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ABSTRACT. There are examples of C∗-algebras A that accept a locally convex
∗-topology τ coarser than the given one, such that Ã[τ] (the completion of
A with respect to τ) is a GB∗-algebra. The multiplication of A[τ] may be or
not be jointly continuous. In the second case, Ã[τ] may fail being a locally
convex ∗-algebra, but it is a partial ∗-algebra. In both cases the structure and
the representation theory of Ã[τ] are investigated. If A τ

+ denotes the τ-closure
of the positive cone A+ of the given C∗-algebra A, then the property A τ

+ ∩
(−A τ

+) = {0} is decisive for the existence of certain faithful ∗-representations
of the corresponding ∗-algebra Ã[τ].
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1. INTRODUCTION

A mapping p of a ∗-subalgebra D(p) of a ∗-algebra A into R+ = [0, ∞)
is said to be an unbounded C∗-(semi)norm if it is a C∗-(semi)norm on D(p). Un-
bounded C∗-seminorms on ∗-algebras have appeared in many mathematical and
physical subjects (for example, locally convex ∗-algebras, the moment problem,
the quantum field theory etc.; see, e.g., [1], [18], [31], [33]). But a systematical
study seems far to be complete (cf. also Introduction of [19]). So we have tried to
study methodically unbounded C∗-seminorms and to apply such studies to those
locally convex ∗-algebras that accept such C∗-seminorms [8], [11], [12], [13]. A lo-
cally convex ∗-algebra is a ∗-algebra which is also a Hausdorff locally convex space
such that the multiplication is separately continuous and the involution is con-
tinuous. The studies of locally convex (∗)-algebras started with those of locally
m-convex (∗)-algebras by R. Arens [7] and E.A. Michael [25], in 1952. In fact, the
notion of a locally m-convex algebra was introduced by R. Arens [6], in 1946. For
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a complete account on locally m-convex algebras, see [26]. A locally convex ∗-
algebra A[τ] is said to be locally C∗-convex if the topology τ is determined by a di-
rected family {pλ}λ∈Λ of C∗-seminorms. A complete locally C∗-convex algebra is
said to be a pro-C∗-algebra [27] (or a locally C∗-algebra [22]). Every pro-C∗-algebra is
a projective limit of C∗-algebras. But it is difficult to study general locally convex
∗-algebras which are not locally C∗-convex, even if the multiplication is jointly
continuous. So the third author together with K.-D. Kürsten defined and studied
recently in [24] the so-called C∗-like locally convex ∗-algebras, that read as fol-
lows: IfA[τ] is a locally convex ∗-algebra, a directed family Γ = {pλ}λ∈Λ of semi-
norms determining the topology τ is said to be C∗-like if for any λ ∈ Λ there exists
λ′ ∈ Λ such that pλ(xy) 6 pλ′ (x)pλ′ (y), pλ(x∗) 6 pλ′ (x) and pλ(x)2 6 pλ′ (x∗x)
for any x, y ∈ A. Of course, pλ

′s are not necessarily C∗-seminorms; nevertheless,
an unbounded C∗-norm pΓ of A is defined by them in the following way:

D(pΓ) =
{

x ∈ A : sup
λ∈Λ

pλ(x) < ∞
}

with pΓ(x) := sup
λ∈Λ

pλ(x), x ∈ D(pΓ).

A locally convex ∗-algebra A[τ] is said to be C∗-like if it is complete and there is a
C∗-like family Γ = {pλ}λ∈Λ of seminorms determining the topology τ such that
D(pΓ) is τ-dense in A[τ]. In 1967, G.R. Allan [3] introduced and studied a class of
locally convex ∗-algebras called GB∗-algebras. In 1970, P.G. Dixon [16] modified
Allan’s definition in the class of topological ∗-algebras, so that this wider class
of GB∗-algebras includes certain non-locally convex ∗-algebras. The notion of a
GB∗-algebra is a generalization of a C∗-algebra. Given a locally convex ∗-algebra
A[τ] with identity 1, denote by B∗ the collection of all closed, bounded, absolutely
convex subsets B ofA satisfying 1 ∈ B, B∗ = B and B2 ⊂ B. For every B ∈ B∗, the
linear span of B forms a normed ∗-algebra under the Minkowski functional ‖ · ‖B
of B, and it is denoted by AlgB (simply, A[B]). If A[B] is complete for every B ∈
B∗, then A[τ] is said to be pseudo-complete. If A[τ] is sequentially complete, then
it is pseudo-complete. Let A[τ] be a pseudo-complete locally convex ∗-algebra.
If B∗ has the greatest member B0 and (1 + x∗x)−1 ∈ A[B0] for every x ∈ A, then
A[τ] is said to be a GB∗-algebra over B0. If A[τ] is a GB∗-algebra over B0, then
A[B0] is a C∗-algebra and ‖ · ‖B0 is an unbounded C∗-norm of A[τ]. Thus, the
study of unbounded C∗-seminorms may be useful for investigations on locally
convex ∗-algebras of this type. Let A[τ] be a locally convex ∗-algebra and p an
unbounded C∗-norm of A[τ]. Then

D(p) ⊂ A[τ] ⊂ Ã[τ] and D(p) ⊂ Ap ≡ D̃(p)[p] (C∗-algebra),

where Ã[τ] and Ap denote the completions of A[τ] and D(p)[p], respectively. But
we have no relation of Ã[τ] with the C∗-algebra Ap, in general.

Suppose now that the following condition (N1) holds:

(N1) The topology defined by p is stronger than the topology τ on D(p)
(simply, τ ≺ p).
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Then the identity map i : D(p) → A[τ] is continuous, therefore it can be
extended to a continuous linear map ĩ of Ap into Ã[τ], where ĩ is not necessarily
an injection. It is easily shown that ĩ is an injection if and only if the following
condition (N2) is satisfied:

(N2) τ and p are compatible in the sense that, for any Cauchy net {xα} in

D(p)[p] such that xα
τ−→ 0, then xα

p
−→ 0.

In this case we say that Ap is imbedded in Ã[τ] and we write
Ã[p] ↪→ Ã[τ]. Moreover, we have

D(p) ⊂ A[τ] ↪→ Ã[τ], respectively D(p) ⊂ Ap ↪→ Ã[τ].

An unbounded C∗-norm p is said to be normal, if it satisfies the conditions
(N1) and (N2).

The unbounded C∗-norms pΓ and ‖ · ‖B0 considered above are normal.
In this paper we shall investigate the structure and the representation theory

of locally convex ∗-algebras with normal unbounded C∗-norms. As stated above,
it is sufficient to investigate the completion Ã0[τ] of the C∗-algebra A0[‖ · ‖] with
respect to a locally convex topology τ on A0 such that τ ≺ ‖ · ‖. Then the follow-
ing cases arise:

Case 1: If the multiplication in A0 is jointly continuous with respect to the
topology τ, then Ã0[τ] is a complete locally convex ∗-algebra containing the C∗-
algebra A0[‖ · ‖] as a dense subalgebra.

Case 2: If the multiplication on A0 is not jointly continuous with respect to
τ, then Ã0[τ] is not necessarily a locally convex ∗-algebra, but it has the structure
of a partial ∗-algebra [4].

