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ABSTRACT. In the present paper we continue to study the descent spectrum
of an operator on a Banach space. We obtain that a Banach space X is finite-
dimensional if and only if there exists a bounded operator T on X such that its
commutant is formed by algebraic operators. We provide also an affirmative
answer to a question of M.A. Kaashoek and D.C. Lay.
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INTRODUCTION

Throughout this paper, L(X) will denote the algebra of all bounded linear
operators on an infinite-dimensional complex Banach space X and K(X) its ideal
of compact operators. For an operator T ∈ L(X), let N(T) denote its kernel, R(T)
its range, σ(T) its spectrum and σsu(T) its surjective spectrum. Also, for a subset
M of X, Vect{M} will denote the closed linear subspace generated by M.

An operator T ∈ L(X) is called semi-Fredholm if R(T) is closed and either
dim N(T) or codimR(T) is finite. For such an operator the index is given by
ind(T) = dim N(T) − codimR(T), and if it is finite then we say that T is Fred-
holm.

Also from [13] we recall that for a bounded linear operator T ∈ L(X), the
ascent, a(T), and the descent, d(T), are defined by a(T) = inf{n > 0 : N(Tn) =
N(Tn+1)} and d(T) = inf{n > 0 : R(Tn) = R(Tn+1)}, respectively; the infimum
over the empty set is taken to be ∞. As shown in [13],

(0.1) d(T) is finite ⇔ R(T) + N(Td) = X for some d > 0,

and

(0.2) a(T) is finite ⇔ R(Td) ∩N(T) = {0} for some d > 0.

For T ∈ L(X), the descent spectrum, σdesc(T), is defined as those complex numbers
λ for which d(T−λ) is not finite; the descent resolvent set is ρdesc(T) = C \σdesc(T).
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Evidently σdesc(T) ⊆ σ(T) and σdesc(T) = σdesc(LTL−1) for every invertible op-
erator L ∈ L(X). Also we mention the following property that will be used in
the rest of the paper: if Y and Z are two closed T-invariant subspaces such that
X = Y ⊕ Z then σdesc(T) = σdesc(T|Y) ∪ σdesc(T|Z).

The paper is organized as follows. In Section 2 we show that the descent
spectrum is a compact subset of the spectrum, and for an operator T ∈ L(X), we
prove that σdesc(T) is empty precisely when T is algebraic, that is, there exists
a non-zero complex polynomial p for which p(T) = 0. For a complex Banach
algebra A, the descent of an element a is defined to be the descent of the cor-
responding left multiplication operator on A; the main point of Section 3 is to
establish that a complex Banach algebra A is algebraic if and only if the descent
of each element a in A is finite, which also is equivalent to the fact that the radical
of A is formed by nilpotent elements and has finite codimension. On the other
hand, a classical result of Kaashoek and Lay affirms that if F is a bounded opera-
tor for which there exists a positive integer n such that Fn has finite rank, then for
every T ∈ L(X) commuting with F, T has finite descent if and only if T + F has
finite descent [5]. Therefore, they have conjectured that such operator F can be
characterized by the above perturbation property. In the last section we provide
a positive answer to this question, and moreover we characterize the finiteness
of dim X by the existence of an operator T such that its commutant is algebraic.
Also some perturbations results for semi-Fredholm operators of finite descent are
given.

In a paper under preparation, equivalent results for the ascent and the es-
sential ascent and descent will be provided.

1. DESCENT SPECTRUM

We begin this section by the following result which shows that an operator
with finite descent is either surjective or 0 is an isolated point of its surjective
spectrum.

PROPOSITION 1.1. Let T ∈ L(X) be an operator with finite descent d := d(T),
then there exists δ > 0 such that for every 0 < |λ| < δ:

(i) d(T − λ) = 0;
(ii) dim N(T − λ) = dim(N(T) ∩ R(Td)).

Proof. Let To be the restriction of T to R(Td). We define a new norm on
R(Td) by

|y| = ‖y‖+ inf{‖x‖ : x ∈ X and y = Tdx}, for all y ∈ R(Td).

