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ABSTRACT. We generalize the Cayley transform to tuples of unbounded op-
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INTRODUCTION

The Cayley transform, a 7→ (a + i)(a− i)−1, introduced by von Neumann in
[13] induces a one-to-one correspondence between the self-adjoint operators and
the unitary operators such that 1 is not in the point spectrum. More generally,
one can consider any automorphism of Ĉ and apply it to an arbitrary closed op-
erator provided that the point mapped to infinity is outside the point spectrum
of the operator. In case this point is outside all of the spectrum then the image
is a bounded operator. In this way we get an intrinsic object with spectrum in
CP1 which for any choice of point at infinity, outside the point spectrum, and
any linear coordinate gives rise to a closed operator. One possible generalization
to higher dimensions, i.e., to tuples of operators, is to take the Cayley transform
of each of the operators. This is possible if all the operators have nonempty re-
solvent sets, and if the operators commute in the strong sense we obtain a tuple
of bounded commuting operators in this way. Vasilescu used this technique in
[11] to prove spectral theorems for unbounded self-adjoint operators. In a more
general setting this has recently been studied by Andersson and Sjöstrand in [2].
There is also a notion of Quaternionic Cayley transform introduced in [12] but we
will not consider it here.
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In this paper we are concerned with another generalization of the Cayley
transform. We characterize the n-tuples of closed unbounded operators which
by a projective transformation of CPn can be mapped to tuples of bounded com-
muting operators. This is what we will call a multidimensional Cayley transform.
One point to be made is that these tuples of unbounded operators may consist
of operators with empty resolvent sets. The characterization is in terms of an
algebraic relation linking the operators together and a commutation condition
stronger but similar to the notion of permutability described in [5]. Tuples of
closed unbounded operators satisfying these conditions will be called affine oper-
ators. We define a Taylor spectrum for the affine operators and we show that the
spectral mapping property holds. In case all the operators making up the affine
operator have resolvents we can also consider the tuple of one-dimensional Cay-
ley transforms as mentioned above. This tuple has a well defined Taylor spec-
trum and as in e.g. [11] and [2] we can define a joint spectrum for the original
tuple by claiming that the spectral mapping property should hold. We show that
the spectrum we define is contained in this spectrum and that we have equality
in the case of pairs of operators. To carry out our idea we introduce projective
operators, an intrinsic object in CPn with an invariant spectrum and admitting an
analytic functional calculus. From the abstract point of view a projective oper-
ator is an OCPn -module as described in [4]; see also Section 6. More concretely,
we realize projective operators as certain equivalence classes of n + 1-tuples of
bounded commuting operators. The spectrum for the projective operator can be
described from the Taylor spectrum for a representative and via integral formulas
inspired by [1] we can also describe the module structure from a representative
of the equivalence class. In this paper we will only consider projective operators
having a spectrum avoiding some hyperplane in CPn. In an affinization where
we take such a hyperplane to be the hyperplane at infinity the projective oper-
ator corresponds to a tuple of bounded commuting operators and the module
structure is Taylor’s functional calculus.

The disposition of the paper is as follows.
In Section 1 we briefly review Taylor’s functional calculus and we state the

basic facts about one-dimensional Cayley transforms.
In Section 2 we define projective operators and study their fundamental

properties.
In Section 3 we study the behavior of projective operators under various

projections from CPn to Cn and we define affine operators.
In Section 4 we define a Taylor spectrum for affine operators and relate it to

some other existing definitions.
In Section 5 we summarize our results and interpret them on the affine level.

In Section 6 we provide an integral representation for the analytic functional cal-
culus obtained in Section 2.
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1. PRELIMINARIES

If a is an operator on some space X then D(a) is the domain of definition
for a and R(a) is the range, i.e., the set of all ax such that x ∈ D(a). The set of
x ∈ D(a) such that ax = 0, the nullspace of a, is denoted N (a). If also b is an
operator on X then a ⊆ b means that the graph of a is included in the graph of b in
X×X. In particular a = b means that a and b have the same domain of definition.

1.1. TAYLOR’S FUNCTIONAL CALCULUS. Let X be a Banach space, L(X) the al-
gebra of bounded operators on X and E an n-dimensional complex vector space
with a non-sense basis {e1, . . . , en}. We write ΛkX for the tensor product X⊗ΛkE
of X and the kth exterior product of E. Let b = (b1, . . . , bn) be an n-tuple of

bounded commuting operators on X. On ΛX =
n⊕
0

ΛkX we have the natural op-

eration of interior multiplication with the operator-valued co-vector
n
∑
1
(zj − bj)e∗j .

We denote this operation δz−b. Since b is commuting δz−b ◦ δz−b = 0 and so we
have the Koszul complex

(1.1) 0←− Λ0X
δz−b←− Λ1X

δz−b←− · · ·
δz−b←− ΛnX ←− 0,

or K•(δz−b, Λ•X) for short. The joint Taylor spectrum σ(b) for b is defined as the
complement in Cn of the set of points z such that K•(δz−b, Λ•X) is exact, [8]. Tay-
lor’s fundamental result in [8] and [9] is that the natural algebra homomorphism
O(Cn) → L(X) given by ∑

α
cαzα 7→ ∑

α
cαbα extends to an algebra homomorphism

O(σ(b)) → L(X).

THEOREM 1.1 (Taylor, 1970). There is an extension of the natural continuous
algebra homomorphism O(Cn) → L(X) to a continuous algebra homomorphism

f 7→ f (b) : O(U) → L(X)

for all open sets U such that σ(b) ⊆ U. If f = ( f1, . . . , fm) ∈ O(U, Cm), then
f (σ(b)) = σ( f (b)), where f (b) = ( f1(b), . . . , fn(b)).

The statement f (σ(b)) = σ( f (b)) will be referred to as the Spectral Mapping
Theorem.

1.2. THE ONE-DIMENSIONAL CAYLEY TRANSFORM. Let X be a Banach space and
let C (X) be the set of closed, but not necessarily densely defined operators on X.
For any linear operator a on X the spectrum of a, σ(a), is the complement in C of
the set of points λ such that λ − a is a bijection D(a) → X. The point spectrum,
σp(a) ⊆ σ(a), is the set of λ ∈ C such that λ − a is not injective. For a ∈ C (X)
we have by the Closed Graph Theorem that λ /∈ σ(a) if and only if λ − a has a
bounded inverse. We let Ĉ denote the extended complex plane C ∪ {∞} and we
define the extended spectrum σ̂(a) as σ(a) if a is bounded and σ(a) ∪ {∞} if a is
not bounded.
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Let φ be a projective, or Möbius transformation of Ĉ. We claim that φ(a)
has meaning as an element in C (X) if φ−1(∞) /∈ σp(a). Given the projective
transformation φ we let Mφ ∈ GL(2, C) be the corresponding 2 × 2-matrix. If
Mφ = {mj,k}16j,k62 and φ−1(∞) /∈ σp(a) we may put

(1.2) φ(a) = (m1,1a + m1,2)(m2,1a + m2,2)−1.

The matrix Mφ acts naturally as a homeomorphism of X×X and it is straight for-
ward to verify that MφGraph(a) = Graph(φ(a)) and hence φ(a) is closed if a is.
Moreover, it is not hard to see that φ(a) is bounded if and only if φ−1(∞) /∈ σ̂(a).
We conclude that the closed operators on X which can be Cayley transformed to
bounded operators are precisely those with a non-empty resolvent set. The spec-
tral mapping property holds for these mappings, that is, for any closed operator
a on X and projective transformation φ of Ĉ such that φ−1(∞) /∈ σ̂p(a) it holds
that φ(σ̂(a)) = σ̂(φ(a)). For a more thorough treatment of the one-dimensional
Cayley transform, see [11] and [7].

The preceding discussion suggests that the closed operator a defines some
invariant object on CP1 = Ĉ if ∞ /∈ σp(a). In the canonical affine part of Ĉ this
object becomes the operator a and in some other affine part, corresponding to a
Möbius transformation φ of the canonical one, it becomes φ(a) and has spectrum
φ(σ̂(a)).

2. PROJECTIVE OPERATORS AND ANALYTIC FUNCTIONAL CALCULUS

In analogy with the construction of projective space we consider an equiv-
alence relation on a subset of the n + 1-tuples of bounded commuting operators
on a Banach space and define a projective operator as an equivalence class. We will
see that a projective operator has a well defined invariant Taylor spectrum in CPn

and that it admits an analytic functional calculus.

DEFINITION 2.1. Let b=(b0, . . . , bn) and b̃=(b̃0, . . . , b̃n) be tuples of bounded
commuting operators on a Banach space X. We define b ∼ b̃ if there are finitely
many bounded commuting tuples bj, j = 1, . . . , m, such that b1 = b and bm = b̃
and for j = 1, . . . , m − 1 we have bj+1 = cjbj for some invertible cj ∈ (bj)′; the
commutant of bj.

LEMMA 2.2. The relation ∼ of Definition 2.1 is an equivalence relation.

Proof. We note that the relation R on bounded commuting n + 1-tuples de-
fined by bRb̃ if b̃ = cb for some invertible c ∈ (b)′ is reflexive and symmetric.
Reflexivity is obvious since e ∈ (b)′. It is symmetric because if b̃ = cb for some
invertible c ∈ (b)′ then b = c−1b̃ and letting b̃ = (b̃0, . . . , b̃n) and b = (b0, . . . , bn)
we see that

c−1b̃j = c−1cbj = bj = bjcc−1 = cbjc−1 = b̃jc−1,
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so c−1 ∈ (b̃)′. The relation ∼ is defined as the transitive closure of R so it is by
definition transitive and it inherits reflexivity and symmetry from R.