Under this stimulus, we investigate in the sequel the structure and the rep-
resentation theory of Ã0[τ].

2. CASE 1

In this section we study the structure and the representation theory of Ã0[τ]
as described in Case 1 before.

Suppose that A0[‖ · ‖0] is a C∗-algebra with identity 1, τ a locally convex
topology on A0 such that τ ≺ ‖ · ‖0 and A0[τ] a locally convex ∗-algebra with
jointly continuous multiplication (take, for instance, the C∗-algebra C[0, 1] of all
continuous functions on [0, 1], with the topology τ of uniform convergence on
the countable compact subsets of [0, 1]). As we shall shown in Example 4.1, the
C∗-algebra A0[‖ · ‖0] that determines the locally convex ∗-algebra Ã0[τ] is not
unique. For this reason, we denote by C∗(A0, τ) the set of all C∗-algebras A[‖ · ‖]
such that A0 ⊂ A ⊂ Ã0[τ], τ ≺ ‖ · ‖ and ‖x‖ = ‖x‖0, ∀x ∈ A0. Then C∗(A0, τ) is
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an ordered set with the order:

A1[‖ · ‖1] � A2[‖ · ‖2] if and only if A1 ⊂ A2 and ‖x‖1 = ‖x‖2, ∀x ∈ A1.

But we do not know whether there exists a maximal C∗-algebra in C∗(A0, τ).

LEMMA 2.1. We denote by Bτ the τ-closure of the unit ball U (A0) ≡ {x ∈ A0 :
‖x‖0 6 1} of the C∗-algebra A0[‖ · ‖0]. Then Bτ ∈ B∗ and A[Bτ ] is a Banach ∗-algebra
with the norm ‖ · ‖Bτ , satisfying the following conditions:

(i) (1 + x∗x)−1, x(1 + x∗x)−1 and (1 + x∗x)−1x exist in Bτ for every x ∈ Ã0[τ].
(ii) A0 ⊂ A[Bτ ] and ‖x‖0 = ‖x‖Bτ for each x ∈ A0. Hence, U (A0) = Bτ ∩A0 and

A0 is a closed ∗-subalgebra of the Banach ∗-algebra A[Bτ ].
(iii) A[Bτ ] is ‖ · ‖B-dense in A[B] for each B ∈ B∗ containing U (A0).

Proof. It is clear that Bτ ∈ B∗ and A[Bτ ] is a Banach ∗-algebra since Ã0[τ] is
complete.

(i) Take an arbitrary x ∈ Ã0[τ] and {xα} a net in A0 such that τ-lim
α

xα = x.

Then since A0 is a C∗-algebra, it follows first that (1 + x∗αxα)−1 ∈ U (A0), for every
α, and secondly that for any τ-continuous seminorm p

p((1 + x∗αxα)−1 − (1 + x∗βxβ)−1)

= p((1 + x∗αxα)−1(x∗βxβ − x∗αxα)(1 + x∗βxβ)−1)

6 q((1 + x∗αxα)−1)q((1 + x∗βxβ)−1)q(x∗βxβ − x∗αxα)

6 γ‖(1 + x∗αxα)−1‖0‖(1 + x∗βxβ)−1‖0 q(x∗βxβ − x∗αxα)

6 γq(x∗βxβ − x∗αxα)

for some γ > 0 and some τ-continuous seminorm q. Thus {(1 + x∗αxα)−1} is a
Cauchy net in Ã0[τ] and y ≡ lim

α
(1 + x∗αxα)−1 exists in Ã0[τ]. Since

1 = (1 + x∗αxα)(1 + x∗αxα)−1 = (1 + x∗αxα)−1(1 + x∗αxα), ∀α,

it follows that (1 + x∗x)−1 ∈ Ã0[τ] and y = (1 + x∗x)−1. Also, (1 + x∗x)−1 ∈ Bτ

and in a similar way we have that

x(1 + x∗x)−1 and (1 + x∗x)−1x belong to Bτ .

(ii) Since U (A0) ⊂ Bτ , it follows that A0 ⊂ A[Bτ ] and ‖x‖Bτ 6 ‖x‖0 for each
x ∈ A0. From the theory of C∗-algebras (see, for example, Proposition I.5.3 of
[32]), we have ‖x‖0 6 ‖x‖Bτ for each x ∈ A0. Hence, it follows that ‖x‖0 = ‖x‖Bτ ,
for each x ∈ A0, which implies that U (A0) = Bτ ∩ A0 and A0 is a closed ∗-
subalgebra of A[Bτ ].

(iii) Take an arbitrary B ∈ B∗ containing U (A0). Since B is τ-closed, it fol-
lows that Bτ ⊂ B, and so A[Bτ ] ⊂ A[B] and ‖x‖B 6 ‖x‖Bτ for each x ∈ A[Bτ ].
Let x ∈ A[B]. By (i) we have

x
(

1 +
1
n

x∗x
)−1

∈ A[Bτ ], ∀n ∈ N and
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lim
n→∞

∥∥∥x
(

1 +
1
n

x∗x
)−1

− x
∥∥∥

B
= lim

n→∞

1
n

∥∥∥xx∗x
(

1 +
1
n

x∗x
)−1∥∥∥

B

6 lim
n→∞

1
n
‖xx∗x‖B

∥∥∥(
1 +

1
n

x∗x
)−1∥∥∥

B

6 lim
n→∞

1
n
‖xx∗x‖B

∥∥∥(
1 +

1
n

x∗x
)−1∥∥∥

Bτ

6 lim
n→∞

1
n
‖xx∗x‖B = 0.

Hence, A[Bτ ] is ‖ · ‖B-dense in A[B]. This completes the proof.

By Lemma 2.1(i) A[Bτ ] is a symmetric Banach ∗-algebra, therefore by Pták’s
theory for hermitian algebras [28] (see, e.g., Corollary 3.4 and Theorem 3.2 of [20])
A[Bτ ] is hermitian and the Pták function defined as pA[Bτ ](x) := rA[Bτ ](x∗x)1/2, x
∈ A[Bτ ], where rA[Bτ ] is the spectral radius, is a C∗-seminorm satisfying pA[Bτ ](x)
6 ‖x‖Bτ , for each x ∈ A[Bτ ] and pA[Bτ ](x) 6 ‖x‖0, for each x ∈ A0. It is natural
to consider the following question:

Question A. Is Ã0[τ] a GB∗-algebra? When is Ã0[τ] a GB∗-algebra?

An answer is provided by the following:

THEOREM 2.2. The following statements are equivalent:
(i) Ã0[τ] is a GB∗-algebra.

(ii) There exists the greatest member B0 in B∗.
(iii) There exists a member B0 in B∗ containing U (A0) such that ‖ · ‖B0 is a C∗-norm.

If (iii) is true, then B0 in (iii) is the greatest member in B∗ and Ã0[τ] is a GB∗-
algebra over B0.

Proof. (i) ⇒ (iii) Since Ã0[τ] is a GB∗-algebra, there exists the greatest mem-
ber B0 in B∗. Then ‖ · ‖B0 is a C∗-norm and U (A0) ⊂ Bτ ⊂ B0, since Bτ ∈ B∗.

