THE DESCENT SPECTRUM AND PERTURBATIONS

M. BURGOS, A. KAIDI, M. MBEKHTA, and M. OUDGHIRI

Communicated by Şerban Strătilă

ABSTRACT. In the present paper we continue to study the descent spectrum of an operator on a Banach space. We obtain that a Banach space X is finite-dimensional if and only if there exists a bounded operator T on X such that its commutant is formed by algebraic operators. We provide also an affirmative answer to a question of M.A. Kaashoek and D.C. Lay.

KEYWORDS: Spectrum, descent, perturbation, semi-Fredholm.

MSC (2000): 47A53, 47A55.

INTRODUCTION

Throughout this paper, $\mathcal{L}(X)$ will denote the algebra of all bounded linear operators on an infinite-dimensional complex Banach space *X* and $\mathcal{K}(X)$ its ideal of compact operators. For an operator $T \in \mathcal{L}(X)$, let N(T) denote its kernel, R(T) its range, $\sigma(T)$ its spectrum and $\sigma_{su}(T)$ its surjective spectrum. Also, for a subset *M* of *X*, Vect{*M*} will denote the closed linear subspace generated by *M*.

An operator $T \in \mathcal{L}(X)$ is called *semi-Fredholm* if R(T) is closed and either dim N(T) or codimR(T) is finite. For such an operator the *index* is given by $ind(T) = \dim N(T) - codim R(T)$, and if it is finite then we say that T is *Fredholm*.

Also from [13] we recall that for a bounded linear operator $T \in \mathcal{L}(X)$, the *ascent*, a(T), and the *descent*, d(T), are defined by $a(T) = \inf\{n \ge 0 : N(T^n) = N(T^{n+1})\}$ and $d(T) = \inf\{n \ge 0 : R(T^n) = R(T^{n+1})\}$, respectively; the infimum over the empty set is taken to be ∞ . As shown in [13],

(0.1)
$$d(T)$$
 is finite $\Leftrightarrow R(T) + N(T^d) = X$ for some $d \ge 0$,

and

(0.2)
$$a(T)$$
 is finite $\Leftrightarrow R(T^d) \cap N(T) = \{0\}$ for some $d \ge 0$.

For $T \in \mathcal{L}(X)$, the *descent spectrum*, $\sigma_{desc}(T)$, is defined as those complex numbers λ for which $d(T - \lambda)$ is not finite; the *descent resolvent set* is $\rho_{desc}(T) = \mathbb{C} \setminus \sigma_{desc}(T)$.

Evidently $\sigma_{\text{desc}}(T) \subseteq \sigma(T)$ and $\sigma_{\text{desc}}(T) = \sigma_{\text{desc}}(LTL^{-1})$ for every invertible operator $L \in \mathcal{L}(X)$. Also we mention the following property that will be used in the rest of the paper: if *Y* and *Z* are two closed *T*-invariant subspaces such that $X = Y \oplus Z$ then $\sigma_{\text{desc}}(T) = \sigma_{\text{desc}}(T_{|Y}) \cup \sigma_{\text{desc}}(T_{|Z})$.

The paper is organized as follows. In Section 2 we show that the descent spectrum is a compact subset of the spectrum, and for an operator $T \in \mathcal{L}(X)$, we prove that $\sigma_{desc}(T)$ is empty precisely when T is algebraic, that is, there exists a non-zero complex polynomial *p* for which p(T) = 0. For a complex Banach algebra A, the descent of an element *a* is defined to be the descent of the corresponding left multiplication operator on A; the main point of Section 3 is to establish that a complex Banach algebra \mathcal{A} is algebraic if and only if the descent of each element a in A is finite, which also is equivalent to the fact that the radical of \mathcal{A} is formed by nilpotent elements and has finite codimension. On the other hand, a classical result of Kaashoek and Lay affirms that if F is a bounded operator for which there exists a positive integer n such that F^n has finite rank, then for every $T \in \mathcal{L}(X)$ commuting with F, T has finite descent if and only if T + F has finite descent [5]. Therefore, they have conjectured that such operator F can be characterized by the above perturbation property. In the last section we provide a positive answer to this question, and moreover we characterize the finiteness of dim X by the existence of an operator T such that its commutant is algebraic. Also some perturbations results for semi-Fredholm operators of finite descent are given.

In a paper under preparation, equivalent results for the ascent and the essential ascent and descent will be provided.

1. DESCENT SPECTRUM

We begin this section by the following result which shows that an operator with finite descent is either surjective or 0 is an isolated point of its surjective spectrum.

PROPOSITION 1.1. Let $T \in \mathcal{L}(X)$ be an operator with finite descent d := d(T), then there exists $\delta > 0$ such that for every $0 < |\lambda| < \delta$:

(i) $d(T - \lambda) = 0;$

(ii) dim N($T - \lambda$) = dim(N(T) \cap R(T^d)).

Proof. Let T_0 be the restriction of T to $R(T^d)$. We define a new norm on $R(T^d)$ by

 $|y| = ||y|| + \inf\{||x|| : x \in X \text{ and } y = T^d x\}, \text{ for all } y \in R(T^d).$

It is easy to verify that $R(T^d)$ equipped with this norm is a Banach space, and that T_o is a bounded surjection on $(R(T^d), |\cdot|)$. Let $\delta > 0$ be such that for every $0 < |\lambda| < \delta$, $T_o - \lambda$ is surjective, it follows then that $R(T^d) = (T - \lambda)R(T^d) \subseteq$

 $R(T - \lambda)$. On the other hand, observe that the following equality holds with no restriction on *T*:

$$R(T - \lambda) + R(T^n) = X$$
 for all $n \in \mathbb{N}$ and $\lambda \neq 0$.

