THE COMPLETION OF A C*-ALGEBRA WITH A LOCALLY CONVEX TOPOLOGY

FABIO BAGARELLO, MARIA FRAGOULOPOULOU, ATSUSHI INOUE and CAMILLO TRAPANI

Communicated by Şerban Strătilă

ABSTRACT. There are examples of C^* -algebras \mathcal{A} that accept a locally convex *-topology τ coarser than the given one, such that $\widetilde{\mathcal{A}}[\tau]$ (the completion of \mathcal{A} with respect to τ) is a GB^* -algebra. The multiplication of $\mathcal{A}[\tau]$ may be or not be jointly continuous. In the second case, $\widetilde{\mathcal{A}}[\tau]$ may fail being a locally convex *-algebra, but it is a partial *-algebra. In both cases the structure and the representation theory of $\widetilde{\mathcal{A}}[\tau]$ are investigated. If $\overline{\mathcal{A}}^{\tau}_+$ denotes the τ -closure of the positive cone \mathcal{A}_+ of the given C^* -algebra \mathcal{A} , then the property $\overline{\mathcal{A}}^{\tau}_+ \cap (-\overline{\mathcal{A}}^{\tau}_+) = \{0\}$ is decisive for the existence of certain faithful *-representations of the corresponding *-algebra $\widetilde{\mathcal{A}}[\tau]$.

KEYWORDS: *GB*-algebra*, unbounded *C*-seminorm*, partial *-algebra.

MSC (2000): 46K10, 47L60.

1. INTRODUCTION

A mapping *p* of a *-subalgebra $\mathcal{D}(p)$ of a *-algebra \mathcal{A} into $\mathbb{R}_+ = [0, \infty)$ is said to be an *unbounded C**-(*semi*)*norm* if it is a *C**-(*semi*)*norm* on $\mathcal{D}(p)$. Unbounded *C**-seminorms on *-algebras have appeared in many mathematical and physical subjects (for example, locally convex *-algebras, the moment problem, the quantum field theory etc.; see, e.g., [1], [18], [31], [33]). But a systematical study seems far to be complete (cf. also Introduction of [19]). So we have tried to study methodically unbounded *C**-seminorms and to apply such studies to those locally convex *-algebra that accept such *C**-seminorms [8], [11], [12], [13]. A *locally convex* *-algebra is a *-algebra which is also a Hausdorff locally convex space such that the multiplication is separately continuous and the involution is continuous. The studies of locally convex (*)-algebras started with those of locally *m*-convex (*)-algebras by R. Arens [7] and E.A. Michael [25], in 1952. In fact, the notion of a locally *m*-convex algebra was introduced by R. Arens [6], in 1946. For

a complete account on locally *m*-convex algebras, see [26]. A locally convex *algebra $\mathcal{A}[\tau]$ is said to be *locally* C^* -*convex* if the topology τ is determined by a directed family $\{p_{\lambda}\}_{\lambda \in \Lambda}$ of C^* -seminorms. A complete locally C^* -convex algebra is said to be a *pro*- C^* -*algebra* [27] (or a *locally* C^* -*algebra* [22]). Every pro- C^* -algebra is a projective limit of C^* -algebras. But it is difficult to study general locally convex *-algebras which are not locally C^* -convex, even if the multiplication is jointly continuous. So the third author together with K.-D. Kürsten defined and studied recently in [24] the so-called C^* -like locally convex *-algebras, that read as follows: If $\mathcal{A}[\tau]$ is a locally convex *-algebra, a directed family $\Gamma = \{p_{\lambda}\}_{\lambda \in \Lambda}$ of seminorms determining the topology τ is said to be C^* -like if for any $\lambda \in \Lambda$ there exists $\lambda' \in \Lambda$ such that $p_{\lambda}(xy) \leq p_{\lambda'}(x)p_{\lambda'}(y)$, $p_{\lambda}(x^*) \leq p_{\lambda'}(x)$ and $p_{\lambda}(x)^2 \leq p_{\lambda'}(x^*x)$ for any $x, y \in \mathcal{A}$. Of course, p_{λ} 's are not necessarily C^* -seminorms; nevertheless, an unbounded C^* -norm p_{Γ} of \mathcal{A} is defined by them in the following way:

$$\mathcal{D}(p_{\Gamma}) = \left\{ x \in \mathcal{A} : \sup_{\lambda \in \Lambda} p_{\lambda}(x) < \infty \right\} \quad \text{with } p_{\Gamma}(x) := \sup_{\lambda \in \Lambda} p_{\lambda}(x), x \in \mathcal{D}(p_{\Gamma}).$$

A locally convex *-algebra $\mathcal{A}[\tau]$ is said to be *C**-*like* if it is complete and there is a *C*^{*}-like family $\Gamma = \{p_{\lambda}\}_{\lambda \in \Lambda}$ of seminorms determining the topology τ such that $\mathcal{D}(p_{\Gamma})$ is τ -dense in $\mathcal{A}[\tau]$. In 1967, G.R. Allan [3] introduced and studied a class of locally convex *-algebras called GB*-algebras. In 1970, P.G. Dixon [16] modified Allan's definition in the class of topological *-algebras, so that this wider class of GB^* -algebras includes certain non-locally convex *-algebras. The notion of a GB^* -algebra is a generalization of a C^* -algebra. Given a locally convex *-algebra $\mathcal{A}[\tau]$ with identity 1, denote by \mathcal{B}^* the collection of all closed, bounded, absolutely convex subsets **B** of A satisfying $1 \in \mathbf{B}$, $\mathbf{B}^* = \mathbf{B}$ and $\mathbf{B}^2 \subset \mathbf{B}$. For every $\mathbf{B} \in \mathcal{B}^*$, the linear span of **B** forms a normed *-algebra under the Minkowski functional $\|\cdot\|_{\mathbf{B}}$ of **B**, and it is denoted by Alg**B** (simply, $A[\mathbf{B}]$). If $A[\mathbf{B}]$ is complete for every $\mathbf{B} \in$ \mathcal{B}^* , then $\mathcal{A}[\tau]$ is said to be *pseudo-complete*. If $\mathcal{A}[\tau]$ is sequentially complete, then it is pseudo-complete. Let $\mathcal{A}[\tau]$ be a pseudo-complete locally convex *-algebra. If \mathcal{B}^* has the greatest member \mathbf{B}_0 and $(1 + x^* x)^{-1} \in A[\mathbf{B}_0]$ for every $x \in \mathcal{A}$, then $\mathcal{A}[\tau]$ is said to be a *GB*^{*}-algebra over **B**₀. If $\mathcal{A}[\tau]$ is a *GB*^{*}-algebra over **B**₀, then $A[\mathbf{B}_0]$ is a C^* -algebra and $\|\cdot\|_{\mathbf{B}_0}$ is an unbounded C^* -norm of $\mathcal{A}[\tau]$. Thus, the study of unbounded C*-seminorms may be useful for investigations on locally convex *-algebras of this type. Let $\mathcal{A}[\tau]$ be a locally convex *-algebra and *p* an unbounded *C*^{*}-norm of $\mathcal{A}[\tau]$. Then