REMARK 2.3. We will see later on, Remark 3.6, that for the tuples we will
be interested in there is a simpler description of the relation ∼. For these tuples it
will also turn out, see Remark 3.5, that even though ∼ is defined as the transitive
closure of R, any two representatives for an equivalence class are not more than
two steps from each other.

We denote the equivalence class containing b by [b] and we let π denote the
canonical mapping Cn+1 → CPn.

PROPOSITION 2.4. Let b = (b0, . . . , bn) be a commuting tuple of bounded opera-
tors on X and let c ∈ (b)′ be invertible. If 0 /∈ σ(b) then 0 /∈ σ(cb) and

πσ(b0, . . . , bn) = πσ(cb0, . . . , cbn).

Proof. Define ψ and φ : Cn+2 → Cn+1 by

ψ(z, z0, . . . , zn) = (zz0, . . . , zzn),

φ(z, z0, . . . , zn) = (z0, . . . , zn),

respectively. The hyperplane in Cn+2 orthogonal to the vector (1, 0, . . . , 0) does
not intersect σ(c, b0, . . . , bn) since c is invertible and we have

(2.1) σ(c, b0, . . . , bn) ⊆ σ(c)× σ(b0, . . . , bn)

according to [8]. Moreover from (2.1) and the assumption that 0 /∈ σ(b) we see
that σ(c, b0, . . . , bn) also avoids the coordinate axis (z, 0, . . . , 0). Hence we may
take a neighborhood U of σ(c, b0, . . . , bn) such that U does not intersect neither the
hyperplane orthogonal to (1, 0, . . . , 0) nor the coordinate axis (z, 0, . . . , 0). Then
the images V1 and V2 of U under ψ and φ respectively do not contain the origin
and so the diagram

(2.2) U
ψ //

φ

��

V1

π

��
V2 π

// CPn

must commute. By the Spectral Mapping Theorem

σ(b0, . . . , bn) = σ φ(c, b0, . . . , bn) = φ σ(c, b0, . . . , bn),

σ(cb0, . . . , cbn) = σ ψ(c, b0, . . . , bn) = ψ σ(c, b0, . . . , bn),

and since the diagram (2.2) commutes we conclude that π σ(cb0, . . . , cbn)
= π σ(b0, . . . , bn).

It follows immediately from this proposition that we have
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COROLLARY 2.5. Let b ∼ b̃ and assume 0 /∈ σ(b). Then 0 /∈ σ(b̃) and πσ(b) =
πσ(b̃).

Hence if 0 /∈ σ(b) then 0 /∈ σ(b̃) for any b̃ ∈ [b] and πσ(b) = πσ(b̃) and so
we can make the following definitions.

DEFINITION 2.6. Let b be a commuting tuple of bounded operators on a
Banach space X such that 0 /∈ σ(b). We define the projective operator [b] as the
equivalence class containing b.

DEFINITION 2.7. Let [b] be a projective operator. The spectrum, σ[b] ⊆ CPn

of the projective operator [b] is defined by

σ[b] = πσ(b).

We now construct the analytic functional calculus for the projective opera-
tors. The main theorem of this section is the following.

THEOREM 2.8. If [b] is a projective operator, then there is a unique O(σ[b])-
module structure on X given by

O(σ[b])× X → X, ( f , x) 7→ f ([b])x

and if f = ( f1, . . . , fm) ∈ O(σ[b], Cm) then σ( f ([b])) = f (σ[b]) where f ([b]) =
( f1([b]), . . . , fm([b])).

Proof. We construct the module-structure as follows. Given some f∈O(σ[b])
we consider the canonical lift f̃ of f to Cn+1. Then f̃ is holomorphic in a neighbor-
hood of σ(b) for any representative b ∈ [b] and f̃ is constant on the complex lines
through the origin (with the origin deleted). From Taylor’s analytic functional
calculus we get for each b ∈ [b] an operator f̃ (b) ∈ L(X). We will see that in fact
f̃ (b) is independent of representative b and our desired pairing O(σ[b])× X → X
will be ( f , x) 7→ f̃ (b)x where b is any representative of [b].

Let b ∈ [b] and let c ∈ (b)′ be invertible. Put b̃ = cb and let φ and ψ be the
mappings defined in Proposition 2.4. Let U1 be a neighborhood of σ(b) in which
f̃ is holomorphic and let V be a neighborhood of σ(c) such that D(0, r) ∩ V = ∅
for some 0 < r < 1. Since c is invertible 0 /∈ σ(c) and such a neighborhood
exists. Let U be the union over λ /∈ D(0, r) of λU1. Then f̃ ◦ φ and f̃ ◦ ψ are
holomorphic in V ×U. Moreover since r < 1 we have σ(b) ⊆ U and so σ(c, b) ⊆
σ(c)× σ(b) ⊆ V ×U. Now since f̃ is constant on the complex lines through the
origin we have f̃ ◦ φ |V×U= f̃ ◦ ψ |V×U and we conclude from the composition
rule that f̃ (b) = f̃ ◦ φ |V×U (c, b) = f̃ ◦ ψ |V×U (c, b) = f̃ (cb) = f̃ (b̃). It follows
inductively that f̃ (b) = f̃ (b̃) for any two representatives b and b̃ for [b]. Thus f is
well defined on [b] and we write f ([b]) for the operator f̃ (b).

To prove the spectral mapping property we proceed as follows. Since f̃ is
constant on the complex lines through the origin, f̃ (σ(b)) only depends on b ∈ [b]
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and so from Theorem 1.1 we get

f (σ[b]) = f̃ (σ(b)) = σ( f̃ (b)) = σ( f ([b])).

Uniqueness follows from the spectral mapping property. See [4].

Let M be a complex manifold and assume f : U ⊇ σ[b] → M is holomor-
phic. We obtain an O(M)-module structure M on X by

O(M)× X → X, (g, x) 7→ g ◦ f ([b])x.

In [4] Eschmeier and Putinar define the spectrum σ(M, M )⊆M of the module M
and show that the O(M)-module structure extends uniquely to an O(σ(M, M ))-
module structure on X. Moreover they show a Spectral Mapping Theorem which
in our case implies that

σ(M, M ) = f (σ[b]).

It is shown that if M = Cm we can realize the extended module structure as the
analytic functional calculus for an m-tuple of commuting bounded operators c on
X by choosing coordinates on Cm and that the spectrum of the abstract module
is precisely σ(c). The composition rule in Taylor’s functional calculus is therefore
built into the construction.

To stress the independence of coordinates in our study of projective opera-
tors we adopt an invariant notation. For a subset M of CPn we denote by M∗ the
dual complement of M, that is

M∗ = {[λ] ∈ CPn∗ : 〈z, λ〉 6= 0 ∀[z] ∈ M}.

Geometrically M∗ is the set of hyperplanes in CPn which do not intersect M. The
correspondence between hyperplanes in CPn and points in CPn∗ is the usual du-
ality correspondence. To [λ] ∈ CPn∗ we associate the hyperplane {[z] : 〈z, λ〉 =
0}. We will not make any distinction between points in CPn∗ and their corre-
sponding hyperplanes and we will freely allow ourselves to speak about “the
hyperplane [λ]” if [λ] ∈ CPn∗.

LEMMA 2.9. Let [b] be a projective operator. Then

σ[b]∗ = {[λ] ∈ CPn∗ : 〈b, λ〉 is invertible}.

Proof. Since any two representatives of [b] differ by an invertible operator
we see that the statement in the lemma only depends on [b]. For the inclusion
⊆ assume that [µ] ∈ σ[b]∗. Then from the definition we have 〈z, µ〉 6= 0 for all
[z] ∈ σ[b]. Thus the function z 7→ 1/〈z, µ〉 from Cn+1 to C is holomorphic in a
neighborhood of σ(b). Hence from the functional calculus we see that 〈b, µ〉 is
invertible.

For the other inclusion, assume that 〈b, µ〉 is invertible. We shall show that
σ(b) does not intersect the hyperplane [µ]. If µ = (1, 0, . . . , 0) we have to show
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that if b0 is invertible then σ(b) does not intersect the hyperplane orthogonal to
(1, 0, . . . , 0). But if b0 is invertible then 0 /∈ σ(b0) and since

σ(b) ⊆ σ(b0)× σ(b1, . . . , bn),

see [8], σ(b) can not intersect the hyperplane in question. For the general case let
L be an invertible linear transformation sending µ to (1, 0, . . . , 0). By the Spectral
Mapping Theorem, to show that σ(b) does not intersect µ is equivalent to show
that σ(L∗−1b) does not intersect Lµ = (1, 0, . . . , 0). But the first component in
L∗−1b is 〈L∗−1b, Lµ〉 = 〈b, µ〉which is invertible by assumption and so the lemma
follows.

REMARK 2.10. From now on we will always assume that σ[b] avoids some
hyperplane in CPn. We will do this because it will make it possible to realize
the projective operator as an ordinary n-tuple of bounded operators. Since the
objective of this paper is to construct multidimensional Cayley transforms of tu-
ples of unbounded operators into tuples of bounded operators the assumption is
natural.