(iii) ⇒ (ii) Let B0 ∈ B∗ such that ‖ · ‖B0 is a C∗-norm and U (A0) ⊂ B0.
Take an arbitrary B ∈ B∗ and h∗ = h ∈ B. Let C be a maximal, commutative,
locally convex ∗-algebra containing h. Then C is a complete commutative locally
convex ∗-algebra. We denote by B∗C the collection of all closed, bounded, abso-
lutely convex subsets B1 of C satisfying: 1 ∈ B1, B∗1 = B1 and B2

1 ⊂ B1. Then
B∗C = {B2 ∩ C; B2 ∈ B∗}. We show that B ∩ C ⊂ B0 ∩ C. Since C is commuta-
tive and complete, it follows from Theorem 2.10 of [3], that B∗C is directed, so that
there exists B1 ∈ B∗C such that (B ∩ C) ∪ (B0 ∩ C) ⊂ B1. Then since the C∗-algebra
A[B0 ∩ C] = A[B0] ∩ C is contained in the Banach ∗-algebra A[B1], it follows from
Proposition I.5.3 of [32] that

‖x‖B0 = ‖x‖B0∩C 6 ‖x‖B1 , ∀x ∈ A[B0] ∩ C.

On the other hand, since B0 ∩ C ⊂ B1, it follows that

‖x‖B1 6 ‖x‖B0∩C = ‖x‖B0 , ∀x ∈ A[B0] ∩ C.
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Thus, we have

(2.1) ‖x‖B1 = ‖x‖B0 , ∀x ∈ A[B0] ∩ C

and the C∗-algebra A[B0] ∩ C is ‖ · ‖B1 -dense in the Banach ∗-algebra A[B1]. In-
deed, from Lemma 2.1(i)

x
(

1 +
1
n

x∗x
)−1

∈ A[Bτ ], ∀x ∈ A[B1] and ∀n ∈ N.

It is easily shown that {x, (1 + y∗y)−1 : x, y ∈ C} is commutative, so that by the
maximality of C, {(1 + y∗y)−1 : y ∈ C} ⊂ C. Furthermore, it follows from the
assumption U (A0) ⊂ B0, that A[Bτ ] ∩ C ⊂ A[B0] ∩ C. Hence,

x
(

1 +
1
n

x∗x
)−1

∈ A[Bτ ] ∩ C ⊂ A[B0] ∩ C.

In a similar way as in the proof of Lemma 2.1(iii) we can show that∥∥∥x
(

1 +
1
n

x∗x
)−1

− x
∥∥∥

B1
6

1
n
‖xx∗x‖B1 .

Hence, A(B0]∩C is ‖ · ‖B1 -dense in A[B1]. By (2.1) A[B0]∩C = A[C ∩B0] = A[B1],
and so B0 ∩ C = B1. Thus, B ∩ C ⊂ B0 ∩ C. Therefore, h ∈ B0 and if Bh = {x ∈ B :
x∗ = x}, we have Bh ⊂ (B0)h, which implies that ‖x‖2

B0
= ‖x∗x‖B0 6 1 for each

x ∈ B. Hence, B ⊂ B0 and B0 is the greatest member in B∗.
(ii) ⇒ (i) This follows from Lemma 2.1(i) and so the proof is complete.

By Theorem 2.2 we have the next:

COROLLARY 2.3. Consider the following statements:
(i) Ã0[τ] is a GB∗-algebra over U (A0).

(ii) U (A0) is τ-closed.
(iii) Ã0[τ] is a GB∗-algebra over Bτ .
(iv) Bτ is the greatest member in B∗.
(v) ‖ · ‖Bτ is a C∗-norm.

Then the following implications hold: (i) ⇔ (ii) ⇒ (iii) ⇔ (iv) ⇔ (v).

We investigate now the representation theory of Ã0[τ]. We begin with some
basic terminology. For more details see [23], [30]. Let D be a dense subspace of a
Hilbert space H. Denote by L(D) all linear operators from D into D and let

L†(D) := {X ∈ L(D) : D(X∗) ⊃ D and X∗D ⊂ D}.

L†(D) is a ∗-algebra, under the usual algebraic operations and the involution
X → X† := X∗ � D. Furthermore, L†(D) is a locally convex ∗-algebra equipped
with the topology τw (respectively τs∗ ) defined by the family {pξ,η(·) : ξ, η ∈
D} of seminorms with pξ,η(X) := |(Xξ|η)|, X ∈ L†(D) (respectively the family
{p†

ξ(·) : ξ ∈ D} of seminorms with p†
ξ(X) := ‖Xξ‖ + ‖X†ξ‖, X ∈ L†(D)). A

∗-subalgebra of L†(D) is said to be an O∗-algebra on D. Let A be a ∗-algebra. A
∗-homomorphism π : A → L†(D) is called (unbounded) ∗-representation of A
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on the Hilbert space H, with domain D. If A has an identity, say 1, we suppose
that π(1) = I, with I the identity operator in L†(D). From now on, we shall use
the notation: D(π) for the domain of π and Hπ for the corresponding Hilbert
space. A ∗-representation π of A is said to be faithful if π(a) = 0, a ∈ A, implies
a = 0. A ∗-representation π of a locally convex ∗-algebra A[τ] is said to be (τ −
τw)-continuous (respectively (τ − τs∗ )-continuous) if it is continuous from A[τ] to
π(A)[τw] (respectively to π(A)[τs∗ ]).

We define now a wedge Ã0[τ]+ of Ã0[τ]. Take an arbitrary C∗-algebra
A[‖ · ‖] ∈ C∗(A0, τ). Then we have A τ

+ = (A0)
τ
+, where A+ and (A0)+ are

positive cones in the C∗-algebras A and A0 respectively. Indeed, take an arbi-
trary a ∈ A+. Then there is a net {xα} in A0 such that τ − lim

α
xα = a1/2. Hence,

{x∗αxα} ⊂ (A0)+ and τ − lim
α

x∗αxα = a. This implies that A τ
+ ⊂ (A0)

τ
+. The con-

verse is clear. Thus, the τ-closure A0
τ
+ of (A0)+ is independent of the method of

taking C∗-algebras in C∗(A0, τ), therefore in the sequel we shall denote by Ã0[τ]+
the τ-closure of (A0)+. So Ã0[τ]+ is a wedge (in the sense that if x, y ∈ Ã0[τ]+
and λ > 0, then x + y, λx ∈ Ã0[τ]+), and Ã0[τ]+ = P(Ã0[τ])

τ
(the τ-closure of

the algebraic wedge P(Ã0[τ]) ≡
{ n

∑
k=1

x∗k xk : xk ∈ Ã0[τ] (k = 1, . . . , n), n ∈ N
}

).

A linear functional f on Ã0[τ] is said to be strongly positive (respectively
positive) if f (x) > 0 for each x ∈ Ã0[τ]+ (respectively x ∈ P(Ã0[τ])).

THEOREM 2.4. The following statements are equivalent:
(i) Ã0[τ]+ ∩ (−Ã0[τ]+) = {0}.