$$\mathcal{D}(p) \subset \mathcal{A}[\tau] \subset \widetilde{\mathcal{A}}[\tau]$$
 and $\mathcal{D}(p) \subset \mathcal{A}_p \equiv \mathcal{D}(p)[p]$ (C*-algebra)

where $\widetilde{\mathcal{A}}[\tau]$ and \mathcal{A}_p denote the completions of $\mathcal{A}[\tau]$ and $\mathcal{D}(p)[p]$, respectively. But we have no relation of $\widetilde{\mathcal{A}}[\tau]$ with the *C*^{*}-algebra \mathcal{A}_p , in general.

Suppose now that the following condition (N_1) holds:

(N₁) The topology defined by *p* is stronger than the topology τ on $\mathcal{D}(p)$ (simply, $\tau \prec p$).

Then the identity map $i : \mathcal{D}(p) \to \mathcal{A}[\tau]$ is continuous, therefore it can be extended to a continuous linear map \tilde{i} of \mathcal{A}_p into $\tilde{\mathcal{A}}[\tau]$, where \tilde{i} is not necessarily an injection. It is easily shown that \tilde{i} is an injection if and only if the following condition (N₂) is satisfied:

(N₂) τ and p are *compatible* in the sense that, for any Cauchy net $\{x_{\alpha}\}$ in $\mathcal{D}(p)[p]$ such that $x_{\alpha} \xrightarrow{\tau} 0$, then $x_{\alpha} \xrightarrow{p} 0$.

In this case we say that \mathcal{A}_p is *imbedded* in $\widetilde{\mathcal{A}}[\tau]$ and we write $\widetilde{\mathcal{A}}[p] \hookrightarrow \widetilde{\mathcal{A}}[\tau]$. Moreover, we have

 $\mathcal{D}(p) \subset \mathcal{A}[\tau] \hookrightarrow \widetilde{\mathcal{A}}[\tau], \quad \text{respectively } \mathcal{D}(p) \subset \mathcal{A}_p \hookrightarrow \widetilde{\mathcal{A}}[\tau].$

An unbounded C^* -norm p is said to be *normal*, if it satisfies the conditions (N_1) and (N_2) .

The unbounded *C*^{*}-norms p_{Γ} and $\|\cdot\|_{\mathbf{B}_0}$ considered above are normal.

In this paper we shall investigate the structure and the representation theory of locally convex *-algebras with normal unbounded C^* -norms. As stated above, it is sufficient to investigate the completion $\widetilde{\mathcal{A}}_0[\tau]$ of the C^* -algebra $\mathcal{A}_0[\|\cdot\|]$ with respect to a locally convex topology τ on \mathcal{A}_0 such that $\tau \prec \|\cdot\|$. Then the following cases arise:

Case 1: If the multiplication in A_0 is jointly continuous with respect to the topology τ , then $\tilde{A}_0[\tau]$ is a complete locally convex *-algebra containing the *C**-algebra $A_0[\|\cdot\|]$ as a dense subalgebra.

Case 2: If the multiplication on A_0 is not jointly continuous with respect to τ , then $\widetilde{A}_0[\tau]$ is not necessarily a locally convex *-algebra, but it has the structure of a partial *-algebra [4].

Under this stimulus, we investigate in the sequel the structure and the representation theory of $\widetilde{\mathcal{A}}_0[\tau]$.

2. CASE 1

In this section we study the structure and the representation theory of $\widetilde{\mathcal{A}}_0[\tau]$ as described in Case 1 before.

Suppose that $\mathcal{A}_0[\|\cdot\|_0]$ is a C^* -algebra with identity 1, τ a locally convex topology on \mathcal{A}_0 such that $\tau \prec \|\cdot\|_0$ and $\mathcal{A}_0[\tau]$ a locally convex *-algebra with jointly continuous multiplication (take, for instance, the C^* -algebra $\mathcal{C}[0,1]$ of all continuous functions on [0,1], with the topology τ of uniform convergence on the countable compact subsets of [0,1]). As we shall shown in Example 4.1, the C^* -algebra $\mathcal{A}_0[\|\cdot\|_0]$ that determines the locally convex *-algebra $\widetilde{\mathcal{A}}_0[\tau]$ is not unique. For this reason, we denote by $C^*(\mathcal{A}_0, \tau)$ the set of all C^* -algebras $\mathcal{A}[\|\cdot\|]$ such that $\mathcal{A}_0 \subset \mathcal{A} \subset \widetilde{\mathcal{A}}_0[\tau], \tau \prec \|\cdot\|$ and $\|x\| = \|x\|_0, \forall x \in \mathcal{A}_0$. Then $C^*(\mathcal{A}_0, \tau)$ is

an ordered set with the order:

 $\mathcal{A}_1[\|\cdot\|_1] \preceq \mathcal{A}_2[\|\cdot\|_2] \text{ if and only if } \mathcal{A}_1 \subset \mathcal{A}_2 \text{ and } \|x\|_1 = \|x\|_2, \forall x \in \mathcal{A}_1.$

But we do not know whether there exists a maximal C^* -algebra in $C^*(\mathcal{A}_0, \tau)$.

LEMMA 2.1. We denote by \mathbf{B}_{τ} the τ -closure of the unit ball $\mathcal{U}(\mathcal{A}_0) \equiv \{x \in \mathcal{A}_0 : \|x\|_0 \leq 1\}$ of the C*-algebra $\mathcal{A}_0[\|\cdot\|_0]$. Then $\mathbf{B}_{\tau} \in \mathcal{B}^*$ and $A[\mathbf{B}_{\tau}]$ is a Banach *-algebra with the norm $\|\cdot\|_{\mathbf{B}_{\tau}}$, satisfying the following conditions:

(i) $(1 + x^*x)^{-1}$, $x(1 + x^*x)^{-1}$ and $(1 + x^*x)^{-1}x$ exist in \mathbf{B}_{τ} for every $x \in \widetilde{\mathcal{A}}_0[\tau]$.