If we fix some [λ̃] ∈ σ[b]∗ then the function [z] 7→ 〈z, λ̃〉/〈z, λ〉 is holomor-
phic in a neighborhood of σ[b] if also [λ] ∈ σ[b]∗. Theorem 2.8 then implies that
we get a holomorphic mapping from σ[b]∗ to the algebra generated by b for b ∈ [b]
given by [λ] 7→ 〈b, λ̃〉/〈b, λ〉. This is the Fantappiè transform of the L(X)-valued
analytic functional O(σ[b]) → L(X), f 7→ f ([b]) given by Theorem 2.8.

3. AFFINE OPERATORS

We extend the Fantappiè transform to a larger set σ[b]∗adm, called the set
of admissible hyperplanes, and get instead a C (X)-valued mapping. We will
define affine operators to be tuples of closed operators with certain commutation
properties. We will show that affine operators are precisely the tuples obtained
by projecting a projective operator from an admissible hyperplane. In order to
keep track of the various domains of definition that turn up we start with some
technical results.

In what follows we will often make implicit use of the following easily
checked fact.

PROPOSITION 3.1. Let a be any closed operator on X and let b be bounded. Then,
the operator ab with domain D(ab) = {x ∈ X : bx ∈ D(a)} is closed.

The following lemma generalizes the fact that if b and c are bounded oper-
ators and b is invertible, then bc = cb if and only if b−1c = cb−1.

LEMMA 3.2. Let b and c be bounded operators on X and assume that b is injective.
Then bc = cb if and only if cb−1 ⊆ b−1c. If this condition is fulfilled and in addition c is
invertible then actually cb−1 = b−1c.
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Proof. Assume that bc = cb and let x ∈ D(cb−1) = D(b−1). Then x = by for
some y ∈ X. Since b and c commute we get cx = cby = bcy and so we must have
cx ∈ D(b−1). Hence, D(cb−1) ⊆ D(b−1c) and

cb−1x = cb−1by = cy = b−1bcy = b−1cby = b−1cx.

It follows that cb−1 ⊆ b−1c. Conversely assume cb−1 ⊆ b−1c. Then if x ∈ D(b−1)
we have cx ∈ D(b−1) and so b−1cb ∈ L(X). By assumption b−1cb ⊇ cb−1b = c
and because c ∈ L(X) we must have equality. Multiplying by b from the left we
obtain cb = bc.

For the last statement assume c is invertible and commutes with b. Then
c−1 also commutes with b. To show cb−1 = b−1c it is enough to show D(b−1c) ⊆
D(cb−1) by the proof this far. Take x ∈ D(b−1c), i.e., such that cx ∈ D(b−1).
Then cx = by for some y ∈ X. We get x = c−1by = bc−1y and so x ∈ D(b−1) =
D(cb−1).

The next lemma and the remarks following it shed some light on the equiv-
alence classes [b].

LEMMA 3.3. Let [b] be a projective operator and assume that [λ] ∈ σ[b]∗. Then
there is a representative b′ for [b] such that

〈b′, λ〉 =
n

∑
0

λjb′j = e.

Proof. If λ ∈ σ[b]∗ Lemma 2.9 says that B = 〈b, λ〉 is invertible. Then clearly
[B−1b] = [b] and b′ = B−1b is the desired representative.

REMARK 3.4. There is no loss of generality in assuming that λ0 6= 0 because
we may perturbate [λ] a little and still belong to σ[b]∗.

REMARK 3.5. We have defined the equivalence relation on commuting tu-
ples as the transitive closure of a symmetric and reflexive relation R. The proof
of Lemma 3.3 shows that given a class [b] such that σ[b]∗ is nonempty, any rep-
resentative is not more than one step from the representative b′ with 〈b′, λ〉 = e.
Hence if b and b̃ are any two representatives for [b] then they are not more then
two steps from each other.

REMARK 3.6. Lemma 3.3 also enables us to to give an alternative descrip-
tion of the equivalence relation ∼ if we restrict ourselves to look at commuting
n + 1-tuples of operators with the additional property that their spectrum avoid
some hyperplane through the origin in Cn+1. In fact for such tuples, b and b̃,
we have b ∼ b̃ if and only if b̃ = cb for some invertible c. The only if part is
clear. Conversely assume that b̃ = cb for some invertible c. The assumption on
the spectrum for b̃ says precisely that σ[b̃]∗ is nonempty and so from Lemma 3.3
we see that we may assume that 〈b̃, λ〉 = e for some [λ]. Hence 〈b, λ〉 = c−1 so
c ∈ (b)′ and therefore [b] = [b̃].
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DEFINITION 3.7. Let [b] be a projective operator. We define σ[b]∗adm, the set
of admissible hyperplanes for [b], by saying that [α] ∈ σ[b]∗adm if 〈b, α〉〈b, λ〉−1 is
injective, where [λ] is some hyperplane in σ[b]∗.

The definition clearly does not depend on the representative b for [b] and
also not on the choice of [λ] because if [λ̃] ∈ σ[b]∗ is some other choice, then
〈b, α〉〈b, λ̃〉−1 = 〈b, α〉〈b, λ〉−1〈b, λ〉〈b, λ̃〉−1 and 〈b, λ〉〈b, λ̃〉−1 is invertible by the
functional calculus.

REMARK 3.8. Observe that σ[b]∗adm is not defined as the dual complement
of some set in CPn. It is defined directly as a subset of CPn∗. However, in the one
variable case σ[b]∗adm corresponds to the point spectrum in the following sense.
If [λ] ∈ σ[b]∗ ⊆ CP1 and Pλ a projection from the hyperplane (point) [λ] onto C
then

σ[b]∗adm = (P−1
λ σp(Pλ([b])))∗.

PROPOSITION 3.9. Let [b] be a projective operator and let [λ] ∈ σ[b]∗ and [α] ∈
σ[b]∗adm. Then 〈b, α〉−1〈b, λ〉 is a closed operator which does not depend on the partic-
ular representative b ∈ [b]. Moreover 〈b, α〉−1〈b, λ〉 = 〈b, λ〉〈b, α〉−1 and we denote
this operator 〈b, λ〉/〈b, α〉. Its domain of definition, Dα := D(〈b, λ〉/〈b, α〉), does not
depend on the choice of [λ] ∈ σ[b]∗. Finally if [β1], . . . , [βn] are any points such that
[α], [β1], . . . , [βn] are in general position then

Dα =
n⋂

j=1

D(〈b, α〉−1〈b, β j〉).

Proof. It is clear that 〈b, α〉−1〈b, λ〉 is a closed linear operator on X. Since
[λ] ∈ σ[b]∗ we have that 〈b, λ〉 is invertible and so it follows from Lemma 3.2 that
〈b, α〉−1〈b, λ〉 = 〈b, λ〉〈b, α〉−1. From this we immediately obtain that

(3.1) 〈b, λ〉/〈b, α〉 = (〈b, α〉/〈b, λ〉)−1

in the set theoretical sense and hence 〈b, λ〉/〈b, α〉 does not depend on the rep-
resentative b ∈ [b] since the right hand side of (3.1) does not. Moreover, since
D(〈b, λ〉〈b, α〉−1) = D(〈b, λ̃〉〈b, α〉−1) for any other [λ̃] ∈ σ[b]∗ the domain Dα can
not depend on the choice of [λ] ∈ σ[b]∗. For the last statement we first assume
that [α] = [1, 0, . . . , 0] and [β j] = [0, . . . , 1, . . . , 0] where the 1 is in the jth posi-

tion. Then what we have to show is that D(〈b, λ〉/b0) =
n⋂
1

D(b−1
0 bj). But from

Lemma 3.2 we see that D(b−1
0 bj)⊇D(bjb−1

0 )=D(〈b, λ〉b−1
0 ) and so D(〈b, λ〉/b0)⊆

n⋂
1

D(b−1
0 bj). On the other hand

n⋂
1

D(b−1
0 bj) ⊆ D(b−1

0 〈b, λ〉) so we are done. We

reduce the general case to this one by considering the projective transformation
P defined by [z] 7→ [〈z, α〉, 〈z, β1〉, . . . , 〈z, βn〉]. Then P∗−1[α] = [1, 0, . . . , 0] and
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P∗−1[β j] = [0, . . . , 1, . . . , 0]. We want to show the equality

D(〈b, λ〉/〈b, α〉) =
n⋂

j=1

D(〈b, α〉−1〈b, β j〉)

but this is equivalent to

D(〈Pb, P∗−1λ〉/〈Pb, P∗−1α〉) =
n⋂

j=1

D(〈Pb, P∗−1α〉−1〈Pb, P∗−1β j〉).

Hence, the proposition follows from the special case above.

REMARK 3.10. We saw in the proof that there was no loss of generality in
assuming that the hyperplanes were of a special kind because we could reduce to
this case by a projective transformation of CPn. In order to simplify calculations
in the proofs below we will often make such assumptions and it is supposed to
be understood that there is no loss of generality in doing it.

Let us fix an [α] ∈ σ[b]∗adm and [β1], . . . , [βn] ∈ CPn∗ such that [α], [β1], . . . ,
[βn] are in general position. We denote the closed operator 〈b, α〉−1〈b, β j〉 by aj.