It is easy to verify that R(Td) equipped with this norm is a Banach space, and
that To is a bounded surjection on (R(Td), | · |). Let δ > 0 be such that for every
0 < |λ| < δ, To − λ is surjective, it follows then that R(Td) = (T − λ)R(Td) ⊆



THE DESCENT SPECTRUM AND PERTURBATIONS 261

R(T − λ). On the other hand, observe that the following equality holds with no
restriction on T:

R(T − λ) + R(Tn) = X for all n ∈ N and λ 6= 0.

Indeed, let n > 1 and λ 6= 0, consider also the polynomials p(z) = z − λ
and q(z) = zn. Since p and q have no common divisors then there exist two
polynomials u and v such that 1 = p(z)u(z) + q(z)v(z) for all z ∈ C. Hence
I = (T − λ)u(T) + Tnv(T) and so X = R(T − λ) + R(Tn). Now, from this we
obtain that R(T − λ) = X, that is, d(T − λ) = 0, for 0 < |λ| < δ. Also, since
N(T − λ) ⊆ R(Td), we have that N(T − λ) = N(To − λ). Thus, by the continuity
of the index we get

dim(N(T) ∩ R(Td)) = dim N(To) = ind(To) = ind(To − λ) = dim N(T − λ),

for all 0 < |λ| < δ, which completes the proof.

REMARK 1.2. As consequence of Proposition 1.1 and the stability of the in-
dex, we mention that if T is a semi-Fredholm operator with finite descent then
ind(T) > 0.

COROLLARY 1.3. If T ∈ L(X), then σdesc(T) is a compact subset of σ(T).

The spectral mapping theorem holds for the descent spectrum [10]:

THEOREM 1.4. Let T ∈ L(X) and f be an analytic function on an open neigh-
bourhood of σ(T), not identically constant in any connected component of its domain,
then

(1.1) σdesc( f (T)) = f (σdesc(T)).

THEOREM 1.5. If T is a bounded operator on X, then

(1.2) ρdesc(T) ∩ ∂σ(T) = {λ ∈ C : λ is a pole of the resolvent of T}.

Moreover, the following assertions are equivalent:
(i) σdesc(T) = ∅;

(ii) ∂σ(T) ⊆ ρdesc(T);
(iii) T is algebraic.

Proof. By Theorem 10.1 of [13], the poles of the resolvent of T are contained
in ρdesc(T) ∩ ∂σ(T). For the other inclusion, suppose λ ∈ ρdesc(T) ∩ ∂σ(T), then
by Proposition 1.1, there exists a deleted connected neighbourhood Ω of λ such
that T − µ is surjective and dim N(T − µ) = dim(N(T − λ) ∩ R(T − λ)d), where
d = d(T) and µ ∈ Ω. But since λ ∈ ∂σ(T), Ω \ σ(T) is non-empty, and hence
it follows that N(T − λ) ∩ R(T − λ)d = {0}, which implies that N(T − λ)d =
N(T − λ)d+1. Now, the ascent and the descent of T − λ are finite, so that by
Theorem 10.2 of [13], λ is a pole of the resolvent of T.

(i) ⇒ (ii). Obvious.
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(ii) ⇒ (iii). Suppose that ∂σ(T) ⊆ ρdesc(T), then by the first assertion, ∂σ(T)
is the set of the poles of the resolvent of T. Consequently, σ(T) = ∂σ(T) is a finite
set of complex numbers {λi}n

1 , and (cf. Theorem 10.2 of [13])

(1.3) X = R(T − λi)
di ⊕N(T − λi)

di for some integer di > 1.

Consider the complex polynomial p(λ) =
n
∏
i=1

(λ − λi)di , we claim that p(T) =

0. Let To denote the restriction of T to the closed subspace M := R(p(T)) =
n⋂

i=1
R(T − λi)di , evidently σ(To) ⊆ σ(T). Moreover, for each i,

(1.4) N(To − λi) = N(T − λi) ∩ M ⊆ N(T − λi)
di ∩ R(T − λi)

di = {0},

and since T − λi has finite descent, we have also

(To − λi)M = (T − λi)
n

∏
j=1

(T − λj)
dj X =

[ n

∏
j=1,j 6=i

(T − λj)
dj

]
(T − λi)

di+1X

=
[ n

∏
j=1,j 6=i

(T − λj)
dj

]
(T − λi)

di X =
n

∏
j=1

(T − λj)
dj X = M.