(ii) $\mathcal{A}_0 \subset A[\mathbf{B}_{\tau}]$ and $||x||_0 = ||x||_{\mathbf{B}_{\tau}}$ for each $x \in \mathcal{A}_0$. Hence, $\mathcal{U}(\mathcal{A}_0) = \mathbf{B}_{\tau} \cap \mathcal{A}_0$ and \mathcal{A}_0 is a closed *-subalgebra of the Banach *-algebra $A[\mathbf{B}_{\tau}]$.

(iii) $A[\mathbf{B}_{\tau}]$ is $\|\cdot\|_{\mathbf{B}}$ -dense in $A[\mathbf{B}]$ for each $\mathbf{B} \in \mathcal{B}^*$ containing $\mathcal{U}(\mathcal{A}_0)$.

Proof. It is clear that $\mathbf{B}_{\tau} \in \mathcal{B}^*$ and $A[\mathbf{B}_{\tau}]$ is a Banach *-algebra since $\widetilde{\mathcal{A}}_0[\tau]$ is complete.

(i) Take an arbitrary $x \in \widetilde{\mathcal{A}}_0[\tau]$ and $\{x_{\alpha}\}$ a net in \mathcal{A}_0 such that $\tau - \lim_{\alpha} x_{\alpha} = x$. Then since \mathcal{A}_0 is a C^* -algebra, it follows first that $(1 + x_{\alpha}^* x_{\alpha})^{-1} \in \mathcal{U}(\mathcal{A}_0)$, for every α , and secondly that for any τ -continuous seminorm p

$$p((1 + x_{\alpha}^* x_{\alpha})^{-1} - (1 + x_{\beta}^* x_{\beta})^{-1})$$

$$= p((1 + x_{\alpha}^* x_{\alpha})^{-1} (x_{\beta}^* x_{\beta} - x_{\alpha}^* x_{\alpha}) (1 + x_{\beta}^* x_{\beta})^{-1})$$

$$\leqslant q((1 + x_{\alpha}^* x_{\alpha})^{-1}) q((1 + x_{\beta}^* x_{\beta})^{-1}) q(x_{\beta}^* x_{\beta} - x_{\alpha}^* x_{\alpha})$$

$$\leqslant \gamma \| (1 + x_{\alpha}^* x_{\alpha})^{-1} \|_{0} \| (1 + x_{\beta}^* x_{\beta})^{-1} \|_{0} q(x_{\beta}^* x_{\beta} - x_{\alpha}^* x_{\alpha})$$

$$\leqslant \gamma q(x_{\beta}^* x_{\beta} - x_{\alpha}^* x_{\alpha})$$

for some $\gamma > 0$ and some τ -continuous seminorm q. Thus $\{(1 + x_{\alpha}^* x_{\alpha})^{-1}\}$ is a Cauchy net in $\widetilde{\mathcal{A}}_0[\tau]$ and $y \equiv \lim_{\alpha} (1 + x_{\alpha}^* x_{\alpha})^{-1}$ exists in $\widetilde{\mathcal{A}}_0[\tau]$. Since

$$1 = (1 + x_{\alpha}^* x_{\alpha})(1 + x_{\alpha}^* x_{\alpha})^{-1} = (1 + x_{\alpha}^* x_{\alpha})^{-1}(1 + x_{\alpha}^* x_{\alpha}), \quad \forall \alpha,$$

it follows that $(1 + x^*x)^{-1} \in \widetilde{\mathcal{A}}_0[\tau]$ and $y = (1 + x^*x)^{-1}$. Also, $(1 + x^*x)^{-1} \in \mathbf{B}_{\tau}$ and in a similar way we have that

$$x(1+x^*x)^{-1}$$
 and $(1+x^*x)^{-1}x$ belong to **B** _{τ} .

(ii) Since $\mathcal{U}(\mathcal{A}_0) \subset \mathbf{B}_{\tau}$, it follows that $\mathcal{A}_0 \subset A[\mathbf{B}_{\tau}]$ and $||x||_{\mathbf{B}_{\tau}} \leq ||x||_0$ for each $x \in \mathcal{A}_0$. From the theory of *C**-algebras (see, for example, Proposition I.5.3 of [32]), we have $||x||_0 \leq ||x||_{\mathbf{B}_{\tau}}$ for each $x \in \mathcal{A}_0$. Hence, it follows that $||x||_0 = ||x||_{\mathbf{B}_{\tau}}$, for each $x \in \mathcal{A}_0$, which implies that $\mathcal{U}(\mathcal{A}_0) = \mathbf{B}_{\tau} \cap \mathcal{A}_0$ and \mathcal{A}_0 is a closed *-subalgebra of $A[\mathbf{B}_{\tau}]$.

(iii) Take an arbitrary $\mathbf{B} \in \mathcal{B}^*$ containing $\mathcal{U}(\mathcal{A}_0)$. Since \mathbf{B} is τ -closed, it follows that $\mathbf{B}_{\tau} \subset \mathbf{B}$, and so $A[\mathbf{B}_{\tau}] \subset A[\mathbf{B}]$ and $\|x\|_{\mathbf{B}} \leq \|x\|_{\mathbf{B}_{\tau}}$ for each $x \in A[\mathbf{B}_{\tau}]$. Let $x \in A[\mathbf{B}]$. By (i) we have

$$x\left(1+rac{1}{n}x^*x
ight)^{-1}\in A[\mathbf{B}_{ au}], \hspace{0.3cm} orall n\in\mathbb{N} \hspace{0.3cm} ext{and}$$

$$\begin{split} \lim_{n \to \infty} \left\| x \left(1 + \frac{1}{n} x^* x \right)^{-1} - x \right\|_{\mathbf{B}} &= \lim_{n \to \infty} \frac{1}{n} \left\| x x^* x \left(1 + \frac{1}{n} x^* x \right)^{-1} \right\|_{\mathbf{B}} \\ &\leq \lim_{n \to \infty} \frac{1}{n} \left\| x x^* x \right\|_{\mathbf{B}} \left\| \left(1 + \frac{1}{n} x^* x \right)^{-1} \right\|_{\mathbf{B}} \\ &\leq \lim_{n \to \infty} \frac{1}{n} \left\| x x^* x \right\|_{\mathbf{B}} \left\| \left(1 + \frac{1}{n} x^* x \right)^{-1} \right\|_{\mathbf{B}_{\tau}} \\ &\leq \lim_{n \to \infty} \frac{1}{n} \left\| x x^* x \right\|_{\mathbf{B}} = 0. \end{split}$$

Hence, $A[\mathbf{B}_{\tau}]$ is $\|\cdot\|_{\mathbf{B}}$ -dense in $A[\mathbf{B}]$. This completes the proof.

