THE COMPLETION OF A C*-ALGEBRA WITH A LOCALLY CONVEX TOPOLOGY

FABIO BAGARELLO, MARIA FRAGOULOPOULOU, ATSUSHI INOUE and CAMILLO TRAPANI

Communicated by Şerban Strătilă

Abstract

There are examples of C^{*}-algebras \mathcal{A} that accept a locally convex *-topology τ coarser than the given one, such that $\widetilde{\mathcal{A}}[\tau]$ (the completion of \mathcal{A} with respect to τ) is a $G B^{*}$-algebra. The multiplication of $\mathcal{A}[\tau]$ may be or not be jointly continuous. In the second case, $\widetilde{\mathcal{A}}[\tau]$ may fail being a locally convex $*$-algebra, but it is a partial $*$-algebra. In both cases the structure and the representation theory of $\widetilde{\mathcal{A}}[\tau]$ are investigated. If $\overline{\mathcal{A}}_{+}^{\tau}$ denotes the τ-closure of the positive cone \mathcal{A}_{+}of the given C^{*}-algebra \mathcal{A}, then the property $\overline{\mathcal{A}}_{+}^{\tau} \cap$ $\left(-\overline{\mathcal{A}}_{+}^{\tau}\right)=\{0\}$ is decisive for the existence of certain faithful $*$-representations of the corresponding $*$-algebra $\widetilde{\mathcal{A}}[\tau]$.

KEYWORDS: GB*-algebra, unbounded C*-seminorm, partial *-algebra.
MSC (2000): 46K10, 47L60.

1. INTRODUCTION

A mapping p of a $*$-subalgebra $\mathcal{D}(p)$ of a $*$-algebra \mathcal{A} into $\mathbb{R}_{+}=[0, \infty)$ is said to be an unbounded C^{*}-(semi)norm if it is a C^{*}-(semi)norm on $\mathcal{D}(p)$. Unbounded C^{*}-seminorms on $*$-algebras have appeared in many mathematical and physical subjects (for example, locally convex $*$-algebras, the moment problem, the quantum field theory etc.; see, e.g., [1], [18], [31], [33]). But a systematical study seems far to be complete (cf. also Introduction of [19]). So we have tried to study methodically unbounded C^{*}-seminorms and to apply such studies to those locally convex $*$-algebras that accept such C^{*}-seminorms [8], [11], [12], [13]. A locally convex $*$-algebra is a $*$-algebra which is also a Hausdorff locally convex space such that the multiplication is separately continuous and the involution is continuous. The studies of locally convex $(*)$-algebras started with those of locally m-convex (*)-algebras by R. Arens [7] and E.A. Michael [25], in 1952. In fact, the notion of a locally m-convex algebra was introduced by R. Arens [6], in 1946. For
a complete account on locally m-convex algebras, see [26]. A locally convex *algebra $\mathcal{A}[\tau]$ is said to be locally C^{*}-convex if the topology τ is determined by a directed family $\left\{p_{\lambda}\right\}_{\lambda \in \Lambda}$ of C^{*}-seminorms. A complete locally C^{*}-convex algebra is said to be a pro-C*-algebra [27] (or a locally C^{*}-algebra [22]). Every pro-C*-algebra is a projective limit of C^{*}-algebras. But it is difficult to study general locally convex *-algebras which are not locally C^{*}-convex, even if the multiplication is jointly continuous. So the third author together with K.-D. Kürsten defined and studied recently in [24] the so-called C^{*}-like locally convex $*$-algebras, that read as follows: If $\mathcal{A}[\tau]$ is a locally convex $*$-algebra, a directed family $\Gamma=\left\{p_{\lambda}\right\}_{\lambda \in \Lambda}$ of seminorms determining the topology τ is said to be C^{*}-like if for any $\lambda \in \Lambda$ there exists $\lambda^{\prime} \in \Lambda$ such that $p_{\lambda}(x y) \leqslant p_{\lambda^{\prime}}(x) p_{\lambda^{\prime}}(y), p_{\lambda}\left(x^{*}\right) \leqslant p_{\lambda^{\prime}}(x)$ and $p_{\lambda}(x)^{2} \leqslant p_{\lambda^{\prime}}\left(x^{*} x\right)$ for any $x, y \in \mathcal{A}$. Of course, $p_{\lambda}{ }^{\prime} s$ are not necessarily C^{*}-seminorms; nevertheless, an unbounded C^{*}-norm p_{Γ} of \mathcal{A} is defined by them in the following way:

$$
\mathcal{D}\left(p_{\Gamma}\right)=\left\{x \in \mathcal{A}: \sup _{\lambda \in \Lambda} p_{\lambda}(x)<\infty\right\} \quad \text { with } p_{\Gamma}(x):=\sup _{\lambda \in \Lambda} p_{\lambda}(x), x \in \mathcal{D}\left(p_{\Gamma}\right)
$$

A locally convex $*$-algebra $\mathcal{A}[\tau]$ is said to be C^{*}-like if it is complete and there is a C^{*}-like family $\Gamma=\left\{p_{\lambda}\right\}_{\lambda \in \Lambda}$ of seminorms determining the topology τ such that $\mathcal{D}\left(p_{\Gamma}\right)$ is τ-dense in $\mathcal{A}[\tau]$. In 1967, G.R. Allan [3] introduced and studied a class of locally convex $*$-algebras called $G B^{*}$-algebras. In 1970, P.G. Dixon [16] modified Allan's definition in the class of topological $*$-algebras, so that this wider class of $G B^{*}$-algebras includes certain non-locally convex $*$-algebras. The notion of a $G B^{*}$-algebra is a generalization of a C^{*}-algebra. Given a locally convex $*$-algebra $\mathcal{A}[\tau]$ with identity 1 , denote by \mathcal{B}^{*} the collection of all closed, bounded, absolutely convex subsets \mathbf{B} of \mathcal{A} satisfying $1 \in \mathbf{B}, \mathbf{B}^{*}=\mathbf{B}$ and $\mathbf{B}^{2} \subset \mathbf{B}$. For every $\mathbf{B} \in \mathcal{B}^{*}$, the linear span of \mathbf{B} forms a normed $*$-algebra under the Minkowski functional $\|\cdot\|_{\mathbf{B}}$ of \mathbf{B}, and it is denoted by $\operatorname{Alg} \mathbf{B}$ (simply, $A[\mathbf{B}]$). If $A[\mathbf{B}]$ is complete for every $\mathbf{B} \in$ \mathcal{B}^{*}, then $\mathcal{A}[\tau]$ is said to be pseudo-complete. If $\mathcal{A}[\tau]$ is sequentially complete, then it is pseudo-complete. Let $\mathcal{A}[\tau]$ be a pseudo-complete locally convex $*$-algebra. If \mathcal{B}^{*} has the greatest member \mathbf{B}_{0} and $\left(1+x^{*} x\right)^{-1} \in A\left[\mathbf{B}_{0}\right]$ for every $x \in \mathcal{A}$, then $\mathcal{A}[\tau]$ is said to be a $G B^{*}$-algebra over \mathbf{B}_{0}. If $\mathcal{A}[\tau]$ is a $G B^{*}$-algebra over \mathbf{B}_{0}, then $A\left[\mathbf{B}_{0}\right]$ is a C^{*}-algebra and $\|\cdot\|_{\mathbf{B}_{0}}$ is an unbounded C^{*}-norm of $\mathcal{A}[\tau]$. Thus, the study of unbounded C^{*}-seminorms may be useful for investigations on locally convex $*$-algebras of this type. Let $\mathcal{A}[\tau]$ be a locally convex $*$-algebra and p an unbounded C^{*}-norm of $\mathcal{A}[\tau]$. Then

$$
\mathcal{D}(p) \subset \mathcal{A}[\tau] \subset \widetilde{\mathcal{A}}[\tau] \quad \text { and } \quad \mathcal{D}(p) \subset \mathcal{A}_{p} \equiv \widetilde{\mathcal{D}(p)}[p] \quad\left(C^{*} \text {-algebra }\right)
$$

where $\widetilde{\mathcal{A}}[\tau]$ and \mathcal{A}_{p} denote the completions of $\mathcal{A}[\tau]$ and $\mathcal{D}(p)[p]$, respectively. But we have no relation of $\widetilde{\mathcal{A}}[\tau]$ with the C^{*}-algebra \mathcal{A}_{p}, in general.

Suppose now that the following condition $\left(\mathrm{N}_{1}\right)$ holds:
$\left(\mathrm{N}_{1}\right)$ The topology defined by p is stronger than the topology τ on $\mathcal{D}(p)$ (simply, $\tau \prec p$).

Then the identity map $i: \mathcal{D}(p) \rightarrow \mathcal{A}[\tau]$ is continuous, therefore it can be extended to a continuous linear map \widetilde{i} of \mathcal{A}_{p} into $\widetilde{\mathcal{A}}[\tau]$, where \widetilde{i} is not necessarily an injection. It is easily shown that \widetilde{i} is an injection if and only if the following condition $\left(\mathrm{N}_{2}\right)$ is satisfied:
$\left(\mathrm{N}_{2}\right) \tau$ and p are compatible in the sense that, for any Cauchy net $\left\{x_{\alpha}\right\}$ in $\mathcal{D}(p)[p]$ such that $x_{\alpha} \xrightarrow{\tau} 0$, then $x_{\alpha} \xrightarrow{p} 0$.

In this case we say that \mathcal{A}_{p} is imbedded in $\widetilde{\mathcal{A}}[\tau]$ and we write $\widetilde{\mathcal{A}}[p] \hookrightarrow \widetilde{\mathcal{A}}[\tau]$. Moreover, we have

$$
\mathcal{D}(p) \subset \mathcal{A}[\tau] \hookrightarrow \widetilde{\mathcal{A}}[\tau], \quad \text { respectively } \mathcal{D}(p) \subset \mathcal{A}_{p} \hookrightarrow \widetilde{\mathcal{A}}[\tau] .
$$

An unbounded C^{*}-norm p is said to be normal, if it satisfies the conditions $\left(\mathrm{N}_{1}\right)$ and $\left(\mathrm{N}_{2}\right)$.

The unbounded C^{*}-norms p_{Γ} and $\|\cdot\|_{\mathbf{B}_{0}}$ considered above are normal.
In this paper we shall investigate the structure and the representation theory of locally convex $*$-algebras with normal unbounded C^{*}-norms. As stated above, it is sufficient to investigate the completion $\widetilde{\mathcal{A}}_{0}[\tau]$ of the C^{*}-algebra $\mathcal{A}_{0}[\|\cdot\|]$ with respect to a locally convex topology τ on \mathcal{A}_{0} such that $\tau \prec\|\cdot\|$. Then the following cases arise:

Case 1: If the multiplication in \mathcal{A}_{0} is jointly continuous with respect to the topology τ, then $\widetilde{\mathcal{A}}_{0}[\tau]$ is a complete locally convex $*$-algebra containing the C^{*} algebra $\mathcal{A}_{0}[\|\cdot\|]$ as a dense subalgebra.

Case 2: If the multiplication on \mathcal{A}_{0} is not jointly continuous with respect to τ, then $\widetilde{\mathcal{A}}_{0}[\tau]$ is not necessarily a locally convex $*$-algebra, but it has the structure of a partial $*$-algebra [4].

Under this stimulus, we investigate in the sequel the structure and the representation theory of $\widetilde{\mathcal{A}}_{0}[\tau]$.

2. CASE 1

In this section we study the structure and the representation theory of $\widetilde{\mathcal{A}}_{0}[\tau]$ as described in Case 1 before.

Suppose that $\mathcal{A}_{0}\left[\|\cdot\|_{0}\right]$ is a C^{*}-algebra with identity $1, \tau$ a locally convex topology on \mathcal{A}_{0} such that $\tau \prec\|\cdot\|_{0}$ and $\mathcal{A}_{0}[\tau]$ a locally convex $*$-algebra with jointly continuous multiplication (take, for instance, the C^{*}-algebra $\mathcal{C}[0,1]$ of all continuous functions on $[0,1]$, with the topology τ of uniform convergence on the countable compact subsets of $[0,1]$). As we shall shown in Example 4.1, the C^{*}-algebra $\mathcal{A}_{0}\left[\|\cdot\|_{0}\right]$ that determines the locally convex $*$-algebra $\widetilde{\mathcal{A}}_{0}[\tau]$ is not unique. For this reason, we denote by $C^{*}\left(\mathcal{A}_{0}, \tau\right)$ the set of all C^{*}-algebras $\mathcal{A}[\|\cdot\|]$ such that $\mathcal{A}_{0} \subset \mathcal{A} \subset \widetilde{\mathcal{A}}_{0}[\tau], \tau \prec\|\cdot\|$ and $\|x\|=\|x\|_{0}, \forall x \in \mathcal{A}_{0}$. Then $C^{*}\left(\mathcal{A}_{0}, \tau\right)$ is
an ordered set with the order:
$\mathcal{A}_{1}\left[\|\cdot\|_{1}\right] \preceq \mathcal{A}_{2}\left[\|\cdot\|_{2}\right]$ if and only if $\mathcal{A}_{1} \subset \mathcal{A}_{2}$ and $\|x\|_{1}=\|x\|_{2}, \forall x \in \mathcal{A}_{1}$.
But we do not know whether there exists a maximal C^{*}-algebra in $C^{*}\left(\mathcal{A}_{0}, \tau\right)$.
Lemma 2.1. We denote by \mathbf{B}_{τ} the τ-closure of the unit ball $\mathcal{U}\left(\mathcal{A}_{0}\right) \equiv\left\{x \in \mathcal{A}_{0}\right.$: $\left.\|x\|_{0} \leqslant 1\right\}$ of the C^{*}-algebra $\mathcal{A}_{0}\left[\|\cdot\|_{0}\right]$. Then $\mathbf{B}_{\tau} \in \mathcal{B}^{*}$ and $A\left[\mathbf{B}_{\tau}\right]$ is a Banach $*$-algebra with the norm $\|\cdot\|_{\mathbf{B}_{\tau}}$, satisfying the following conditions:
(i) $\left(1+x^{*} x\right)^{-1}, x\left(1+x^{*} x\right)^{-1}$ and $\left(1+x^{*} x\right)^{-1} x$ exist in \mathbf{B}_{τ} for every $x \in \widetilde{\mathcal{A}}_{0}[\tau]$.
(ii) $\mathcal{A}_{0} \subset A\left[\mathbf{B}_{\tau}\right]$ and $\|x\|_{0}=\|x\|_{\mathbf{B}_{\tau}}$ for each $x \in \mathcal{A}_{0}$. Hence, $\mathcal{U}\left(\mathcal{A}_{0}\right)=\mathbf{B}_{\tau} \cap \mathcal{A}_{0}$ and \mathcal{A}_{0} is a closed $*$-subalgebra of the Banach $*$-algebra $A\left[\mathbf{B}_{\tau}\right]$.
(iii) $A\left[\mathbf{B}_{\tau}\right]$ is $\|\cdot\|_{\mathbf{B}}$-dense in $A[\mathbf{B}]$ for each $\mathbf{B} \in \mathcal{B}^{*}$ containing $\mathcal{U}\left(\mathcal{A}_{0}\right)$.