Indeed, let $n \ge 1$ and $\lambda \ne 0$, consider also the polynomials $p(z) = z - \lambda$ and $q(z) = z^n$. Since p and q have no common divisors then there exist two polynomials u and v such that 1 = p(z)u(z) + q(z)v(z) for all $z \in \mathbb{C}$. Hence $I = (T - \lambda)u(T) + T^nv(T)$ and so $X = R(T - \lambda) + R(T^n)$. Now, from this we obtain that $R(T - \lambda) = X$, that is, $d(T - \lambda) = 0$, for $0 < |\lambda| < \delta$. Also, since $N(T - \lambda) \subseteq R(T^d)$, we have that $N(T - \lambda) = N(T_0 - \lambda)$. Thus, by the continuity of the index we get

$$\dim(N(T) \cap R(T^d)) = \dim N(T_o) = \operatorname{ind}(T_o) = \operatorname{ind}(T_o - \lambda) = \dim N(T - \lambda),$$

for all $0 < |\lambda| < \delta$, which completes the proof.

REMARK 1.2. As consequence of Proposition 1.1 and the stability of the index, we mention that if *T* is a semi-Fredholm operator with finite descent then $ind(T) \ge 0$.

COROLLARY 1.3. If $T \in \mathcal{L}(X)$, then $\sigma_{desc}(T)$ is a compact subset of $\sigma(T)$.

The spectral mapping theorem holds for the descent spectrum [10]:

THEOREM 1.4. Let $T \in \mathcal{L}(X)$ and f be an analytic function on an open neighbourhood of $\sigma(T)$, not identically constant in any connected component of its domain, then

(1.1)
$$\sigma_{\text{desc}}(f(T)) = f(\sigma_{\text{desc}}(T)).$$

THEOREM 1.5. If T is a bounded operator on X, then

(1.2)
$$\rho_{\text{desc}}(T) \cap \partial \sigma(T) = \{\lambda \in \mathbb{C} : \lambda \text{ is a pole of the resolvent of } T\}.$$

Moreover, the following assertions are equivalent:

- (i) $\sigma_{\text{desc}}(T) = \emptyset;$
- (ii) $\partial \sigma(T) \subseteq \rho_{\text{desc}}(T)$;
- (iii) *T* is algebraic.

Proof. By Theorem 10.1 of [13], the poles of the resolvent of *T* are contained in $\rho_{desc}(T) \cap \partial \sigma(T)$. For the other inclusion, suppose $\lambda \in \rho_{desc}(T) \cap \partial \sigma(T)$, then by Proposition 1.1, there exists a deleted connected neighbourhood Ω of λ such that $T - \mu$ is surjective and dim $N(T - \mu) = \dim(N(T - \lambda) \cap R(T - \lambda)^d)$, where d = d(T) and $\mu \in \Omega$. But since $\lambda \in \partial \sigma(T)$, $\Omega \setminus \sigma(T)$ is non-empty, and hence it follows that $N(T - \lambda) \cap R(T - \lambda)^d = \{0\}$, which implies that $N(T - \lambda)^d =$ $N(T - \lambda)^{d+1}$. Now, the ascent and the descent of $T - \lambda$ are finite, so that by Theorem 10.2 of [13], λ is a pole of the resolvent of *T*.

(i) \Rightarrow (ii). Obvious.

(ii) \Rightarrow (iii). Suppose that $\partial \sigma(T) \subseteq \rho_{\text{desc}}(T)$, then by the first assertion, $\partial \sigma(T)$ is the set of the poles of the resolvent of *T*. Consequently, $\sigma(T) = \partial \sigma(T)$ is a finite set of complex numbers $\{\lambda_i\}_{1}^{n}$, and (cf. Theorem 10.2 of [13])

(1.3)
$$X = \mathbf{R}(T - \lambda_i)^{d_i} \oplus \mathbf{N}(T - \lambda_i)^{d_i} \text{ for some integer } d_i \ge 1.$$

Consider the complex polynomial $p(\lambda) = \prod_{i=1}^{n} (\lambda - \lambda_i)^{d_i}$, we claim that p(T) = 0. Let T_0 denote the restriction of T to the closed subspace $M := R(p(T)) = \bigcap_{i=1}^{n} R(T - \lambda_i)^{d_i}$, evidently $\sigma(T_0) \subseteq \sigma(T)$. Moreover, for each i,

(1.4)
$$N(T_o - \lambda_i) = N(T - \lambda_i) \cap M \subseteq N(T - \lambda_i)^{d_i} \cap R(T - \lambda_i)^{d_i} = \{0\},$$

and since $T - \lambda_i$ has finite descent, we have also

$$(T_{o} - \lambda_{i})M = (T - \lambda_{i})\prod_{j=1}^{n} (T - \lambda_{j})^{d_{j}}X = \left[\prod_{j=1, j \neq i}^{n} (T - \lambda_{j})^{d_{j}}\right](T - \lambda_{i})^{d_{i}+1}X$$
$$= \left[\prod_{j=1, j \neq i}^{n} (T - \lambda_{j})^{d_{j}}\right](T - \lambda_{i})^{d_{i}}X = \prod_{j=1}^{n} (T - \lambda_{j})^{d_{j}}X = M.$$

Therefore $T_0 - \lambda_i$ is invertible, for $1 \le i \le n$. This implies that $\sigma(T_0)$ is empty, hence $M = \{0\}$ and T is algebraic.