(ii) A[Bτ ]+ ∩ (−A[Bτ ]+) = {0}.
(iii) The Pták function pA[Bτ ] on the Banach ∗-algebra A[Bτ ] is a C∗-norm (see com-

ments before Question A).
(iv) There exists a faithful ∗-representation of Ã0[τ].
(v) There exists a faithful (τ − τs∗ )-continuous ∗-representation of Ã0[τ].

Proof. (i) ⇒ (v) Let F be the set of all τ-continuous strongly positive linear
functionals on Ã0[τ]. Let (π f , λ f ,H f ) be the GNS-construction for f ∈ F . We put

D(π) :=
{

(λ f (x f )) ∈
⊕
f∈F

H f : λ f (x f ) = 0 except for a finite number of f ∈ F
}

π(a)(λ f (x f )) := (λ f (ax f )), a ∈ Ã0[τ], (λ f (x f )) ∈ D(π).

Then it is easily shown that π is a (τ − τs∗ )-continuous ∗-representation of Ã0[τ].
We show that π is faithful. In fact, suppose 0 6= a ∈ Ã0[τ]h (the hermitian part
of Ã0[τ]). Let a ∈ Ã0[τ]+. Since Ã0[τ]+ ∩ (−Ã0[τ]+) = {0}, we have Ã0[τ]+ ∩
{−a} = φ. Then it follows from Chapter II, Section 5, Proposition 4 in [15], that
there exists a τ-continuous strongly positive linear functional f on Ã0[τ] such
that f (a) > 0. Let a 6∈ Ã0[τ]+. Since Ã0[τ]+ ∩ {a} = φ, we can show in a
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similar way that there exists a τ-continuous strongly positive linear functional f
on Ã0[τ] such that f (a) < 0. Since (π f (a)λ f (1)|λ f (1)) = f (a) 6= 0 this implies
that π f (a) 6= 0, and so π(a) 6= 0. Similarly, for any 0 6= a ∈ Ã0[τ] we have
π(a) 6= 0 by considering a = a1 + ia2 (a1, a2 ∈ Ã0[τ]h).

(v) ⇒ (iv) This is trivial.
(iv) ⇒ (iii) Let π be a faithful ∗-representation of Ã0[τ]. Since A[Bτ ] is a

symmetric Banach ∗-algebra by Lemma 2.1(i), it follows from Theorem 3.2 and
Corollary 3.4 in [20], that the Pták function pA[Bτ ] is a C∗-seminorm. In particular
(Raikov criterion for symmetry),

pA[Bτ ](x) = sup
ρ∈Rep(A[Bτ ])

‖ρ(x)‖, x ∈ A[Bτ ],

where Rep(A[Bτ ]) denotes the set of all ∗-representations of A[Bτ ]. Suppose
pA[Bτ ](x) = 0. Since π � A[Bτ ] ∈ Rep(A[Bτ ]), we have π(x) = 0, and so x = 0.
Thus pA[Bτ ] is a C∗-norm.

(iii) ⇒ (ii) We first show that

(2.2) SpA[Bτ ](x) ⊂ R+ ≡ {λ ∈ R : λ > 0}, ∀x ∈ A[Bτ ]+,

where SpA[Bτ ](x) stands for the spectrum of x ∈ A[Bτ ]. In fact, take an arbitrary
x ∈ A[Bτ ]+ and a net {xα} in (A0)+ that converges to x with respect to τ. Since
A[Bτ ] is hermitian ([20], Corollary 3.4), it follows that SpA[Bτ ](x) ⊂ R. Let λ <

0. Notice that λ(λ1 − xα)−1 ∈ U (A0), for every α. Then for any τ-continuous
seminorm p on Ã0[τ]

p(λ(λ1− xα)−1 − λ(λ1− xβ)−1)

= |λ|p((λ1− xα)−1(xα − xβ)(λ1− xβ)−1)

6 |λ|q((λ1− xα)−1)q(xα − xβ)q((λ1− xβ)−1)

6
1
|λ|

γ‖λ(λ1− xα)−1‖0‖λ(λ1− xβ)−1‖0 q(xα − xβ)

6
γ

|λ|
q(xα − xβ)

for some constant γ > 0 and a τ-continuous seminorm q on Ã0[τ]. It follows that
λ(λ1 − xα)−1 converges to an element y of Bτ with respect to τ, which implies
that λ(λ1 − x)−1 exists and equals y. Hence, λ 6∈ SpA[Bτ ](x). Thus, we have
SpA[Bτ ](x) ⊂ R+. Take an arbitrary x ∈ A[Bτ ]+ ∩ (−A[Bτ ]+). Then from (2.2), it
follows that SpA[Bτ ](x) = {0}, therefore pA[Bτ ](x) = rA[Bτ ](x) = 0. Since pA[Bτ ] is
a norm, we have x = 0.

(ii)⇒ (i) Take an arbitrary a ∈ Ã0[τ]+ ∩ (−Ã0[τ]+). Then from Lemma 2.1(i)
it follows that a(1 + a2)−1 ∈ A[Bτ ]+ ∩ (−A[Bτ ]+) = {0}, which implies a = 0.
This completes the proof.
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In the case of C∗-algebras (respectively pro-C∗-algebras), condition (ii) of
Theorem 2.4, is always true. Also see Example 4.4 in Section 4. In the case of sym-
metric Banach ∗-algebras (respectively symmetric topological ∗-algebras), which
in fact can be viewed as a generalization of C∗-algebras [28] (respectively pro-C∗-
algebras), it seems that such a property has not been investigated. Some infor-
mation about the set A+, with A a certain involutive algebra can be found in [14]
and [29].

Question B. (i) Is P(Ã0[τ]) τ-closed? That is, does the equality Ã0[τ]+
= P(Ã0[τ]) hold? Equivalently, for each net {xα} in (A0)+ which converges to
x ∈ Ã0[τ], is {x1/2

α } τ-Cauchy?
(ii) Does one of the conditions in Theorem 2.4 always hold?

If Ã0[τ] is a GB∗-algebra, then the above questions (i) and (ii) have positive
answers. Does the converse hold? That is, the following question arises.

Question C. If the answer to Question B is affirmative, is then Ã0[τ] a GB∗-
algebra?

To consider Question C, we define an unbounded C∗-seminorm rπ of Ã0[τ]
induced by a ∗-representation π of Ã0[τ] as follows:

D(rπ) = Ã0[τ]πb := {x ∈ Ã0[τ] : π(x) ∈ B(Hπ)},

rπ(x) = ‖π(x)‖, x ∈ D(rπ).

Then we have the next:

LEMMA 2.5. Let π be a faithful ∗-representation of Ã0[τ] and B any element of
B∗ containing U (A0). Then the following statements hold:

(i) A0 ⊂ A[Bτ ] ⊂ A[B] ⊂ D(rπ) = Ã0[τ]πb and ‖π(x)‖ 6 ‖x‖B, ∀x ∈ A[B], as
well as ‖π(x)‖ = ‖x‖Bτ = ‖x‖0, ∀x ∈ A0.