Proof. It is clear that $\mathbf{B}_{\tau} \in \mathcal{B}^{*}$ and $A\left[\mathbf{B}_{\tau}\right]$ is a Banach $*$-algebra since $\widetilde{\mathcal{A}}_{0}[\tau]$ is complete.
(i) Take an arbitrary $x \in \widetilde{\mathcal{A}}_{0}[\tau]$ and $\left\{x_{\alpha}\right\}$ a net in \mathcal{A}_{0} such that τ - $\lim _{\alpha} x_{\alpha}=x$. Then since \mathcal{A}_{0} is a C^{*}-algebra, it follows first that $\left(1+x_{\alpha}^{*} x_{\alpha}\right)^{-1} \in \mathcal{U}\left(\mathcal{A}_{0}\right)$, for every α, and secondly that for any τ-continuous seminorm p

$$
\begin{aligned}
p\left(\left(1+x_{\alpha}^{*} x_{\alpha}\right)^{-1}\right. & \left.-\left(1+x_{\beta}^{*} x_{\beta}\right)^{-1}\right) \\
& =p\left(\left(1+x_{\alpha}^{*} x_{\alpha}\right)^{-1}\left(x_{\beta}^{*} x_{\beta}-x_{\alpha}^{*} x_{\alpha}\right)\left(1+x_{\beta}^{*} x_{\beta}\right)^{-1}\right) \\
& \leqslant q\left(\left(1+x_{\alpha}^{*} x_{\alpha}\right)^{-1}\right) q\left(\left(1+x_{\beta}^{*} x_{\beta}\right)^{-1}\right) q\left(x_{\beta}^{*} x_{\beta}-x_{\alpha}^{*} x_{\alpha}\right) \\
& \leqslant \gamma\left\|\left(1+x_{\alpha}^{*} x_{\alpha}\right)^{-1}\right\|_{0}\left\|\left(1+x_{\beta}^{*} x_{\beta}\right)^{-1}\right\|_{0} q\left(x_{\beta}^{*} x_{\beta}-x_{\alpha}^{*} x_{\alpha}\right) \\
& \leqslant \gamma q\left(x_{\beta}^{*} x_{\beta}-x_{\alpha}^{*} x_{\alpha}\right)
\end{aligned}
$$

for some $\gamma>0$ and some τ-continuous seminorm q. Thus $\left\{\left(1+x_{\alpha}^{*} x_{\alpha}\right)^{-1}\right\}$ is a Cauchy net in $\widetilde{\mathcal{A}}_{0}[\tau]$ and $y \equiv \lim _{\alpha}\left(1+x_{\alpha}^{*} x_{\alpha}\right)^{-1}$ exists in $\widetilde{\mathcal{A}}_{0}[\tau]$. Since

$$
1=\left(1+x_{\alpha}^{*} x_{\alpha}\right)\left(1+x_{\alpha}^{*} x_{\alpha}\right)^{-1}=\left(1+x_{\alpha}^{*} x_{\alpha}\right)^{-1}\left(1+x_{\alpha}^{*} x_{\alpha}\right), \quad \forall \alpha
$$

it follows that $\left(1+x^{*} x\right)^{-1} \in \widetilde{\mathcal{A}}_{0}[\tau]$ and $y=\left(1+x^{*} x\right)^{-1}$. Also, $\left(1+x^{*} x\right)^{-1} \in \mathbf{B}_{\tau}$ and in a similar way we have that

$$
x\left(1+x^{*} x\right)^{-1} \text { and }\left(1+x^{*} x\right)^{-1} x \text { belong to } \mathbf{B}_{\tau} .
$$

(ii) Since $\mathcal{U}\left(\mathcal{A}_{0}\right) \subset \mathbf{B}_{\tau}$, it follows that $\mathcal{A}_{0} \subset A\left[\mathbf{B}_{\tau}\right]$ and $\|x\|_{\mathbf{B}_{\tau}} \leqslant\|x\|_{0}$ for each $x \in \mathcal{A}_{0}$. From the theory of C^{*}-algebras (see, for example, Proposition I.5.3 of [32]), we have $\|x\|_{0} \leqslant\|x\|_{\mathbf{B}_{\tau}}$ for each $x \in \mathcal{A}_{0}$. Hence, it follows that $\|x\|_{0}=\|x\|_{\mathbf{B}_{\tau}}$, for each $x \in \mathcal{A}_{0}$, which implies that $\mathcal{U}\left(\mathcal{A}_{0}\right)=\mathbf{B}_{\tau} \cap \mathcal{A}_{0}$ and \mathcal{A}_{0} is a closed ${ }^{*}$ subalgebra of $A\left[\mathbf{B}_{\tau}\right]$.
(iii) Take an arbitrary $\mathbf{B} \in \mathcal{B}^{*}$ containing $\mathcal{U}\left(\mathcal{A}_{0}\right)$. Since \mathbf{B} is τ-closed, it follows that $\mathbf{B}_{\tau} \subset \mathbf{B}$, and so $A\left[\mathbf{B}_{\tau}\right] \subset A[\mathbf{B}]$ and $\|x\|_{\mathbf{B}} \leqslant\|x\|_{\mathbf{B}_{\tau}}$ for each $x \in A\left[\mathbf{B}_{\tau}\right]$. Let $x \in A[\mathbf{B}]$. By (i) we have

$$
x\left(1+\frac{1}{n} x^{*} x\right)^{-1} \in A\left[\mathbf{B}_{\tau}\right], \quad \forall n \in \mathbb{N} \text { and }
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|x\left(1+\frac{1}{n} x^{*} x\right)^{-1}-x\right\|_{\mathbf{B}} & =\lim _{n \rightarrow \infty} \frac{1}{n}\left\|x x^{*} x\left(1+\frac{1}{n} x^{*} x\right)^{-1}\right\|_{\mathbf{B}} \\
& \leqslant \lim _{n \rightarrow \infty} \frac{1}{n}\left\|x x^{*} x\right\|_{\mathbf{B}}\left\|\left(1+\frac{1}{n} x^{*} x\right)^{-1}\right\|_{\mathbf{B}} \\
& \leqslant \lim _{n \rightarrow \infty} \frac{1}{n}\left\|x x^{*} x\right\|_{\mathbf{B}}\left\|\left(1+\frac{1}{n} x^{*} x\right)^{-1}\right\|_{\mathbf{B}_{\tau}} \\
& \leqslant \lim _{n \rightarrow \infty} \frac{1}{n}\left\|x x^{*} x\right\|_{\mathbf{B}}=0 .
\end{aligned}
$$

Hence, $A\left[\mathbf{B}_{\tau}\right]$ is $\|\cdot\|_{\mathbf{B}}$-dense in $A[\mathbf{B}]$. This completes the proof.
By Lemma 2.1(i) $A\left[\mathbf{B}_{\tau}\right]$ is a symmetric Banach *-algebra, therefore by Pták's theory for hermitian algebras [28] (see, e.g., Corollary 3.4 and Theorem 3.2 of [20]) $A\left[\mathbf{B}_{\tau}\right]$ is hermitian and the Pták function defined as $p_{A\left[\mathbf{B}_{\tau}\right]}(x):=r_{A\left[\mathbf{B}_{\tau}\right]}\left(x^{*} x\right)^{1 / 2}, x$ $\in A\left[\mathbf{B}_{\tau}\right]$, where $r_{A\left[\mathbf{B}_{\tau}\right]}$ is the spectral radius, is a C^{*}-seminorm satisfying $p_{A\left[\mathbf{B}_{\tau}\right]}(x)$ $\leqslant\|x\|_{\mathbf{B}_{\tau}}$, for each $x \in A\left[\mathbf{B}_{\tau}\right]$ and $p_{A\left[\mathbf{B}_{\tau}\right]}(x) \leqslant\|x\|_{0}$, for each $x \in \mathcal{A}_{0}$. It is natural to consider the following question:

Question A. Is $\widetilde{\mathcal{A}}_{0}[\tau]$ a $G B^{*}$-algebra? When is $\widetilde{\mathcal{A}}_{0}[\tau]$ a $G B^{*}$-algebra?
An answer is provided by the following:
THEOREM 2.2. The following statements are equivalent:
(i) $\widetilde{\mathcal{A}}_{0}[\tau]$ is a $G B^{*}$-algebra.
(ii) There exists the greatest member \mathbf{B}_{0} in \mathcal{B}^{*}.
(iii) There exists a member \mathbf{B}_{0} in \mathcal{B}^{*} containing $\mathcal{U}\left(\mathcal{A}_{0}\right)$ such that $\|\cdot\|_{\mathbf{B}_{0}}$ is a C^{*}-norm. If (iii) is true, then \mathbf{B}_{0} in (iii) is the greatest member in \mathcal{B}^{*} and $\widetilde{\mathcal{A}}_{0}[\tau]$ is a $G B^{*}$ algebra over \mathbf{B}_{0}.

Proof. (i) \Rightarrow (iii) Since $\widetilde{\mathcal{A}}_{0}[\tau]$ is a $G B^{*}$-algebra, there exists the greatest member \mathbf{B}_{0} in \mathcal{B}^{*}. Then $\|\cdot\|_{\mathbf{B}_{0}}$ is a C^{*}-norm and $\mathcal{U}\left(\mathcal{A}_{0}\right) \subset \mathbf{B}_{\tau} \subset \mathbf{B}_{0}$, since $\mathbf{B}_{\tau} \in \mathcal{B}^{*}$.
(iii) \Rightarrow (ii) Let $\mathbf{B}_{0} \in \mathcal{B}^{*}$ such that $\|\cdot\|_{\mathbf{B}_{0}}$ is a C^{*}-norm and $\mathcal{U}\left(\mathcal{A}_{0}\right) \subset \mathbf{B}_{0}$. Take an arbitrary $\mathbf{B} \in \mathcal{B}^{*}$ and $h^{*}=h \in \mathbf{B}$. Let \mathcal{C} be a maximal, commutative, locally convex $*$-algebra containing h. Then \mathcal{C} is a complete commutative locally convex $*$-algebra. We denote by $\mathcal{B}_{\mathcal{C}}^{*}$ the collection of all closed, bounded, absolutely convex subsets \mathbf{B}_{1} of \mathcal{C} satisfying: $1 \in \mathbf{B}_{1}, \mathbf{B}_{1}^{*}=\mathbf{B}_{1}$ and $\mathbf{B}_{1}^{2} \subset \mathbf{B}_{1}$. Then $\mathcal{B}_{\mathcal{C}}^{*}=\left\{\mathbf{B}_{2} \cap \mathcal{C} ; \mathbf{B}_{2} \in \mathcal{B}^{*}\right\}$. We show that $\mathbf{B} \cap \mathcal{C} \subset \mathbf{B}_{0} \cap \mathcal{C}$. Since \mathcal{C} is commutative and complete, it follows from Theorem 2.10 of [3], that $\mathcal{B}_{\mathcal{C}}^{*}$ is directed, so that there exists $\mathbf{B}_{1} \in \mathcal{B}_{\mathcal{C}}^{*}$ such that $(\mathbf{B} \cap \mathcal{C}) \cup\left(\mathbf{B}_{0} \cap \mathcal{C}\right) \subset \mathbf{B}_{1}$. Then since the C^{*}-algebra $A\left[\mathbf{B}_{0} \cap \mathcal{C}\right]=A\left[\mathbf{B}_{0}\right] \cap \mathcal{C}$ is contained in the Banach $*$-algebra $A\left[\mathbf{B}_{1}\right]$, it follows from Proposition I.5.3 of [32] that

$$
\|x\|_{\mathbf{B}_{0}}=\|x\|_{\mathbf{B}_{0} \cap \mathcal{C}} \leqslant\|x\|_{\mathbf{B}_{1}}, \quad \forall x \in A\left[\mathbf{B}_{0}\right] \cap \mathcal{C} .
$$