(iii) \Rightarrow (i). Suppose that *T* is algebraic and let $p(\lambda) = \prod_{i=1}^{n} (\lambda - \lambda_i)^{\alpha_i}$ be the minimal complex polynomial such that p(T) = 0. By the spectral mapping theorem, it follows that $\sigma(T) = \{\lambda_1, \lambda_2, \dots, \lambda_n\}$. On the other hand, we have

(1.5)
$$X = \bigoplus_{i=1}^{n} N(T - \lambda_i)^{\alpha_i},$$

(1.6)
$$N(T - \lambda_i)^{\alpha_i} \subseteq R(T - \lambda_j) \quad \text{if } i \neq j$$

Therefore, for every $1 \leq i \leq n$,

$$R(T - \lambda_i)^{\alpha_i} = (T - \lambda_i)^{\alpha_i} \Big(\bigoplus_{1 \le j \le n} N(T - \lambda_i)^{\alpha_i} \Big) = (T - \lambda_i)^{\alpha_i} \Big(\bigoplus_{1 \le j \le n, j \ne i} N(T - \lambda_j)^{\alpha_j} \Big)$$
$$\subseteq (T - \lambda_i)^{\alpha_i}) (R(T - \lambda_i)) = R(T - \lambda_i)^{\alpha_i + 1}.$$

Consequently, $T - \lambda_i$ has finite descent for all $1 \le i \le n$. Thus $\sigma_{\text{desc}}(T) = \emptyset$, and this completes the proof.

COROLLARY 1.6. If T is a bounded operator on X, then we have

(1.7)
$$\partial \sigma(T) \subseteq \sigma_{\text{desc}}(T) \cup \{\text{the poles of the resolvent of } T\}.$$

THEOREM 1.7. If $T \in \mathcal{L}(X)$ and Ω is a connected component of $\rho_{\text{desc}}(T)$, then

(1.8)
$$\Omega \subset \sigma(T)$$
 or $\Omega \setminus E \subseteq \rho(T)$,

where $E = \{\lambda \in \Omega : \lambda \text{ is a pole of the resolvent of } T\}$.

Proof. Let $\Omega^r = \{\lambda \in \Omega : d(T - \lambda) = 0\}$ and $\Omega^s = \{\lambda \in \Omega : 0 < d(T - \lambda) < \infty\}$, then we have $\Omega = \Omega^r \cup \Omega^s$, and by Proposition 1.1, Ω^s is at most countable. Therefore Ω^r is connected, and if $\Omega \cap \rho(T)$ is non-empty then so is $\Omega^r \cap \rho(T)$, hence the continuity of the index ensures that $\operatorname{ind}(T - \lambda) = 0$ for all $\lambda \in \Omega^r$. But for $\lambda \in \Omega^r$, $T - \lambda$ is surjective, so it follows that $T - \lambda$ is invertible. Thus $\Omega^r \subseteq \rho(T)$. Consequently Ω^s is a set of isolated points in $\sigma(T)$ of finite descent, so

$$\Omega^{s} \subseteq \rho_{\text{desc}}(T) \cap \partial \sigma(T) = \{\lambda \in \mathbb{C} : \text{pole of the resolvent of } T\}.$$

Finally, if we put $E = \Omega^s$, then $E = \{\lambda \in \Omega : \text{ poles of the resolvent of } T\}$ and $\Omega \setminus E \subseteq \rho(T)$, as desired.

COROLLARY 1.8. If $T \in \mathcal{L}(X)$, then $\sigma_{desc}(T)$ is at most countable if an only if $\sigma(T)$ is at most countable.

In this case we have $\sigma(T) = \sigma_{desc}(T) \cup \{ the poles of the resolvent of T \}.$

Proof. Suppose that $\sigma_{desc}(T)$ is at most countable, then $\rho_{desc}(T)$ is connected, and since $\rho(T) \subseteq \rho_{desc}(T)$, the previous theorem implies that $\rho_{desc}(T) \setminus E \subseteq \rho(T)$ where *E* is the set of the poles of the resolvent of *T*. Therefore $\sigma(T) = \sigma_{desc}(T) \cup E$ is at most countable, which completes the proof.

We recall that an operator $R \in \mathcal{L}(X)$ is said to be *Riesz* if $R - \lambda$ is Fredholm for every non-zero complex number λ .

Notice that in general, the fact that the descent spectrum of an operator *T* is finite does not ensure that $\sigma(T)$ is finite. Indeed if we consider any Riesz operator *T* with infinite spectrum, then every non-zero complex number of $\sigma(T)$ is a pole of the resolvent of *T* (see [13]), that is, $\sigma_{\text{desc}}(T) = \{0\}$.

An operator $T \in \mathcal{L}(X)$ is called *meromorphic* if the non-zero points of its spectrum are poles of the resolvent of *T*. It is a classical fact that every compact, or more generally, Riesz operator is meromorphic.

COROLLARY 1.9. If T is a bounded operator on X, then

(1.9) $T \text{ is meromorphic } \Leftrightarrow \sigma_{desc}(T) \subseteq \{0\}.$

For $T \in \mathcal{L}(X)$, let $L_T : \mathcal{L}(X) \to \mathcal{L}(X)$ denote the corresponding multiplication operator given by $L_T(S) := TS$. If $d(L_T)$ is finite then so is d(T). Indeed, suppose that $T^d \mathcal{L}(X) = T^{d+1} \mathcal{L}(X)$ for some integer d, then there exists $S \in \mathcal{L}(X)$ such that $T^d = T^{d+1}S$, and hence we obtain $\mathbb{R}(T^d) \subseteq \mathbb{R}(T^{d+1})$. Thus T has finite descent.

COROLLARY 1.10. Let X be a Banach space, the following assertions are equivalent:

(i) *X* is finite-dimensional;

(ii) $d(L_T)$ is finite for all $T \in \mathcal{L}(X)$;

(iii) d(T) is finite for all $T \in \mathcal{L}(X)$;

(iv) $\sigma_{\text{desc}}(T) = \emptyset$ for all $T \in \mathcal{L}(X)$;

(v) $\mathcal{L}(X)$ is algebraic.

