M. Neu-
mann. We also give a sufficient condition (in terms of growth of resolvent
and of an analytic left inverse of T − z) implying that T is an E(T)-subscalar
operator. This condition is also necessary for Hilbert space operators.

KEYWORDS: Subscalar operators, growth conditions, resolvents.

MSC (2000): 47B40, 47A20, 47A10.

1. INTRODUCTION

Generalized scalar operators are those Banach spaces operators possessing
a C∞-functional calculus. To be more specific, let E(C) denote the usual Fréchet
algebra of all C∞-functions on C with the topology of uniform convergence of
derivatives of all orders on compact subsets of C. Let X be a complex Banach
space. A bounded linear operator S ∈ B(X) is said ([8]) to be an E(C)-scalar
(or generalized scalar) operator if there is a continuous algebra homomorphism
Φ : E(C) → B(X) for which Φ(1) = I and Φ(z) = S. Here z denotes the identity
function on C. A bounded linear operator is E(C)-subscalar if it is similar to the
restriction of an E(C)-scalar operator to one of its closed invariant subspaces. We
refer to three books [8], [10] and [12] for more information on E(C)-scalar and
E(C)-subscalar operators.

The following statements are known to be equivalent (see [8], [12]):

(i) S is E(T)-scalar, i.e., it has a continuous functional calculus on the Fréchet
algebra E(T) of C∞-functions on the unit circle T;

(ii) S is E(C)-scalar with spectrum σ(S) in the unit circle T;
(iii) S is invertible, and there exist constants C > 0, p > 0 and q > 0 such that

‖Sn‖ 6 Cnp (n ∈ N) and ‖S−n‖ 6 Cnq (n ∈ N);
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(iv) σ(S) ⊂ T and there exist constants C > 0, p > 0 and q > 0 such that

‖(S − z)−1‖ 6 C(|z| − 1)−p (|z| > 1) and ‖(S − z)−1‖ 6 C(1− |z|)−q (|z| < 1).

The distinction between the growth of norms of positive and negative pow-
ers (and the resolvent growth inside and outside unit disc) will become apparent
later on.

For T ∈ B(X) we denote

m(T) = inf{‖Tx‖ : x ∈ X, ‖x‖ = 1}.

This quantity is called the minimum modulus of T ([11]) or the lower bound of T
([12]). It is easy to see that m(T) > 0 if and only if T ∈ B(X) is one-to-one and
with closed range. For invertible operators S we have m(S) = ‖S−1‖−1.

The main question we consider in this note is the problem of intrinsic char-
acterizations of E(T)-subscalar operators (i.e. operators similar to a restriction of
an E(T)-scalar operator to an invariant subspace). Compressions of E(T)-scalar
operators to invariant subspaces have been studied in [6].

Let T ∈ B(X) be an E(T)-subscalar operator. Using (iii) for the invertible
extension of T we obtain the existence of constants C > 0, p > 0 and q > 0 such
that:

(P) ‖Tn‖ 6 Cnp and m(Tn)−1 6 Cnq.

It is natural to ask if the polynomial growth condition (P) above (in terms of
norms and minimum moduli of iterates) characterizes E(T)-subscalar operators
(cf. Problem 6.1.15 of [12] and [9]). This problem was also discussed in [15], [18],
[17], [16]. It was recently proved by the authors [5], [4] that E(T)-subscalar oper-
ators are indeed characterized by the polynomial growth condition (P).

Using the resolvent condition (iv), it can be proved similarly that if T ∈
B(X) is an E(T)-subscalar operator then there exist constants C > 0, p > 0 and
q > 0 such that

(R) ‖(T − z)−1‖ 6
C

(|z| − 1)p (|z| > 1) and m(T − z) > C(1− |z|)q (|z| < 1).

Note that if T is E(T)-subscalar then σap(T), the approximate point spectrum of
T given by

σap(T) = {λ ∈ C : inf{‖(T − λ)x‖ : ‖x‖ = 1} = 0},

is included in the unit circle. Moreover, either σ(T) is included in the unit circle
(and so T is E(T)-scalar) or σ(T) = D, the closed unit disc.