On the other hand, since $\mathbf{B}_{0} \cap \mathcal{C} \subset \mathbf{B}_{1}$, it follows that

$$
\|x\|_{\mathbf{B}_{1}} \leqslant\|x\|_{\mathbf{B}_{0} \cap \mathcal{C}}=\|x\|_{\mathbf{B}_{0}}, \quad \forall x \in A\left[\mathbf{B}_{0}\right] \cap \mathcal{C} .
$$

Thus, we have

$$
\begin{equation*}
\|x\|_{\mathbf{B}_{1}}=\|x\|_{\mathbf{B}_{0}}, \quad \forall x \in A\left[\mathbf{B}_{0}\right] \cap \mathcal{C} \tag{2.1}
\end{equation*}
$$

and the C^{*}-algebra $A\left[\mathbf{B}_{0}\right] \cap \mathcal{C}$ is $\|\cdot\|_{\mathbf{B}_{1}}$-dense in the Banach $*$-algebra $\mathcal{A}\left[\mathbf{B}_{1}\right]$. Indeed, from Lemma 2.1(i)

$$
x\left(1+\frac{1}{n} x^{*} x\right)^{-1} \in A\left[\mathbf{B}_{\tau}\right], \quad \forall x \in A\left[\mathbf{B}_{1}\right] \text { and } \forall n \in \mathbb{N} .
$$

It is easily shown that $\left\{x,\left(1+y^{*} y\right)^{-1}: x, y \in \mathcal{C}\right\}$ is commutative, so that by the maximality of $\mathcal{C},\left\{\left(1+y^{*} y\right)^{-1}: y \in \mathcal{C}\right\} \subset \mathcal{C}$. Furthermore, it follows from the assumption $\mathcal{U}\left(\mathcal{A}_{0}\right) \subset \mathbf{B}_{0}$, that $A\left[\mathbf{B}_{\tau}\right] \cap \mathcal{C} \subset A\left[\mathbf{B}_{0}\right] \cap \mathcal{C}$. Hence,

$$
x\left(1+\frac{1}{n} x^{*} x\right)^{-1} \in A\left[\mathbf{B}_{\tau}\right] \cap \mathcal{C} \subset A\left[\mathbf{B}_{0}\right] \cap \mathcal{C} .
$$

In a similar way as in the proof of Lemma 2.1(iii) we can show that

$$
\left\|x\left(1+\frac{1}{n} x^{*} x\right)^{-1}-x\right\|_{\mathbf{B}_{1}} \leqslant \frac{1}{n}\left\|x x^{*} x\right\|_{\mathbf{B}_{1}} .
$$

Hence, $A\left(\mathbf{B}_{0}\right] \cap \mathcal{C}$ is $\|\cdot\|_{\mathbf{B}_{1}}$-dense in $A\left[\mathbf{B}_{1}\right]$. By (2.1) $A\left[\mathbf{B}_{0}\right] \cap \mathcal{C}=A\left[\mathcal{C} \cap \mathbf{B}_{0}\right]=A\left[\mathbf{B}_{1}\right]$, and so $\mathbf{B}_{0} \cap \mathcal{C}=\mathbf{B}_{1}$. Thus, $\mathbf{B} \cap \mathcal{C} \subset \mathbf{B}_{0} \cap \mathcal{C}$. Therefore, $h \in \mathbf{B}_{0}$ and if $\mathbf{B}_{h}=\{x \in \mathbf{B}$: $\left.x^{*}=x\right\}$, we have $\mathbf{B}_{h} \subset\left(\mathbf{B}_{0}\right)_{h}$, which implies that $\|x\|_{\mathbf{B}_{0}}^{2}=\left\|x^{*} x\right\|_{\mathbf{B}_{0}} \leqslant 1$ for each $x \in \mathbf{B}$. Hence, $\mathbf{B} \subset \mathbf{B}_{0}$ and \mathbf{B}_{0} is the greatest member in \mathcal{B}^{*}.
(ii) \Rightarrow (i) This follows from Lemma 2.1(i) and so the proof is complete.

By Theorem 2.2 we have the next:
Corollary 2.3. Consider the following statements:
(i) $\widetilde{\mathcal{A}}_{0}[\tau]$ is a $G B^{*}$-algebra over $\mathcal{U}\left(\mathcal{A}_{0}\right)$.
(ii) $\mathcal{U}\left(\mathcal{A}_{0}\right)$ is τ-closed.
(iii) $\widetilde{\mathcal{A}}_{0}[\tau]$ is a $G B^{*}$-algebra over \mathbf{B}_{τ}.
(iv) \mathbf{B}_{τ} is the greatest member in \mathcal{B}^{*}.
(v) $\|\cdot\|_{\mathbf{B}_{\tau}}$ is a C^{*}-norm.

Then the following implications hold: (i) \Leftrightarrow (ii) \Rightarrow (iii) \Leftrightarrow (iv) \Leftrightarrow (v).
We investigate now the representation theory of $\widetilde{\mathcal{A}}_{0}[\tau]$. We begin with some basic terminology. For more details see [23], [30]. Let \mathcal{D} be a dense subspace of a Hilbert space \mathcal{H}. Denote by $\mathcal{L}(\mathcal{D})$ all linear operators from \mathcal{D} into \mathcal{D} and let

$$
\mathcal{L}^{\dagger}(\mathcal{D}):=\left\{X \in \mathcal{L}(\mathcal{D}): \mathcal{D}\left(X^{*}\right) \supset \mathcal{D} \text { and } X^{*} \mathcal{D} \subset \mathcal{D}\right\} .
$$

$\mathcal{L}^{\dagger}(\mathcal{D})$ is a $*$-algebra, under the usual algebraic operations and the involution $X \rightarrow X^{\dagger}:=X^{*} \upharpoonright \mathcal{D}$. Furthermore, $\mathcal{L}^{\dagger}(\mathcal{D})$ is a locally convex $*$-algebra equipped with the topology τ_{w} (respectively $\tau_{s^{*}}$) defined by the family $\left\{p_{\xi, \eta}(\cdot): \xi, \eta \in\right.$ $\mathcal{D}\}$ of seminorms with $p_{\xi, \eta}(X):=|(X \xi \mid \eta)|, X \in \mathcal{L}^{\dagger}(\mathcal{D})$ (respectively the family $\left\{p_{\xi}^{\dagger}(\cdot): \xi \in \mathcal{D}\right\}$ of seminorms with $\left.p_{\xi}^{\dagger}(X):=\|X \xi\|+\left\|X^{+} \xi\right\|, X \in \mathcal{L}^{\dagger}(\mathcal{D})\right)$. A $*$-subalgebra of $\mathcal{L}^{\dagger}(\mathcal{D})$ is said to be an O^{*}-algebra on \mathcal{D}. Let \mathcal{A} be a $*$-algebra. A *-homomorphism $\pi: \mathcal{A} \rightarrow \mathcal{L}^{\dagger}(\mathcal{D})$ is called (unbounded) *-representation of \mathcal{A}
on the Hilbert space \mathcal{H}, with domain \mathcal{D}. If \mathcal{A} has an identity, say 1 , we suppose that $\pi(1)=I$, with I the identity operator in $\mathcal{L}^{\dagger}(\mathcal{D})$. From now on, we shall use the notation: $\mathcal{D}(\pi)$ for the domain of π and \mathcal{H}_{π} for the corresponding Hilbert space. A *-representation π of \mathcal{A} is said to be faithful if $\pi(a)=0, a \in \mathcal{A}$, implies $a=0$. A $*$-representation π of a locally convex $*$-algebra $\mathcal{A}[\tau]$ is said to be $(\tau-$ τ_{w})-continuous (respectively $\left(\tau-\tau_{s^{*}}\right)$-continuous) if it is continuous from $\mathcal{A}[\tau]$ to $\pi(\mathcal{A})\left[\tau_{\mathrm{w}}\right]$ (respectively to $\pi(\mathcal{A})\left[\tau_{s^{*}}\right]$).

We define now a wedge $\widetilde{\mathcal{A}}_{0}[\tau]_{+}$of $\widetilde{\mathcal{A}}_{0}[\tau]$. Take an arbitrary C^{*}-algebra $\mathcal{A}[\|\cdot\|] \in C^{*}\left(\mathcal{A}_{0}, \tau\right)$. Then we have $\overline{\mathcal{A}}_{+}^{\tau}={\overline{\left(\mathcal{A}_{0}\right)}}_{+}^{\tau}$, where \mathcal{A}_{+}and $\left(\mathcal{A}_{0}\right)_{+}$are positive cones in the C^{*}-algebras \mathcal{A} and \mathcal{A}_{0} respectively. Indeed, take an arbitrary $a \in \mathcal{A}_{+}$. Then there is a net $\left\{x_{\alpha}\right\}$ in \mathcal{A}_{0} such that $\tau-\lim x_{\alpha}=a^{1 / 2}$. Hence, $\left\{x_{\alpha}^{*} x_{\alpha}\right\} \subset\left(\mathcal{A}_{0}\right)_{+}$and $\tau-\lim _{\alpha} x_{\alpha}^{*} x_{\alpha}=a$. This implies that $\overline{\mathcal{A}}_{+}^{\tau} \subset{\left.\overline{\left(\mathcal{A}_{0}\right.}\right)_{+}^{\tau}}^{\tau}$. The converse is clear. Thus, the τ-closure ${\overline{\mathcal{A}_{0}}}^{\tau}$ of $\left(\mathcal{A}_{0}\right)_{+}$is independent of the method of taking C^{*}-algebras in $C^{*}\left(\mathcal{A}_{0}, \tau\right)$, therefore in the sequel we shall denote by $\widetilde{\mathcal{A}}_{0}[\tau]_{+}$ the τ-closure of $\left(\mathcal{A}_{0}\right)_{+}$. So $\widetilde{\mathcal{A}}_{0}[\tau]_{+}$is a wedge (in the sense that if $x, y \in \widetilde{\mathcal{A}}_{0}[\tau]_{+}$ and $\lambda \geqslant 0$, then $\left.x+y, \lambda x \in \widetilde{\mathcal{A}}_{0}[\tau]_{+}\right)$, and $\widetilde{\mathcal{A}}_{0}[\tau]_{+}={\overline{\mathcal{P}\left(\widetilde{\mathcal{A}}_{0}[\tau]\right)}}^{\tau}$ (the τ-closure of the algebraic wedge $\left.\mathcal{P}\left(\widetilde{\mathcal{A}}_{0}[\tau]\right) \equiv\left\{\sum_{k=1}^{n} x_{k}^{*} x_{k}: x_{k} \in \widetilde{\mathcal{A}}_{0}[\tau](k=1, \ldots, n), n \in \mathbb{N}\right\}\right)$.

A linear functional f on $\widetilde{\mathcal{A}}_{0}[\tau]$ is said to be strongly positive (respectively positive) if $f(x) \geqslant 0$ for each $x \in \widetilde{\mathcal{A}}_{0}[\tau]_{+}$(respectively $x \in \mathcal{P}\left(\widetilde{\mathcal{A}}_{0}[\tau]\right)$).

THEOREM 2.4. The following statements are equivalent:
(i) $\widetilde{\mathcal{A}}_{0}[\tau]_{+} \cap\left(-\widetilde{\mathcal{A}}_{0}[\tau]_{+}\right)=\{0\}$.
(ii) $A\left[\mathbf{B}_{\tau}\right]_{+} \cap\left(-A\left[\mathbf{B}_{\tau}\right]_{+}\right)=\{0\}$.
(iii) The Pták function $p_{A\left[\mathbf{B}_{\tau}\right]}$ on the Banach $*$-algebra $A\left[\mathbf{B}_{\tau}\right]$ is a C^{*}-norm (see comments before Question A).
(iv) There exists a faithful $*$-representation of $\widetilde{\mathcal{A}}_{0}[\tau]$.
(v) There exists a faithful $\left(\tau-\tau_{s^{*}}\right)$-continuous $*$-representation of $\widetilde{\mathcal{A}}_{0}[\tau]$.