PROPOSITION 3.11. With the hypothesis of the preceding proposition, if x ∈
D(aj) ∩D(ak) then the following conditions are equivalent:

ajx ∈ D(ak),

akx ∈ D(aj).

If any of these conditions are satisfied then also akajx = ajakx.

Proof. We may assume [α] = [1, 0, . . . , 0] and [β j] = [0, . . . , 1, . . . , 0] and
hence aj = b−1

0 bj. Suppose x ∈ D(b−1
0 bj) ∩ D(b−1

0 bk). Then from Lemma 3.2
we get bkb−1

0 bjx = bjb−1
0 bkx. Hence b−1

0 bjx ∈ D(b−1
0 bk) precisely when b−1

0 bkx ∈
D(b−1

0 bj) and b−1
0 bkb−1

0 bjx = b−1
0 bjb−1

0 bkx.

DEFINITION 3.12. A tuple (a1, . . . , an) of closed operators on X is called an
affine operator if

(i) there exists a [λ] ∈ CPn such that the operator

a0 := λ0 +
n

∑
1

λjaj

with domain D(a0) =
n⋂
1

D(aj) is closed, injective and surjective;

(ii) the operators a0, a1, . . . , an satisfy the following commutation conditions; if
x ∈ D(aj) ∩D(ajak) then x ∈ D(akaj) and ajakx = akajx for j, k = 0, 1, . . . , n.

REMARK 3.13. In the one variable case Definition 3.12 just means that σ(a)
is not all of C. In fact, if λ1 6= 0 then λ0 + λ1a is injective and surjective if and only
if −λ0/λ1 /∈ σ(a) and if λ1 = 0 then D(a) = X, i.e., a is bounded and therefore
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σ(a) 6= C. The commutation conditions are clearly satisfied in the one variable
case and so from Section 1 we see that a closed operator is affine if and only if it
can be Cayley transformed to a bounded operator.

REMARK 3.14. Morally, what condition (i) should mean is that no matter
how we may define the spectrum of a, the hyperplane [λ] should avoid its clo-
sure in CPn. For instance if [λ] = [1, 0, . . . , 0], that is the spectrum of a does
not intersect the hyperplane at infinity, then one should expect that all the aj are
bounded. In fact if [1, 0, . . . , 0] works as [λ] in Definition 3.12 then condition (i)

says that the domain of the identity is
n⋂
1

D(aj), that is D(aj) = X for all j and so

all the aj are bounded by the Closed Graph Theorem.

REMARK 3.15. We do not demand that each aj has a non-empty resolvent
set. We will see in Example 3.18 that there are affine operators such that some of
the components have all of CP1 as spectrum.

REMARK 3.16. Condition (ii) of Definition 3.12 implies that affine opera-
tors are permutable multioperators in the sense of [5]. It also implies that the
operators a1, . . . , an commute with the bounded operator a−1

0 in the sense that
a−1

0 aj ⊆ aja−1
0 . In fact, let x ∈ D(aj). Then clearly a−1

0 x ∈ D(aj) ∩D(aja0) and so
condition (ii) implies that a−1

0 x ∈ D(a0aj) and a0aja−1
0 x = aja0a−1

0 x = ajx. Hence
aja−1

0 x = a−1
0 ajx for all x ∈ D(aj). It will follow that if all aj have resolvents then

these commute, see Corollary 3.19.

The operators we get when we project a projective operator from an admis-
sible hyperplane are affine, and these are the only affine operators as we now
show.

THEOREM 3.17. A tuple a = (a1, . . . , an) of closed operators on X is affine if
and only if there is a projective operator [b] with σ[b]∗ nonempty, an [α] ∈ σ[b]∗adm and
[β1], . . . , [βn] ∈ CPn∗ in general position together with [α], such that

aj = 〈b, α〉−1〈b, β j〉, j = 1, . . . , n.

Proof. We may assume that α = [1, 0, . . . , 0], β j = [0, . . . , 0, 1, 0, . . . , 0] where
1 is in the jth place. First assume that aj = 〈b, α〉−1〈b, β j〉, j = 1, . . . , n for some
projective operator [b], that is aj = b−1

0 bj. Let [λ] ∈ σ[b]∗ so that B = 〈b, λ〉 is
invertible. From Proposition 3.2 we get that b−1

0 B = Bb−1
0 and so we see that

a0 := b−1
0 B = b−1

0

n

∑
0

λjbj =
n

∑
0

λjb−1
0 bj = λ0 +

n

∑
1

λjaj

has domain D(a0) = D(b−1
0 ) =

n⋂
1

D(aj) by Proposition 3.9, is closed, injective

and surjective. Hence a satisfies condition (i) in Definition 3.12. Moreover Propo-
sition 3.11 implies that if x ∈ D(aj) ∩D(ajak) then x ∈ D(akaj) and ajakx = akajx
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for j, k = 1, . . . , n. To see that this is also satisfied for j = 0 and k = 0 respec-
tively we first assume that x ∈ D(a0) ∩ D(a0ak). Then since x ∈ D(a0ak) we
have that b−1

0 bkx ∈ D(b−1
0 ) and since also x ∈ D(b−1

0 ) Lemma 3.2 implies that
b−1

0 bkx = bkb−1
0 x. Hence bkb−1

0 x ∈ D(b−1
0 ), that is x ∈ D(aka0), and b−1

0 b−1
0 bkx =

b−1
0 bkb−1

0 x that is a0akx = aka0x. Now assume that x ∈ D(aj) ∩ D(aja0) which
just means that x ∈ D(b−1

0 ) and bjb−1
0 x ∈ D(b−1

0 ). From Lemma 3.2 we see
that bjb−1

0 x = b−1
0 bjx so b−1

0 bjx ∈ D(b−1
0 ) and b−1

0 b−1
0 bjx = b−1

0 bjb−1
0 x. Hence

x ∈ D(a0aj) and a0ajx = aja0x so a also satisfies condition (ii) and thus a is affine.
Conversely assume that a is affine and take [λ] ∈ CPn such that the operator

a0 = λ0 +
n
∑
1

λjaj satisfies the requirements of condition (i) in Definition 3.12. Then

b0 :=
(

λ0 +
n

∑
1

λjaj

)−1
, bj := aj

(
λ0 +

n

∑
1

λjaj

)−1
j = 1, . . . , n

are bounded operators by the Closed Graph Theorem. We claim that b = (b0, . . . ,
bn) is commutative, that 〈b, λ〉 is invertible and that aj = b−1

0 bj. We start by
showing commutativity. In Remark 3.16 we saw that it followed from condition
(ii) that a−1

0 aj ⊆ aja−1
0 , that is b0aj ⊆ ajb0 for j = 1, . . . , n. Hence for any x ∈ X we

have akb2
0x = b0akb0x ∈

n⋂
1

D(aj). So we see from condition (ii) that for any x ∈ X

we have alb0akb0x = alakb2
0x = akalb2

0x = akb0alb0x. Thus b is commutative.
To see that ak = b−1

0 bk we assume x ∈ D(ak). Then condition (ii), via Remark

3.16, implies that akb0x = b0akx ∈
n⋂
1

D(aj). Hence alakb0x = akalb0x for all l by

condition (ii), and we obtain b−1
0 akb0x = akx. Thus ak ⊆ b−1

0 bk. To show equality
it suffices to show D(b−1

0 bk) ⊆ D(ak). Therefore assume x ∈ D(b−1
0 bk), that is

akb0x ∈ D(b−1
0 ) and so, again by condition (ii), we have alakb0x = akalb0x. Hence

alb0x ∈ D(ak) for all l and this gives us x = b−1
0 b0x ∈ D(ak). Finally we observe

that

〈b, λ〉 =
n

∑
0

λjbj = λ0b0 +
n

∑
1

λjajb0 =
(

λ0 +
n

∑
1

λjaj

)
b0 = e.

Hence σ(b) avoids the hyperplane λ through the origin in Cn+1 and hence [b] is a
projective operator with σ[b]∗ nonempty.

EXAMPLE 3.18. Let K be the compact subset of C3 defined by

K = {(1, z1, 0) : |z1| 6 1} ∪ {(1/z1, 1, 1/z1) : |z1| > 1} ∪ {(0, 1, 0)}.

Let X = C(K) be the Banach space of continuous functions on K and let bj denote
the operator on X of multiplication with the coordinate function zj, j = 0, 1, 2.
Then b = (b0, b1, b2) defines a projective operator [b] and σ[b] = π(K), the projec-
tion of K on CP2. Moreover, one checks that the hyperplane [2, 1,−3/2] avoids
σ[b]. Clearly b0 is injective and so the hyperplane [1, 0, 0] is admissible. We get the
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affine operator (a1, a2) = (b−1
0 b1, b−1

0 b2). We claim that σ(a1) = C. Let w ∈ C be
arbitrary and take a point (z0, z1, z2) ∈ K such that z1/z0 = w. If f ∈ C(K) is such
that f (z0, z1, z2) 6= 0 then f is not in the range of w− a1 and therefore w ∈ σ(a1).

COROLLARY 3.19. If (a1, . . . , an) is affine and each aj has resolvents then these
commute.