Proof. The implications (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) are obvious. Also by Theorem 1.5, we get that (iv) entails (v). For (iv) \Rightarrow (i), we use Theorem 5.4.2 of [1].

2. DESCENT IN BANACH ALGEBRAS

Throughout this section, \mathcal{A} will denote a complex Banach algebra with unit and Rad(\mathcal{A}) its (Jacobson) radical. For every $a \in \mathcal{A}$, the left multiplication operator L_a is given by $L_a(x) = ax$ for all $x \in \mathcal{A}$. By definition the *descent* of an element $a \in \mathcal{A}$ is $d(a) := d(L_a)$, and the descent spectrum of a is the set $\sigma_{desc}(a) := \{\lambda \in \mathbb{C} : d(a - \lambda) = \infty\}.$

REMARK 2.1. (i) An element $a \in A$ has finite descent if and only if there exists a positive integer n such that a is right-invertible modulo $N(L_a^n)$. Indeed, n := d(a) finite means precisely that $a^n A = a^{n+1}A$, that is, there exists $b \in A$ for which $a^n = a^{n+1}b$, i.e, there exists $b \in A$ such that $1 - ab \in N(L_a^n)$.

(ii) $\operatorname{Rad}(\mathcal{A}) \cap \{a \in \mathcal{A} : d(a) \text{ is finite }\} \subseteq \mathcal{N}(\mathcal{A})$, where $\mathcal{N}(\mathcal{A})$ is the set of nilpotent elements of \mathcal{A} . In fact, if $a \in \operatorname{Rad}(\mathcal{A})$ and n := d(a) is finite, then there exists $b \in \mathcal{A}$ such that $a^n(1-ab) = 0$, and since 1-ab is invertible, we get that a is nilpotent.

THEOREM 2.2. Let A be a Banach algebra. The following assertions are equivalent :

(i) dim(\mathcal{A} /Rad \mathcal{A}) is finite and Rad \mathcal{A} is a nil ideal (i.e. Rad $\mathcal{A} \subseteq \mathcal{N}(\mathcal{A})$);

(ii) d(a) *is finite for every* $a \in A$ *;*

(iii) $\sigma_{\text{desc}}(a) = \emptyset$ for every $a \in A$;

- (iv) $\sigma_{\text{desc}}(a) = \emptyset$ for every *a* in *a* non-empty open subset *U* of *A*;
- (v) \mathcal{A} is algebraic.

Proof. (i) \Rightarrow (ii). If $a \in A$, and since A/RadA is a finite-dimensional algebra, there exists a non-zero complex polynomial p such that p(a + RadA) = 0. It follows then that p(a) belongs to the nil ideal RadA, and hence $p(a)^n = 0$ for some positive integer n, which proves that a is algebraic.

The implications (ii) \Rightarrow (iii) \Rightarrow (iv) and the equivalence (v) \Leftrightarrow (iii) are obvious.

(iv) \Rightarrow (i). Since for $a \in U$, $\sigma_{desc}(L_a) = \sigma_{desc}(a) = \emptyset$, Theorem 1.5 implies that there exists a non-zero complex polynomial p for which $p(L_a) = 0$, that is, p(a) = 0. Therefore by Theorem 5.4.2 of [1], dim \mathcal{A} /Rad \mathcal{A} is finite. Moreover, if $b \in \text{Rad}\mathcal{A}$, then b is quasi-nilpotent and algebraic, and hence nilpotent.

REMARK 2.3. Note that if RadA is finite-dimensional, the above assertions (i)–(v) are equivalent to A being finite-dimensional.

We mention that in the setting of Hilbert space, the descent of *T* as element in the Banach algebra $\mathcal{L}(H)$, is finite if and only if the descent of *T* is finite. In fact, if $d := d(T) < \infty$ then $R(T^d) = R(T^{d+1})$, and therefore there exists $S \in \mathcal{L}(H)$ such that $T^d = T^{d+1}S$ [4]. Consequently, $d(L_T)$ is finite.

For a Banach algebra \mathcal{A} , one can define the descent of an element $a \in \mathcal{A}$ to be the descent of the right multiplication operator R_a given by $R_a(x) = xa$, evidently Theorem 2.2 holds also for this definition. However, we note that for $T \in \mathcal{L}(X)$, there is no relation that lies the descent of T as an operator and the descent of Tas element of the algebra $\mathcal{L}(X)$. In fact, if we consider the unilateral right shift operator T defined on the Hilbert space $\ell^2(\mathbb{N})$ by $T(x_1, x_2, \ldots) = (0, x_1, \ldots)$, then $d(R_T) = d(L_{T^*}) = d(T^*) = 0$ and $d(T) = \infty$.

Let $\mathcal{K}(H)$ denote the ideal of compact operators on H and π the canonical surjection from $\mathcal{L}(H)$ to the Calkin algebra $\mathcal{C}(H) := \mathcal{L}(H)/\mathcal{K}(H)$. For $T \in \mathcal{L}(H)$, d(T) is finite implies that $d(\pi(T))$ is finite. Indeed, there exists $S \in \mathcal{L}(H)$ such that $T^d = T^{d+1}S$ where d = d(T). Hence $\pi(T)^d = \pi(T)^{d+1}\pi(S)$ and so $d(\pi(T))$ is finite. Now if we define the *essential descent spectrum* of $T \in \mathcal{L}(H)$ by $\sigma^{e}_{desc}(T) := \sigma_{desc}(\pi(T))$, then it follows that $\sigma^{e}_{desc}(T) = \sigma^{e}_{desc}(T + K) \subseteq \sigma_{desc}(T + K)$ for every $K \in \mathcal{K}(X)$, and consequently

$$\sigma_{\operatorname{desc}}^{\operatorname{e}}(T) \subseteq \bigcap_{K \in \mathcal{K}(X)} \sigma_{\operatorname{desc}}(T+K).$$

Natural questions can be asked:

1. Is the above inclusion an equality?

2. Does there exist a compact operator *K* such that $\sigma_{desc}^{e}(T) = \sigma_{desc}(T+K)$?

In the general context, the answers to these questions are negatives. Consider the unilateral right shift operator *T*. Because $T + K - \lambda$ is a Fredholm operator with non positive index, for every $|\lambda| < 1$ and every compact *K*, then it follows that $\sigma_{\text{desc}}(T + K)$ contains the closed unit disk. However, for $|\lambda| < 1$, $\pi(T - \lambda)$ is invertible, and therefore $\sigma_{\text{desc}}^{\text{e}}(T)$ is contained in the unit circle.