Proof. (i) $\Rightarrow(\mathrm{v})$ Let \mathcal{F} be the set of all τ-continuous strongly positive linear functionals on $\widetilde{\mathcal{A}}_{0}[\tau]$. Let $\left(\pi_{f}, \lambda_{f}, \mathcal{H}_{f}\right)$ be the GNS-construction for $f \in \mathcal{F}$. We put

$$
\begin{aligned}
& \mathcal{D}(\pi):=\left\{\left(\lambda_{f}\left(x_{f}\right)\right) \in \bigoplus_{f \in \mathcal{F}} \mathcal{H}_{f}: \lambda_{f}\left(x_{f}\right)=0 \text { except for a finite number of } f \in \mathcal{F}\right\} \\
& \pi(a)\left(\lambda_{f}\left(x_{f}\right)\right):=\left(\lambda_{f}\left(a x_{f}\right)\right), \quad a \in \widetilde{\mathcal{A}}_{0}[\tau],\left(\lambda_{f}\left(x_{f}\right)\right) \in \mathcal{D}(\pi)
\end{aligned}
$$

Then it is easily shown that π is a $\left(\tau-\tau_{s^{*}}\right)$-continuous $*$-representation of $\widetilde{A}_{0}[\tau]$. We show that π is faithful. In fact, suppose $0 \neq a \in \widetilde{\mathcal{A}}_{0}[\tau]_{h}$ (the hermitian part of $\widetilde{\mathcal{A}}_{0}[\tau]$. Let $a \in \widetilde{\mathcal{A}}_{0}[\tau]_{+}$. Since $\widetilde{\mathcal{A}}_{0}[\tau]_{+} \cap\left(-\widetilde{\mathcal{A}}_{0}[\tau]_{+}\right)=\{0\}$, we have $\widetilde{\mathcal{A}}_{0}[\tau]_{+} \cap$ $\{-a\}=\phi$. Then it follows from Chapter II, Section 5, Proposition 4 in [15], that there exists a τ-continuous strongly positive linear functional f on $\widetilde{\mathcal{A}}_{0}[\tau]$ such that $f(a)>0$. Let $a \notin \widetilde{\mathcal{A}}_{0}[\tau]_{+}$. Since $\widetilde{\mathcal{A}}_{0}[\tau]_{+} \cap\{a\}=\phi$, we can show in a
similar way that there exists a τ-continuous strongly positive linear functional f on $\widetilde{\mathcal{A}}_{0}[\tau]$ such that $f(a)<0$. Since $\left(\pi_{f}(a) \lambda_{f}(1) \mid \lambda_{f}(1)\right)=f(a) \neq 0$ this implies that $\pi_{f}(a) \neq 0$, and so $\pi(a) \neq 0$. Similarly, for any $0 \neq a \in \widetilde{\mathcal{A}}_{0}[\tau]$ we have $\pi(a) \neq 0$ by considering $a=a_{1}+\mathrm{i} a_{2}\left(a_{1}, a_{2} \in \widetilde{\mathcal{A}}_{0}[\tau]_{h}\right)$.
(v) \Rightarrow (iv) This is trivial.
(iv) \Rightarrow (iii) Let π be a faithful $*$-representation of $\widetilde{\mathcal{A}}_{0}[\tau]$. Since $A\left[\mathbf{B}_{\tau}\right]$ is a symmetric Banach $*$-algebra by Lemma 2.1(i), it follows from Theorem 3.2 and Corollary 3.4 in [20], that the Pták function $p_{A\left[\mathbf{B}_{\tau}\right]}$ is a C^{*}-seminorm. In particular (Raikov criterion for symmetry),

$$
p_{A\left[\mathbf{B}_{\tau}\right]}(x)=\sup _{\rho \in \operatorname{Rep}\left(A\left[\mathbf{B}_{\tau}\right]\right)}\|\rho(x)\|, \quad x \in A\left[\mathbf{B}_{\tau}\right]
$$

where $\operatorname{Rep}\left(A\left[\mathbf{B}_{\tau}\right]\right)$ denotes the set of all $*$-representations of $A\left[\mathbf{B}_{\tau}\right]$. Suppose $p_{A\left[\mathbf{B}_{\tau}\right]}(x)=0$. Since $\pi \upharpoonright A\left[\mathbf{B}_{\tau}\right] \in \operatorname{Rep}\left(A\left[\mathbf{B}_{\tau}\right]\right)$, we have $\pi(x)=0$, and so $x=0$. Thus $p_{A\left[\mathbf{B}_{\tau}\right]}$ is a C^{*}-norm.
(iii) \Rightarrow (ii) We first show that

$$
\begin{equation*}
\operatorname{Sp}_{A\left[\mathbf{B}_{\tau}\right]}(x) \subset \mathbb{R}_{+} \equiv\{\lambda \in \mathbb{R}: \lambda \geqslant 0\}, \quad \forall x \in A\left[\mathbf{B}_{\tau}\right]_{+} \tag{2.2}
\end{equation*}
$$

where $\mathrm{Sp}_{A\left[\mathbf{B}_{\tau}\right]}(x)$ stands for the spectrum of $x \in A\left[\mathbf{B}_{\tau}\right]$. In fact, take an arbitrary $x \in A\left[\mathbf{B}_{\tau}\right]_{+}$and a net $\left\{x_{\alpha}\right\}$ in $\left(\mathcal{A}_{0}\right)_{+}$that converges to x with respect to τ. Since $A\left[\mathbf{B}_{\tau}\right]$ is hermitian ([20], Corollary 3.4), it follows that $\mathrm{Sp}_{A\left[\mathbf{B}_{\tau}\right]}(x) \subset \mathbb{R}$. Let $\lambda<$ 0 . Notice that $\lambda\left(\lambda 1-x_{\alpha}\right)^{-1} \in \mathcal{U}\left(\mathcal{A}_{0}\right)$, for every α. Then for any τ-continuous seminorm p on $\widetilde{\mathcal{A}}_{0}[\tau]$

$$
\begin{aligned}
p(\lambda(\lambda 1 & \left.\left.-x_{\alpha}\right)^{-1}-\lambda\left(\lambda 1-x_{\beta}\right)^{-1}\right) \\
& =|\lambda| p\left(\left(\lambda 1-x_{\alpha}\right)^{-1}\left(x_{\alpha}-x_{\beta}\right)\left(\lambda 1-x_{\beta}\right)^{-1}\right) \\
& \leqslant|\lambda| q\left(\left(\lambda 1-x_{\alpha}\right)^{-1}\right) q\left(x_{\alpha}-x_{\beta}\right) q\left(\left(\lambda 1-x_{\beta}\right)^{-1}\right) \\
& \leqslant \frac{1}{|\lambda|} \gamma\left\|\lambda\left(\lambda 1-x_{\alpha}\right)^{-1}\right\|_{0}\left\|\lambda\left(\lambda 1-x_{\beta}\right)^{-1}\right\|_{0} q\left(x_{\alpha}-x_{\beta}\right) \\
& \leqslant \frac{\gamma}{|\lambda|} q\left(x_{\alpha}-x_{\beta}\right)
\end{aligned}
$$

for some constant $\gamma>0$ and a τ-continuous seminorm q on $\widetilde{\mathcal{A}}_{0}[\tau]$. It follows that $\lambda\left(\lambda 1-x_{\alpha}\right)^{-1}$ converges to an element y of \mathbf{B}_{τ} with respect to τ, which implies that $\lambda(\lambda 1-x)^{-1}$ exists and equals y. Hence, $\lambda \notin \mathrm{Sp}_{A\left[\mathbf{B}_{\tau}\right]}(x)$. Thus, we have $\mathrm{Sp}_{A\left[\mathbf{B}_{\tau}\right]}(x) \subset \mathbb{R}_{+}$. Take an arbitrary $x \in A\left[\mathbf{B}_{\tau}\right]_{+} \cap\left(-A\left[\mathbf{B}_{\tau}\right]_{+}\right)$. Then from (2.2), it follows that $\operatorname{Sp}_{A\left[\mathbf{B}_{\tau}\right]}(x)=\{0\}$, therefore $p_{A\left[\mathbf{B}_{\tau}\right]}(x)=r_{A\left[\mathbf{B}_{\tau}\right]}(x)=0$. Since $p_{A\left[\mathbf{B}_{\tau}\right]}$ is a norm, we have $x=0$.
(ii) \Rightarrow (i) Take an arbitrary $a \in \widetilde{\mathcal{A}}_{0}[\tau]_{+} \cap\left(-\widetilde{\mathcal{A}}_{0}[\tau]_{+}\right)$. Then from Lemma 2.1(i) it follows that $a\left(1+a^{2}\right)^{-1} \in A\left[\mathbf{B}_{\tau}\right]_{+} \cap\left(-A\left[\mathbf{B}_{\tau}\right]_{+}\right)=\{0\}$, which implies $a=0$. This completes the proof.

In the case of C^{*}-algebras (respectively pro-C*-algebras), condition (ii) of Theorem 2.4, is always true. Also see Example 4.4 in Section 4. In the case of symmetric Banach $*$-algebras (respectively symmetric topological $*$-algebras), which in fact can be viewed as a generalization of C^{*}-algebras [28] (respectively pro-C*algebras), it seems that such a property has not been investigated. Some information about the set \mathcal{A}_{+}, with \mathcal{A} a certain involutive algebra can be found in [14] and [29].

Question B. (i) Is $\mathcal{P}\left(\widetilde{\mathcal{A}}_{0}[\tau]\right) \tau$-closed? That is, does the equality $\widetilde{\mathcal{A}}_{0}[\tau]_{+}$ $=\mathcal{P}\left(\widetilde{\mathcal{A}}_{0}[\tau]\right)$ hold? Equivalently, for each net $\left\{x_{\alpha}\right\}$ in $\left(\mathcal{A}_{0}\right)_{+}$which converges to $x \in \widetilde{\mathcal{A}}_{0}[\tau]$, is $\left\{x_{\alpha}^{1 / 2}\right\} \tau$-Cauchy?
(ii) Does one of the conditions in Theorem 2.4 always hold?

If $\widetilde{\mathcal{A}}_{0}[\tau]$ is a $G B^{*}$-algebra, then the above questions (i) and (ii) have positive answers. Does the converse hold? That is, the following question arises.

Question C. If the answer to Question B is affirmative, is then $\widetilde{\mathcal{A}}_{0}[\tau]$ a $G B^{*}$ algebra?

To consider Question C, we define an unbounded C^{*}-seminorm r_{π} of $\widetilde{\mathcal{A}}_{0}[\tau]$ induced by a $*$-representation π of $\widetilde{\mathcal{A}}_{0}[\tau]$ as follows:

$$
\begin{aligned}
\mathcal{D}\left(r_{\pi}\right) & =\widetilde{\mathcal{A}}_{0}[\tau]_{b}^{\pi}:=\left\{x \in \widetilde{\mathcal{A}}_{0}[\tau]: \overline{\pi(x)} \in \mathcal{B}\left(\mathcal{H}_{\pi}\right)\right\} \\
r_{\pi}(x) & =\|\overline{\pi(x)}\|, \quad x \in \mathcal{D}\left(r_{\pi}\right)
\end{aligned}
$$

Then we have the next:
LEMMA 2.5. Let π be a faithful $*$-representation of $\widetilde{\mathcal{A}}_{0}[\tau]$ and \mathbf{B} any element of \mathcal{B}^{*} containing $\mathcal{U}\left(\mathcal{A}_{0}\right)$. Then the following statements hold:
(i) $\mathcal{A}_{0} \subset A\left[\mathbf{B}_{\tau}\right] \subset A[\mathbf{B}] \subset \mathcal{D}\left(r_{\pi}\right)=\widetilde{\mathcal{A}}_{0}[\tau]_{b}^{\pi}$ and $\|\pi(x)\| \leqslant\|x\|_{\mathbf{B}}, \forall x \in A[\mathbf{B}]$, as well as $\|\pi(x)\|=\|x\|_{\mathbf{B}_{\tau}}=\|x\|_{0}, \forall x \in \mathcal{A}_{0}$.
(ii) $\pi(A[\mathbf{B}])$ is $\tau_{s^{*}}$-dense in $\pi\left(\widetilde{\mathcal{A}}_{0}[\tau]\right)$, and it is also uniformly dense in $\pi\left(\widetilde{\mathcal{A}}_{0}[\tau]_{b}^{\pi}\right)$.
(iii) Suppose π is $\left(\tau-\tau_{\mathrm{w}}\right)$-continuous. Then $\pi\left(\widetilde{\mathcal{A}}_{0}[\tau]_{+}\right) \subset \mathcal{L}^{\dagger}(\mathcal{D}(\pi))_{+} \equiv\{X \in$ $\left.\mathcal{L}^{\dagger}(\mathcal{D}(\pi)): X \geqslant 0\right\}$.

Proof. (i) is easily shown.
(ii) Take an arbitrary $a \in \widetilde{\mathcal{A}}_{0}[\tau]$. Then it follows that

$$
\left(1+\varepsilon a^{*} a\right)^{-1} a=\frac{1}{\sqrt{\varepsilon}}\left(1+(\sqrt{\varepsilon} a)^{*}(\sqrt{\varepsilon} a)\right)^{-1}(\sqrt{\varepsilon} a) \in A\left[\mathbf{B}_{\tau}\right], \quad \forall \varepsilon>0
$$

and for each $\xi \in \mathcal{D}(\pi)$

$$
\begin{aligned}
&\left\|\pi\left(\left(1+\varepsilon a^{*} a\right)^{-1} a\right) \xi-\pi(a) \xi\right\|=\varepsilon\left\|\pi\left(\left(1+\varepsilon a^{*} a\right)^{-1}\right) \pi\left(a^{*} a^{2}\right) \xi\right\| \\
& \leqslant \varepsilon\left\|\pi\left(\left(1+\varepsilon a^{*} a\right)^{-1}\right)\right\|\left\|\pi\left(a^{*} a^{2}\right) \xi\right\| \\
& \leqslant \varepsilon\left\|\left(1+\varepsilon a^{*} a\right)^{-1}\right\|_{B_{\tau}}\left\|\pi\left(a^{*} a^{2}\right) \xi\right\| \\
& \leqslant \varepsilon\left\|\pi\left(a^{*} a^{2}\right) \xi\right\| \xrightarrow[\varepsilon \downarrow 0]{ } 0
\end{aligned}
$$

so that $\pi\left(A\left[\mathbf{B}_{\tau}\right]\right)$ is $\tau_{s^{*}}$-dense in $\pi\left(\widetilde{\mathcal{A}}_{0}[\tau]\right)$. Take an arbitrary $a \in \widetilde{\mathcal{A}}_{0}[\tau]_{b}^{\pi}$. Then since

$$
\left\|\pi\left(\left(1+\varepsilon a^{*} a\right)^{-1} a\right) \xi-\pi(a) \xi\right\| \leqslant \varepsilon\left\|\pi\left(a^{*} a^{2}\right)\right\|\|\xi\|
$$

for each $\xi \in \mathcal{D}(\pi)$, it follows that $\lim _{\varepsilon \downarrow 0} \pi\left(\left(1+\varepsilon a^{*} a\right)^{-1} a\right)=\pi(a)$ uniformly, which implies that $\pi\left(A\left[\mathbf{B}_{\tau}\right]\right)$ is uniformly dense in $\pi\left(\widetilde{\mathcal{A}}_{0}[\tau]_{b}^{\pi}\right)$. Since $A\left[\mathbf{B}_{\tau}\right] \subset A[\mathbf{B}]$, (ii) follows.
(iii) This follows from $\left(\tau-\tau_{\mathrm{w}}\right)$-continuity of π and $\pi\left(\left(\mathcal{A}_{0}\right)_{+}\right) \subset \mathcal{L}^{\dagger}(\mathcal{D}(\pi))_{+}$. This completes the proof.