By Lemma 2.1(i) $A[\mathbf{B}_{\tau}]$ is a symmetric Banach *-algebra, therefore by Pták's theory for hermitian algebras [28] (see, e.g., Corollary 3.4 and Theorem 3.2 of [20]) $A[\mathbf{B}_{\tau}]$ is hermitian and the Pták function defined as $p_{A[\mathbf{B}_{\tau}]}(x) := r_{A[\mathbf{B}_{\tau}]}(x^*x)^{1/2}, x \in A[\mathbf{B}_{\tau}]$, where $r_{A[\mathbf{B}_{\tau}]}$ is the spectral radius, is a *C**-seminorm satisfying $p_{A[\mathbf{B}_{\tau}]}(x) \leq ||x||_{\mathbf{B}_{\tau}}$, for each $x \in A[\mathbf{B}_{\tau}]$ and $p_{A[\mathbf{B}_{\tau}]}(x) \leq ||x||_{0}$, for each $x \in \mathcal{A}_{0}$. It is natural to consider the following question:

Question A. Is $\tilde{\mathcal{A}}_0[\tau]$ a *GB*^{*}-algebra? When is $\tilde{\mathcal{A}}_0[\tau]$ a *GB*^{*}-algebra?

An answer is provided by the following:

THEOREM 2.2. The following statements are equivalent:

(i) $\widetilde{\mathcal{A}}_0[\tau]$ is a GB*-algebra.

(ii) There exists the greatest member \mathbf{B}_0 in \mathcal{B}^* .

(iii) There exists a member \mathbf{B}_0 in \mathcal{B}^* containing $\mathcal{U}(\mathcal{A}_0)$ such that $\|\cdot\|_{\mathbf{B}_0}$ is a C^* -norm. If (iii) is true, then \mathbf{B}_0 in (iii) is the greatest member in \mathcal{B}^* and $\widetilde{\mathcal{A}}_0[\tau]$ is a GB^* -algebra over \mathbf{B}_0 .

Proof. (i) \Rightarrow (iii) Since $\widetilde{\mathcal{A}}_0[\tau]$ is a GB^* -algebra, there exists the greatest member \mathbf{B}_0 in \mathcal{B}^* . Then $\|\cdot\|_{\mathbf{B}_0}$ is a C^* -norm and $\mathcal{U}(\mathcal{A}_0) \subset \mathbf{B}_\tau \subset \mathbf{B}_0$, since $\mathbf{B}_\tau \in \mathcal{B}^*$.

(iii) \Rightarrow (ii) Let $\mathbf{B}_0 \in \mathcal{B}^*$ such that $\|\cdot\|_{\mathbf{B}_0}$ is a C^* -norm and $\mathcal{U}(\mathcal{A}_0) \subset \mathbf{B}_0$. Take an arbitrary $\mathbf{B} \in \mathcal{B}^*$ and $h^* = h \in \mathbf{B}$. Let \mathcal{C} be a maximal, commutative, locally convex *-algebra containing h. Then \mathcal{C} is a complete commutative locally convex *-algebra. We denote by $\mathcal{B}_{\mathcal{C}}^*$ the collection of all closed, bounded, absolutely convex subsets \mathbf{B}_1 of \mathcal{C} satisfying: $1 \in \mathbf{B}_1, \mathbf{B}_1^* = \mathbf{B}_1$ and $\mathbf{B}_1^2 \subset \mathbf{B}_1$. Then $\mathcal{B}_{\mathcal{C}}^* = \{\mathbf{B}_2 \cap \mathcal{C}; \mathbf{B}_2 \in \mathcal{B}^*\}$. We show that $\mathbf{B} \cap \mathcal{C} \subset \mathbf{B}_0 \cap \mathcal{C}$. Since \mathcal{C} is commutative and complete, it follows from Theorem 2.10 of [3], that $\mathcal{B}_{\mathcal{C}}^*$ is directed, so that there exists $\mathbf{B}_1 \in \mathcal{B}_{\mathcal{C}}^*$ such that $(\mathbf{B} \cap \mathcal{C}) \cup (\mathbf{B}_0 \cap \mathcal{C}) \subset \mathbf{B}_1$. Then since the \mathcal{C}^* -algebra $A[\mathbf{B}_0 \cap \mathcal{C}] = A[\mathbf{B}_0] \cap \mathcal{C}$ is contained in the Banach *-algebra $A[\mathbf{B}_1]$, it follows from Proposition I.5.3 of [32] that

$$\|x\|_{\mathbf{B}_0} = \|x\|_{\mathbf{B}_0 \cap \mathcal{C}} \leqslant \|x\|_{\mathbf{B}_1}, \quad \forall x \in A[\mathbf{B}_0] \cap \mathcal{C}.$$

On the other hand, since $\mathbf{B}_0 \cap \mathcal{C} \subset \mathbf{B}_1$, it follows that

$$\|x\|_{\mathbf{B}_1} \leqslant \|x\|_{\mathbf{B}_0 \cap \mathcal{C}} = \|x\|_{\mathbf{B}_0}, \quad \forall x \in A[\mathbf{B}_0] \cap \mathcal{C}.$$

Thus, we have

(2.1)
$$||x||_{\mathbf{B}_1} = ||x||_{\mathbf{B}_0}, \quad \forall x \in A[\mathbf{B}_0] \cap C$$

and the *C**-algebra $A[\mathbf{B}_0] \cap C$ is $\|\cdot\|_{\mathbf{B}_1}$ -dense in the Banach *-algebra $\mathcal{A}[\mathbf{B}_1]$. Indeed, from Lemma 2.1(i)

$$x\left(1+\frac{1}{n}x^*x\right)^{-1} \in A[\mathbf{B}_{\tau}], \quad \forall x \in A[\mathbf{B}_1] \text{ and } \forall n \in \mathbb{N}.$$

It is easily shown that $\{x, (1+y^*y)^{-1} : x, y \in C\}$ is commutative, so that by the maximality of C, $\{(1+y^*y)^{-1} : y \in C\} \subset C$. Furthermore, it follows from the assumption $\mathcal{U}(\mathcal{A}_0) \subset \mathbf{B}_0$, that $A[\mathbf{B}_\tau] \cap C \subset A[\mathbf{B}_0] \cap C$. Hence,

$$x\left(1+\frac{1}{n}x^*x\right)^{-1} \in A[\mathbf{B}_{\tau}] \cap \mathcal{C} \subset A[\mathbf{B}_0] \cap \mathcal{C}.$$