(ii) π(A[B]) is τs∗ -dense in π(Ã0[τ]), and it is also uniformly dense in π(Ã0[τ]πb ).
(iii) Suppose π is (τ − τw)-continuous. Then π(Ã0[τ]+) ⊂ L†(D(π))+ ≡ {X ∈

L†(D(π)) : X > 0}.

Proof. (i) is easily shown.
(ii) Take an arbitrary a ∈ Ã0[τ]. Then it follows that

(1 + εa∗a)−1a =
1√
ε
(1 + (

√
εa)∗(

√
εa))−1(

√
εa) ∈ A[Bτ ], ∀ε > 0

and for each ξ ∈ D(π)

‖π((1 + εa∗a)−1a)ξ − π(a)ξ‖ = ε‖π((1 + εa∗a)−1)π(a∗a2)ξ‖

6 ε‖π((1 + εa∗a)−1)‖‖π(a∗a2)ξ‖

6 ε‖(1 + εa∗a)−1‖Bτ‖π(a∗a2)ξ‖

6 ε‖π(a∗a2)ξ‖ −−→
ε↓0

0,
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so that π(A[Bτ ]) is τs∗ -dense in π(Ã0[τ]). Take an arbitrary a ∈ Ã0[τ]πb . Then
since

‖π((1 + εa∗a)−1a)ξ − π(a)ξ‖ 6 ε‖π(a∗a2)‖‖ξ‖

for each ξ ∈ D(π), it follows that lim
ε↓0

π((1 + εa∗a)−1a) = π(a) uniformly, which

implies that π(A[Bτ ]) is uniformly dense in π(Ã0[τ]πb ). Since A[Bτ ] ⊂ A[B], (ii)
follows.

(iii) This follows from (τ− τw)-continuity of π and π((A0)+)⊂L†(D(π))+.
This completes the proof.

We simply sketch how Lemma 2.5 looks:

π : Ã0[τ] −−−−−−−−−−→ π(Ã0[τ])

∪ ∪ τs∗ -dense

Ã0[τ]πb −−−−−−−−−−→ π(Ã0[τ]πb )

∪ ∪ uniformly dense

A[Bτ ] −−−−−−−−−−→ π(A[Bτ ])
symmetric
Banach ∗-algebra

∪ ∪

A0[‖ · ‖] −−−−−−−−−−→ π(A0)
C∗-algebra C∗-algebra on Hπ .

The following theorem gives an answer to Question C.

THEOREM 2.6. The following statements are equivalent:
(i) Ã0[τ] is a GB∗-algebra.

(ii) There exists a faithful (τ− τs∗ )-continuous ∗-representation π of Ã0[τ], such that
τ ≺ rπ .

Proof. (i) ⇒ (ii) Suppose Ã0[τ] is a GB∗-algebra over B0. Since A[Bτ ]+ ∩
(−A[Bτ ]+) ⊂ A[B0]+ ∩ (−A[B0]+) = {0}, Theorm 2.4 implies the existence
of a faithful (τ − τs∗ )-continuous ∗-representation of Ã0[τ]. Furthermore, since
π(A[B0]) is a C∗-algebra, Lemma 2.5(ii) yields that

π(A[B0]) = π(Ã0[τ]πb ) and rπ(x) = ‖π(x)‖ = ‖x‖B0 , ∀x ∈ D(rπ),

which implies τ ≺ rπ .
(ii) ⇒ (i) Since τ ≺ rπ and π is (τ − τs∗ )-continuous, it follows that τ and

rπ are compatible, whence one gets that the completion Arπ of D(rπ)[rπ ] is em-
bedded in Ã0[τ]. We denote by B0 the τ-closure of the unit ball U (Arπ ) of the
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C∗-algebra Arπ . Then B0 ∈ B∗ and from Lemma 2.5(i) we get

B ⊂ U (Ã0[τ]πb ) ⊂ B0, ∀B ∈ B∗,

which implies that B0 = U (Ã0[τ]πb ), with B0 the greatest member in B∗. Thus,
from Theorem 2.2, we conclude that Ã0[τ] is a GB∗-algebra over U (Ã0[τ]πb ) and
this completes the proof.

It is known that every ∗-representation π of a Fréchet ∗-algebra A[τ] is (τ −
τs∗ )-continuous. Indeed, take an arbitrary ξ ∈ D(π) and put fξ(x) := (π(x)ξ|ξ),
x ∈ A. Then fξ is a positive linear functional on the Fréchet ∗-algebraA[τ], which
is continuous by Theorem 4.3 of [17]. Furthermore, since the multiplication of a
Fréchet ∗-algebra is jointly continuous, it follows that π is (τ − τs∗ )-continuous.
From this fact, as well as Theorem 2.6, we conclude the following:

COROLLARY 2.7. Let Ã0[τ] be a Fréchet ∗-algebra. Then the following are equiv-
alent:

(i) Ã0[τ] is a GB∗-algebra.
(ii) There exists a faithful ∗-representation π of Ã0[τ] such that τ ≺ rπ .

3. CASE 2

In this section we shall investigate the structure and the representation the-
ory of Ã0[τ] as it appears in Case 2 in the Introduction. First we recall some basic
definitions and properties of partial ∗-algebras and quasi ∗-algebras (for more de-
tails, refer to [4]). A partial ∗-algebra is a vector space A, endowed with a vector
space involution x → x∗ and a partial multiplication defined by a set Γ ⊂ A×A
(a binary relation) with the properties:

(i) (x, y) ∈ Γ implies (y∗, x∗) ∈ Γ.
(ii) (x, y1), (x, y2) ∈ Γ implies (x, λy1 + µy2) ∈ Γ for all λ, µ ∈ C.

(iii) For any (x, y) ∈ Γ, a multiplication xy ∈ A, is defined on A, which is dis-
tributive with respect to addition and satisfies the relation (xy)∗ = y∗x∗. When-
ever (x, y) ∈ Γ, we say that x is a left multiplier of y and y is a right multiplier of x,
and write x ∈ L(y) respectively y ∈ R(x).

Let A be a vector space and let A0 be a subspace of A, which is also a ∗-
algebra. A is said to be a quasi ∗-algebra with distinguished ∗-algebra A0 (or,
simply, over A0) if

(i1) the left multiplication ax and the right multiplication xa of an element a
of A with an element x of A0, that extend the multiplication of A0, are always
defined and are bilinear;

(i2) x1(x2a) = (x1x2)a, (ax1)x2 = a(x1x2) and x1(ax2) = (x1a)x2, for any
x1, x2 ∈ A0 and a ∈ A;
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(i3) an involution ∗ that extends the involution of A0 is defined in A with the
property (ax)∗ = x∗a∗ and (xa)∗ = a∗x∗ for each x ∈ A0 and a ∈ A.

Let A0[τ] be a locally convex ∗-algebra. Then the completion Ã0[τ] of A0[τ]
is a quasi ∗-algebra over A0 equipped with the following left and right multipli-
cations:

ax := lim
α

xαx and xa := lim
α

xxα, ∀ x ∈ A0 and a ∈ A,

where {xα} is a net in A0 converging to a with respect to the topology τ. Further-
more, the left and right multiplications are separately continuous. A ∗-invariant
subspace A of Ã0[τ] containing A0 is said to be a (quasi-) ∗-subalgebra of Ã0[τ] if
ax and xa belong to A for any x ∈ A0 and a ∈ A. Then it is readily shown that
A is a quasi ∗-algebra over A0. Moreover, A[τ] is a locally convex space contain-
ing A0 as a dense subspace and the right and left multiplications are separately
continuous. Such an algebraA is said to be a locally convex quasi ∗-algebra overA0.