Proof. Let [b] be a projective operator such that aj = b−1
0 bj. We consider the

case when each aj has a bounded inverse. The general case is completely anal-
ogous. We first check that a−1

j = b−1
j b0. Actually, bj has to be injective since

otherwise bjx = 0 for some x 6= 0, but then x ∈ D(aj) and ajx = 0 which
is impossible. Also, bj has to be surjective onto D(b−1

0 ) and hence R(b0) ⊆
D(b−1

j ). The closed operator b−1
j b0 therefore has to be bounded. It follows that

b−1
0 bjb−1

j b0 is the identity on X and that b−1
j b0b−1

0 bj is the identity on D(aj) and

so a−1
j = b−1

j b0. Now we use Lemma 3.2 to see that a−1
j and a−1

k commute. Let

y = a−1
j a−1

k x = b−1
j b0b−1

k b0x = b−1
j b−1

k b2
0x. Then b2

0x = bkbjy = bjbky and hence

y = b−1
k b0b−1

j b0x = a−1
k a−1

j x since R(b0) ⊆ D(b−1
j ).

COROLLARY 3.20. If (a1, . . . , an) is affine then affine combinations of the aj are
closable.

Proof. To any affine map of Cn corresponds a projective transformation of
CPn. Substituting a projective operator, representing (a1, . . . , an), into this map
and projecting the result back to Cn we obtain a closed extension of the affine
combination.

The correspondence between affine and projective operators is one-to-one
in the following sense.

THEOREM 3.21. Fix [α], [β1], . . . , [βn] ∈ CPn in general position. Then to any
affine operator a = (a1, . . . , an) corresponds a unique projective operator [b] with non-
empty σ[b]∗ and with [α] ∈ σ[b]∗adm such that aj = 〈b, α〉−1〈b, β j〉 for j = 1, . . . , n.

Proof. The existence of a projective operator [b] and [α̃] and [β̃ j], j = 1, . . . , n,
in general position such that aj = 〈b, α̃〉−1〈b, β̃ j〉−1 is part of Theorem 3.17. Let
L be an invertible projective transformation sending [α̃] to [α] and [β̃ j] to [β j].
Then L∗−1[b] is a projective operator with aj = 〈L∗−1b, α〉−1〈L∗−1b, β j〉−1. For
uniqueness we assume that α = [1, 0, . . . , 0], β j = [0, . . . , 0, 1, 0, . . . , 0] and that
[b] and [b̃] are two projective operators corresponding to a, i.e., we assume that
b−1

0 bj = aj = b̃−1
0 bj, j = 1, . . . , n. We may also assume that b is the representa-

tive for [b] such that e = 〈b, λ〉 by Lemma 3.3. We show that [b] = [b̃]. From
Proposition 3.9 we get

D(b−1
0 ) =

⋂
D(b−1

0 bj) =
⋂

D(b̃−1
0 b̃j) = D(b̃−1

0 ).
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Hence c := b̃−1
0 b0 is an invertible bounded operator. Moreover from Lemma 3.2

and the assumption we see that b̃jc = b̃j b̃−1
0 b0 = b̃−1

0 b̃jb0 = b−1
0 bjb0 = bj and so

b = b̃c. It remains to show that c ∈ (b̃)′. But e = 〈b, λ〉 =
n
∑
0

λjbj so c−1 =
n
∑
0

λj b̃j

and hence c ∈ (b̃)′.

DEFINITION 3.22. Let [α], [β1], . . . , [βn] ∈ CPn be fixed in general position.
We define ρα,β to be the mapping

[z] 7→ (〈z, α〉−1〈z, β1〉, . . . , 〈z, α〉−1〈z, βn〉).

The one-to-one correspondence can now be stated by saying that the map-
ping ρα,β : {[b] : σ[b]∗ 6= ∅, [α] ∈ σ[b]∗adm} → {a : a is affine} is one-to-one and
onto.

4. SPECTRA OF AFFINE OPERATORS

We define the spectrum of an affine operator a, corresponding to a projective
operator [b] via ρα,β([b]) = a, and show that ρα,β(σ[b]) = σ(a). Throughout this
section we will assume that α = [1, 0, . . . , 0] and β j = [0, . . . , 1, . . . , 0] in the proofs.

Let a = (a1, . . . , an) be an affine operator. For z ∈ Cn we let δz−a denote in-

terior multiplication with
n
∑
1
(zj − aj)e∗j and the domain of definition, D(δz−a), for

this operator is all forms with coefficients in
n⋂
1

D(aj). See Section 1 for notation.

DEFINITION 4.1. Let a = (a1, . . . , an) be an affine operator. We define σ(a) ⊆
Cn by specifying its complement: z /∈ σ(a) if and only if for any k-form f k ∈

N (δz−a) it exists a k + 1-form f k+1 with coefficients in
n⋂

j,k=1
D(ajak) such that

f k = δz−a f k+1.

REMARK 4.2. Affine operators are permutable multioperators and as such
they also have a joint Ionaşcu-Vasilescu spectrum, [5]. If all components in an
affine operator have resolvents we can also consider the joint spectrum associated
to an iterated one-dimensional Cayley transform as in [11] and [2]. It is shown in
[5] that this spectrum equals the Ionaşcu-Vasilescu spectrum in this case. We will
see in Theorem 4.5 that our spectrum is contained in the spectrum obtained by an
iterative one-dimensional Cayley transform in case both spectra are defined.

We denote the set of all forms with coefficients in
n⋂

j,k=1
D(ajak) by D2.

LEMMA 4.3. Let [b] be a projective operator and assume that [1, 0, . . . , 0] is an
admissible hyperplane and that σ[b]∗ is nonempty. Put b′ = (b1, . . . , bn) and let a =
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(b−1
0 b1, . . . , b−1

0 bn). Then K•(δb′ , X) is exact if and only if for any f k ∈ N (δa) there
exists an f k+1 with coefficients in D(b−2

0 ) = R(b2
0) such that f k = δa f k+1.

Proof. Note that D(b−1
0 ) =

n⋂
1

D(b−1
0 bj) by Proposition 3.9. Assume that

K•(δb′ , X) is exact and let f k ∈ N (δa). Then δb′b−1
0 f k = 0 and so there is an f̃ k+1

such that b−1
0 f k = δb′ f̃ k+1. But then f k = δb′b0 f̃ k+1 = δab2

0 f̃ k+1. Thus f k+1 :=
b2

0 f̃ k+1 has coefficients in D(b−2
0 ) and f k = δa f k+1.

Now assume that if f k ∈ N (δa) it exists an f k+1 with coefficients in D(b−2
0 )

such that f k = δa f k+1. If δb′ f̃ k = 0 then clearly b0 f̃ k ∈ N (δa) and so there is an
f̃ k+1 with coefficients in D(b−2

0 ) such that b0 f̃ k = δa f̃ k+1 = δb′b−1
0 f̃ k+1. Hence

f̃ k = δb′b−2
0 f̃ k+1 and so K•(δb′ , X) is exact.

THEOREM 4.4. Let a be an affine operator and let [b] be a projective operator with
nonempty σ[b]∗. If [α] ∈ σ[b]∗adm has the property that a = ρα,β([b]) then σ(a) =
ρα,β(σ[b]).

Proof. Under our assumptions on [α] and [β] we have that ρα,β is the map-
ping [z] 7→ (z1/z0, . . . , zn/z0). We will show that [1, 0, . . . , 0] /∈ σ[b] if and only
if 0 /∈ σ(a). By the Spectral Mapping Theorem we get that the line through
the origin and (1, 0, . . . , 0) in Cn+1 does not intersect σ(b) if and only if 0 /∈
σ(b1, . . . , bn). Thus what we have to show is that 0 /∈ σ(b1, . . . , bn) if and only
if 0 /∈ σ(a). But this is exactly the statement in Lemma 4.3 and so the only

thing left in order to prove the theorem is to check that D(b−2
0 ) =

n⋂
j,k=1

D(ajak).

Since ajak = b−1
0 bjb−1

0 bk ⊇ bjbkb−2
0 the inclusion ⊆ is clear. Conversely, assume

x ∈
n⋂

j,k=1
D(ajak). Then, at least x ∈

n⋂
j

D(aj) = D(b−1
0 ) by Proposition 3.9. Thus

x = b0y for some y. The assumption on x now implies that bky = b−1
0 bkx ∈

n⋂
j

D(aj) = D(b−1
0 ) for k = 1, . . . , n. Since we may assume that e =

n
∑
0

λkbk we get

y =
n
∑
0

λkbky ∈ D(b−1
0 ). Thus x = b0y ∈ D(b−2

0 ) and we are done.

Theorem 3.21 implies that to an affine operator a we have a unique projec-
tive operator [b] such that a = ρα,β([b]) for some fixed choice of [α], [β1], . . . , [βn]
in general position. So applying Theorem 4.4 we see that σ(a) has a well defined,
invariant and closed extension σ̂(a) ⊆ CPn defined by

σ̂(a) = σ[b].

Now suppose that a = (a1, . . . , a2) is affine and assume in addition that
each aj has a resolvent. As we have seen, Example 3.18, affine operators need
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not have this property but may of course have it, see Example 4.7 below. Af-
ter an affine transformation we may assume that each aj has a bounded inverse
a−1

j ∈ L(X). Then as in e.g. [11] and [2] we can define the spectrum for a as the

inverse image of the spectrum of (a−1
1 , . . . , a−1

n ) under the mapping (z1, . . . , zn) 7→
(1/z1, . . . , 1/zn). We will denote this spectrum by σ̃(a).