In a similar way as in the proof of Lemma 2.1(iii) we can show that

$$\left\|x\left(1+\frac{1}{n}x^{*}x\right)^{-1}-x\right\|_{\mathbf{B}_{1}}\leqslant\frac{1}{n}\|xx^{*}x\|_{\mathbf{B}_{1}}$$

Hence, $A(\mathbf{B}_0] \cap \mathcal{C}$ is $\|\cdot\|_{\mathbf{B}_1}$ -dense in $A[\mathbf{B}_1]$. By (2.1) $A[\mathbf{B}_0] \cap \mathcal{C} = A[\mathcal{C} \cap \mathbf{B}_0] = A[\mathbf{B}_1]$, and so $\mathbf{B}_0 \cap \mathcal{C} = \mathbf{B}_1$. Thus, $\mathbf{B} \cap \mathcal{C} \subset \mathbf{B}_0 \cap \mathcal{C}$. Therefore, $h \in \mathbf{B}_0$ and if $\mathbf{B}_h = \{x \in \mathbf{B} : x^* = x\}$, we have $\mathbf{B}_h \subset (\mathbf{B}_0)_h$, which implies that $\|x\|_{\mathbf{B}_0}^2 = \|x^*x\|_{\mathbf{B}_0} \leq 1$ for each $x \in \mathbf{B}$. Hence, $\mathbf{B} \subset \mathbf{B}_0$ and \mathbf{B}_0 is the greatest member in \mathcal{B}^* .

(ii) \Rightarrow (i) This follows from Lemma 2.1(i) and so the proof is complete.

By Theorem 2.2 we have the next:

COROLLARY 2.3. Consider the following statements:

- (i) $\widetilde{\mathcal{A}}_0[\tau]$ is a GB*-algebra over $\mathcal{U}(\mathcal{A}_0)$.
- (ii) $\mathcal{U}(\mathcal{A}_0)$ is τ -closed.
- (iii) $\mathcal{A}_0[\tau]$ is a GB^* -algebra over \mathbf{B}_{τ} .
- (iv) \mathbf{B}_{τ} is the greatest member in \mathcal{B}^* .
- (v) $\|\cdot\|_{\mathbf{B}_{\tau}}$ is a C^{*}-norm.

Then the following implications hold: (i) \Leftrightarrow (ii) \Rightarrow (iii) \Leftrightarrow (iv) \Leftrightarrow (v).

We investigate now the representation theory of $\widetilde{\mathcal{A}}_0[\tau]$. We begin with some basic terminology. For more details see [23], [30]. Let \mathcal{D} be a dense subspace of a Hilbert space \mathcal{H} . Denote by $\mathcal{L}(\mathcal{D})$ all linear operators from \mathcal{D} into \mathcal{D} and let

$$\mathcal{L}^{\dagger}(\mathcal{D}) := \{ X \in \mathcal{L}(\mathcal{D}) : \mathcal{D}(X^*) \supset \mathcal{D} \text{ and } X^* \mathcal{D} \subset \mathcal{D} \}$$

 $\mathcal{L}^{\dagger}(\mathcal{D})$ is a *-algebra, under the usual algebraic operations and the involution $X \to X^{\dagger} := X^* \upharpoonright \mathcal{D}$. Furthermore, $\mathcal{L}^{\dagger}(\mathcal{D})$ is a locally convex *-algebra equipped with the topology τ_w (respectively τ_{s^*}) defined by the family $\{p_{\xi,\eta}(\cdot) : \xi, \eta \in \mathcal{D}\}$ of seminorms with $p_{\xi,\eta}(X) := |(X\xi|\eta)|, X \in \mathcal{L}^{\dagger}(\mathcal{D})$ (respectively the family $\{p_{\xi}^{\dagger}(\cdot) : \xi \in \mathcal{D}\}$ of seminorms with $p_{\xi}^{\dagger}(X) := |X\xi|| + ||X^{\dagger}\xi||, X \in \mathcal{L}^{\dagger}(\mathcal{D})$). A *-subalgebra of $\mathcal{L}^{\dagger}(\mathcal{D})$ is said to be an O^* -algebra on \mathcal{D} . Let \mathcal{A} be a *-algebra. A *-homomorphism $\pi : \mathcal{A} \to \mathcal{L}^{\dagger}(\mathcal{D})$ is called (unbounded) *-representation of \mathcal{A}

on the Hilbert space \mathcal{H} , with domain \mathcal{D} . If \mathcal{A} has an identity, say 1, we suppose that $\pi(1) = I$, with I the identity operator in $\mathcal{L}^{\dagger}(\mathcal{D})$. From now on, we shall use the notation: $\mathcal{D}(\pi)$ for the domain of π and \mathcal{H}_{π} for the corresponding Hilbert space. A *-representation π of \mathcal{A} is said to be *faithful* if $\pi(a) = 0$, $a \in \mathcal{A}$, implies a = 0. A *-representation π of a locally convex *-algebra $\mathcal{A}[\tau]$ is said to be $(\tau - \tau_w)$ -continuous (respectively $(\tau - \tau_{s^*})$ -continuous) if it is continuous from $\mathcal{A}[\tau]$ to $\pi(\mathcal{A})[\tau_w]$ (respectively to $\pi(\mathcal{A})[\tau_{s^*}]$).