Concerning ∗-representations of partial ∗-algebras and quasi ∗-algebras,
start with a dense subspace D of a Hilbert space H and denote by L†(D,H) the
set of all linear operators X from D to H such that D(X∗) ⊃ D. Then L†(D,H)
is a partial ∗-algebra with respect to the usual sum, scalar multiplication and
involution X† = X∗�D and the (weak) partial multiplication X2Y = X†∗Y, de-
fined whenever X is a left multiplier of Y (X ∈ L(Y)), that is, if and only if
YD ⊂ D(X†∗) and X†D ⊂ D(Y∗). A (partial) ∗-subalgebra of the partial ∗-algebra
L†(D,H) is said to be a partial O∗-algebra on D. A ∗-representation of a partial ∗-
algebra A is a ∗-homomorphism π of A into a partial O∗-algebra L†(D,H), in the
sense of Definition 2.1.6 in [4], satisfying π(1) = I, whenever 1 ∈ A.

In this case too, the spaces D and H will be denoted by D(π) and Hπ

respectively. The algebraic conjugate dual D† of D (i.e., the set of all conju-
gate linear functionals on D) becomes a vector space in a natural way. Denote
by L(D,D†) the set of all linear maps from D to D†. Then L(D,D†) is a ∗-
invariant vector space under the usual operations and the involution T → T†

with 〈T†ξ, η〉 := 〈Tη, ξ〉, ξ, η ∈ D, where 〈T†ξ, η〉 ≡ T†ξ(η). Any linear operator
X defined onD is regarded as an element of L(D,D†) such that 〈Xξ, η〉 = (Xξ|η),
ξ, η ∈ D. For L(D,D†) we have the following:

LEMMA 3.1. (i) L†(D,H) is regarded as a ∗-subalgebra of L(D,D†).
(ii) For any X ∈ L†(D) and T ∈ L(D,D†) we may define the multiplications X ◦ T

and T ◦ X by

〈X ◦ Tξ, η〉 := 〈Tξ, X†η〉 and 〈T ◦ Xξ, η〉 := 〈TXξ, η〉;

under these multiplications, L(D,D†) is a quasi ∗-algebra over L†(D).
(iii) The locally convex topology τw on L(D,D†) is defined by the family {pξ,η(·) :

ξ, η ∈ D} of seminorms with pξ,η(T) := |〈Tξ, η〉|, T ∈ L(D,D†), and it is called
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weak topology. It particular,

L(D,D†) = the set of all sesquilinear forms on D ×D = L̃†(D)[τw]

and L(D,D†)[τw] is a locally convex quasi ∗-algebra over L†(D). More generally, for
any O∗-algebra M on D, M̃[τw] is a locally convex quasi ∗-algebra over M.

A quasi ∗-representation of a quasi ∗-algebra A over A0 is naturally defined as a
linear map π of A into a quasi ∗-algebra L(D,D†) over L†(D) such that:

(i) π is a ∗-representation of the ∗-algebra A0;
(ii) π(a)† = π(a∗), ∀a ∈ A;

(iii) π(ax) = π(a) ◦ π(x) and π(xa) = π(x) ◦ π(a), ∀a ∈ A, ∀x ∈ A0.
It is easily shown that if π is a quasi ∗-representation of A, then π(A) is a

quasi ∗-algebra over π(A0).

LEMMA 3.2. Let A[τ] be a locally convex quasi ∗-algebra over A0 and π a quasi
∗-representation ofA. Suppose π is (τ− τw)-continuous. Then π(A) is a locally convex
quasi ∗-algebra over π(A0).

Proof. From Lemma 3.1(iii) and the (τ − τw)-continuity of π we have

π(A0) ⊂ π(A) ⊂ π̃(A0)[τw] and

π(x) ◦ π(a) = π(xa), π(a) ◦ π(x) = π(ax)

for each a ∈ A and x ∈ A0, which implies that π(A) is a quasi ∗-subalgebra of

π̃(A0)[τw]. Hence, π(A) is a locally convex quasi ∗-algebra over π(A0). So the
proof is complete.

Let A0[‖ · ‖0] be a C∗-algebra with 1 and τ a locally convex topology on A0
such that τ ≺ ‖ · ‖0 and A0[τ] a locally convex ∗-algebra whose multiplication is
not jointly continuous.

In general, Ã0[τ] is a quasi ∗-algebra over A0 (but not a ∗-algebra!). For
this reason, the theory of quasi ∗-algebras must be used. We remark that for
any A ∈ C∗(A0, τ), Ã[τ] = Ã0[τ] as locally convex spaces, but Ã[τ] is different
from Ã0[τ] as a quasi ∗-algebra. Moreover, the wedge Ã0[τ]+ of the quasi ∗-
algebra Ã0[τ] over A0, defined as the τ-closure of the positive cone (A0)+, does
not necessarily coincide with the wedge Ã[τ]+ of the quasi ∗-algebra Ã[τ] over
A, in contrast with Case 1 (see the discussion before Theorem 2.4).

A linear functional f on Ã0[τ], such that f (x) > 0, for each x ∈ A0[τ]+, is
said to be a strongly positive linear functional on the quasi ∗-algebra Ã0[τ] over A0.
Regarding the representation theory of Ã0[τ] we have the next:

THEOREM 3.3. The following statements are equivalent:
(i) Ã0[τ]+ ∩ (−Ã0[τ]+) = {0}.

(ii) There exists a faithful (τ − τw)-continuous quasi ∗-representation of the quasi
∗-algebra Ã0[τ] over A0.
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Proof. (i) ⇒ (ii) Let F be the set of all τ-continuous strongly positive linear
functionals on the quasi ∗-algebra Ã0[τ] over A0. For any f ∈ F we denote by
(π f , λ f ,H f ) the GNS-construction for f � A0. Let f ∈ F . For any a ∈ Ã0[τ]
we put

〈λ̃ f (a), λ f (x)〉 = f (x∗a), x ∈ A0.

Then since f is τ-continuous, it follows that

| f (x∗a)|2 = lim
α
| f (x∗xα)|2 6 lim

α
f (x∗x) f (x∗αxα),

for each a ∈ Ã0[τ] and x ∈ A0, where {xα} is a net in A0 converging to a with
respect to τ; it follows that λ̃ f (a) is well-defined and belongs to the algebraic
conjugate dual λ f (A0)† of the vector space λ f (A0). It is clear that λ̃ f is a linear
map of Ã0[τ] into the vector space λ f (A0)†, which is an extension of λ f . Put

D(π) :=
{

(λ f (x f )) f∈F ∈
⊕
f∈F

H f : x f ∈A0 and λ f (x f )=0

except for a finite number of f ∈F
}

,

and for (λ f (x f )) ∈ D(π)

〈(λ̃ f (a f )), (λ f (x f ))〉 = ∑
f∈F

〈λ̃ f (a f ), λ f (x f )〉 = ∑
f∈F

f (x∗f a f ), a f ∈ Ã0[τ].