Again it is natural to ask if the condition (R) implies the E(T)-subscalarity
of T. This is a variant of the open Problem 6.1.14 in [12].

The aim of this note is to show that the answer to the above problem is neg-
ative: there is a Banach space operator T satisfying condition (R) (with suitable p
and q) which is not E(T)-subscalar. We also give a sufficient condition (in terms
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of growth of resolvent and of an analytic left inverse of T − z) implying that T
is an E(T)-subscalar operator. This condition is also necessary for Hilbert space
operators.

We mention that a characterization of E(T)-subscalar operators in terms of
the growth of the local resolvent of the adjoint has been given by Didas [9]. We
refer also to [14], [20], [19] for related papers considering conditions of type (P)
or (R) (for small values of p and q) and studying the similarity of Hilbert space
operators with unitary operators.

2. A COUNTEREXAMPLE

Recall that an equivalent definition of decomposable operators is the follow-
ing: T ∈ B(X) is decomposable if for every open cover C = U ∪ V, there are closed
invariant (for T) subspaces Y and Z of X such that X = Y + Z and σ(T | Y) ⊂ U,
σ(T | Z) ⊂ V. We refer for instance to [8] and [12]. An operator T ∈ B(X)
has Bishop’s property (β) if, for every open set U ⊂ C, the operator TU defined
by TU( f )(z) = (T − z) f (z) on the set O(U, X) of holomorphic functions from U
into X is injective and has closed range. According to a result by E. Albrecht and
J. Eschmeier [1], T ∈ B(X) is subdecomposable (i.e., T is similar to the restriction of
a decomposable operator) if and only if T has Bishop’s property (β).

EXAMPLE 2.1. On the Banach space X = c0, there exists an operator T ∈
B(X) such that:

(i) ‖T‖ 6 1, σap(T) = T and σ(T) = D;
(ii) ‖(T − z)−1‖ 6 (|z| − 1)−1 (|z| > 1);

(iii) there is a constant C > 0 such that

m(T − z) > C(1− |z|)3 (z ∈ D);

(iv) T is not E(T)-subscalar;
(v) T has Bishop’s property (β).

Proof. Let X = c0 be the Banach space of all complex sequences converging
to zero endowed with the supremum norm. We denote its standard basis by
e1, e2, . . .. For n > 1 let

wn = eln2(n+2)−ln2(n+3).

Let T ∈ B(X) be the weighted shift defined by Ten = wnen+1 (n > 1).
The proof of the properties of Example 2.1 will be obtained in several steps.
We first remark that 0 < wn < 1 for all n.

Claim 1. (wn) is an increasing sequence and lim
n→∞

wn = 1.

Proof. For each n > 1 there exists x = x(n) such that n + 2 6 x 6 n + 3 and

ln2(n + 2)− ln2(n + 3) = −2
ln x

x
.
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The function g(x) = −2 ln x
x is increasing since

g′(x) = −2
1− ln x

x2 > 0 (x > e).

Therefore (ln2(n + 2)− ln2(n + 3)) is an increasing sequence for n > 1 and

lim
n→∞

(ln2(n + 2)− ln2(n + 3)) = 0.

Hence (wn) is an increasing sequence and lim
n→∞

wn = 1.

The previous claim implies that ‖T‖ 6 1. Therefore, for |z| > 1, we have

‖(T − z)−1‖ =
∥∥∥− 1

z ∑
n>0

1
zn Tn

∥∥∥ 6
1

|z| − 1
.

This proves (ii).
For n > 1 we have Tnek = wkwk+1 · · ·wk+n−1ek+n (k > 1), and so

m(Tn) = inf
k

wk · · ·wk+n−1 = w1 · · ·wn = eln2 3−ln2 4eln2 4−ln2 5 · · · eln2(n+2)−ln2(n+3)

= eln2 3−ln2(n+3) =
3ln 3

(n + 3)ln(n+3) .