We define now a wedge $\widetilde{\mathcal{A}}_0[\tau]_+$ of $\widetilde{\mathcal{A}}_0[\tau]$. Take an arbitrary C^* -algebra $\mathcal{A}[\|\cdot\|] \in C^*(\mathcal{A}_0, \tau)$. Then we have $\overline{\mathcal{A}}_+^{\tau} = \overline{(\mathcal{A}_0)}_+^{\tau}$, where \mathcal{A}_+ and $(\mathcal{A}_0)_+$ are positive cones in the C^* -algebras \mathcal{A} and \mathcal{A}_0 respectively. Indeed, take an arbitrary $a \in \mathcal{A}_+$. Then there is a net $\{x_\alpha\}$ in \mathcal{A}_0 such that $\tau - \lim_{\alpha} x_\alpha = a^{1/2}$. Hence, $\{x_\alpha^* x_\alpha\} \subset (\mathcal{A}_0)_+$ and $\tau - \lim_{\alpha} x_\alpha^* x_\alpha = a$. This implies that $\overline{\mathcal{A}}_+^{\tau} \subset \overline{(\mathcal{A}_0)}_+^{\tau}$. The converse is clear. Thus, the τ -closure $\overline{\mathcal{A}}_0^{\tau}$ of $(\mathcal{A}_0)_+$ is independent of the method of taking C^* -algebras in $C^*(\mathcal{A}_0, \tau)$, therefore in the sequel we shall denote by $\widetilde{\mathcal{A}}_0[\tau]_+$ the τ -closure of $(\mathcal{A}_0)_+$. So $\widetilde{\mathcal{A}}_0[\tau]_+$ is a wedge (in the sense that if $x, y \in \widetilde{\mathcal{A}}_0[\tau]_+$ and $\lambda \ge 0$, then $x + y, \lambda x \in \widetilde{\mathcal{A}}_0[\tau]_+$), and $\widetilde{\mathcal{A}}_0[\tau]_+ = \overline{\mathcal{P}}(\widetilde{\mathcal{A}}_0[\tau])^{\tau}$ (the τ -closure of the algebraic wedge $\mathcal{P}(\widetilde{\mathcal{A}}_0[\tau]) \equiv \left\{\sum_{k=1}^n x_k^* x_k : x_k \in \widetilde{\mathcal{A}}_0[\tau] \ (k = 1, \dots, n), n \in \mathbb{N}\right\}$).

A linear functional f on $\widetilde{\mathcal{A}}_0[\tau]$ is said to be *strongly positive* (respectively *positive*) if $f(x) \ge 0$ for each $x \in \widetilde{\mathcal{A}}_0[\tau]_+$ (respectively $x \in \mathcal{P}(\widetilde{\mathcal{A}}_0[\tau])$).

THEOREM 2.4. The following statements are equivalent:

(i) $\widetilde{\mathcal{A}}_0[\tau]_+ \cap (-\widetilde{\mathcal{A}}_0[\tau]_+) = \{0\}.$

(ii) $A[\mathbf{B}_{\tau}]_{+} \cap (-A[\mathbf{B}_{\tau}]_{+}) = \{0\}.$

(iii) The Pták function $p_{A[\mathbf{B}_{\tau}]}$ on the Banach *-algebra $A[\mathbf{B}_{\tau}]$ is a C*-norm (see comments before Question A).

(iv) There exists a faithful *-representation of $\widetilde{\mathcal{A}}_0[\tau]$.

(v) There exists a faithful $(\tau - \tau_{s^*})$ -continuous *-representation of $\widetilde{\mathcal{A}}_0[\tau]$.

Proof. (i) \Rightarrow (v) Let \mathcal{F} be the set of all τ -continuous strongly positive linear functionals on $\widetilde{\mathcal{A}}_0[\tau]$. Let $(\pi_f, \lambda_f, \mathcal{H}_f)$ be the GNS-construction for $f \in \mathcal{F}$. We put

$$\mathcal{D}(\pi) := \left\{ (\lambda_f(x_f)) \in \bigoplus_{f \in \mathcal{F}} \mathcal{H}_f : \lambda_f(x_f) = 0 \text{ except for a finite number of } f \in \mathcal{F} \right\}$$
$$\pi(a)(\lambda_f(x_f)) := (\lambda_f(ax_f)), \quad a \in \widetilde{\mathcal{A}}_0[\tau], \ (\lambda_f(x_f)) \in \mathcal{D}(\pi).$$

Then it is easily shown that π is a $(\tau - \tau_{s^*})$ -continuous *-representation of $\widetilde{A}_0[\tau]$. We show that π is faithful. In fact, suppose $0 \neq a \in \widetilde{A}_0[\tau]_h$ (the hermitian part of $\widetilde{A}_0[\tau]$). Let $a \in \widetilde{A}_0[\tau]_+$. Since $\widetilde{A}_0[\tau]_+ \cap (-\widetilde{A}_0[\tau]_+) = \{0\}$, we have $\widetilde{A}_0[\tau]_+ \cap \{-a\} = \phi$. Then it follows from Chapter II, Section 5, Proposition 4 in [15], that there exists a τ -continuous strongly positive linear functional f on $\widetilde{A}_0[\tau]$ such that f(a) > 0. Let $a \notin \widetilde{A}_0[\tau]_+$. Since $\widetilde{A}_0[\tau]_+ \cap \{a\} = \phi$, we can show in a similar way that there exists a τ -continuous strongly positive linear functional f on $\widetilde{\mathcal{A}}_0[\tau]$ such that f(a) < 0. Since $(\pi_f(a)\lambda_f(1)|\lambda_f(1)) = f(a) \neq 0$ this implies that $\pi_f(a) \neq 0$, and so $\pi(a) \neq 0$. Similarly, for any $0 \neq a \in \widetilde{\mathcal{A}}_0[\tau]$ we have $\pi(a) \neq 0$ by considering $a = a_1 + ia_2$ $(a_1, a_2 \in \widetilde{\mathcal{A}}_0[\tau]_h)$.

 $(v) \Rightarrow (iv)$ This is trivial.

(iv) \Rightarrow (iii) Let π be a faithful *-representation of $\widetilde{\mathcal{A}}_0[\tau]$. Since $A[\mathbf{B}_{\tau}]$ is a symmetric Banach *-algebra by Lemma 2.1(i), it follows from Theorem 3.2 and Corollary 3.4 in [20], that the Pták function $p_{A[\mathbf{B}_{\tau}]}$ is a *C**-seminorm. In particular (Raikov criterion for symmetry),

$$p_{A[\mathbf{B}_{\tau}]}(x) = \sup_{\rho \in \operatorname{Rep}(A[\mathbf{B}_{\tau}])} \|\rho(x)\|, \quad x \in A[\mathbf{B}_{\tau}],$$

where $\operatorname{Rep}(A[\mathbf{B}_{\tau}])$ denotes the set of all *-representations of $A[\mathbf{B}_{\tau}]$. Suppose $p_{A[\mathbf{B}_{\tau}]}(x) = 0$. Since $\pi \upharpoonright A[\mathbf{B}_{\tau}] \in \operatorname{Rep}(A[\mathbf{B}_{\tau}])$, we have $\pi(x) = 0$, and so x = 0. Thus $p_{A[\mathbf{B}_{\tau}]}$ is a *C**-norm.