Therefore To − λi is invertible, for 1 6 i 6 n. This implies that σ(To) is empty,
hence M = {0} and T is algebraic.

(iii) ⇒ (i). Suppose that T is algebraic and let p(λ) =
n

∏
i=1

(λ − λi)
αi be the

minimal complex polynomial such that p(T) = 0. By the spectral mapping theo-
rem, it follows that σ(T) = {λ1, λ2, . . . , λn}. On the other hand, we have

X =
n⊕

i=1

N(T − λi)
αi ,(1.5)

N(T − λi)
αi ⊆ R(T − λj) if i 6= j.(1.6)

Therefore, for every 1 6 i 6 n,

R(T − λi)
αi = (T − λi)

αi
( ⊕

16j6n

N(T − λi)
αi

)
= (T − λi)

αi
( ⊕

16j6n,j 6=i

N(T − λj)
αj

)
⊆ (T − λi)

αi )(R(T − λi)) = R(T − λi)
αi+1.

Consequently, T − λi has finite descent for all 1 6 i 6 n. Thus σdesc(T) = ∅, and
this completes the proof.

COROLLARY 1.6. If T is a bounded operator on X, then we have

(1.7) ∂σ(T) ⊆ σdesc(T) ∪ {the poles of the resolvent of T}.

THEOREM 1.7. If T ∈ L(X) and Ω is a connected component of ρdesc(T), then

(1.8) Ω ⊂ σ(T) or Ω \ E ⊆ ρ(T),

where E = {λ ∈ Ω : λ is a pole of the resolvent of T}.
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Proof. Let Ωr = {λ ∈ Ω : d(T−λ) = 0} and Ωs = {λ ∈ Ω : 0 < d(T−λ) <

∞}, then we have Ω = Ωr ∪Ωs, and by Proposition 1.1, Ωs is at most countable.
Therefore Ωr is connected, and if Ω ∩ ρ(T) is non-empty then so is Ωr ∩ ρ(T),
hence the continuity of the index ensures that ind(T − λ) = 0 for all λ ∈ Ωr.
But for λ ∈ Ωr, T − λ is surjective, so it follows that T − λ is invertible. Thus
Ωr ⊆ ρ(T). Consequently Ωs is a set of isolated points in σ(T) of finite descent,
so

Ωs ⊆ ρdesc(T) ∩ ∂σ(T) = {λ ∈ C : pole of the resolvent of T}.

Finally, if we put E = Ωs, then E = {λ ∈ Ω : poles of the resolvent of T} and
Ω \ E ⊆ ρ(T), as desired.

COROLLARY 1.8. If T ∈ L(X), then σdesc(T) is at most countable if an only if
σ(T) is at most countable.

In this case we have σ(T) = σdesc(T) ∪ {the poles of the resolvent of T}.

Proof. Suppose that σdesc(T) is at most countable, then ρdesc(T) is connected,
and since ρ(T) ⊆ ρdesc(T), the previous theorem implies that ρdesc(T) \ E ⊆ ρ(T)
where E is the set of the poles of the resolvent of T. Therefore σ(T) = σdesc(T)∪ E
is at most countable, which completes the proof.

We recall that an operator R ∈ L(X) is said to be Riesz if R− λ is Fredholm
for every non-zero complex number λ.

Notice that in general, the fact that the descent spectrum of an operator T is
finite does not ensure that σ(T) is finite. Indeed if we consider any Riesz operator
T with infinite spectrum, then every non-zero complex number of σ(T) is a pole
of the resolvent of T (see [13]), that is, σdesc(T) = {0}.

An operator T ∈ L(X) is called meromorphic if the non-zero points of its
spectrum are poles of the resolvent of T. It is a classical fact that every compact,
or more generally, Riesz operator is meromorphic.