Therefore T does not satisfy condition (P), and so T is not E(T)-subscalar.
This proves (iv).

We also have lim
n→∞

m(Tn)1/n = 1. Therefore (see [13])

σap(T) ⊂ {z : |z| = 1}.

Since the spectrum of a weighted shift is circularly symmetric, we have in fact
σap(T) = {z : |z| = 1}. But ∂σ(T) ⊂ σap(T) ⊂ σ(T) and thus σ(T) is either
equal to D or contained in T. Since T is not invertible we have σ(T) = D. This
completes the proof of (i).

Note also that

∑
n>1

| ln m(Tn)|
n2 < ∞,

so T satisfies the Beurling-type condition (B) (cf. Section 4 of [5]). Consequently,
T has Bishop’s property (β) (see Theorem 4.5 of [5]).

We prove now (iii).

Claim 2. lim
n→∞

(1−wn)3

wn+1−wn
= 0.

Proof. Let n ∈ N. Then there is an x = x(n), n + 2 6 x 6 n + 3, such that

wn+1 − wn = eln2(n+3)−ln2(n+4) − eln2(n+2)−ln2(n+3)

= eln2 x−ln2(x+1)
(2 ln x

x
− 2 ln(x + 1)

x + 1

)
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and there is a y = y(n), x 6 y 6 x + 1 (i.e., n + 2 6 y 6 n + 4) such that

wn+1 − wn = −2eln2 x−ln2(x+1) 1− ln y
y2 .

Similarly, there is an x′ = x′(n), n + 2 6 x′ 6 n + 3, such that

ln2(n + 2)− ln2(n + 3) = −2 ln x′

x′
.

We have

lim
n→∞

(1− wn)3

wn+1 − wn

= lim
n→∞

(
1−eln2(n+2)−ln2(n+3)

ln2(n+2)−ln2(n+3)

)3
(ln2(n + 2)− ln2(n + 3))3

−2eln2 x−ln2(x+1) 1−ln y
y2

= (−1)3
(
− 1

2

)
lim

n→∞

(ln2(n + 2)− ln2(n + 3))3

1−ln y
y2

=
1
2

lim
n→∞

(−2 ln x′
x′

)3

1−ln y
y2

= −4 lim
n→∞

y2

x′2
· lim

n→∞

ln3 x′

x′(1− ln y)
= 0.

Claim 3. There is an r > 0 such that m(T − z) > (1− |z|)3 for all z ∈ D, |z| > r.

Proof. Find n0 such that

(1− wn)3

wn+1 − wn
<

1
16

for all n > n0. Find r, 1
2 6 r < 1, such that r − (1− r)3 > wn0 .

Suppose on the contrary that there is a λ ∈ D, |λ| > r such that

m(T − λ) < (1− |λ|)3.

Thus there exists x = (xi) ∈ X with ‖x‖ = max
i

|xi| = 1 and ‖(T − λ)x‖ < (1 −

|λ|)3. Since (T − λ)x = (−λx1, w1x1 − λx2, w2x2 − λx3, . . .), we have |λ||x1| <

(1 − |λ|)3 and sup
i
|wixi − λxi+1| < (1 − |λ|)3. Without loss of generality we may

assume that λ > 0 and xi > 0 for all i > 1. Indeed, replace λ by |λ| and xi by
|xi| (i > 1). We have

sup
i
|wi|xi| − |λ||xi+1|| 6 sup

i
|wixi − λxi+1| < (1− |λ|)3.

Thus we may assume that there are r, µ with 1
2 6 r < µ < 1 and u = (ui) ∈ X

with ui > 0 (i ∈ N), ‖u‖ = max
i

ui = 1 and

(2.1) µu1 < (1− µ)3, sup
i
|wiui − µui+1| < (1− µ)3.
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We show that this is not possible. Write for short a = (1 − µ)3. Let m ∈ N
satisfy um = 1 and uj < 1 for all j < m. We have u1 <

(1−µ)3

µ < 1. Thus m > 2.
We show that wm−1 > µ − a. Suppose on the contrary that wm−1 < µ − a.