Question 1. Let $T \in \mathcal{L}(X)$ and denote by $\rho_{SF}^-(T)$ the set of complex numbers λ for which $T - \lambda$ is semi-Fredholm of non positive index. Does it follow that

(2.1)
$$\sigma_{\text{desc}}^{\text{e}}(T) \cup \rho_{\text{SF}}^{-}(T) = \bigcap_{K \in \mathcal{K}(X)} \sigma_{\text{desc}}(T+K) ?$$

3. THE DESCENT SPECTRUM AND PERTURBATIONS

In Theorem 2.2 of [5] it was shown by M. Kaashoek and D. Lay that if F is a bounded operator on X for which there exists a positive integer n such that F^n is of finite rank, then

(3.1)
$$\sigma_{\text{desc}}(T+F) = \sigma_{\text{desc}}(T)$$
 for every operator $T \in \mathcal{L}(X)$ commuting with *F*.

In the same paper, they have conjectured that such operator F can be characterized by (4.1). The following theorem gives a positive answer to this question.

THEOREM 3.1. If $F \in \mathcal{L}(X)$, then the following assertions are equivalent: (i) $\sigma_{\text{desc}}(T+F) = \sigma_{\text{desc}}(T)$ for every $T \in \mathcal{L}(X)$ such that TF = FT; (ii) there exists $n \in \mathbb{N}$ for which F^n is of finite rank.

Before giving the proof of this theorem, we establish some preliminary results.

LEMMA 3.2. Let $N \in \mathcal{L}(X)$ be an infinite-rank operator such that $N^2 = 0$, then there exists a compact operator $K \in \mathcal{L}(X)$ such that NK is non-algebraic.

Proof. Let x_1 be such that $Nx_1 \neq 0$ then $\{x_1, Nx_1\}$ is linearly independent. Write $X = \operatorname{Vect}\{x_1, Nx_1\} \oplus X_1$ and let f_1 be the linear form given by $f_1(x_1) = f_1(Nx_1) = 1$ and $f_1 = 0$ on X_1 . Because N is of infinite rank, we can choose $x_2 \in X_1$ such that Nx_2 is non-zero and belongs to X_1 . Analogously, we decompose $X_1 = \operatorname{Vect}\{x_2, Nx_2\} \oplus X_2$, and we define f_2 by $f_2(x_2) = f_2(Nx_2) = 1$ and $f_2 = 0$ on $\operatorname{Vect}\{x_1, Nx_1\} \oplus X_2$. By repeating the same argument, we construct a countable sets of vectors $\{x_1, x_2, \ldots\}$ and continuous linear forms $\{f_1, f_2, \ldots\}$ such that $\{x_n, Nx_n : n \ge 1\}$ consists of linearly independent vectors and $f_i(x_j) = f_i(Nx_j) = \delta_{ij}$. Now, consider the compact operator $K := \sum \alpha_i x_i \otimes f_i$ where α_i are a distinct complex numbers for which $\sum_{i=1}^{+\infty} |\alpha_i| ||x_i|| ||f_i||$ is finite. It follows then that $NK = \sum \alpha_i Nx_i \otimes f_i$ is compact and $\sigma(NK) = \{0\} \cup \{\alpha_n : n \ge 1\}$. In particular NK is non-algebraic.

Let *N* be a nilpotent operator and *n* be a positive integer such that $N^n = 0$, then for every $X \in \mathcal{L}(X)$, the operator $S := \sum_{i=1}^{n} N^{i-1} X N^{n-i}$ commutes with *N*; see [2].

PROPOSITION 3.3. The commutant of every bounded operator on an infinitedimensional complex Banach space contains a non-algebraic operator.

Proof. Without loss of generality we may suppose that *T* is algebraic. Let $\sigma(T) := {\lambda_1, \lambda_2, ..., \lambda_n}$ then we can decompose *X* as follows

$$(3.2) X = X_1 \oplus X_2 \oplus \cdots \oplus X_n$$

where the subspaces X_i are invariant by T and the restriction of $T - \lambda_i$ to X_i is nilpotent. Since X has infinite dimension, there exists i such that dim X_i is infinite. Therefore, it suffices to prove that every nilpotent operator on an infinite-dimensional Banach space contains a non-algebraic operator in its commutant.

Suppose that *T* is nilpotent and let $n \ge 2$ for which $T^n = 0$ and $T^{n-1} \ne 0$. If T^{n-1} is of infinite rank, then by Lemma 3.2 there exists a compact operator $K \in \mathcal{L}(X)$ such that $T^{n-1}K$ is non-algebraic. Let $R := \sum_{i=1}^{n-1} T^{i-1}KT^{n-i}$ and

 $S := R + T^{n-1}K$ then TS = ST. Moreover, because $T^{n-1}K$, S are compact and $RT^{n-1}K = 0$, we get that $\sigma(T^{n-1}K) \subseteq \sigma(S)$. Consequently S is non-algebraic. Now, suppose that $R(T^{n-1})$ has finite dimension, and consider an arbitrary associated basis $\{T^{n-1}x_1, T^{n-1}x_2, \ldots, T^{n-1}x_k\}$. We show easily that $\{T^px_j : 0 \leq p \leq n-1 \text{ and } 1 \leq j \leq k\}$ consists of linearly independent vectors. Hence, there exists a finite family of continuous linear forms $\{f_i\}_{i=1}^k$ such that

(3.3)
$$f_j(T^{n-1}x_j) = 1$$
 and $f_j(T^px_r) = 0$ if $r \neq j$ or $(r = j$ and $p \neq n-1)$.