COROLLARY 1.9. If T is a bounded operator on X, then

(1.9) T is meromorphic ⇔ σdesc(T) ⊆ {0}.

For T ∈ L(X), let LT : L(X) → L(X) denote the corresponding multipli-
cation operator given by LT(S) := TS. If d(LT) is finite then so is d(T). Indeed,
suppose that TdL(X) = Td+1L(X) for some integer d, then there exists S ∈ L(X)
such that Td = Td+1S, and hence we obtain R(Td) ⊆ R(Td+1). Thus T has finite
descent.

COROLLARY 1.10. Let X be a Banach space, the following assertions are equiva-
lent:

(i) X is finite-dimensional;
(ii) d(LT) is finite for all T ∈ L(X);

(iii) d(T) is finite for all T ∈ L(X);
(iv) σdesc(T) = ∅ for all T ∈ L(X);
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(v) L(X) is algebraic.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are obvious. Also by Theo-
rem 1.5, we get that (iv) entails (v). For (iv) ⇒ (i), we use Theorem 5.4.2 of [1].

2. DESCENT IN BANACH ALGEBRAS

Throughout this section, A will denote a complex Banach algebra with unit
and Rad(A) its (Jacobson) radical. For every a ∈ A, the left multiplication op-
erator La is given by La(x) = ax for all x ∈ A. By definition the descent of
an element a ∈ A is d(a) := d(La), and the descent spectrum of a is the set
σdesc(a) := {λ ∈ C : d(a− λ) = ∞}.

REMARK 2.1. (i) An element a ∈ A has finite descent if and only if there
exists a positive integer n such that a is right-invertible modulo N(Ln

a ). Indeed,
n := d(a) finite means precisely that anA = an+1A, that is, there exists b ∈ A for
which an = an+1b, i.e, there exists b ∈ A such that 1− ab ∈ N(Ln

a ).
(ii) Rad(A) ∩ {a ∈ A : d(a) is finite } ⊆ N (A), where N (A) is the set of

nilpotent elements of A. In fact, if a ∈ Rad(A) and n := d(a) is finite, then there
exists b ∈ A such that an(1− ab) = 0, and since 1− ab is invertible, we get that a
is nilpotent.

THEOREM 2.2. Let A be a Banach algebra. The following assertions are equiva-
lent :

(i) dim(A/RadA) is finite and RadA is a nil ideal (i.e. RadA ⊆ N (A));
(ii) d(a) is finite for every a ∈ A;

(iii) σdesc(a) = ∅ for every a ∈ A;
(iv) σdesc(a) = ∅ for every a in a non-empty open subset U of A;
(v) A is algebraic.

Proof. (i) ⇒ (ii). If a ∈ A, and since A/RadA is a finite-dimensional algebra,
there exists a non-zero complex polynomial p such that p(a + RadA) = 0. It
follows then that p(a) belongs to the nil ideal RadA, and hence p(a)n = 0 for
some positive integer n, which proves that a is algebraic.

The implications (ii) ⇒ (iii) ⇒ (iv) and the equivalence (v) ⇔ (iii) are obvi-
ous.

(iv) ⇒ (i). Since for a ∈ U, σdesc(La) = σdesc(a) = ∅, Theorem 1.5 implies
that there exists a non-zero complex polynomial p for which p(La) = 0, that is,
p(a) = 0. Therefore by Theorem 5.4.2 of [1], dimA/RadA is finite. Moreover, if
b ∈ RadA, then b is quasi-nilpotent and algebraic, and hence nilpotent.

REMARK 2.3. Note that if RadA is finite-dimensional, the above assertions
(i)–(v) are equivalent to A being finite-dimensional.
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We mention that in the setting of Hilbert space, the descent of T as element
in the Banach algebra L(H), is finite if and only if the descent of T is finite. In
fact, if d := d(T) < ∞ then R(Td) = R(Td+1), and therefore there exists S ∈ L(H)
such that Td = Td+1S [4]. Consequently, d(LT) is finite.