We simply sketch how Lemma 2.5 looks:

$\pi: \quad \widetilde{\mathcal{A}}_{0}[\tau]$	\longrightarrow	$\pi\left(\widetilde{\mathcal{A}}_{0}[\tau]\right)$		
\cup		$\cup \tau_{s^{*} * \text {-dense }}$		
$\widetilde{\mathcal{A}}_{0}[\tau]_{b}^{\pi}$	\longrightarrow	$\pi\left(\widetilde{\mathcal{A}}_{0}[\tau]_{b}^{\pi}\right)$		
\cup		\cup uniformly		
$A\left[\mathbf{B}_{\tau}\right]$ symmetric	-	$\pi\left(A\left[\mathbf{B}_{\tau}\right]\right)$		
Banach *-algebra				
\cup		\cup		
$\mathcal{A}_{0}[\\|\cdot\\|]$	\longrightarrow	$\pi\left(\mathcal{A}_{0}\right)$		
C^{*}-algebra		C^{*}-algebra on \mathcal{H}_{π}.		

The following theorem gives an answer to Question C.
THEOREM 2.6. The following statements are equivalent:
(i) $\widetilde{\mathcal{A}}_{0}[\tau]$ is a $G B^{*}$-algebra.
(ii) There exists a faithful $\left(\tau-\tau_{s^{*}}\right)$-continuous $*$-representation π of $\widetilde{\mathcal{A}}_{0}[\tau]$, such that $\tau \prec r_{\pi}$.

Proof. (i) \Rightarrow (ii) Suppose $\widetilde{\mathcal{A}}_{0}[\tau]$ is a $G B^{*}$-algebra over \mathbf{B}_{0}. Since $A\left[\mathbf{B}_{\tau}\right]_{+} \cap$ $\left(-A\left[\mathbf{B}_{\tau}\right]_{+}\right) \subset A\left[\mathbf{B}_{0}\right]_{+} \cap\left(-A\left[\mathbf{B}_{0}\right]_{+}\right)=\{0\}$, Theorm 2.4 implies the existence of a faithful $\left(\tau-\tau_{s^{*}}\right)$-continuous $*$-representation of $\widetilde{\mathcal{A}}_{0}[\tau]$. Furthermore, since $\pi\left(A\left[\mathbf{B}_{0}\right]\right)$ is a C^{*}-algebra, Lemma $2.5($ ii $)$ yields that

$$
\pi\left(A\left[\mathbf{B}_{0}\right]\right)=\pi\left(\widetilde{\mathcal{A}}_{0}[\tau]_{b}^{\pi}\right) \quad \text { and } \quad r_{\pi}(x)=\|\pi(x)\|=\|x\|_{\mathbf{B}_{0}}, \quad \forall x \in \mathcal{D}\left(r_{\pi}\right)
$$

which implies $\tau \prec r_{\pi}$.
(ii) \Rightarrow (i) Since $\tau \prec r_{\pi}$ and π is $\left(\tau-\tau_{s^{*}}\right)$-continuous, it follows that τ and r_{π} are compatible, whence one gets that the completion $\mathcal{A}_{r_{\pi}}$ of $\mathcal{D}\left(r_{\pi}\right)\left[r_{\pi}\right]$ is embedded in $\widetilde{\mathcal{A}}_{0}[\tau]$. We denote by \mathbf{B}_{0} the τ-closure of the unit ball $\mathcal{U}\left(\mathcal{A}_{r_{\pi}}\right)$ of the
C^{*}-algebra $A_{r_{\pi}}$. Then $\mathbf{B}_{0} \in \mathcal{B}^{*}$ and from Lemma 2.5(i) we get

$$
\mathbf{B} \subset \mathcal{U}\left(\widetilde{\mathcal{A}}_{0}[\tau]_{b}^{\pi}\right) \subset \mathbf{B}_{0}, \quad \forall \mathbf{B} \in \mathcal{B}^{*}
$$

which implies that $\mathbf{B}_{0}=\mathcal{U}\left(\widetilde{\mathcal{A}}_{0}[\tau]_{b}^{\pi}\right)$, with \mathbf{B}_{0} the greatest member in \mathcal{B}^{*}. Thus, from Theorem 2.2, we conclude that $\widetilde{\mathcal{A}}_{0}[\tau]$ is a $G B^{*}$-algebra over $\mathcal{U}\left(\widetilde{\mathcal{A}}_{0}[\tau]_{b}^{\pi}\right)$ and this completes the proof.

It is known that every $*$-representation π of a Fréchet $*$-algebra $\mathcal{A}[\tau]$ is ($\tau-$ $\left.\tau_{s^{*}}\right)$-continuous. Indeed, take an arbitrary $\xi \in \mathcal{D}(\pi)$ and put $f_{\xi}(x):=(\pi(x) \xi \mid \xi)$, $x \in \mathcal{A}$. Then f_{ζ} is a positive linear functional on the Fréchet $*$-algebra $\mathcal{A}[\tau]$, which is continuous by Theorem 4.3 of [17]. Furthermore, since the multiplication of a Fréchet $*$-algebra is jointly continuous, it follows that π is $\left(\tau-\tau_{s^{*}}\right)$-continuous. From this fact, as well as Theorem 2.6, we conclude the following:

Corollary 2.7. Let $\widetilde{\mathcal{A}}_{0}[\tau]$ be a Fréchet $*$-algebra. Then the following are equivalent:
(i) $\widetilde{\mathcal{A}}_{0}[\tau]$ is a GB*-algebra.
(ii) There exists a faithful $*$-representation π of $\widetilde{\mathcal{A}}_{0}[\tau]$ such that $\tau \prec r_{\pi}$.

3. CASE 2

In this section we shall investigate the structure and the representation theory of $\widetilde{\mathcal{A}}_{0}[\tau]$ as it appears in Case 2 in the Introduction. First we recall some basic definitions and properties of partial $*$-algebras and quasi $*$-algebras (for more details, refer to [4]). A partial $*$-algebra is a vector space \mathcal{A}, endowed with a vector space involution $x \rightarrow x^{*}$ and a partial multiplication defined by a set $\Gamma \subset \mathcal{A} \times \mathcal{A}$ (a binary relation) with the properties:
(i) $(x, y) \in \Gamma$ implies $\left(y^{*}, x^{*}\right) \in \Gamma$.
(ii) $\left(x, y_{1}\right),\left(x, y_{2}\right) \in \Gamma$ implies $\left(x, \lambda y_{1}+\mu y_{2}\right) \in \Gamma$ for all $\lambda, \mu \in \mathbb{C}$.
(iii) For any $(x, y) \in \Gamma$, a multiplication $x y \in \mathcal{A}$, is defined on \mathcal{A}, which is distributive with respect to addition and satisfies the relation $(x y)^{*}=y^{*} x^{*}$. Whenever $(x, y) \in \Gamma$, we say that x is a left multiplier of y and y is a right multiplier of x, and write $x \in L(y)$ respectively $y \in R(x)$.

Let \mathcal{A} be a vector space and let \mathcal{A}_{0} be a subspace of \mathcal{A}, which is also a $*-$ algebra. \mathcal{A} is said to be a quasi $*$-algebra with distinguished $*$-algebra \mathcal{A}_{0} (or, simply, over \mathcal{A}_{0}) if
(i_{1}) the left multiplication $a x$ and the right multiplication $x a$ of an element a of \mathcal{A} with an element x of \mathcal{A}_{0}, that extend the multiplication of \mathcal{A}_{0}, are always defined and are bilinear;
(i2) $x_{1}\left(x_{2} a\right)=\left(x_{1} x_{2}\right) a,\left(a x_{1}\right) x_{2}=a\left(x_{1} x_{2}\right)$ and $x_{1}\left(a x_{2}\right)=\left(x_{1} a\right) x_{2}$, for any $x_{1}, x_{2} \in \mathcal{A}_{0}$ and $a \in \mathcal{A}$;
(i_{3}) an involution $*$ that extends the involution of \mathcal{A}_{0} is defined in \mathcal{A} with the property $(a x)^{*}=x^{*} a^{*}$ and $(x a)^{*}=a^{*} x^{*}$ for each $x \in \mathcal{A}_{0}$ and $a \in \mathcal{A}$.

Let $\mathcal{A}_{0}[\tau]$ be a locally convex $*$-algebra. Then the completion $\widetilde{\mathcal{A}}_{0}[\tau]$ of $\mathcal{A}_{0}[\tau]$ is a quasi $*$-algebra over \mathcal{A}_{0} equipped with the following left and right multiplications:

$$
a x:=\lim _{\alpha} x_{\alpha} x \quad \text { and } \quad x a:=\lim _{\alpha} x x_{\alpha}, \quad \forall x \in \mathcal{A}_{0} \text { and } a \in \mathcal{A},
$$

where $\left\{x_{\alpha}\right\}$ is a net in \mathcal{A}_{0} converging to a with respect to the topology τ. Furthermore, the left and right multiplications are separately continuous. A $*$-invariant subspace \mathcal{A} of $\widetilde{\mathcal{A}}_{0}[\tau]$ containing \mathcal{A}_{0} is said to be a (quasi-) $*$-subalgebra of $\widetilde{\mathcal{A}}_{0}[\tau]$ if $a x$ and $x a$ belong to \mathcal{A} for any $x \in \mathcal{A}_{0}$ and $a \in \mathcal{A}$. Then it is readily shown that \mathcal{A} is a quasi $*$-algebra over \mathcal{A}_{0}. Moreover, $\mathcal{A}[\tau]$ is a locally convex space containing \mathcal{A}_{0} as a dense subspace and the right and left multiplications are separately continuous. Such an algebra \mathcal{A} is said to be a locally convex quasi $*$-algebra over \mathcal{A}_{0}.

Concerning $*$-representations of partial $*$-algebras and quasi $*$-algebras, start with a dense subspace \mathcal{D} of a Hilbert space \mathcal{H} and denote by $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ the set of all linear operators X from \mathcal{D} to \mathcal{H} such that $\mathcal{D}\left(X^{*}\right) \supset \mathcal{D}$. Then $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is a partial $*$-algebra with respect to the usual sum, scalar multiplication and involution $X^{\dagger}=X^{*} \Gamma_{\mathcal{D}}$ and the (weak) partial multiplication $X \square Y=X^{+*} Y$, defined whenever X is a left multiplier of $Y(X \in L(Y))$, that is, if and only if $Y \mathcal{D} \subset \mathcal{D}\left(X^{+*}\right)$ and $X^{\dagger} \mathcal{D} \subset \mathcal{D}\left(Y^{*}\right)$. A (partial) $*$-subalgebra of the partial $*$-algebra $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is said to be a partial O^{*}-algebra on \mathcal{D}. A $*$-representation of a partial $*$ algebra \mathcal{A} is a $*$-homomorphism π of \mathcal{A} into a partial O^{*}-algebra $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, in the sense of Definition 2.1.6 in [4], satisfying $\pi(1)=I$, whenever $1 \in \mathcal{A}$.