(iii) \Rightarrow (ii) We first show that

(2.2)
$$\operatorname{Sp}_{A[\mathbf{B}_{\tau}]}(x) \subset \mathbb{R}_{+} \equiv \{\lambda \in \mathbb{R} : \lambda \ge 0\}, \quad \forall x \in A[\mathbf{B}_{\tau}]_{+}.$$

where $\operatorname{Sp}_{A[\mathbf{B}_{\tau}]}(x)$ stands for the spectrum of $x \in A[\mathbf{B}_{\tau}]$. In fact, take an arbitrary $x \in A[\mathbf{B}_{\tau}]_+$ and a net $\{x_{\alpha}\}$ in $(\mathcal{A}_0)_+$ that converges to x with respect to τ . Since $A[\mathbf{B}_{\tau}]$ is hermitian ([20], Corollary 3.4), it follows that $\operatorname{Sp}_{A[\mathbf{B}_{\tau}]}(x) \subset \mathbb{R}$. Let $\lambda < 0$. Notice that $\lambda(\lambda 1 - x_{\alpha})^{-1} \in \mathcal{U}(\mathcal{A}_0)$, for every α . Then for any τ -continuous seminorm p on $\widetilde{\mathcal{A}}_0[\tau]$

$$p(\lambda(\lambda 1 - x_{\alpha})^{-1} - \lambda(\lambda 1 - x_{\beta})^{-1})$$

$$= |\lambda| p((\lambda 1 - x_{\alpha})^{-1}(x_{\alpha} - x_{\beta})(\lambda 1 - x_{\beta})^{-1})$$

$$\leqslant |\lambda| q((\lambda 1 - x_{\alpha})^{-1}) q(x_{\alpha} - x_{\beta}) q((\lambda 1 - x_{\beta})^{-1})$$

$$\leqslant \frac{1}{|\lambda|} \gamma ||\lambda(\lambda 1 - x_{\alpha})^{-1}||_{0} ||\lambda(\lambda 1 - x_{\beta})^{-1}||_{0} q(x_{\alpha} - x_{\beta})$$

$$\leqslant \frac{\gamma}{|\lambda|} q(x_{\alpha} - x_{\beta})$$

for some constant $\gamma > 0$ and a τ -continuous seminorm q on $\widetilde{\mathcal{A}}_0[\tau]$. It follows that $\lambda(\lambda 1 - x_{\alpha})^{-1}$ converges to an element y of \mathbf{B}_{τ} with respect to τ , which implies that $\lambda(\lambda 1 - x)^{-1}$ exists and equals y. Hence, $\lambda \notin \operatorname{Sp}_{A[\mathbf{B}_{\tau}]}(x)$. Thus, we have $\operatorname{Sp}_{A[\mathbf{B}_{\tau}]}(x) \subset \mathbb{R}_+$. Take an arbitrary $x \in A[\mathbf{B}_{\tau}]_+ \cap (-A[\mathbf{B}_{\tau}]_+)$. Then from (2.2), it follows that $\operatorname{Sp}_{A[\mathbf{B}_{\tau}]}(x) = \{0\}$, therefore $p_{A[\mathbf{B}_{\tau}]}(x) = r_{A[\mathbf{B}_{\tau}]}(x) = 0$. Since $p_{A[\mathbf{B}_{\tau}]}$ is a norm, we have x = 0.

(ii) \Rightarrow (i) Take an arbitrary $a \in \widetilde{\mathcal{A}}_0[\tau]_+ \cap (-\widetilde{\mathcal{A}}_0[\tau]_+)$. Then from Lemma 2.1(i) it follows that $a(1 + a^2)^{-1} \in A[\mathbf{B}_{\tau}]_+ \cap (-A[\mathbf{B}_{\tau}]_+) = \{0\}$, which implies a = 0. This completes the proof.

In the case of *C**-algebras (respectively pro-*C**-algebras), condition (ii) of Theorem 2.4, is always true. Also see Example 4.4 in Section 4. In the case of symmetric Banach *-algebras (respectively symmetric topological *-algebras), which in fact can be viewed as a generalization of *C**-algebras [28] (respectively pro-*C**-algebras), it seems that such a property has not been investigated. Some information about the set A_+ , with A a certain involutive algebra can be found in [14] and [29].

Question B. (i) Is $\mathcal{P}(\widetilde{\mathcal{A}}_0[\tau])$ τ -closed? That is, does the equality $\widetilde{\mathcal{A}}_0[\tau]_+$ = $\mathcal{P}(\widetilde{\mathcal{A}}_0[\tau])$ hold? Equivalently, for each net $\{x_{\alpha}\}$ in $(\mathcal{A}_0)_+$ which converges to $x \in \widetilde{\mathcal{A}}_0[\tau]$, is $\{x_{\alpha}^{1/2}\}$ τ -Cauchy?

(ii) Does one of the conditions in Theorem 2.4 always hold?

If $\widetilde{\mathcal{A}}_0[\tau]$ is a *GB*^{*}-algebra, then the above questions (i) and (ii) have positive answers. Does the converse hold? That is, the following question arises.

Question C. If the answer to Question B is affirmative, is then $\widetilde{\mathcal{A}}_0[\tau]$ a *GB*^{*}- algebra?

To consider Question C, we define an unbounded C^* -seminorm r_{π} of $\widetilde{\mathcal{A}}_0[\tau]$ induced by a *-representation π of $\widetilde{\mathcal{A}}_0[\tau]$ as follows:

$$\begin{aligned} \mathcal{D}(r_{\pi}) &= \widetilde{\mathcal{A}}_0[\tau]_b^{\pi} := \{ x \in \widetilde{\mathcal{A}}_0[\tau] : \overline{\pi(x)} \in \mathcal{B}(\mathcal{H}_{\pi}) \}, \\ r_{\pi}(x) &= \| \overline{\pi(x)} \|, \quad x \in \mathcal{D}(r_{\pi}). \end{aligned}$$

Then we have the next:

LEMMA 2.5. Let π be a faithful *-representation of $\widetilde{\mathcal{A}}_0[\tau]$ and **B** any element of \mathcal{B}^* containing $\mathcal{U}(\mathcal{A}_0)$. Then the following statements hold:

(i) $\mathcal{A}_0 \subset A[\mathbf{B}_{\tau}] \subset A[\mathbf{B}] \subset \mathcal{D}(r_{\pi}) = \widetilde{\mathcal{A}}_0[\tau]_b^{\pi} \text{ and } \|\pi(x)\| \leq \|x\|_{\mathbf{B}}, \forall x \in A[\mathbf{B}], as$ well as $\|\pi(x)\| = \|x\|_{\mathbf{B}_{\tau}} = \|x\|_0, \forall x \in \mathcal{A}_0.$

(ii) $\pi(A[\mathbf{B}])$ is τ_{s^*} -dense in $\pi(\widetilde{\mathcal{A}}_0[\tau])$, and it is also uniformly dense in $\pi(\widetilde{\mathcal{A}}_0[\tau]_h^{\pi})$.