For a Banach algebraA, one can define the descent of an element a ∈ A to be
the descent of the right multiplication operator Ra given by Ra(x) = xa, evidently
Theorem 2.2 holds also for this definition. However, we note that for T ∈ L(X),
there is no relation that lies the descent of T as an operator and the descent of T
as element of the algebra L(X). In fact, if we consider the unilateral right shift
operator T defined on the Hilbert space `2(N) by T(x1, x2, . . .) = (0, x1, . . .), then
d(RT) = d(LT∗ ) = d(T∗) = 0 and d(T) = ∞.

Let K(H) denote the ideal of compact operators on H and π the canonical
surjection from L(H) to the Calkin algebra C(H) := L(H)/K(H). For T ∈ L(H),
d(T) is finite implies that d(π(T)) is finite. Indeed, there exists S ∈ L(H) such
that Td = Td+1S where d = d(T). Hence π(T)d = π(T)d+1π(S) and so d(π(T)) is
finite. Now if we define the essential descent spectrum of T ∈ L(H) by σe

desc(T) :=
σdesc(π(T)), then it follows that σe

desc(T) = σe
desc(T + K) ⊆ σdesc(T + K) for every

K ∈ K(X), and consequently

σe
desc(T) ⊆

⋂
K∈K(X)

σdesc(T + K).

Natural questions can be asked:
1. Is the above inclusion an equality ?
2. Does there exist a compact operator K such that σe

desc(T) = σdesc(T + K)?
In the general context, the answers to these questions are negatives. Con-

sider the unilateral right shift operator T. Because T + K − λ is a Fredholm op-
erator with non positive index, for every |λ| < 1 and every compact K, then it
follows that σdesc(T + K) contains the closed unit disk. However, for |λ| < 1,
π(T − λ) is invertible, and therefore σe

desc(T) is contained in the unit circle.

Question 1. Let T ∈ L(X) and denote by ρ−SF(T) the set of complex numbers
λ for which T − λ is semi-Fredholm of non positive index. Does it follow that

(2.1) σe
desc(T) ∪ ρ−SF(T) =

⋂
K∈K(X)

σdesc(T + K) ?

3. THE DESCENT SPECTRUM AND PERTURBATIONS

In Theorem 2.2 of [5] it was shown by M. Kaashoek and D. Lay that if F is a
bounded operator on X for which there exists a positive integer n such that Fn is
of finite rank, then

(3.1) σdesc(T + F) = σdesc(T) for every operator T ∈ L(X) commuting with F.
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In the same paper, they have conjectured that such operator F can be character-
ized by (4.1). The following theorem gives a positive answer to this question.

THEOREM 3.1. If F ∈ L(X), then the following assertions are equivalent:
(i) σdesc(T + F) = σdesc(T) for every T ∈ L(X) such that TF = FT;

(ii) there exists n ∈ N for which Fn is of finite rank.

Before giving the proof of this theorem, we establish some preliminary re-
sults.

LEMMA 3.2. Let N ∈ L(X) be an infinite-rank operator such that N2 = 0, then
there exists a compact operator K ∈ L(X) such that NK is non-algebraic.

Proof. Let x1 be such that Nx1 6= 0 then {x1, Nx1} is linearly indepen-
dent. Write X = Vect{x1, Nx1} ⊕ X1 and let f1 be the linear form given by
f1(x1) = f1(Nx1) = 1 and f1 = 0 on X1. Because N is of infinite rank, we can
choose x2 ∈ X1 such that Nx2 is non-zero and belongs to X1. Analogously, we
decompose X1 = Vect{x2, Nx2} ⊕ X2, and we define f2 by f2(x2) = f2(Nx2) = 1
and f2 = 0 on Vect{x1, Nx1} ⊕X2. By repeating the same argument, we construct
a countable sets of vectors {x1, x2, . . .} and continuous linear forms { f1, f2, . . .}
such that {xn, Nxn : n > 1} consists of linearly independent vectors and fi(xj) =
fi(Nxj) = δij. Now, consider the compact operator K := ∑ αixi ⊗ fi where αi are a

distinct complex numbers for which
+∞
∑

i=1
|αi|‖xi‖‖ fi‖ is finite. It follows then that

NK = ∑ αi Nxi ⊗ fi is compact and σ(NK) = {0} ∪ {αn : n > 1}. In particular NK
is non-algebraic.