In this case too, the spaces \mathcal{D} and \mathcal{H} will be denoted by $\mathcal{D}(\pi)$ and \mathcal{H}_{π} respectively. The algebraic conjugate dual \mathcal{D}^{\dagger} of \mathcal{D} (i.e., the set of all conjugate linear functionals on \mathcal{D}) becomes a vector space in a natural way. Denote by $\mathcal{L}\left(\mathcal{D}, \mathcal{D}^{\dagger}\right)$ the set of all linear maps from \mathcal{D} to \mathcal{D}^{\dagger}. Then $\mathcal{L}\left(\mathcal{D}, \mathcal{D}^{\dagger}\right)$ is a ${ }^{*-}$ invariant vector space under the usual operations and the involution $T \rightarrow T^{\dagger}$ with $\left\langle T^{\dagger} \xi, \eta\right\rangle:=\overline{\langle T \eta, \xi\rangle}, \xi, \eta \in \mathcal{D}$, where $\left\langle T^{\dagger} \xi, \eta\right\rangle \equiv T^{\dagger} \xi(\eta)$. Any linear operator X defined on \mathcal{D} is regarded as an element of $\mathcal{L}\left(\mathcal{D}, \mathcal{D}^{\dagger}\right)$ such that $\langle X \xi, \eta\rangle=(X \xi \mid \eta)$, $\xi, \eta \in \mathcal{D}$. For $\mathcal{L}\left(\mathcal{D}, \mathcal{D}^{\dagger}\right)$ we have the following:

LEMMA 3.1. (i) $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is regarded as $a *$-subalgebra of $\mathcal{L}\left(\mathcal{D}, \mathcal{D}^{\dagger}\right)$.
(ii) For any $X \in \mathcal{L}^{\dagger}(\mathcal{D})$ and $T \in \mathcal{L}\left(\mathcal{D}, \mathcal{D}^{\dagger}\right)$ we may define the multiplications $X \circ T$ and $T \circ X$ by

$$
\langle X \circ T \xi, \eta\rangle:=\left\langle T \xi, X^{\dagger} \eta\right\rangle \quad \text { and } \quad\langle T \circ X \xi, \eta\rangle:=\langle T X \xi, \eta\rangle
$$

under these multiplications, $\mathcal{L}\left(\mathcal{D}, \mathcal{D}^{\dagger}\right)$ is a quasi $*$-algebra over $\mathcal{L}^{\dagger}(\mathcal{D})$.
(iii) The locally convex topology τ_{w} on $\mathcal{L}\left(\mathcal{D}, \mathcal{D}^{\dagger}\right)$ is defined by the family $\left\{p_{\xi, \eta}(\cdot)\right.$: $\xi, \eta \in \mathcal{D}\}$ of seminorms with $p_{\xi, \eta}(T):=|\langle T \xi, \eta\rangle|, T \in \mathcal{L}\left(\mathcal{D}, \mathcal{D}^{\dagger}\right)$, and it is called
weak topology. It particular,

$$
\mathcal{L}\left(\mathcal{D}, \mathcal{D}^{\dagger}\right)=\text { the set of all sesquilinear forms on } \mathcal{D} \times \mathcal{D}=\widetilde{\mathcal{L}^{\dagger}(\mathcal{D})}\left[\tau_{\mathrm{w}}\right]
$$

and $\mathcal{L}\left(\mathcal{D}, \mathcal{D}^{\dagger}\right)\left[\tau_{\mathrm{w}}\right]$ is a locally convex quasi $*$-algebra over $\mathcal{L}^{\dagger}(\mathcal{D})$. More generally, for any O^{*}-algebra \mathcal{M} on $\mathcal{D}, \widetilde{\mathcal{M}}\left[\tau_{\mathrm{w}}\right]$ is a locally convex quasi $*$-algebra over \mathcal{M}.

A quasi $*$-representation of a quasi $*$-algebra \mathcal{A} over \mathcal{A}_{0} is naturally defined as a linear map π of \mathcal{A} into a quasi $*$-algebra $\mathcal{L}\left(\mathcal{D}, \mathcal{D}^{\dagger}\right)$ over $\mathcal{L}^{\dagger}(\mathcal{D})$ such that:
(i) π is a $*$-representation of the $*$-algebra \mathcal{A}_{0};
(ii) $\pi(a)^{\dagger}=\pi\left(a^{*}\right), \forall a \in \mathcal{A}$;
(iii) $\pi(a x)=\pi(a) \circ \pi(x)$ and $\pi(x a)=\pi(x) \circ \pi(a), \forall a \in \mathcal{A}, \forall x \in \mathcal{A}_{0}$.

It is easily shown that if π is a quasi $*$-representation of \mathcal{A}, then $\pi(\mathcal{A})$ is a quasi $*$-algebra over $\pi\left(\mathcal{A}_{0}\right)$.

Lemma 3.2. Let $\mathcal{A}[\tau]$ be a locally convex quasi $*$-algebra over \mathcal{A}_{0} and π a quasi *-representation of \mathcal{A}. Suppose π is $\left(\tau-\tau_{\mathrm{w}}\right)$-continuous. Then $\pi(\mathcal{A})$ is a locally convex quasi $*$-algebra over $\pi\left(\mathcal{A}_{0}\right)$.

Proof. From Lemma 3.1(iii) and the $\left(\tau-\tau_{\mathrm{w}}\right)$-continuity of π we have

$$
\begin{aligned}
\pi\left(\mathcal{A}_{0}\right) & \subset \pi(\mathcal{A}) \subset \widetilde{\pi\left(\mathcal{A}_{0}\right)}\left[\tau_{\mathrm{w}}\right] \text { and } \\
\pi(x) \circ \pi(a) & =\pi(x a), \quad \pi(a) \circ \pi(x)=\pi(a x)
\end{aligned}
$$

for each $a \in \mathcal{A}$ and $x \in \mathcal{A}_{0}$, which implies that $\pi(\mathcal{A})$ is a quasi $*$-subalgebra of $\widetilde{\pi\left(\mathcal{A}_{0}\right)}\left[\tau_{\mathrm{w}}\right]$. Hence, $\pi(\mathcal{A})$ is a locally convex quasi $*$-algebra over $\pi\left(\mathcal{A}_{0}\right)$. So the proof is complete.

Let $\mathcal{A}_{0}\left[\|\cdot\|_{0}\right]$ be a C^{*}-algebra with 1 and τ a locally convex topology on \mathcal{A}_{0} such that $\tau \prec\|\cdot\|_{0}$ and $\mathcal{A}_{0}[\tau]$ a locally convex $*$-algebra whose multiplication is not jointly continuous.

In general, $\widetilde{\mathcal{A}}_{0}[\tau]$ is a quasi $*$-algebra over \mathcal{A}_{0} (but not a $*$-algebra!). For this reason, the theory of quasi $*$-algebras must be used. We remark that for any $\mathcal{A} \in C^{*}\left(\mathcal{A}_{0}, \tau\right), \widetilde{\mathcal{A}}[\tau]=\widetilde{\mathcal{A}}_{0}[\tau]$ as locally convex spaces, but $\widetilde{\mathcal{A}}[\tau]$ is different from $\widetilde{\mathcal{A}}_{0}[\tau]$ as a quasi $*$-algebra. Moreover, the wedge $\widetilde{\mathcal{A}}_{0}[\tau]_{+}$of the quasi $*-$ algebra $\widetilde{\mathcal{A}}_{0}[\tau]$ over \mathcal{A}_{0}, defined as the τ-closure of the positive cone $\left(\mathcal{A}_{0}\right)_{+}$, does not necessarily coincide with the wedge $\widetilde{\mathcal{A}}[\tau]_{+}$of the quasi $*$-algebra $\widetilde{\mathcal{A}}[\tau]$ over \mathcal{A}, in contrast with Case 1 (see the discussion before Theorem 2.4).

A linear functional f on $\widetilde{\mathcal{A}}_{0}[\tau]$, such that $f(x) \geqslant 0$, for each $x \in \overline{\mathcal{A}}_{0}[\tau]_{+}$, is said to be a strongly positive linear functional on the quasi $*$-algebra $\widetilde{\mathcal{A}}_{0}[\tau]$ over \mathcal{A}_{0}. Regarding the representation theory of $\widetilde{\mathcal{A}}_{0}[\tau]$ we have the next:

THEOREM 3.3. The following statements are equivalent:
(i) $\widetilde{\mathcal{A}}_{0}[\tau]_{+} \cap\left(-\widetilde{\mathcal{A}}_{0}[\tau]_{+}\right)=\{0\}$.
(ii) There exists a faithful $\left(\tau-\tau_{\mathrm{w}}\right)$-continuous quasi $*$-representation of the quasi *-algebra $\widetilde{\mathcal{A}}_{0}[\tau]$ over \mathcal{A}_{0}.

Proof. (i) \Rightarrow (ii) Let \mathcal{F} be the set of all τ-continuous strongly positive linear functionals on the quasi $*$-algebra $\widetilde{\mathcal{A}}_{0}[\tau]$ over \mathcal{A}_{0}. For any $f \in \mathcal{F}$ we denote by $\left(\pi_{f}, \lambda_{f}, \mathcal{H}_{f}\right)$ the GNS-construction for $f \upharpoonright \mathcal{A}_{0}$. Let $f \in \mathcal{F}$. For any $a \in \widetilde{\mathcal{A}}_{0}[\tau]$ we put

$$
\left\langle\widetilde{\lambda}_{f}(a), \lambda_{f}(x)\right\rangle=f\left(x^{*} a\right), \quad x \in \mathcal{A}_{0}
$$

Then since f is τ-continuous, it follows that

$$
\left|f\left(x^{*} a\right)\right|^{2}=\lim _{\alpha}\left|f\left(x^{*} x_{\alpha}\right)\right|^{2} \leqslant \lim _{\alpha} f\left(x^{*} x\right) f\left(x_{\alpha}^{*} x_{\alpha}\right)
$$

for each $a \in \widetilde{\mathcal{A}}_{0}[\tau]$ and $x \in \mathcal{A}_{0}$, where $\left\{x_{\alpha}\right\}$ is a net in \mathcal{A}_{0} converging to a with respect to τ; it follows that $\tilde{\lambda}_{f}(a)$ is well-defined and belongs to the algebraic conjugate dual $\lambda_{f}\left(\mathcal{A}_{0}\right)^{\dagger}$ of the vector space $\lambda_{f}\left(\mathcal{A}_{0}\right)$. It is clear that $\tilde{\lambda}_{f}$ is a linear map of $\widetilde{\mathcal{A}}_{0}[\tau]$ into the vector space $\lambda_{f}\left(\mathcal{A}_{0}\right)^{\dagger}$, which is an extension of λ_{f}. Put

$$
\begin{aligned}
\mathcal{D}(\pi):=\left\{\left(\lambda_{f}\left(x_{f}\right)\right)_{f \in \mathcal{F}} \in \bigoplus_{f \in \mathcal{F}} \mathcal{H}_{f}: x_{f} \in \mathcal{A}_{0}\right. & \text { and } \lambda_{f}\left(x_{f}\right)=0 \\
& \quad \text { except for a finite number of } f \in \mathcal{F}\},
\end{aligned}
$$

and for $\left(\lambda_{f}\left(x_{f}\right)\right) \in \mathcal{D}(\pi)$

$$
\left\langle\left(\tilde{\lambda}_{f}\left(a_{f}\right)\right),\left(\lambda_{f}\left(x_{f}\right)\right)\right\rangle=\sum_{f \in \mathcal{F}}\left\langle\tilde{\lambda}_{f}\left(a_{f}\right), \lambda_{f}\left(x_{f}\right)\right\rangle=\sum_{f \in \mathcal{F}} f\left(x_{f}^{*} a_{f}\right), \quad a_{f} \in \widetilde{\mathcal{A}}_{0}[\tau]
$$

Then $\left(\tilde{\lambda}_{f}\left(a_{f}\right)\right) \in \mathcal{D}(\pi)^{\dagger}$. Furthermore, for any $a \in \mathcal{A}$, put

$$
\pi(a)\left(\lambda_{f}\left(x_{f}\right)\right)=\left(\tilde{\lambda}_{f}\left(a x_{f}\right)\right), \quad\left(\lambda_{f}\left(x_{f}\right)\right) \in \mathcal{D}(\pi)
$$

It is easily shown that π is a quasi $*$-representation of the quasi $*$-algebra $\widetilde{\mathcal{A}}_{0}[\tau]$ over \mathcal{A}_{0}. Moreover, the $\left(\tau-\tau_{\mathrm{w}}\right)$-continuity of π follows from

$$
\left\langle\pi(a)\left(\lambda_{f}\left(x_{f}\right)\right),\left(\lambda_{f}\left(y_{f}\right)\right)\right\rangle=\sum_{f \in \mathcal{F}} f\left(y_{f}^{*} a x_{f}\right)
$$

for any $a \in \mathcal{A},\left(\lambda_{f}\left(x_{f}\right)\right)$ and $\left(\lambda_{f}\left(y_{f}\right)\right)$ in $\mathcal{D}(\pi)$ and from the τ-continuity of $f \in \mathcal{F}$. The faithfulness of π is shown in a similar way as in the proof of Theorem 2.4(i) \Rightarrow (v).
(ii) \Rightarrow (i) Let π be a faithful $\left(\tau-\tau_{\mathrm{w}}\right)$-continuous quasi $*$-representation of $\widetilde{\mathcal{A}}_{0}[\tau]$ and $a \in \widetilde{\mathcal{A}}_{0}[\tau]_{+} \cap\left(-\widetilde{\mathcal{A}}_{0}[\tau]_{+}\right)$. Then there is a net $\left\{x_{\alpha}\right\}$ in $\left(\mathcal{A}_{0}\right)_{+}$such that $x_{\alpha} \xrightarrow{\tau} a$. By the $\left(\tau-\tau_{\mathrm{w}}\right)$-continuity of π we now have

$$
\langle\pi(a) \xi, \xi\rangle=\lim _{\alpha}\left(\pi\left(x_{\alpha}\right) \xi \mid \xi\right) \geqslant 0 \quad \text { and similarly } \quad\langle\pi(-a) \xi, \xi\rangle \geqslant 0
$$

for each $\xi \in \mathcal{D}(\pi)$. Hence, $\langle\pi(a) \xi, \xi\rangle=0$ for each $\xi \in \mathcal{D}(\pi)$, which implies $\langle\pi(a) \xi, \eta\rangle=0$ for any $\xi, \eta \in \mathcal{D}(\pi)$, that is $\pi(a)=0$. By the faithfulness of π we have $a=0$. This completes the proof.

It is natural to consider the question: When there exists a faithful $*$-representation π of the quasi $*$-algebra $\widetilde{\mathcal{A}}_{0}[\tau]$ over \mathcal{A}_{0} (into $\mathcal{L}^{\dagger}\left(\mathcal{D}(\pi), \mathcal{H}_{\pi}\right)$)? For that, we define the following notion: A subset \mathcal{G} of \mathcal{F} is said to be separating if $a \in \widetilde{\mathcal{A}}_{0}[\tau]$ with $f(a)=0$, for each $f \in \mathcal{G}$, implies $a=0$. For example, if \mathcal{F} is separating and \mathcal{G} is dense in \mathcal{F} with respect to the weak*-topology, then \mathcal{G} is separating.