By (2.1), we have

a > |wm−1um−1 − µum| > µum − wm−1um−1 > µ − (µ − a)um−1

= (µ − a)(1− um−1) + a > a,

a contradiction. Hence

(2.2) wm−1 > µ − a.

We show now that wm > µ + a. Suppose on the contrary that wm < µ + a.
Then wm − wm−1 6 2a and 1− wm−1 > 1− wm > 1− µ − a. Therefore we have

(1− wm)3

wm − wm−1
>

(1− µ − a)3

2a
=

(1− µ − (1− µ)3)3

2(1− µ)3 >
1
16

,

since µ > 1
2 and (1−µ)− (1−µ)3 = (1−µ)µ(2−µ) > 1

2 (1−µ). Thus m− 1 < n0,
and so

µ − a > r − (1− r)3 > wn0 > wm−1,
a contradiction with (2.2). Hence

(2.3) wm > µ + a.

Since |wmum − µum+1| < a, we have µum+1 > wm − a, and so

um+1 >
wm − a

µ
> 1,

a contradiction with the assumption that ‖u‖ = 1.
Hence m(T − z) > (1− |z|)3 for all z ∈ D with |z| > r.

Since m(T − z) > 0 for all z ∈ D and the function

z 7→ m(T − z)
(1− |z|)3

is continuous on D, there is a constant C > 0 such that m(T − z) > C(1− |z|)3 for
all z ∈ D.

The proof of Example 2.1 is now complete.

REMARKS 2.2. (i) Another proof of Bishop’s property (β) for T can be given
using 1.7.1 of [12].

(ii) The fact that T has Beurling-type property (B) implies by Theorem 4.5 of
[5] that there exists a Banach space Y containing c0 and an invertible operator
S ∈ B(Y) such that T = S|X and S satisfies

∞

∑
n=−∞

log ‖Sn‖
1 + n2 < ∞.

Note that this condition implies ([8]) that S is decomposable.
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(iii) We don’t know if the weighted shift T on the Hilbert space `2 = `2(N)
given by

Ten = exp(ln2(n + 2)− ln2(n + 3))en+1 (n > 1)

is a hilbertian counterexample to the variant of Laursen-Neumann problem.

THEOREM 2.3. Let X be a separable Banach space containing (an isomorphic copy
of) c0. Then there exist R ∈ B(X) and a constant C > 0 such that:

(i) σ(R) = D;
(ii) ‖(R − z)−1‖ 6 C(|z| − 1)−1 (|z| > 1);

(iii) m(R − z) > C(1− |z|)3 (z ∈ D);
(iv) R is not E(T)-subscalar;
(v) R has Bishop’s property (β).

Proof. According to a result due to A. Sobczyk (see [7]), if X is a separable
Banach space containing an isomorphic copy of c0, then X contains a subspace
Y, isomorphic to c0, which is complemented in X. We consider the operator R
on X equal to the operator of Example 2.1 on Y and equal to the identity on
its complement. Then R satisfies all the requirements because of the properties
of T.

3. SUFFICIENT CONDITIONS

We begin with the following sufficient condition.

PROPOSITION 3.1. Let T ∈ B(X) be a Banach space operator satisfying

‖(T − z)−1‖ 6 C(|z| − 1)−p (|z| > 1),

for some fixed constants C > 0 and p > 0. Suppose that there are q > 0 and an
analytically dependent left inverse function L : D → B(X) such that L(z)(T − z) = I
and

‖L(z)‖ 6 C(1− |z|)−q (z ∈ D).

Then T is E(T)-subscalar.

We note that the growth condition on the analytically dependent left inverse
function L implies that

‖x‖ = ‖L(z)(T − z)x‖ 6 C(1− |z|)−q‖(T − z)x‖;

hence

m(T − z) > C−1(1− |z|)q.