Let N be a nilpotent operator and n be a positive integer such that Nn = 0,

then for every X ∈ L(X), the operator S :=
n
∑

i=1
Ni−1XNn−i commutes with N;

see [2].

PROPOSITION 3.3. The commutant of every bounded operator on an infinite-
dimensional complex Banach space contains a non-algebraic operator.

Proof. Without loss of generality we may suppose that T is algebraic. Let
σ(T) := {λ1, λ2, . . . , λn} then we can decompose X as follows

(3.2) X = X1 ⊕ X2 ⊕ · · · ⊕ Xn

where the subspaces Xi are invariant by T and the restriction of T − λi to Xi
is nilpotent. Since X has infinite dimension, there exists i such that dim Xi is
infinite. Therefore, it suffices to prove that every nilpotent operator on an infinite-
dimensional Banach space contains a non-algebraic operator in its commutant.

Suppose that T is nilpotent and let n > 2 for which Tn = 0 and Tn−1 6=
0. If Tn−1 is of infinite rank, then by Lemma 3.2 there exists a compact oper-

ator K ∈ L(X) such that Tn−1K is non-algebraic. Let R :=
n−1
∑

i=1
Ti−1KTn−i and
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S := R + Tn−1K then TS = ST. Moreover, because Tn−1K, S are compact and
RTn−1K = 0, we get that σ(Tn−1K) ⊆ σ(S). Consequently S is non-algebraic.
Now, suppose that R(Tn−1) has finite dimension, and consider an arbitrary asso-
ciated basis {Tn−1x1, Tn−1x2, . . . , Tn−1xk}. We show easily that {Tpxj : 0 6 p 6
n− 1 and 1 6 j 6 k} consists of linearly independent vectors. Hence, there exists
a finite family of continuous linear forms { f j}k

j=1 such that

(3.3) f j(Tn−1xj) = 1 and f j(Tpxr) = 0 if r 6= j or (r = j and p 6= n− 1).

If we let V :=
k
∑

j=1

n
∑

p=1
Tp−1(xj ⊗ f j)Tn−p, then it follows that V is a finite-rank

projection commuting with T and R(Tn−1) ⊆ R(V), consequently Tn−1
|N(V) = 0.

By repeating successively the same argument, we obtain that X = Y⊕ Z where Y
and Z are T-invariant, dim Y is finite, Th

|Z = 0 and R(Th−1
|Z ) is of infinite dimension

for some h > 1. If h > 1 then the above argument provides a non-algebraic
operator S on Z that commutes with T|Z. Consequently, 0 ⊕ S is non-algebraic
and commutes with T. To complete the proof, we may suppose h = 1, that is,
T|Z = 0 and T has finite-rank. Consider an arbitrary non-algebraic operator S on
Z, then we have that 0⊕ S is non-algebraic and commutes with T.

Proof of Theorem 3.1. (ii) ⇒ (i). See [5].
(i) ⇒ (ii). By taking T = 0 we obtain that σdesc(F) is empty, and hence F is

algebraic. Therefore

(3.4) X = X1 ⊕ X2 ⊕ · · · ⊕ Xn

where σ(F) = {λ1, λ2, . . . , λn} and the restriction of F − λi to Xi is nilpotent for
every 1 6 i 6 n. We claim that if λi 6= 0, dim Xi is finite. Suppose to the contrary
that λi 6= 0 and Xi is infinite dimensional. By Proposition 3.3, there exists a non-
algebraic operator Si on Xi commuting with the restriction Fi of F to this space.
Let S denote the extension of Si to X given by S = 0 on each Xj such that j 6= i,
obviously SF = FS and so σdesc(S + F) = σdesc(S) by hypothesis. On the other
hand, since σdesc(S) = σdesc(Si) and σdesc(S + F) = σdesc(Si + Fi), we obtain that
σdesc(Si) = σdesc(Si + Fi) = σdesc(Si + λi) because Fi − λi is nilpotent. Choose an
arbitrary complex number α ∈ σdesc(S) 6= ∅, it follows that kλi + α ∈ σdesc(S) for
every positive integer k, which implies that λi = 0, the desired contradiction.