If we let $V := \sum_{j=1}^{k} \sum_{p=1}^{n} T^{p-1}(x_j \otimes f_j) T^{n-p}$, then it follows that V is a finite-rank

projection commuting with *T* and $\mathbb{R}(T^{n-1}) \subseteq \mathbb{R}(V)$, consequently $T^{n-1}_{|\mathbb{N}(V)} = 0$. By repeating successively the same argument, we obtain that $X = Y \oplus Z$ where *Y* and *Z* are *T*-invariant, dim *Y* is finite, $T^h_{|Z} = 0$ and $\mathbb{R}(T^{h-1}_{|Z})$ is of infinite dimension for some $h \ge 1$. If h > 1 then the above argument provides a non-algebraic operator *S* on *Z* that commutes with $T_{|Z}$. Consequently, $0 \oplus S$ is non-algebraic and commutes with *T*. To complete the proof, we may suppose h = 1, that is, $T_{|Z} = 0$ and *T* has finite-rank. Consider an arbitrary non-algebraic operator *S* on *Z*, then we have that $0 \oplus S$ is non-algebraic and commutes with *T*.

Proof of Theorem 3.1. (ii) \Rightarrow (i). See [5].

(i) \Rightarrow (ii). By taking T = 0 we obtain that $\sigma_{desc}(F)$ is empty, and hence F is algebraic. Therefore

$$(3.4) X = X_1 \oplus X_2 \oplus \cdots \oplus X_n$$

where $\sigma(F) = \{\lambda_1, \lambda_2, ..., \lambda_n\}$ and the restriction of $F - \lambda_i$ to X_i is nilpotent for every $1 \le i \le n$. We claim that if $\lambda_i \ne 0$, dim X_i is finite. Suppose to the contrary that $\lambda_i \ne 0$ and X_i is infinite dimensional. By Proposition 3.3, there exists a nonalgebraic operator S_i on X_i commuting with the restriction F_i of F to this space. Let S denote the extension of S_i to X given by S = 0 on each X_j such that $j \ne i$, obviously SF = FS and so $\sigma_{desc}(S + F) = \sigma_{desc}(S)$ by hypothesis. On the other hand, since $\sigma_{desc}(S) = \sigma_{desc}(S_i)$ and $\sigma_{desc}(S + F) = \sigma_{desc}(S_i + F_i)$, we obtain that $\sigma_{desc}(S_i) = \sigma_{desc}(S_i + F_i) = \sigma_{desc}(S_i + \lambda_i)$ because $F_i - \lambda_i$ is nilpotent. Choose an arbitrary complex number $\alpha \in \sigma_{desc}(S) \ne \emptyset$, it follows that $k\lambda_i + \alpha \in \sigma_{desc}(S)$ for every positive integer k, which implies that $\lambda_i = 0$, the desired contradiction.

We shall denote by $\mathcal{A}(X)$ the set of algebraic operators on *X*, and by $\{T\}'$ the commutant of $T \in \mathcal{L}(X)$. The following corollary follows immediately from Proposition 3.3.

COROLLARY 3.4. If X is a complex Banach space, then the following assertions are equivalent:

(i) X is finite-dimensional;

- (ii) $\{T\}' \subseteq \mathcal{A}(X)$ for every $T \in \mathcal{L}(X)$;
- (iii) there exists $T \in \mathcal{L}(X)$ such that $\{T\}' \subseteq \mathcal{A}(X)$;

(iv) there exists a nilpotent operator $N \in \mathcal{L}(X)$ such that $\{N\}' \subseteq \mathcal{A}(X)$.

REMARK 3.5. Notice that in the case when

(3.5) $\dim X < \infty \Leftrightarrow \{T\}' \subseteq \mathcal{A}(X) \text{ for every } T \in \mathcal{L}(X),$

we have dim $X = \sup\{d^{o}P : P \in \mathcal{P}_{T}\}$ where \mathcal{P}_{T} denotes the set of complex polynomials P for which there exists $S \in \{T\}'$ such that P is the minimal polynomial satisfying P(S) = 0. Indeed it follows from the simple fact that for every nilpotent operator N on a finite-dimensional space Y there exists an operator $S \in \{N\}'$ and a minimal complex polynomial P of degree dim Y such that P(S) = 0.

Corollary 3.4 suggests the following question:

Question 2. Let A be a complex semi-simple Banach algebras. Does we have an equivalence between the following assertions:

(i) A is finite-dimensional;

(ii) there exists $a \in A$ such that its commutant is formed by algebraic elements.

The descent spectrum does not remain invariant under arbitrary finite-rank perturbation, (cf. [10]). However, for algebraic operators we have:

PROPOSITION 3.6. Let $T \in \mathcal{L}(X)$ be algebraic and F be a finite-rank operator, then T + F is algebraic.

Proof. Let $p(z) = \sum_{k=0}^{n} \alpha_k z^k$ be a non-zero complex polynomial such that p(T) = 0. Then we have

(3.6)
$$p(T+F) = p(T+F) - p(T) = \sum_{k=0}^{n} \alpha_k [(T+F)^k - T^k].$$

Moreover, it is easy to verify that for each k, $(T + F)^k - T^k$ has finite rank. Therefore, p(T + F) has finite rank. Thus p(T + F) is algebraic, and hence so is T + F.