Then (λ̃ f (a f )) ∈ D(π)†. Furthermore, for any a ∈ A, put

π(a)(λ f (x f )) = (λ̃ f (ax f )), (λ f (x f )) ∈ D(π).

It is easily shown that π is a quasi ∗-representation of the quasi ∗-algebra Ã0[τ]
over A0. Moreover, the (τ − τw)-continuity of π follows from

〈π(a)(λ f (x f )), (λ f (y f ))〉 = ∑
f∈F

f (y∗f ax f ),

for any a ∈ A, (λ f (x f )) and (λ f (y f )) in D(π) and from the τ-continuity of f ∈ F .
The faithfulness of π is shown in a similar way as in the proof of Theorem 2.4(i)
⇒ (v).

(ii) ⇒ (i) Let π be a faithful (τ − τw)-continuous quasi ∗-representation of
Ã0[τ] and a ∈ Ã0[τ]+ ∩ (−Ã0[τ]+). Then there is a net {xα} in (A0)+ such that
xα

τ−→ a. By the (τ − τw)-continuity of π we now have

〈π(a)ξ, ξ〉 = lim
α

(π(xα)ξ|ξ) > 0 and similarly 〈π(−a)ξ, ξ〉 > 0,

for each ξ ∈ D(π). Hence, 〈π(a)ξ, ξ〉 = 0 for each ξ ∈ D(π), which implies
〈π(a)ξ, η〉 = 0 for any ξ, η ∈ D(π), that is π(a) = 0. By the faithfulness of π we
have a = 0. This completes the proof.
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It is natural to consider the question: When there exists a faithful ∗-repre-
sentation π of the quasi ∗-algebra Ã0[τ] over A0 (into L†(D(π),Hπ))? For that,
we define the following notion: A subset G ofF is said to be separating if a ∈ Ã0[τ]
with f (a) = 0, for each f ∈ G, implies a = 0. For example, if F is separating and
G is dense in F with respect to the weak∗-topology, then G is separating.

PROPOSITION 3.4. The following statements are equivalent:
(i) There exists a faithful (τ − τw)-continuous ∗-representation π of the quasi ∗-

algebra Ã0[τ] over A0 (into L†(D(π),Hπ)).
(ii) Ã0[τ]+ ∩ (−Ã0[τ]+) = {0} and Fb is separating, where

Fb = { f ∈ F : ∀a ∈ Ã0[τ] ∃γa > 0 with | f (a∗x)|2 6 γa f (x∗x), ∀x ∈ A0}.

Proof. (i) ⇒ (ii) By Theorem 3.3 we have Ã0[τ]+ ∩ (−Ã0[τ]+) = {0}. For
each ξ ∈ D(π) we put fξ(a) = (π(a)ξ|ξ), a ∈ Ã0[τ]. Then it is easily shown
that { fξ : ξ ∈ D} is contained in Fb and it is separating by the faithfulness of π.
Hence, Fb is separating.

(ii) ⇒ (i) As shown in the proof of (i) ⇒ (ii) in Theorem 3.3, λ̃ f (a) ∈ λ f (A0)†

for each f ∈ F and a ∈ Ã0[τ] . Take arbitrary f ∈ Fb and a ∈ Ã0[τ]. Then since

|〈λ̃ f (a), λ f (x)〉|2 = | f (x∗a)|2 6 γa f (x∗x),

for each x ∈ A0, it follows from the Riesz theorem that λ̃ f (a) is regarded as an
element of H f . Now we put

D(π) = {(λ f (x f )) f∈Fb
: x f ∈ A0 and λ f (x f ) = 0

except for a finite number of f ∈ Fb}

and for a ∈ Ã0[τ],

π(a)((λ f (x f ))) = ((λ̃ f (ax f ))), (λ f (x f )) ∈ D(π).

Then π is a ∗-representation of Ã0[τ] into L†(D(π),Hπ). Furthermore, by the τ-
continuity of the elements of Fb it is easily shown that π is (τ − τw)-continuous,
while π is faithful since Fb is separating. This completes the proof.

4. EXAMPLES

In this section we give some examples, illustrating the results presented in
Sections 2 and 3.

EXAMPLE 4.1. Let A[τ] be a pro-C∗-algebra, or more generally a C∗-like
locally convex ∗-algebra with a C∗-like family Γ = {pλ}λ∈Λ of seminorms de-
termining the topology τ. Then pΓ ≡ sup

λ

pλ is a C∗-norm on the C∗-algebra

A0 ≡ D(pΓ) := {x ∈ A : pΓ(x) < ∞} and A = Ã0[τ]. In this case, Bτ ≡
U (pΓ)

τ
= U (pΓ). Here we give a concrete example.
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Let Ω be a locally compact space. We consider the following locally con-
vex ∗-algebras of functions on Ω with the usual operations f + g, λ f , f g and the
complex conjugate as involution:

C0(Ω): the C∗-algebra of all continuous functions on Ω which converge to
0 at the infinite point;

Cb(Ω): the C∗-algebra of all continuous and bounded functions on Ω;
B(Ω): the C∗-algebra of all bounded functions on Ω;
C(Ω): the pro-C∗-algebra of all continuous functions on Ω equipped with

the locally uniform topology τlu defined by the family {‖ · ‖K : K a compact
subset of Ω} of C∗-seminorms with ‖ f ‖K := sup

t∈K
| f (t)|;

F(Ω): the pro-C∗-algebra of all functions on Ω with the simple convergence
topology τs defined by the family of C∗-seminorms {pt : t ∈ Ω} with pt( f ) :=
| f (t)|.

Then

C0(Ω) ⊂ Cb(Ω) ⊂ C(Ω) = C̃0(Ω)[τlu] = C̃b(Ω)[τlu]
∩ ∩

B(Ω) ⊂ B̃(Ω)[τs] = C̃0(Ω)[τs] = C̃b(Ω)[τs] = F (Ω).

EXAMPLE 4.2. Let A[τ] be a GB∗-algebra over B0. Then A[B0][‖ · ‖B0 ] is a

C∗-algebra and Ã[B0][τ] = Ã[τ]. In this case, Bτ = U (A[B0])
τ

= U (A[B0]). The
Arens algebra (see [5]) A = Lω [0, 1] :=

⋂
16p<∞

Lp[0, 1] is a GB∗-algebra with the

usual operations f + g, λ f , f g, usual involution f ∗ and the topology τω defined
by the family {‖ · ‖p : 1 6 p < ∞} of the Lp-norms; moreover,

A[B0] = L∞[0, 1] ⊂ Lω [0, 1] = L̃∞[0, 1][τω ]

and

L̃∞[0, 1][‖ · ‖p] = Lp[0, 1], 1 6 p 6 ∞,

where Lp[0, 1] is a Banach quasi ∗-algebra over L∞[0, 1].