THEOREM 4.5. Let a = (a1, . . . , an) be an affine operator and assume that each aj
has a resolvent. Then σ(a) ⊆ σ̃(a) and in the case n = 2 we have equality.

Since (a1, . . . , an) is affine there exists a unique projective operator [b] =
[b0, . . . , bn] such that aj = b−1

0 bj for j = 1, . . . , n. Before we prove Theorem 4.5 we
prove a lemma.

LEMMA 4.6. A point (λ1, . . . , λn) ∈ Cn is outside σ(a) if and only if 0 ∈ Cn is
outside σ(b1 − λ1b0, . . . , bn − λnb0).

Proof. First note that from Theorem 4.4, (λ1, . . . , λn) ∈ Cn is outside σ(a) if
and only if [1, λ1, . . . , λn] ∈ CPn is outside σ[b] which in turn precisely means
that the line through the origin and (1, λ1, . . . , λn) in Cn+1 does not intersect
σ(b0, . . . , bn). The lemma now follows by applying the Spectral Mapping The-
orem to the mapping (z0, . . . , zn) 7→ (z1 − λ1z0, . . . , zn − λnz0).

Proof of Theorem 4.5. We may assume without loss of generality that 0 /∈
σ(aj) for j = 1, . . . , n, i.e., that each a−1

j is bounded. It follows from the proof

of Corollary 3.19 that a−1
j = b−1

j b0 and thus in particular that D(b−1
0 ) ⊆ D(b−1

j )
for all j. Let (λ1, . . . , λn) be any point in Cn. We define two boundary opera-

tors δ and δ̃ on ΛX =
n⊕
0

ΛjX by letting δ and δ̃ be interior multiplication with

n
∑
1
(bj − λjb0)e∗j and ∑

j∈I0

e∗j + ∑
j∈I1

(1/λj − b−1
j b0)e∗j respectively, where I0 and I1 are

the set of indices with λj = 0 and λj 6= 0 respectively. By the previous lemma,
(λ1, . . . , λn) is outside σ(a1, . . . , an) if and only if the complex K•(δ, Λ•X) is ex-
act. If some λj = 0 then we are automatically outside σ̃(a1, . . . , an) and if all λj

are non zero we are outside this spectrum if and only if the complex K•(δ̃, Λ•X) is
exact. We now define morphisms of complexes Ψ : K•(δ, Λ•X) → K•(δ̃, Λ•X) and
Φ : K•(δ̃, Λ•X) → K•(δ, Λ•X). Let A be a commutative unital subalgebra of L(X)
containing b0, bj, b−1

j b0, j = 1, . . . , n. Note that δ and δ̃ are natural mappings E →
A extended as anti-derivations to A ⊗ΛE → A ⊗ΛE. We define the injective
mapping Ψ : A ⊗ΛE → A ⊗ΛE inductively by setting Ψ(ej) = λjbjej if λj 6= 0,
Ψ(ej) = bjej if λj = 0, and Ψ( f ∧ g) = Ψ( f ) ∧Ψ(g). The operator b1 · · · bn is natu-
rally a mapping A ⊗ΛE → A ⊗ΛE and if we are in the image of this mapping
we are in the image of Ψ. We may thus define Φ := Ψ−1λ1 · · · λnb1 · · · bn and get
a mapping Φ : A ⊗ΛE → A ⊗ΛE. It is straight forward to check that δ̃Ψ = Ψδ

and δΦ = Φδ̃ as mappings A ⊗ΛE → A ⊗ΛE and so we obtain our morphisms
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of complexes Ψ : K•(δ, Λ•X) → K•(δ̃, Λ•X) and Φ : K•(δ̃, Λ•X) → K•(δ, Λ•X).
We now claim that the quotient complex

(4.1) 0←− Λ0X/Λ0R(b0) ←− · · · ←− ΛnX/ΛnR(b0) ←− 0

with boundary operator δ is exact. Indeed, since a is affine there is some point µ =

(µ1, . . . , µn) outside σ(a). Let δµ be interior multiplication with
n
∑
1
(bj − µjb0)e∗j .

From the previous lemma we know that K•(δµ, Λ•X) is exact. Since δ and δµ

are equal modulo elements with coefficients in R(b0) it suffices to see that (4.1)
is exact with δµ as boundary operator. Assume that δµ( f k) ∈ Λk−1R(b0), i.e.,
δµ( f k) = b0 f k−1. Then b0δµ( f k−1) = δµ(b0 f k−1) = δ2

µ( f k) = 0 and since b0 is
injective δµ( f k−1) = 0. Hence, f k−1 = δµ(gk) and so δµ( f k − b0gk) = 0. Thus
f k − b0gk = δµ( f k+1) which precisely means that the equivalence class containing
f k is in the image of δµ. Now suppose that the complex K•(δ̃, Λ•X) is exact.
Assume that δ( f k) = 0. Since the quotient complex (4.1) with boundary operator
δ is exact there are gk

0 and f k+1
0 such that f k = b0gk

0 + δ( f k+1
0 ). Since b0 is injective

it follows that δ(gk
0) = 0 and so, again, there are gk

1 and f k+1
1 such that gk

0 =
b0gk

1 + δ( f k+1
1 ) and δ(gk

1) = 0. Repeating this process we see that we can write

(4.2) f k = bk+1
0 gk

k + δ
( k

∑
j=0

bj
0 f k+1

j

)
and δ(gk

k) = 0. Now, 0 = Ψδ(gk
k) = δ̃Ψ(gk

k) and so by assumption, Ψ(gk
k) =

δ̃(hk+1) and thus Ψ(bk+1
0 gk

k) = δ̃(bk+1
0 hk+1). But the range of b0 is contained in the

domain of every b−1
j and so bk+1

0 hk+1 ∈ R(Ψ). Hence,

Ψ(bk+1
0 gk

k) = δ̃(bk+1
0 hk+1) = δ̃ΨΨ−1(bk+1

0 hk+1) = ΨδΨ−1(bk+1
0 hk+1)

and since Ψ is injective we get bk+1
0 gk

k = δΨ−1(bk+1
0 hk+1). According to (4.2) we

obtain

f k = δ
(

Ψ−1(bk+1
0 hk+1) +

k

∑
j=0

bj
0 f k+1

j

)
and then K•(δ, Λ•X) is exact. Note that in case some λj = 0 then automatically
K•(δ̃, Λ•X) is exact. Thus σ(a) ⊆ σ̃(a).

We now show that if K•(δ, Λ•X) is exact then Hk(δ̃, ΛX) = 0 for k = 0, k = n
and for k = n − 1, thus implying that σ(a) = σ̃(a) for a = (a1, a2). We may of
course assume that λj 6= 0 for all j. If δ̃( f n) = 0 then 0 = Φδ̃( f n) = δΦ( f n). By
assumption then Φ( f n) = 0 and since Φ is injective (at this level the identity) we
have f n = 0. If instead δ̃( f n−1) = 0 we conclude that 0 = Φδ̃( f n−1) = δΦ( f n−1).
Since Φ is the identity at the top level we get

Φ( f n−1) = δ( f n) = δΦ( f n) = Φδ̃( f n),
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which implies that f n−1 = δ̃( f n). Finally, given any f 0 ∈ Λ0X we can write
f 0 = δ( f 1). At the lowest level, Ψ is the identity and we see that f 0 = Ψ( f 0) =
Ψδ( f 1) = δ̃Ψ( f 1) finishing the proof.

EXAMPLE 4.7. Let X = L2(R) and let b0 and b1 be multiplication with 1/(i +
ξ)2 and 1/(i + ξ) on X and let b2 be the identity. Then [b0, b1, b2] is a projective
operator and (a1, a2) = (b−1

0 b1, b−1
0 b2) is affine and has the property that each aj

has a bounded inverse. It is straightforward to check explicitly that σ(a1, a2) =
σ̃(a1, a2) = {(i + x, (i + x)2) ∈ C2 : x ∈ R}, i.e., the (essential) range of the
multiplication operator (a1, a2).

5. CAYLEY TRANSFORMS

We summarize our results to see that the affine operators are precisely those
operators which are Cayley transforms of bounded ones and that the Spectral
mapping theorem holds.

Let a = (a1, . . . , an) be affine and let [λ] ∈ CPn be such that condition (i)

in Definition 3.12 is fulfilled. Then if a0 = λ0 +
n
∑
1

λjaj, the projective operator

[b] = [a−1
0 , a1a−1

0 , . . . , ana−1
0 ] projects to a and [λ] ∈ σ[b]∗ by Theorem 3.17 and its

proof. Let [β1], . . . , [βn] be points in CPn such that [λ], [β1], . . . , [βn] are in general
position. Applying the projection ρλ,β to [b] we get the bounded commuting tuple

ρλ,β([b]) =
((

β1,0 +
n

∑
1

β1,jaj

)
a−1

0 , . . . ,
(

βn,0 +
n

∑
1

βn,jaj

)
a−1

0

)
and σ(ρλ,β([b])) = ρλ,β(σ[b]) by Theorem 2.8. Hence, if φ is the corresponding
rational fractional transformation we see that φ(a) = ρλ,β([b]) is a bounded com-
muting tuple and by Theorem 4.4 we have σ(φ(a)) = φ(σ̂(a)) naturally inter-
preted.