Proposition 3.4. The following statements are equivalent:
(i) There exists a faithful $\left(\tau-\tau_{\mathrm{w}}\right)$-continuous $*$-representation π of the quasi $*-$ algebra $\widetilde{\mathcal{A}}_{0}[\tau]$ over $\mathcal{A}_{0}\left(\right.$ into $\mathcal{L}^{\dagger}\left(\mathcal{D}(\pi), \mathcal{H}_{\pi}\right)$).
(ii) $\widetilde{\mathcal{A}}_{0}[\tau]_{+} \cap\left(-\widetilde{\mathcal{A}}_{0}[\tau]_{+}\right)=\{0\}$ and \mathcal{F}_{b} is separating, where

$$
\mathcal{F}_{\mathrm{b}}=\left\{f \in \mathcal{F}: \forall a \in \widetilde{\mathcal{A}}_{0}[\tau]^{\exists} \gamma_{a}>0 \text { with }\left|f\left(a^{*} x\right)\right|^{2} \leqslant \gamma_{a} f\left(x^{*} x\right), \forall x \in \mathcal{A}_{0}\right\} .
$$

Proof. (i) \Rightarrow (ii) By Theorem 3.3 we have $\widetilde{\mathcal{A}}_{0}[\tau]_{+} \cap\left(-\widetilde{\mathcal{A}}_{0}[\tau]_{+}\right)=\{0\}$. For each $\xi \in \mathcal{D}(\pi)$ we put $f_{\xi}(a)=(\pi(a) \xi \mid \xi)$, $a \in \widetilde{\mathcal{A}}_{0}[\tau]$. Then it is easily shown that $\left\{f_{\mathcal{\xi}}: \mathcal{\xi} \in \mathcal{D}\right\}$ is contained in \mathcal{F}_{b} and it is separating by the faithfulness of π. Hence, \mathcal{F}_{b} is separating.
(ii) \Rightarrow (i) As shown in the proof of (i) \Rightarrow (ii) in Theorem 3.3, $\widetilde{\lambda}_{f}(a) \in \lambda_{f}\left(\mathcal{A}_{0}\right)^{\dagger}$ for each $f \in \mathcal{F}$ and $a \in \widetilde{\mathcal{A}}_{0}[\tau]$. Take arbitrary $f \in \mathcal{F}_{\mathrm{b}}$ and $a \in \widetilde{\mathcal{A}}_{0}[\tau]$. Then since

$$
\left|\left\langle\tilde{\lambda}_{f}(a), \lambda_{f}(x)\right\rangle\right|^{2}=\left|f\left(x^{*} a\right)\right|^{2} \leqslant \gamma_{a} f\left(x^{*} x\right)
$$

for each $x \in \mathcal{A}_{0}$, it follows from the Riesz theorem that $\tilde{\lambda}_{f}(a)$ is regarded as an element of \mathcal{H}_{f}. Now we put

$$
\begin{aligned}
\mathcal{D}(\pi)=\left\{\left(\lambda_{f}\left(x_{f}\right)\right)_{f \in \mathcal{F}_{\mathrm{b}}}: x_{f} \in \mathcal{A}_{0}\right. & \text { and } \lambda_{f}\left(x_{f}\right)=0 \\
& \left.\quad \text { except for a finite number of } f \in \mathcal{F}_{\mathrm{b}}\right\}
\end{aligned}
$$

and for $a \in \widetilde{\mathcal{A}}_{0}[\tau]$,

$$
\pi(a)\left(\left(\lambda_{f}\left(x_{f}\right)\right)\right)=\left(\left(\widetilde{\lambda}_{f}\left(a x_{f}\right)\right)\right), \quad\left(\lambda_{f}\left(x_{f}\right)\right) \in \mathcal{D}(\pi)
$$

Then π is a $*$-representation of $\widetilde{\mathcal{A}}_{0}[\tau]$ into $\mathcal{L}^{\dagger}\left(\mathcal{D}(\pi), \mathcal{H}_{\pi}\right)$. Furthermore, by the τ continuity of the elements of \mathcal{F}_{b} it is easily shown that π is $\left(\tau-\tau_{\mathrm{w}}\right)$-continuous, while π is faithful since \mathcal{F}_{b} is separating. This completes the proof.

4. EXAMPLES

In this section we give some examples, illustrating the results presented in Sections 2 and 3.

EXAmple 4.1. Let $\mathcal{A}[\tau]$ be a pro- C^{*}-algebra, or more generally a C^{*}-like locally convex $*$-algebra with a C^{*}-like family $\Gamma=\left\{p_{\lambda}\right\}_{\lambda \in \Lambda}$ of seminorms determining the topology τ. Then $p_{\Gamma} \equiv \sup p_{\lambda}$ is a C^{*}-norm on the C^{*}-algebra $\underline{\mathcal{A}_{0} \equiv} \mathcal{D}\left(p_{\Gamma}\right):=\left\{x \in \mathcal{A}: p_{\Gamma}(x)<\infty\right\}$ and $\mathcal{A}=\widetilde{\mathcal{A}}_{0}[\tau]$. In this case, $B_{\tau} \equiv$ ${\overline{\mathcal{U}}\left(p_{\Gamma}\right)}^{\tau}=\mathcal{U}\left(p_{\Gamma}\right)$. Here we give a concrete example.

Let Ω be a locally compact space. We consider the following locally convex $*$-algebras of functions on Ω with the usual operations $f+g, \lambda f, f g$ and the complex conjugate as involution:
$C_{0}(\Omega)$: the C^{*}-algebra of all continuous functions on Ω which converge to 0 at the infinite point;
$C_{b}(\Omega)$: the C^{*}-algebra of all continuous and bounded functions on Ω;
$B(\Omega)$: the C^{*}-algebra of all bounded functions on Ω;
$C(\Omega)$: the pro-C*-algebra of all continuous functions on Ω equipped with the locally uniform topology $\tau_{\text {lu }}$ defined by the family $\left\{\|\cdot\|_{K}: K\right.$ a compact subset of $\Omega\}$ of C^{*}-seminorms with $\|f\|_{K}:=\sup _{t \in K}|f(t)|$;
$F(\Omega)$: the pro-C ${ }^{*}$-algebra of all functions on Ω with the simple convergence topology τ_{s} defined by the family of C^{*}-seminorms $\left\{p_{t}: t \in \Omega\right\}$ with $p_{t}(f):=$ $|f(t)|$.

Then

$$
\begin{aligned}
& C_{0}(\Omega) \subset C_{\mathrm{b}}(\Omega) \subset C(\Omega)=\widetilde{C_{0}(\Omega)}\left[\tau_{\mathrm{lu}}\right]=\widetilde{C_{\mathrm{b}}(\Omega)}\left[\tau_{\mathrm{lu}}\right] \\
& B(\Omega) \subset \widetilde{B(\Omega)}\left[\tau_{\mathrm{s}}\right]=\widetilde{C_{0}(\Omega)}\left[\tau_{\mathrm{s}}\right]=\widetilde{C_{\mathrm{b}}(\Omega)}\left[\tau_{\mathrm{s}}\right]=\mathcal{F}(\Omega) .
\end{aligned}
$$

Example 4.2. Let $\mathcal{A}[\tau]$ be a $G B^{*}$-algebra over \mathbf{B}_{0}. Then $A\left[\mathbf{B}_{0}\right]\left[\|\cdot\|_{\mathbf{B}_{0}}\right]$ is a C^{*}-algebra and $\widetilde{A\left[\mathbf{B}_{0}\right]}[\tau]=\widetilde{\mathcal{A}}[\tau]$. In this case, $\mathbf{B}_{\tau}={\overline{\mathcal{U}}\left(A\left[\mathbf{B}_{0}\right]\right)}^{\tau}=\mathcal{U}\left(A\left[\mathbf{B}_{0}\right]\right)$. The Arens algebra (see [5]) $\mathcal{A}=L^{\omega}[0,1]:=\bigcap_{1 \leqslant p<\infty} L^{p}[0,1]$ is a $G B^{*}$-algebra with the usual operations $f+g, \lambda f, f g$, usual involution f^{*} and the topology τ_{ω} defined by the family $\left\{\|\cdot\|_{p}: 1 \leqslant p<\infty\right\}$ of the L^{p}-norms; moreover,

$$
A\left[\mathbf{B}_{0}\right]=L^{\infty}[0,1] \subset L^{\omega}[0,1]=\widetilde{L^{\infty}[0,1]}\left[\tau_{\omega}\right]
$$

and

$$
\widetilde{L^{\infty}[0,1]}\left[\|\cdot\|_{p}\right]=L^{p}[0,1], \quad 1 \leqslant p \leqslant \infty,
$$

where $L^{p}[0,1]$ is a Banach quasi $*$-algebra over $L^{\infty}[0,1]$.
EXAMPLE 4.3. (i) The $*$-algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators on a Hilbert space \mathcal{H} is a locally convex $*$-algebra equipped with the weak topology τ_{w}. We investigate the structure of $\widetilde{\mathcal{B}(\mathcal{H})}\left[\tau_{\mathrm{w}}\right]$. Let $S(\mathcal{H})$ be the set of all sesquilinear forms on $\mathcal{H} \times \mathcal{H}$. Then $S(\mathcal{H})$ is a complete locally convex space under the weak topology τ_{w} defined by the family $\left\{p_{\xi, \eta}(\cdot): \xi, \eta \in \mathcal{H}\right\}$ of seminorms with $p_{\xi, \eta}(\varphi)=|\varphi(\xi, \eta)|, \varphi \in S(\mathcal{H})$. An element φ of $S(\mathcal{H})$ is said to be bounded if there exists a constant $\gamma>0$ such that $|\varphi(\xi, \eta)| \leqslant \gamma\|\xi\|\|\eta\|$ for each $\xi, \eta \in \mathcal{H}$. Denote by $S_{\mathrm{b}}(\mathcal{H})$ the set of all bounded sesquilinear forms on $\mathcal{H} \times \mathcal{H}$, and put $S(\mathcal{H})_{+} \equiv\{\varphi \in S(\mathcal{H}): \varphi \geqslant 0$ if and only if $\varphi(\xi, \xi) \geqslant 0, \forall \xi \in \mathcal{H}\}$ and $S_{\mathrm{b}}(\mathcal{H})_{+} \equiv\left\{\varphi \in S_{\mathrm{b}}(\mathcal{H}): \varphi \geqslant 0\right\}$. It is easily shown that $\varphi \in S_{\mathrm{b}}(\mathcal{H})$ if and only if there exists an element A of $\mathcal{B}(\mathcal{H})$ such that $\varphi(\xi, \eta)=\varphi_{A}(\xi, \eta):=(A \xi \mid \eta)$ for any
$\xi, \eta \in \mathcal{H}$, and $\varphi \in S_{\mathrm{b}}(\mathcal{H})_{+}$if and only if $A \geqslant 0$. Hence, $S_{\mathrm{b}}(\mathcal{H})\left[\tau_{\mathrm{w}}\right]$ is a locally convex $*$-algebra equipped with the multiplication $\varphi_{A} \varphi_{B}:=\varphi_{A B}$ and the involution $\varphi_{A}^{*}:=\varphi_{A^{*}} ;$ it is also isomorphic to the locally convex $*$-algebra $\mathcal{B}(\mathcal{H})\left[\tau_{\mathrm{w}}\right]$ with respect to the $\operatorname{map} \mathcal{B}(\mathcal{H})\left[\tau_{\mathrm{w}}\right] \ni A \mapsto \varphi_{A} \in S_{\mathrm{b}}(\mathcal{H})\left[\tau_{\mathrm{w}}\right]$. So $\widetilde{\mathcal{B}(\mathcal{H})}\left[\tau_{\mathrm{w}}\right]$ is isomorphic to $\widetilde{S_{\mathrm{b}}(\mathcal{H})}\left[\tau_{\mathrm{w}}\right]=S(\mathcal{H})$ and it is a locally convex quasi $*$-algebra over $\mathcal{B}(\mathcal{H})$ under the multiplications

$$
\left(\varphi \circ \varphi_{A}\right)(\xi, \eta):=\varphi(A \xi, \eta), \quad\left(\varphi_{A} \circ \varphi\right)(\xi, \eta):=\varphi\left(\xi, A^{*} \eta\right), \quad \xi, \eta \in \mathcal{H},
$$

for $A \in \mathcal{B}(\mathcal{H})$ and $\varphi \in \widetilde{S_{\mathrm{b}}(\mathcal{H})}\left[\tau_{\mathrm{w}}\right]$. Furthermore, it is easily shown that

$$
\widetilde{\mathcal{B}(\mathcal{H})}\left[\tau_{\mathrm{w}}\right]_{+} \cap\left(-\widetilde{\mathcal{B}(\mathcal{H})}\left[\tau_{\mathrm{w}}\right]_{+}\right)=\{0\} .
$$

(ii) Let \mathcal{D} be a dense subspace in a Hilbert space \mathcal{H}. We introduce on $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ the strong $*$-topology $\tau_{\mathrm{s}^{*}}^{\mathcal{D}}$ defined by the family $\left\{p_{\xi}, p_{\xi}^{\dagger}: \xi \in \mathcal{D}\right\}$ of seminorms with $p_{\xi}(X):=\|X \xi\|, p_{\xi}^{\dagger}(X):=\left\|X^{\dagger} \xi\right\|, X \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$. Then $(\widetilde{\mathcal{B}(\mathcal{H}) \upharpoonright} \mathcal{D})\left[\tau_{\mathrm{s}^{*}}^{\mathcal{D}}\right]=$ $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, but $(\widetilde{\mathcal{B}(\mathcal{H}) \upharpoonright} \mathcal{D})\left[\tau_{\mathrm{s}^{*}}^{\mathcal{D}}\right]$ is not a locally convex $*$-algebra, and so $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is not a locally convex $*$-algebra over $\mathcal{B}(\mathcal{H}) \upharpoonright \mathcal{D}$. We put

$$
\mathcal{B}(\mathcal{D}):=\left\{A \upharpoonright \mathcal{D}: A \in \mathcal{B}(\mathcal{H}), A \mathcal{D} \subset \mathcal{D} \text { and } A^{*} \mathcal{D} \subset \mathcal{D}\right\}
$$