We shall denote by A(X) the set of algebraic operators on X, and by {T}′
the commutant of T ∈ L(X). The following corollary follows immediately from
Proposition 3.3.

COROLLARY 3.4. If X is a complex Banach space, then the following assertions
are equivalent:

(i) X is finite-dimensional;
(ii) {T}′ ⊆ A(X) for every T ∈ L(X);

(iii) there exists T ∈ L(X) such that {T}′ ⊆ A(X);
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(iv) there exists a nilpotent operator N ∈ L(X) such that {N}′ ⊆ A(X).

REMARK 3.5. Notice that in the case when

(3.5) dim X < ∞ ⇔ {T}′ ⊆ A(X) for every T ∈ L(X),

we have dim X = Sup{doP : P ∈ PT} where PT denotes the set of complex poly-
nomials P for which there exists S ∈ {T}′ such that P is the minimal polynomial
satisfying P(S) = 0. Indeed it follows from the simple fact that for every nilpo-
tent operator N on a finite-dimensional space Y there exists an operator S ∈ {N}′
and a minimal complex polynomial P of degree dim Y such that P(S) = 0.

Corollary 3.4 suggests the following question:

Question 2. Let A be a complex semi-simple Banach algebras. Does we
have an equivalence between the following assertions:

(i) A is finite-dimensional;
(ii) there exists a ∈ A such that its commutant is formed by algebraic elements.

The descent spectrum does not remain invariant under arbitrary finite-rank
perturbation, (cf. [10]). However, for algebraic operators we have:

PROPOSITION 3.6. Let T ∈ L(X) be algebraic and F be a finite-rank operator,
then T + F is algebraic.

Proof. Let p(z) =
n
∑

k=0
αkzk be a non-zero complex polynomial such that

p(T) = 0. Then we have

(3.6) p(T + F) = p(T + F)− p(T) =
n

∑
k=0

αk[(T + F)k − Tk].

Moreover, it is easy to verify that for each k, (T + F)k − Tk has finite rank. There-
fore, p(T + F) has finite rank. Thus p(T + F) is algebraic, and hence so is T + F.

Let T be a bounded operator on X. According to Kaashoek and Lay [5],
σdesc(T) is stable under commuting finite-rank perturbations. We also notice that
the semi-Fredholm spectrum of T, the set σSF(T) of complex numbers λ such that
T − λ is not semi-Fredholm, is stable under the same perturbations (see [3]).
V. Rakočević showed more in [12] that the union of the descent and the semi-
Fredholm spectrum, σd

SF(T) := σSF(T) ∪ σdesc(T), is the largest subset of the sur-
jective spectrum remaining invariant under any commuting compact perturba-
tion (or more generally, commuting Riesz perturbation).

For an operator T, we denote by Π(T) the set of all isolated points λ of
σsu(T) for which T − λ is semi-Fredholm.

PROPOSITION 3.7. Let T be a bounded operator on X, we have

(3.7) σd
SF(T) = σsu(T) \Π(T).
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Proof. From the proof of Proposition 2.1, we conclude that if λ /∈ σd
SF(T) then

either T−λ is surjective or λ is an isolated point of the surjective spectrum, which
establish σsu(T) \ Π(T) ⊆ σd

SF(T). For the other inclusion, let λ ∈ Π(T), then
T − λ is semi-Fredholm, and by the Kato decomposition (cf. [6]), there exist two
closed T-invariant subspaces X1, X2 such that X = X1 ⊕ X2, T|X1

− λ is nilpotent
and T|X2

− λ is semi-regular (i.e, R(T) is closed and N(Tn) ⊆ R(T) for all integers
n ∈ N, see [9], [11]). Now, because λ is an isolated point in σsu(T), there exists
δ > 0 such that for every 0 < |µ − λ| < δ, T − µ is surjective. Therefore, for
0 < |µ− λ| < δ, T|X2

− µ is surjective, and hence so is T|X2
− λ [9]. Finally, since

T1 − λ is nilpotent, we obtain that T − λ has finite descent, which completes the
proof.