Let *T* be a bounded operator on *X*. According to Kaashoek and Lay [5], $\sigma_{desc}(T)$ is stable under commuting finite-rank perturbations. We also notice that the *semi-Fredholm spectrum* of *T*, the set $\sigma_{SF}(T)$ of complex numbers λ such that $T - \lambda$ is not semi-Fredholm, is stable under the same perturbations (see [3]). V. Rakočević showed more in [12] that the union of the descent and the semi-Fredholm spectrum, $\sigma_{SF}^{d}(T) := \sigma_{SF}(T) \cup \sigma_{desc}(T)$, is the largest subset of the surjective spectrum remaining invariant under any commuting compact perturbation (or more generally, commuting Riesz perturbation).

For an operator *T*, we denote by $\Pi(T)$ the set of all isolated points λ of $\sigma_{su}(T)$ for which $T - \lambda$ is semi-Fredholm.

PROPOSITION 3.7. Let T be a bounded operator on X, we have

(3.7)
$$\sigma_{\rm SF}^{\rm d}(T) = \sigma_{\rm su}(T) \setminus \Pi(T).$$

Proof. From the proof of Proposition 2.1, we conclude that if $\lambda \notin \sigma_{SF}^d(T)$ then either $T - \lambda$ is surjective or λ is an isolated point of the surjective spectrum, which establish $\sigma_{su}(T) \setminus \Pi(T) \subseteq \sigma_{SF}^d(T)$. For the other inclusion, let $\lambda \in \Pi(T)$, then $T - \lambda$ is semi-Fredholm, and by the Kato decomposition (cf. [6]), there exist two closed *T*-invariant subspaces X_1, X_2 such that $X = X_1 \oplus X_2, T_{|X_1} - \lambda$ is nilpotent and $T_{|X_2} - \lambda$ is semi-regular (i.e, $\mathbb{R}(T)$ is closed and $\mathbb{N}(T^n) \subseteq \mathbb{R}(T)$ for all integers $n \in \mathbb{N}$, see [9], [11]). Now, because λ is an isolated point in $\sigma_{su}(T)$, there exists $\delta > 0$ such that for every $0 < |\mu - \lambda| < \delta, T - \mu$ is surjective. Therefore, for $0 < |\mu - \lambda| < \delta, T_{|X_2} - \mu$ is surjective, and hence so is $T_{|X_2} - \lambda$ [9]. Finally, since $T_1 - \lambda$ is nilpotent, we obtain that $T - \lambda$ has finite descent, which completes the proof.

We denote by $\mathcal{F}(X)$ the set of all finite-rank operators, and by \mathcal{P}_{f} the set of all projections with finite-dimensional null space. The restriction of an operator $T \in \mathcal{L}(X)$ to the range of Q, where $Q \in \mathcal{P}_{f}$ and TQ = QT, is denoted by T_{Q} .

PROPOSITION 3.8. If $T \in \mathcal{L}(X)$, then the following assertions are equivalent:

- (i) there exists $Q \in \mathcal{P}_{f}$ such that TQ = QT and $\sigma_{SF}^{d}(T) = \sigma_{su}(T_{Q})$;
- (ii) there exists $F \in \mathcal{F}(X)$ such that TF = FT and $\sigma_{SF}^{d}(T) = \sigma_{su}(T+F)$;
- (iii) $\Pi(T)$ is finite.

Proof. (i) \Rightarrow (ii). Let $Q \in \mathcal{P}_{f}$ be such that QT = TQ, N(Q) is finitedimensional and $\sigma_{SF}^{d}(T) = \sigma_{su}(T_Q)$. In particular $\sigma_{su}(T_{|N(Q)})$ is a finite set $\{\lambda_i\}_{i=1}^n$ and $N(Q) = N_1 \oplus N_2 \oplus \cdots \oplus N_n$ where N_i is invariant by T and $\sigma(T_{|N_i}) =$ $\{\lambda_i\}$. Now for each $1 \leq i \leq n$, let α_i be a complex number such that $\lambda_i - \alpha_i \in$ $\sigma_{su}(T_{|R(Q)})$. Consider the finite-rank operator defined by $F_{|N_i} = \alpha_i I_{|N_i}, 1 \leq i \leq n$, and $F_{|R(Q)} = 0$. Then it is clear that FT = TF and

$$\sigma_{\mathrm{su}}(T+F) = \{\lambda_i - \alpha_i\}_{i=1}^n \cup \sigma_{\mathrm{su}}(T_{|\mathrm{R}(Q)}) = \sigma_{\mathrm{su}}(T_{|\mathrm{R}(Q)}) = \sigma_{\mathrm{SF}}^{\mathrm{d}}(T).$$

(ii) \Rightarrow (iii). Let *F* be a finite-rank operator commuting with *T* and for which $\sigma_{SF}^{d}(T) = \sigma_{su}(T + F)$. Because the spectrum of *F* is finite, the spectral decomposition provides two closed subspaces Y_1 , Y_2 invariant by *T* and *F* for which $X = Y_1 \oplus Y_2$, $\sigma(F_{|Y_1}) = \{0\}$ and $F_{|Y_2}$ is invertible. Since $F_{|Y_2}$ is a finite-rank operator, Y_2 is finite-dimensional. We claim that $\Pi(T)$ is contained in the finite set $\sigma(T_{|Y_2})$. Assume to the contrary that there exists $\lambda \in \Pi(T) \setminus \sigma(T_{|Y_2})$; then, in particular $T - \lambda$ is not surjective. Moreover, because $\Pi(T) \cap \sigma_{su}(T + F) = \Pi(T) \cap \sigma_{SF}^{d}(T) = \emptyset$, $T + F - \lambda$ is surjective and hence so is $(T + F)_{|Y_1} - \lambda$. But, $F_{|Y_1}$ is quasi-nilpotent, so we see that $T_{|Y_1} - \lambda$ is surjective. Finally, $T_{|Y_2} - \lambda$ is invertible, therefore $T - \lambda$ is surjective, the desired contradiction.