Conversely assume that a tuple of closed operators a = (a1, . . . , an) is the
Cayley transform of a bounded commuting tuple (b1, . . . , bn), that is

ak =
(

λ0,0 +
n

∑
1

λ0,jbj

)−1(
λk,0 +

n

∑
1

λk,jbj

)
,

where (λj,k) is an invertible matrix and λ0,0 +
n
∑
1

λ0,jbj is injective, i.e., the affine

hyperplane {z ∈ Cn : 〈z, λ0〉 = 0} is admissible. Then clearly [e, b1, . . . , bn] is a
projective operator and [1, 0, . . . , 0] ∈ σ[e, b1, . . . , bn]∗. Moreover, the hyperplane
[λ0,0, . . . , λ0,n] has to be admissible and so a is the projection of a projective opera-
tor from an admissible hyperplane. Since the spectrum of the projective operator
also has a nonempty dual complement it follows from Theorem 3.17 that a is
affine.



336 HÅKAN SAMUELSSON

6. INTEGRAL FORMULAS FOR THE ANALYTIC FUNCTIONAL CALCULUS
OF PROJECTIVE OPERATORS

We provide integral formulas realizing the functional calculus described in
Section 2. Analogously to [1] we will construct a ∂-closed (n, n − 1)-form, ωn

b x,
with values in X ⊗ Ln, defined in U \ σ[b], where L−1 is the tautological line bun-
dle and U is CPn minus some hyperplane, such that if f ∈ O(σ[b]), then

f ([b])x =
∫

∂D

f
〈b, λ〉n

〈z, λ〉n
ωn

b x

where λ ∈ σ[b]∗ and D is a suitable neighborhood of σ[b].

We let δz denote interior multiplication with the vector field
n
∑
0

zj
∂

∂zj
. Letting

f be a k-homogeneous (p, 0)-form in some cone in Cn+1 then f is the pullback
of an Lk-valued (p, 0)-form in the projection of the cone in CPn if and only if
δz f = 0. The statement is local and we may verify it when z0 6= 0. If f is the pull-
back of an Lk-valued (p, 0)-form then f is k-homogeneous and can be written as
f = ∑

I
f Id(zI1 /z0) ∧ · · · ∧ d(zIp /z0). Since δzd(zi/z0) = δz(dzi/z0 − zi/z2

0dz0) =

zi/z0 − z0zi/z2
0 = 0 we have δz f = 0. Conversely, a straight-forward calculation

shows that if f = ∑ f IdzI is any k-homogeneous (p, 0)-form then

f = zp
0 ∑

0/∈I
f Id(zI1 /z0) ∧ · · · ∧ d(zIp /z0) +

(−1)p−1

z0
(δz f ) ∧ dz0.

So if δz f = 0 then clearly f is the pullback of a (p, 0)-form which has to have
values in Lk since f is k-homogeneous. In what follows we will identify the
space of X ⊗ Lk valued (p, 0)-forms on some subset of CPn with the space of
k-homogeneous X-valued δz-closed (p, 0)-forms on the cone over this subset in
Cn+1. Also if we are in e.g. U = CPn \ {z0 = 0} we will identify sections of Lk

with functions via the natural trivialization of Lk over U given by putting z0 = 1
in the k-homogeneous polynomials representing Lk.

We let δb denote interior multiplication with
n
∑
0

bj
∂

∂zj
. This operator com-

mutes with δz so it maps δz-closed X-valued forms to δz-closed X-valued forms.
However, δb reduces the homogeneity one step and therefore δb maps k-homo-
geneous k-forms to k − 1-homogeneous k − 1-forms. Moreover, b is commuting
so we have δb ◦ δb = 0, and we get the complex

(6.1) K•(δb, X ⊗ L• ⊗Λ•,0T∗CPn
[z]).

The operator δb depends on the choice of representative for [b] but never-
theless we have the following proposition.

PROPOSITION 6.1. Let [b] be a projective operator and b any representative. Then
[z] /∈ σ[b] if and only if the complex (6.1) is exact.
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Proof. We may assume that [z] = [1, 0, . . . , 0]. We first claim that [1, 0, . . . , 0]
/∈ σ[b] if and only if 0 /∈ σ(b1, . . . , bn). Actually, if 0 /∈ σ(b1, . . . , bn), that is
(b1, . . . , bn) is nonsingular, then (z0 − b0, b1, . . . , bn) is nonsingular for all z0 ∈ C,
see [8]. Hence (z0, 0, . . . , 0) /∈ σ(b0, . . . , bn) for all z0 ∈ C, which means that
[1, 0, . . . , 0] /∈ σ[b]. On the other hand, if [1, 0, . . . , 0] /∈ σ[b] then (z0, 0, . . . , 0) /∈
σ(b0, . . . , bn) for all z0 ∈ C. From the projection property for the Taylor spectrum,
[8], we conclude that 0 /∈ σ(b1, . . . , bn).

To finish the proof we show that 0 /∈ σ(b1, . . . , bn) if and only if the complex
(6.1) is exact at [z] = [1, 0, . . . , 0]. Note that for any f ∈ X ⊗ Lk ⊗Λk,0T∗CPn

[1,0,...,0]

we have δ[1,0,...,0] f = z0
∂

∂z0
f = 0 so f does not contain any dz0. Hence δb acts

just as interior multiplication with
n
∑
1

bj
∂

∂zj
, which we denote by δb′ , and we can

identify the complex (6.1) with the complex

0←− Λ0X
δb′←− Λ1X

δb′←− · · ·
δb′←− ΛnX ←− 0.

However, by definition, this complex is exact precisely when 0 /∈ σ(b1, . . . , bn),
and we are done.

Assume [1, 0, . . . , 0] ∈ σ[b]∗ and let (ζ1, . . . , ζn) = (z1/z0, . . . , zn/z0) be local
coordinates around [1, 0, . . . , 0]. In these local coordinates δb is interior multipli-
cation with

b0

n

∑
1

(b−1
0 bj − ζ j)

∂

∂ζ j

if we work in the natural trivialization of Lk around [1, 0, . . . , 0]. We abbreviate
this operator b0δb−1

0 b−ζ
.

PROPOSITION 6.2. Let [b] be a projective operator with σ[b]∗ nonempty and let
U be a neighborhood of σ[b] which does not intersect a hyperplane. Then for any q the
following complex is exact:

K•(δb, E•,q(U \ σ[b], X ⊗ L•)).

Proof. We may assume that U does not intersect the hyperplane [1, 0, . . . , 0].
We know that pointwise for [z] ∈ U \ σ[b] the complex (6.1) is exact. In the
local coordinates (ζ1, . . . , ζn) = (z1/z0, . . . , zn/z0) this means that the complex
K•(b0δb−1

0 b−ζ
, X ⊗Λ•,0T∗Cn) is exact for ζ ∈ U \ σ[b]. From the theory of parame-

terized complexes it follows that

K•(b0δb−1
0 b−ζ

, E•,0(U \ σ[b], X))

is exact, see e.g. [11]. But this is the statement in the proposition (in local coordi-
nates) for q = 0. Taking exterior products with barred differentials does not affect
exactness since δb commutes with this operation. Hence the statement is true for
any q.
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We now construct the integral representation of the functional calculus. Let
f ∈ O(U) where U is a neighborhood of σ[b] that avoids a hyperplane. Let x be
the function which is identically x in U \ σ[b]. From Proposition 6.2 we see that
there is a form ω1

b x ∈ E1,0(U \ σ[b], X ⊗ L1) such that x = δbω1
b x. Now δb and ∂

anti-commute and so δb∂ω1
b x = −∂δb ω1

b x = −∂x = 0. Hence, by Proposition 6.2
there is a form ω2

b ∈ E2,1(U \ σ[b], X⊗ L2) such that ∂ω1
b x = δbω2

b x. Continuing in

this way and successively solving the equations ∂ω
j
bx = δbω

j+1
b x we finally arrive

at a form ωn
b x ∈ En,n−1(U \ σ[b], X ⊗ Ln). This form is ∂-closed because, as above

δb∂ωn
b x = 0 and since δb is injective on this level we must have ∂ωn

b x = 0. If we

start with another solution x = δbω̃1
b x and solve the equations ∂ω̃

j
bx = δbω̃

j+1
b x

then ωn
b x and ω̃n

b x define the same ∂-cohomology class. In fact, since δb(ω2
b x −

ω̃2
b x) = ∂(ω1

b x − ω̃1
b x) and δb(ω1

b x − ω̃1
b x) = 0 we get from Proposition 6.2 that

δb(ω2
b x − ω̃2

b x) = ∂δbw1 = −δb∂ w1, that is δb(ω2
b x − ω̃2

b x + ∂w1) = 0, for some
w1. Inductively we obtain δb(ωn

b x− ω̃n
b x + ∂wn−1) = 0 and since δb is injective on

that level we get ωn
b x− ω̃n

b x + ∂wn−1 = 0. Hence we get a well defined mapping
(depending on the representative b)

x 7→ [ωn
b x]∂.

From the construction it is clear that this map is linear in x.

PROPOSITION 6.3. Let b be a projective operator and assume that [λ] ∈ σ[b]∗.
Then the ∂-cohomology class of 〈b, λ〉n〈z, λ〉−nωn

b x does not depend on the representative
for [b].