Then $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is a quasi $*$-algebra over $\mathcal{B}(\mathcal{D})$, but as $\widetilde{\mathcal{B}(\mathcal{D})}\left[\tau_{\mathrm{s}^{*}}^{\mathcal{D}}\right] \subsetneq \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, in general, $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})\left[\tau_{\mathrm{s}^{*}}^{\mathcal{D}}\right]$ is not necessarily a locally convex quasi $*$-algebra over $\mathcal{B}(\mathcal{D})$. Let H be an unbounded positive self-adjoint operator on \mathcal{H} with $H \geqslant I$, $H=\int_{1}^{\infty} \lambda \mathrm{d} E_{H}(\lambda)$ the spectral resolution of H and $\mathcal{D}^{\infty}(H)=\bigcap_{n=1}^{\infty} \mathcal{D}\left(H^{n}\right)$. Then for any $A \in \mathcal{B}(\mathcal{H}), E_{H}(n) A E_{H}(n) \in \mathcal{B}\left(\mathcal{D}^{\infty}(H)\right)$, for each $n \in \mathbb{N}$ and for $n \rightarrow \infty$ it converges to A with respect to $\tau_{s^{*}}^{\mathcal{D}^{\infty}(H)}$; so $\mathcal{L}^{\dagger}\left(\mathcal{D}^{\infty}(H), \mathcal{H}\right)\left[\tau_{s^{*}}{ }^{\infty}(H)\right]$ is a locally convex quasi $*$-algebra over $\mathcal{B}\left(\mathcal{D}^{\infty}(H)\right)$.

EXAMPLE 4.4. Let \mathcal{A}_{b} be a unital C^{*}-algebra, with norm $\|\cdot\|_{b}$ and involution b. Let $\mathcal{A}[\|\cdot\|]$ be a right Banach module over the C^{*}-algebra \mathcal{A}_{b}, with isometric involution $*$ and such that $\mathcal{A}_{b} \subset \mathcal{A}$. Set $\mathcal{A}_{\#}=\left(\mathcal{A}_{b}\right)^{*}$. We say that $\left\{\mathcal{A}, *, \mathcal{A}_{b}, b\right\}$ is a CQ*-algebra if
(i) \mathcal{A}_{b} is dense in \mathcal{A} with respect to its norm $\|\cdot\|$;
(ii) $\mathcal{A}_{0} \equiv \mathcal{A}_{b} \cap \mathcal{A}_{\#}$ is dense in \mathcal{A}_{b} with respect to its norm $\|\cdot\|_{b}$;
(iii) $(x y)^{*}=y^{*} x^{*}, \forall x, y \in \mathcal{A}_{0}$;
(iv) $\|x\|_{b}=\sup _{a \in \mathcal{A},\|a\| \leqslant 1}\|a x\|, x \in \mathcal{A}_{b}$.

Since $*$ is isometric, it is easy to see that the space $\mathcal{A}_{\#}$ itself is a C^{*}-algebra with respect to the involution $x^{\#} \equiv\left(x^{*}\right)^{b *}$ and the norm $\|x\|_{\#} \equiv\left\|x^{*}\right\|_{b}$. A CQ ${ }^{*}$-algebra is called proper if $\mathcal{A}_{\#}=\mathcal{A}_{b}$. For CQ*-algebras we refer to [9], [10].

Let $\left\{\mathcal{A}, *, \mathcal{A}_{b}, b\right\}$ be a proper CQ^{*}-algebra. Then we have

$$
\|x y\| \leqslant\|x\|\|y\|_{b}, \quad\|x y\| \leqslant\|y\|\|x\|_{\#}, \quad\left\|x^{*}\right\|=\|x\|, \quad \text { and } \quad(x y)^{*}=y^{*} x^{*}
$$

for any $x, y \in \mathcal{A}_{b}$, and so $\mathcal{A}_{b}[\|\cdot\|]$ is a locally convex $*$-algebra with the involution *. Furthermore, since $\mathcal{A}=\widetilde{\mathcal{A}_{b}}[\|\cdot\|]$, it follows that $\mathcal{A}[\|\cdot\|]$ is a locally convex quasi $*$-algebra over \mathcal{A}_{b}. Consider the set $S_{b}(\mathcal{A})_{+}$of all sesquilinear forms φ on $\mathcal{A} \times \mathcal{A}$ such that:
(i1) $\varphi(a, a) \geqslant 0, \forall a \in \mathcal{A}$;
(i2) $\varphi(a x, y)=\varphi\left(x, a^{*} y\right), \forall a \in \mathcal{A}, \forall x, y \in \mathcal{A}_{b}$;
(i3) $|\varphi(a, b)| \leqslant\|a\|\|b\|, \forall a, b \in \mathcal{A}$.
Then $\left(\mathcal{A}, *, \mathcal{A}_{b}, b\right)$ is called $*$-semisimple if $a \in \mathcal{A}$ and $\varphi(a, a)=0$, for every $\varphi \in$ $S_{b}(\mathcal{A})_{+}$, implies $a=0$. Suppose $\left(\mathcal{A}, *, \mathcal{A}_{b}, b\right)$ is a $*$-semisimple proper $\mathrm{CQ}^{*}{ }^{*}$ algebra. Then $\mathcal{A}_{+} \cap\left(-\mathcal{A}_{+}\right)=\{0\}$. Indeed, for any $\varphi \in S_{b}(\mathcal{A})_{+}$we define a strongly positive linear functional on the quasi $*$-algebra \mathcal{A} over \mathcal{A}_{b} by $f_{\varphi}(a)=$ $\varphi(a, 1), a \in \mathcal{A}$. Take an arbitrary $h \in \mathcal{A}_{+} \cap\left(-\mathcal{A}_{+}\right)$. Then

$$
f_{\varphi}(h)=\lim _{n \rightarrow \infty} f_{\varphi}\left(x_{n}\right) \geqslant 0
$$

where $\left\{x_{n}\right\} \subset\left(\mathcal{A}_{b}\right)_{+}$converges to h with respect to $\|\cdot\|$. Thus, $f_{\varphi}(h)=0$, for each $\varphi \in S_{b}(\mathcal{A})_{+}$. We want to prove that $\varphi(h, h)=0$ for each $\varphi \in S_{b}(\mathcal{A})_{+}$. Let $x \in A_{b}$ with $\|x\| \leqslant 1$. Then we may define an element φ_{x} of $S_{b}(\mathcal{A})_{+}$by $\varphi_{x}(a, b)=\varphi(a x, b x)$ with $a, b \in \mathcal{A}$. Hence, $\varphi(h x, x)=0$ for each $x \in \mathcal{A}_{b}$, which implies that $\varphi(h x, y)=0$ for all $x, y \in \mathcal{A}_{b}$. Thus,

$$
\varphi(h, h)=\lim _{n \rightarrow \infty} \varphi\left(h, x_{n}\right)=0, \quad \forall \varphi \in S_{b}(\mathcal{A})_{+} \quad \text { and therefore } \quad h=0
$$

from the $*$-semisimplity of $\left(\mathcal{A}, *, \mathcal{A}_{b}, b\right)$.

Acknowledgements. The second author thankfully acknowledges partial support of this work by the Special Research Account: Grant Nr 70/4/5645, University of Athens.

REFERENCES

[1] J. Alcantara, J. Yngvason, Algebraic quantum field theory and non commutative moment problem. II, Ann. Inst. H. Poincaré Phis. Théor. 48(1988), 147-159.
[2] G.R. Allan, A spectral theory for locally convex algebras, Proc. London Math. Soc. (3) 15(1965), 399-421.
[3] G.R. Allan, On a class of locally convex algebras, Proc. London Math. Soc. (3) 17(1967), 91-114.
[4] J.-P. Antoine, A. Inoue, C. Trapani, Partial *-Algebras and their Operator Realizations, Math. Appl., vol. 553, Kluwer Acad. Publ., Dordrecht 2002.
[5] R. Arens, The space L^{ω} and convex topological rings, Bull. Amer. Math. Soc. 52(1946), 931-935.
[6] R. Arens, Convex topological algebras, Bull. Amer. Math. Soc. 52(1946), p. 829 (:52-9336).
[7] R. Arens, A generalization of normed rings, Pacific J. Math. 2(1952), 455-471.
[8] F. Bagarello, A. Inoue, C. Trapani, Unbounded C^{*}-seminorms and $*$-representations of partial *-algebras, Z. Anal. Anwendungen 20(2001), 1-20.
[9] F. Bagarello, C. Trapani, States and representations of CQ*-algebras, Ann. Inst. H. Poincaré Phis. Théor. 61(1994), 103-133.
[10] F. Bagarello, C. Trapani, CQ*-algebras: Structure properties, Publ. Res. Inst. Math. Sci. 32(1996), 85-116.
[11] S.J. Bhatt, M. Fragoulopoulou, A. Inoue, Existence of well-behaved *-representations of locally convex *-algebras, Math. Nachr. 279(2006), 86-100.
[12] S.J. Bhatt, A. Inoue, K.-D. KÜrsten, Well-behaved unbounded operator representations and unbounded C*-seminorms, J. Math. Soc. Japan 56(2004), 417-445.
[13] S.J. Bhatt, A. Inoue, H. Ogi, Unbounded C^{*}-seminorms and unbounded C^{*} spectral algebras, J. Operator Theory 45(2001), 53-80.
[14] D. Birbas, Pták function and symmetry, Rend. Circ. Mat. Palermo 47(1998), 431-446.
[15] N. Bourbaki, Espaces Vectoriels Topologiques, Hermann, Paris 1966.
[16] P.G. Dixon, Generalized B^{*}-algebras, Proc. London Math. Soc. 21(1970), 693-715.
[17] P.G. DIXON, Automatic continuity of positive functionaals on topological involution algebras, Bull. Austral. Math. Soc. 23(1981), 265-281.
[18] M. Dubois-Violette, A generalization of the classical moment problem on *algebras with applications to relativistic quantum theory. I and II, Comm. Math. Phys. 43(1975), 225-254 and 54(1977), 151-172.
[19] M. Fragoulopoulou, Introduction to the Representation Theory of Topological *-Algebras, Schriftenreihe Math. Inst. Univ. Münster 2 Ser., vol. 48, Univ. Münster, Münster 1988, pp. 1-81.
[20] M. Fragoulopoulou, The Shirali-Ford theorem as a consequence of Pták theory for hermitian Banach algebras, Studia Math. 150(2002), 121-132.
[21] M. Fragoulopoulou, A. Inoue, K.-D. Kursten, On the completion of a C*normed algebra under a locally convex algebra topology, Contemp. Math., to appear.
[22] A. Inoue, Locally C*-algebras, Mem. Fac. Sci. Kyushu Univ. Ser. A 25(1971), 197-235.
[23] A. Inoue, Tomita-Takesaki Theory in Algebras of Unbounded Operators, Lecture Notes in Math., vol. 1699, Springer-Verlag, Berlin 1998.
[24] A. Inoue, K.-D. Kürsten, On C*-like locally convex *-algebras, Math. Nachr. 235(2002), 51-58.
[25] E.A. Michael, Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc. 11(1964).
[26] A. Mallios, Topological Algebras. Selected Topics, North-Holland, Amsterdam 1986.
[27] N.C. Phillips, Inverse limits of C*-algebras, J. Operator Theory 19(1988), 159-195.
[28] V. РТА́к, Banach algebras with involution, Manuscripta Math. 6(1972), 245-290.
[29] H. Render, An order-theoretic approach to involutive algebras, Studia Math. 17(1989), 177-186.
[30] K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, BirkhäuserVerlag, Basel 1990.
[31] K. SCHMÜDGEN, On well behaved unbounded representations of $*$-algebras, J. Operator Theory 48(2002), 487-502.
[32] M. Takesaki, Theory of Operator Algebras. I, Springer-Verlag, New York-HeidelbergBerlin 1979.
[33] J. YngVason, Algebraic quantum field theory and non-commutative moment problem. I, Ann. Inst. Henri Poincaré Phis. Théor. 48(1988), 161-173.

fabio bagarello, Dipartimento di Metodi e Modelli Matematici, FaColtà di ingegneria, Universita di Palermo, Palermo, I-90128, Italy
E-mail address: bagarell@unipa.it
MARIA FRAGOULOPOULOU, Department of Mathematics, University of Athens, Athens, 15784, Greece
E-mail address: fragoulop@math.uoa.gr
atsushi inoue, Department of Applied Mathematics, Fukuoka UniverSITY, FUKUOKA, 814-0180, JAPAN
E-mail address: a-inoue@fukuoka-u.ac.jp
CAMILLO TRAPANI, Dipartimento di Matematica ed Applicazioni, Universita di Palermo, Palermo, I-90123, Italy
E-mail address: trapani@unipa.it

Received January 20, 2005.

ADDED IN PROOFS. While this paper was under publication, question A was proved in full and the answer can be found in Theorem 2.1 of [21].