We also note that if T − z is left invertible for each z ∈ D, then there is an analyti-
cally dependent left inverse function on D (see [3], [2]).
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Proof of Proposition 3.1. A proof of this result can be given using Didas’ cri-
terion [9] in terms of local resolvent of the adjoint of T. We give here a different
proof.

It is a classical result (see Theorem 1.5.12 of [12]) that the resolvent growth
condition outside the closed unit disc implies a polynomial growth condition for
the powers of T: there is a constant c > 0 such that

‖Tn‖ 6 cnp (n ∈ N).

Write L(z) =
∞
∑

i=0
Lizi (z ∈ D), with Li ∈ B(X). Let 0 < r < 1. By the Cauchy

formula, for each n ∈ N we have

‖Ln‖ 6
max{‖L(z)‖ : |z| 6 r}

rn 6
C

rn(1− r)q .

In particular, for r = n/(n + q) (where the function r 7→ r−n(1 − r)−q attains the
minimum) we obtain ‖Ln‖ 6 C

( n
n+q

)−n(
1 − n

n+q
)−q. We have lim

n→∞

( n
n+q

)−n =

lim
n→∞

(
1 + q

n
)n = eq. Further, for n > q we have

(
1 − n

n+q
)−q =

( n+q
q

)q 6
( 2n

q
)q.

Thus there is a constant K > 0 such that ‖Ln‖ 6 K · nq for all n.
We have

I = L(z)(T − z) =
∞

∑
i=0

Lizi(T − z) = L0T +
∞

∑
i=1

zi(LiT − Li−1)

for all z ∈ D. Thus L0T = I and LiT = Li−1 for all i > 1. Hence

LnTn+1 = Ln−1Tn = · · · = L0T = I.

Let x ∈ X, ‖x‖ = 1. Then

1 = ‖x‖ = ‖Ln−1Tnx‖ 6 ‖Ln−1‖ · ‖Tnx‖.

Thus ‖Tnx‖ > ‖Ln−1‖−1, and so for some constant K′ we have m(Tn) > K′n−q

for all n. Hence T is E(T)-subscalar by Theorem 4.1 of [5].

The next result gives an intrinsic characterization of E(T)-subscalar opera-
tors on Hilbert spaces.

THEOREM 3.2. Let H be a Hilbert space and T ∈ B(H). Then T is E(T)-subscalar
if and only if there are constants C > 0, p > 0, q > 0 and an analytic operator-valued
function L : D → B(H) such that:

(i) ‖(T − z)−1‖ 6 C(|z| − 1)−p (|z| > 1);
(ii) L(z)(T − z) = I (|z| < 1);

(iii) ‖L(z)‖ 6 C(1− |z|)−q (|z| < 1).

Proof. Suppose that T is a Hilbert space E(T)-subscalar operator. According
to Theorem 4.1 of [5], there are a Hilbert space K, constants C′ > 0, s > 0 and an
E(T)-scalar extension S ∈ B(K) such that σ(S) = σap(T) ⊂ T and

‖Sm‖ 6 C′|m|s (m ∈ Z, m 6= 0).
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It is known ([12], 1.5.12) that the power growth estimate ‖Sm‖ 6 C′|m|s implies
that ‖(S − z)−1‖ 6 C||z| − 1|−s−1 (|z| 6= 1) for a suitable constant C > 0. This
implies

‖(T − z)−1‖ 6 C(|z| − 1)−s−1 (|z| > 1).

We define L : D 7→ B(H) by

L(z)x = PH(S − z)−1x (z ∈ D, x ∈ H),

where PH ∈ B(K) is the orthogonal projection onto H.
Then L is analytic and we have

‖L(z)‖ 6 ‖(S − z)−1‖ 6 C(1− |z|)−s−1 (|z| < 1).

The equality L(z)(T− z) = I on D follows from the equalities (S− z)−1(S− z) = I
and S|H = T.

The second implication follows from Proposition 3.1.
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