We denote by F (X) the set of all finite-rank operators, and by Pf the set of
all projections with finite-dimensional null space. The restriction of an operator
T ∈ L(X) to the range of Q, where Q ∈ Pf and TQ = QT, is denoted by TQ.

PROPOSITION 3.8. If T ∈ L(X), then the following assertions are equivalent:
(i) there exists Q ∈ Pf such that TQ = QT and σd

SF(T) = σsu(TQ);
(ii) there exists F ∈ F (X) such that TF = FT and σd

SF(T) = σsu(T + F);
(iii) Π(T) is finite.

Proof. (i) ⇒ (ii). Let Q ∈ Pf be such that QT = TQ, N(Q) is finite-
dimensional and σd

SF(T) = σsu(TQ). In particular σsu(T|N(Q)) is a finite set {λi}n
i=1

and N(Q) = N1 ⊕ N2 ⊕ · · · ⊕ Nn where Ni is invariant by T and σ(T|Ni
) =

{λi}. Now for each 1 6 i 6 n, let αi be a complex number such that λi − αi ∈
σsu(T|R(Q)). Consider the finite-rank operator defined by F|Ni

= αi I|Ni
, 1 6 i 6 n,

and F|R(Q) = 0. Then it is clear that FT = TF and

σsu(T + F) = {λi − αi}n
i=1 ∪ σsu(T|R(Q)) = σsu(T|R(Q)) = σd

SF(T).

(ii) ⇒ (iii). Let F be a finite-rank operator commuting with T and for which
σd

SF(T) = σsu(T + F). Because the spectrum of F is finite, the spectral decompo-
sition provides two closed subspaces Y1, Y2 invariant by T and F for which X =
Y1 ⊕Y2, σ(F|Y1

) = {0} and F|Y2
is invertible. Since F|Y2

is a finite-rank operator, Y2
is finite-dimensional. We claim that Π(T) is contained in the finite set σ(T|Y2

). As-
sume to the contrary that there exists λ ∈ Π(T) \ σ(T|Y2

); then, in particular T− λ

is not surjective. Moreover, because Π(T) ∩ σsu(T + F) = Π(T) ∩ σd
SF(T) = ∅,

T + F − λ is surjective and hence so is (T + F)|Y1
− λ. But, F|Y1

is quasi-nilpotent,
so we see that T|Y1

− λ is surjective. Finally, T|Y2
− λ is invertible, therefore T − λ

is surjective, the desired contradiction.
(iii) ⇒ (i). Suppose that Π(T) = {λ1, λ2, . . . , λn}. As in the proof of the

previous proposition, we have the following decomposition X = X1 ⊕ Z1, where
dim X1 is finite, T|X1

− λ1 is nilpotent and T|Z1
− λ1 is surjective; consequently

Π(T|Z1
) = {λ2, . . . , λn}. By using successively the same argument, we obtain

that X = X1 ⊕ X2 ⊕ · · · ⊕ Xn ⊕ Z, where the spaces Xi are finite-dimensional,
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invariant by T and σsu(T|Z) = σsu(T) \Π(T) = σd
SF(T). Therefore, if we let Q be

the projection on Z with respect to the above decomposition, then it follows that
QT = TQ and σsu(TQ) = σd

SF(T).

REMARK 3.9. Let T be a bounded operator on X. As mentioned above we
have

(3.8) σd
SF(T) =

⋂
R∈R(X),RT=TR

σsu(T + R),

where R(X) denote the set of Riesz operators. Also, J. Zemánek has established
in [14] that σd

SF(T) can be obtained as the intersection of all surjective spectra of
TQ, the intersection being taken over all Q ∈ Pf such that QT = TQ.

Question 3. Given T ∈ L(X), does exist a Riesz operator R such that TR = RT
and σd

SF(T) = σsu(T + R) ?
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