Proof. Clearly 〈z, λ〉〈b, λ〉−1δb does not depend on the representative. Let
ω̃ j, j = 1, . . . , n be solutions to the equations x = 〈z, λ〉〈b, λ〉−1δb ω̃1, ∂ω̃ j =
〈z, λ〉〈b, λ〉−1δb ω̃ j+1 in U \ σ[b]. Then ω̃ j can not depend on the representative.
Moreover ω j := 〈z, λ〉j〈b, λ〉−jω̃ j, j = 1, . . . , n must satisfy the equations x =
δbω1, ∂ω j = δbω j+1 in U \ σ[b]. Hence we get that 〈b, λ〉n〈z, λ〉−n ωn

b x defines the
same ∂-cohomology class as ω̃n and we are done.

THEOREM 6.4. Let [b] be a projective operator with [λ] ∈ σ[b]∗. Assume that
f ∈ O(σ[b]) and let D be a neighborhood of σ[b] such that its closure is contained in an
open set, which avoids some hyperplane and in which f is holomorphic. Then

f ([b])x =
∫

∂D

f
〈b, λ〉n

〈z, λ〉n
ωn

b x.

Proof. After a projective transformation we can assume that [λ] = [1, 0, . . . , 0]
and since the ∂-cohomology class of 〈b, λ〉n〈z, λ〉−nωn

b x does not depend on the
representative we may assume that b is the representative such that e = 〈b, λ〉 =
b0 given by Proposition 3.3. We recapitulate the definition of f ([b]). Let f̃ be the
canonical lift of f to Cn+1. Then f ([b])x = f̃ (b)x. Let p denote the mapping
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V = {z ∈ Cn+1 : z0 6= 0} → Cn given by (z0, . . . , zn) 7→ (z1/z0, . . . , zn/z0) and let
φ be the local chart (ζ1, . . . , ζn) 7→ [1, ζ1, . . . , ζn]. Then

V
f̃

''NNNNNNNNNNNNN

p
��

Cn
φ∗ f

// C

must commute. From the composition rule in Taylor’s functional calculus we get
that f̃ (b) = φ∗ f (b1, . . . , bn). We will show that∫

∂D

f ωn
b x = φ∗ f (b1, . . . , bn)x.

In the local chart φ and in the natural trivialization over it, δb is the operator δb′−ζ

where b′ = (b1, . . . , bn) because of our choice of b. So our solutions ω
j
bx to the

δb-equations must satisfy

x = δb′−ζφ∗(ω1
b x)

∂φ∗(ω1
b x) = δb′−ζφ∗(ω2

b x)

...

∂φ∗(ωn−1
b x) = δb′−ζφ∗(ωn

b x)

in φ−1(U \ σ[b]). But from the Spectral Mapping Theorem φ−1(U \ σ[b]) = φ−1(U)
\σ(b′). Hence [φ∗(ωn

b x)]∂ must be the same ∂-cohomology class as the resolvent
class Andersson defines in [1] corresponding to b′. Moreover, it is shown in [1]
that integrating against this resolvent realizes the functional calculus. Thus we
obtain

φ∗ f (b1, . . . , bn)x =
∫

φ∗ f φ∗(ωn
b x) =

∫
φ∗( f ωn

b x) =
∫

f ωn
b x.

We have seen that the resolvent, that is the ∂-cohomology class determined
by 〈b, λ〉n〈z, λ〉−nωn

b x, does not depend on the representative for [b] and that the
functional calculus is realized by integrating against it. Actually, the resolvent is
even independent of the choice of [λ] ∈ σ[b]∗ in the following sense.

THEOREM 6.5. Let [b] be a projective operator and assume that [λ], [λ̃] ∈ σ[b]∗.
Let U be a pseudoconvex neighborhood of σ[b] such that none of the hyperplanes [λ] and
[λ̃] intersect U. Then 〈b, λ〉n〈z, λ〉−n ωn

b x and 〈b, λ̃〉n〈z, λ̃〉−n ωn
b x are ∂-cohomologous

in U \ σ[b].

In order to prove Theorem 6.5 we have to look more closely at the relation
between the homological construction of the functional calculus and the integral
construction. We recapitulate the homological construction. Let c = (c1, . . . , cn)
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be a commuting tuple of bounded operators on X. We let Ep,q(U, X) denote the
set of smooth X-valued (p, q)-forms in U ⊆ Cn and we put

L k(U, X) =
⊕

q−p=k

Ep,q(U, X).

The operator ∇z−c = δz−c − ∂ is an anti-derivative on
⊕

k
L k(U, X) and maps

L k(U, X) to L k+1(U, X). Moreover ∇z−c ◦ ∇z−c = 0 and we get the complex
TotL (U, X):

· · · ∇z−c−→ L k−1(U, X)
∇z−c−→ L k(U, X)

∇z−c−→ L k+1(U, X)
∇z−c−→ · · · .

This complex is exact if U is disjoint with σ(c) since the Koszul complex is exact
outside of σ(c). The crucial part of the homological construction of the functional
calculus for c is to show that for any neighborhood U of σ(c) we have that X and
H0(TotL (U, X)) are isomorphic as O(Cn)-modules. Since H0(TotL (U, X)) has
a natural O(U)-module structure, which extends the O(Cn)-module structure,
the isomorphism yields an O(U)-module structure on X extending the O(Cn)-
module structure. Furthermore one shows that if U′ ⊆ U are neighborhoods of
σ(c) then the O(U′)-module structure on X extends the O(U)-module structure.
Hence we get a O(σ(c))-module structure on X and this is our functional calculus.
Given a function f ∈ O(U) (U a neighborhood of σ(c)) the X-valued function
z 7→ x f (z) determines an element in H0(TotL (U, X)) and the isomorphism maps
this element to f (c)x by definition. This construction is due to Taylor; see [8] and
[9].

The integral construction of f (c)x is first to solve the equation ∇z−cωz−cx
= x in U \ σ(c), then identifying the component, ωn

z−cx, of ωz−cx of bidegree
(n, n− 1), and put

f (c)x =
∫

∂D

f (z) ωn
z−cx.

Note that for bidegree reasons, solving ∇z−cωz−cx = x is exactly the same as
solving the equations x = δz−c ω1

z−cx, ∂ ωk
z−cx = δz−c ωk+1

z−c x, k = 1, . . . , n− 1. In
[1] Andersson shows that the two definitions of f (c)x coincide. The crucial step
in proving Theorem 6.5 is the following lemma.

LEMMA 6.6. Let c = (c1, . . . , cn) be bounded commuting operators on X and
let U be a pseudoconvex neighborhood of σ(c). If f ∈ O(U) and f (c) = 0 then
[ f (z) ωn

z−cx]∂ = 0, where ωn
z−cx is the component of bidegree (n, n − 1) of a solution

ωz−cx to ∇z−c ωz−cx = x in U \ σ(c).

Proof. Clearly we have ∇z−c f (z)ωz−cx = f (z)x in U \ σ(c). From the ho-
mological construction we see that x f (z) must be∇z−c-exact in U since f (c)x = 0.
Hence, x f (z) = ∇z−c u(z) for some u ∈ L −1(U, X). Thus, u− f (z)ωz−cx is∇z−c-
closed in U \ σ(c). Since TotL (U \ σ(c), X) is exact there is a v ∈ L −2(U \ σ(c), X)
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such that u(z)− f (z)ωz−cx = ∇z−c v(z) in U \ σ(c). Identifying terms of bidegree
(n, n− 1) we see that

(6.2) un,n−1 − f (z)ωn
z−cx = ∂vn,n−2

in U \ σ(c). Moreover, ∇z−c u = x f (z) so for bidegree reasons ∂ un,n−1 = 0. Since
U is pseudoconvex un,n−1 is actually ∂-exact and letting un,n−1 = ∂ ṽn,n−2 we get
from (6.2) that

f (z)ωn
z−cx = ∂(ṽn,n−2 − vn,n−2)

in U \ σ(c) which is what we wanted to show.

We proceed and prove Theorem 6.5.

Proof of Theorem 6.5. By Theorem 6.4 we know that both of the forms 〈b, λ〉n

〈z, λ〉−nωn
b x and 〈b, λ̃〉n〈z, λ̃〉−nωn

b x represent the functional calculus. We have
to show that they are ∂-cohomologous in U \ σ[b]. We let ρ be a projection from
[λ]. From the proof of Theorem 6.4 we see that ρ∗(〈b, λ〉n〈z, λ〉−nωn

b x) defines the
resolvent class ωζ−ρ([b]) corresponding to ρ([b]) if we choose b ∈ [b] such that
〈b, λ〉 = e. Hence, in the local coordinates ζ = ρ([z]) the difference between the
two forms has to be on the form

(1− f (ζ))ωζ−ρ([b])

where f is holomorphic in ρ(U). Now since both of the forms realize the func-
tional calculus we must have 1(ρ([b])) − f (ρ([b])) = 0. Hence from Lemma 6.6
we see that in the local coordinates, the two forms has to be ∂-cohomologuos in
ρ(U) \ σ(ρ([b])).

The function f (ζ) is the function 〈b, λ̃〉n〈z, λ̃〉−n in the local coordinates ζ.
Hence, we see that making a change of variables by a rational fractional trans-
form of Cn, computing the resolvent in the new coordinates and pulling it back,
we get 〈b, λ̃〉n〈z(ζ), λ̃〉−n times the resolvent we get if we compute it directly. The-
orem 6.5 implies that the two forms are ∂-cohomologous in suitable domains.
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