(iii) \Rightarrow (i). Suppose that $\Pi(T) = \{\lambda_1, \lambda_2, \dots, \lambda_n\}$. As in the proof of the previous proposition, we have the following decomposition $X = X_1 \oplus Z_1$, where dim X_1 is finite, $T_{|X_1} - \lambda_1$ is nilpotent and $T_{|Z_1} - \lambda_1$ is surjective; consequently $\Pi(T_{|Z_1}) = \{\lambda_2, \dots, \lambda_n\}$. By using successively the same argument, we obtain that $X = X_1 \oplus X_2 \oplus \dots \oplus X_n \oplus Z$, where the spaces X_i are finite-dimensional,

invariant by *T* and $\sigma_{su}(T_{|Z}) = \sigma_{su}(T) \setminus \Pi(T) = \sigma_{SF}^{d}(T)$. Therefore, if we let *Q* be the projection on *Z* with respect to the above decomposition, then it follows that QT = TQ and $\sigma_{su}(T_Q) = \sigma_{SF}^{d}(T)$.

REMARK 3.9. Let T be a bounded operator on X. As mentioned above we have

(3.8)
$$\sigma_{\rm SF}^{\rm d}(T) = \bigcap_{R \in \mathcal{R}(X), RT = TR} \sigma_{\rm su}(T+R),$$

where $\mathcal{R}(X)$ denote the set of Riesz operators. Also, J. Zemánek has established in [14] that $\sigma_{SF}^{d}(T)$ can be obtained as the intersection of all surjective spectra of T_{O} , the intersection being taken over all $Q \in \mathcal{P}_{f}$ such that QT = TQ.

Question 3. Given $T \in \mathcal{L}(X)$, does exist a Riesz operator R such that TR = RT and $\sigma_{SF}^{d}(T) = \sigma_{su}(T + R)$?

Acknowledgements. The first author is a scholarship holder supported by the MCYT, BFM-2335. The second one is partially supported by the MCYT, BFM-2335 and the Junta de Andalucia FQM194. The third and fourth author are supported by the integrated action N^o MA/03/64, France-Morocco committee.

REFERENCES

- [1] B. AUPETIT, A Primer on Spectral Theory, Springer-Verlag, New York 1991.
- M. BARRAA, Sous-espaces hyperinvariants d'un opérateur nilpotent sur un espace de Banach, J. Operator Theory 21(1989), 315–321.
- [3] S.R. CARADUS, W.E. PFAFFENBERGER, Y. BERTRAM, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, New York 1974.
- [4] R.G. DOUGLAS, On majorization, factorization and range inclusion of operators on Hilbert spaces, *Proc. Amer. Math. Soc.* 17(1966), 413–415.
- [5] M.A. KAASHOEK, D.C. LAY, Ascent, descent, and commuting perturbations, *Trans. Amer. Math. Soc.* 169(1972), 35–47.
- [6] T. KATO, Perturbation theory for nullity, deficiency, and other quantities of linear operators, J. Anal. Math. 6(1958), 261–322.
- [7] V. KORDULA, V. MÜLLER, On the axiomatic theory of the spectrum, *Studia Math.* 119(1996), 109–128.
- [8] M. MBEKHTA, Ascente, descente et spectre essentiel quasi-Fredholm, *Rend. Circ. Math. Palermo* (2) 2(1997), 175–196.
- [9] M. MBEKHTA, A. OUAHAB, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Acta Sci. Math. (Szeged) 59(1994), 525–543.
- [10] M. MBEKHTA, V. MÜLLER, On the axiomatic theory of spectrum. II, Studia Math. 199(1996), 129–147.

- [11] M. MBEKHTA, A. OUAHAB, Perturbation des opérateurs s-réguliers, in *Topics in Operator Theory, Operator Algebras and Applications (Timişoara, 1994)*, Edit. Acad. Române, Bucharest 1995, pp. 239–249.
- [12] V. RAKOČEVIĆ, Semi-Browder operators and perturbations, *Studia. Math.* 122(1997), 131–137.
- [13] A.E. TAYLOR, D.C. LAY, Introduction to Functional Analysis, Wiley, New York-Chichester-Brisbane 1980.
- [14] J. ZEMÁNEK, Compressions and the Weyl-Browder spectra, Proc. Roy. Irish. Acad. Sect. A 86(1986), 57–62.

M. BURGOS, DEPARTAMENTO DE ALGEBRA Y ANÁLISIS MATEMÁTICO, UNIVER-SIDAD DE ALMERÍA, ALMERÍA, 04120, SPAIN *E-mail address*: mburgos@ual.es

A. KAIDI, DEPARTAMENTO DE ALGEBRA Y ANÁLISIS MATEMÁTICO, UNIVERSI-DAD DE ALMERÍA, ALMERÍA, 04120, SPAIN *E-mail address*: elamin@ual.es

M. MBEKHTA, UFR DE MATHÉMATIQUES, UMR-CNRS 8524, UNIVERSITÉ LILLE 1, VILLENEUVE D'ASCQ, 59655, FRANCE *E-mail address*: mostafa.mbekhta@math.univ-lille1.fr

M. OUDGHIRI, UFR DE MATHÉMATIQUES, UMR-CNRS 8524, UNIVERSITÉ LILLE 1, VILLENEUVE D'ASCQ, 59655, FRANCE *E-mail address*: Mourad.Oudghiri@math.univ-lille1.fr

Received November 18, 2004.