EXAMPLE 4.3. (i) The ∗-algebra B(H) of all bounded linear operators on
a Hilbert space H is a locally convex ∗-algebra equipped with the weak topol-
ogy τw. We investigate the structure of B̃(H)[τw]. Let S(H) be the set of all
sesquilinear forms on H×H. Then S(H) is a complete locally convex space un-
der the weak topology τw defined by the family {pξ,η(·) : ξ, η ∈ H} of semi-
norms with pξ,η(ϕ) = |ϕ(ξ, η)|, ϕ ∈ S(H). An element ϕ of S(H) is said to be
bounded if there exists a constant γ > 0 such that |ϕ(ξ, η)| 6 γ‖ξ‖‖η‖ for each
ξ, η ∈ H. Denote by Sb(H) the set of all bounded sesquilinear forms on H ×H,
and put S(H)+ ≡ {ϕ ∈ S(H) : ϕ > 0 if and only if ϕ(ξ, ξ) > 0, ∀ξ ∈ H} and
Sb(H)+ ≡ {ϕ ∈ Sb(H) : ϕ > 0}. It is easily shown that ϕ ∈ Sb(H) if and only if
there exists an element A of B(H) such that ϕ(ξ, η) = ϕA(ξ, η) := (Aξ|η) for any
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ξ, η ∈ H, and ϕ ∈ Sb(H)+ if and only if A > 0. Hence, Sb(H)[τw] is a locally con-
vex ∗-algebra equipped with the multiplication ϕA ϕB := ϕAB and the involution
ϕ∗A := ϕA∗ ; it is also isomorphic to the locally convex ∗-algebra B(H)[τw] with

respect to the map B(H)[τw] 3 A 7→ ϕA ∈ Sb(H)[τw]. So B̃(H)[τw] is isomorphic

to S̃b(H)[τw] = S(H) and it is a locally convex quasi ∗-algebra over B(H) under
the multiplications

(ϕ ◦ ϕA)(ξ, η) := ϕ(Aξ, η), (ϕA ◦ ϕ)(ξ, η) := ϕ(ξ, A∗η), ξ, η ∈ H,

for A ∈ B(H) and ϕ ∈ S̃b(H)[τw]. Furthermore, it is easily shown that

B̃(H)[τw]+ ∩ (−B̃(H)[τw]+) = {0}.

(ii) Let D be a dense subspace in a Hilbert space H. We introduce on L†(D,H)
the strong ∗-topology τDs∗ defined by the family {pξ , p†

ξ : ξ ∈ D} of seminorms

with pξ(X) := ‖Xξ‖, p†
ξ(X) := ‖X†ξ‖, X ∈ L†(D,H). Then ( ˜B(H) � D) [τDs∗ ] =

L†(D,H), but ( ˜B(H) � D) [τDs∗ ] is not a locally convex ∗-algebra, and so L†(D,H)
is not a locally convex ∗-algebra over B(H) � D. We put

B(D) := {A � D : A ∈ B(H), AD ⊂ D and A∗D ⊂ D}.

Then L†(D,H) is a quasi ∗-algebra over B(D), but as B̃(D)[τDs∗ ] ( L†(D,H), in
general, L†(D,H)[τDs∗ ] is not necessarily a locally convex quasi ∗-algebra over
B(D). Let H be an unbounded positive self-adjoint operator on H with H > I,

H =

∞∫
1

λ dEH(λ) the spectral resolution of H and D∞(H) =
∞⋂

n=1

D(Hn). Then

for any A ∈ B(H), EH(n)AEH(n) ∈ B(D∞(H)), for each n ∈ N and for n → ∞
it converges to A with respect to τ

D∞(H)
s∗ ; so L†(D∞(H),H)[τD

∞(H)
s∗ ] is a locally

convex quasi ∗-algebra over B(D∞(H)).

EXAMPLE 4.4. LetA[ be a unital C∗-algebra, with norm ‖ · ‖[ and involution
[. Let A[‖ · ‖] be a right Banach module over the C∗-algebra A[, with isometric
involution ∗ and such that A[ ⊂ A. Set A# = (A[)∗. We say that {A, ∗,A[, b} is a
CQ∗-algebra if

(i) A[ is dense in A with respect to its norm ‖ · ‖;
(ii) A0 ≡ A[ ∩A# is dense in A[ with respect to its norm ‖ · ‖[;

(iii) (xy)∗ = y∗x∗, ∀x, y ∈ A0;
(iv) ‖x‖[ = sup

a∈A,‖a‖61
‖ax‖, x ∈ A[.

Since ∗ is isometric, it is easy to see that the space A# itself is a C∗-algebra with
respect to the involution x# ≡ (x∗)[∗ and the norm ‖x‖# ≡ ‖x∗‖[. A CQ∗-algebra
is called proper if A# = A[. For CQ∗-algebras we refer to [9], [10].
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Let {A, ∗,A[, [} be a proper CQ∗-algebra. Then we have

‖xy‖ 6 ‖x‖‖y‖[, ‖xy‖ 6 ‖y‖‖x‖#, ‖x∗‖ = ‖x‖, and (xy)∗ = y∗x∗,

for any x, y ∈ A[, and so A[[‖ · ‖] is a locally convex ∗-algebra with the involution
∗. Furthermore, since A = Ã[[‖ · ‖], it follows that A[‖ · ‖] is a locally convex
quasi ∗-algebra over A[. Consider the set S[(A)+ of all sesquilinear forms ϕ on
A×A such that:

(i1) ϕ(a, a) > 0, ∀a ∈ A;
(i2) ϕ(ax, y) = ϕ(x, a∗y), ∀a ∈ A, ∀x, y ∈ A[;
(i3) |ϕ(a, b)| 6 ‖a‖‖b‖, ∀a, b ∈ A.

Then (A, ∗,A[, [) is called ∗-semisimple if a ∈ A and ϕ(a, a) = 0, for every ϕ ∈
S[(A)+, implies a = 0. Suppose (A, ∗,A[, [) is a ∗-semisimple proper CQ∗-
algebra. Then A+ ∩ (−A+) = {0}. Indeed, for any ϕ ∈ S[(A)+ we define a
strongly positive linear functional on the quasi ∗-algebra A over A[ by fϕ(a) =
ϕ(a, 1), a ∈ A. Take an arbitrary h ∈ A+ ∩ (−A+). Then

fϕ(h) = lim
n→∞

fϕ(xn) > 0,

where {xn} ⊂ (A[)+ converges to h with respect to ‖ · ‖. Thus, fϕ(h) = 0, for
each ϕ ∈ S[(A)+. We want to prove that ϕ(h, h) = 0 for each ϕ ∈ S[(A)+.
Let x ∈ A[ with ‖x‖ 6 1. Then we may define an element ϕx of S[(A)+ by
ϕx(a, b) = ϕ(ax, bx) with a, b ∈ A. Hence, ϕ(hx, x) = 0 for each x ∈ A[, which
implies that ϕ(hx, y) = 0 for all x, y ∈ A[. Thus,

ϕ(h, h) = lim
n→∞

ϕ(h, xn) = 0, ∀ϕ ∈ S[(A)+ and therefore h = 0,

from the ∗-semisimplity of (A, ∗,A[, [).
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ADDED IN PROOFS. While this paper was under publication, question A was proved
in full and the answer can be found in Theorem 2.1 of [21].