(iii) Suppose π is $(\tau - \tau_w)$ -continuous. Then $\pi(\widetilde{\mathcal{A}}_0[\tau]_+) \subset \mathcal{L}^{\dagger}(\mathcal{D}(\pi))_+ \equiv \{X \in \mathcal{L}^{\dagger}(\mathcal{D}(\pi)) : X \ge 0\}.$

Proof. (i) is easily shown.

(ii) Take an arbitrary $a \in \widetilde{\mathcal{A}}_0[\tau]$. Then it follows that

$$(1 + \varepsilon a^* a)^{-1} a = \frac{1}{\sqrt{\varepsilon}} (1 + (\sqrt{\varepsilon} a)^* (\sqrt{\varepsilon} a))^{-1} (\sqrt{\varepsilon} a) \in A[\mathbf{B}_{\tau}], \quad \forall \varepsilon > 0$$

and for each $\xi \in \mathcal{D}(\pi)$

$$\begin{aligned} \|\pi((1+\varepsilon a^*a)^{-1}a)\xi - \pi(a)\xi\| &= \varepsilon \|\pi((1+\varepsilon a^*a)^{-1})\pi(a^*a^2)\xi\| \\ &\leqslant \varepsilon \|\pi((1+\varepsilon a^*a)^{-1})\| \|\pi(a^*a^2)\xi\| \\ &\leqslant \varepsilon \|(1+\varepsilon a^*a)^{-1}\|_{B_{\tau}} \|\pi(a^*a^2)\xi\| \\ &\leqslant \varepsilon \|\pi(a^*a^2)\xi\| \xrightarrow[\varepsilon\downarrow 0]{} 0, \end{aligned}$$

so that $\pi(A[\mathbf{B}_{\tau}])$ is τ_{s^*} -dense in $\pi(\widetilde{\mathcal{A}}_0[\tau])$. Take an arbitrary $a \in \widetilde{\mathcal{A}}_0[\tau]_b^{\pi}$. Then since

$$\|\pi((1+\varepsilon a^*a)^{-1}a)\xi-\pi(a)\xi\|\leqslant \varepsilon\|\pi(a^*a^2)\|\|\xi\|$$

for each $\xi \in \mathcal{D}(\pi)$, it follows that $\lim_{\epsilon \downarrow 0} \pi((1 + \epsilon a^* a)^{-1} a) = \pi(a)$ uniformly, which implies that $\pi(A[\mathbf{B}_{\tau}])$ is uniformly dense in $\pi(\widetilde{\mathcal{A}}_0[\tau]_b^{\pi})$. Since $A[\mathbf{B}_{\tau}] \subset A[\mathbf{B}]$, (ii) follows.

(iii) This follows from $(\tau - \tau_w)$ -continuity of π and $\pi((\mathcal{A}_0)_+) \subset \mathcal{L}^{\dagger}(\mathcal{D}(\pi))_+$. This completes the proof.

We simply sketch how Lemma 2.5 looks:

π :	$\widetilde{\mathcal{A}}_0[au]$	\longrightarrow	$\pi(\widetilde{\mathcal{A}}_0[au])$
	U		\cup τ_{s^*} -dense
	$\widetilde{\mathcal{A}}_0[au]_b^\pi$		$\pi(\widetilde{\mathcal{A}}_0[\tau]_b^\pi)$
	U		\cup uniformly dense
	$A[\mathbf{B}_{\tau}]$ symmetric Banach *-algebra		$\pi(A[\mathbf{B}_{\tau}])$
			U
	$\mathcal{A}_0[\ \cdot\]$ C^* -algebra		$\pi(\mathcal{A}_0)$ C^*- algebra on \mathcal{H}_{π} .

The following theorem gives an answer to Question C.

THEOREM 2.6. The following statements are equivalent:

(i) $\widetilde{\mathcal{A}}_0[\tau]$ is a GB^* -algebra.

(ii) There exists a faithful $(\tau - \tau_{s^*})$ -continuous *-representation π of $\widetilde{\mathcal{A}}_0[\tau]$, such that $\tau \prec r_{\pi}$.

Proof. (i) \Rightarrow (ii) Suppose $\widetilde{\mathcal{A}}_0[\tau]$ is a GB^* -algebra over \mathbf{B}_0 . Since $A[\mathbf{B}_{\tau}]_+ \cap (-A[\mathbf{B}_{\tau}]_+) \subset A[\mathbf{B}_0]_+ \cap (-A[\mathbf{B}_0]_+) = \{0\}$, Theorm 2.4 implies the existence of a faithful $(\tau - \tau_{s^*})$ -continuous *-representation of $\widetilde{\mathcal{A}}_0[\tau]$. Furthermore, since $\pi(A[\mathbf{B}_0])$ is a C^* -algebra, Lemma 2.5(ii) yields that

$$\pi(A[\mathbf{B}_0]) = \pi(\widetilde{\mathcal{A}}_0[\tau]_b^{\pi}) \quad \text{and} \quad r_{\pi}(x) = \|\pi(x)\| = \|x\|_{\mathbf{B}_0}, \quad \forall x \in \mathcal{D}(r_{\pi}),$$

which implies $\tau \prec r_{\pi}$.

(ii) \Rightarrow (i) Since $\tau \prec r_{\pi}$ and π is $(\tau - \tau_{s^*})$ -continuous, it follows that τ and r_{π} are compatible, whence one gets that the completion $\mathcal{A}_{r_{\pi}}$ of $\mathcal{D}(r_{\pi})[r_{\pi}]$ is embedded in $\widetilde{\mathcal{A}}_0[\tau]$. We denote by \mathbf{B}_0 the τ -closure of the unit ball $\mathcal{U}(\mathcal{A}_{r_{\pi}})$ of the

*C**-algebra $A_{r_{\pi}}$. Then **B**₀ $\in \mathcal{B}^*$ and from Lemma 2.5(i) we get

$$\mathbf{B} \subset \mathcal{U}(\widetilde{\mathcal{A}}_0[\tau]_b^{\pi}) \subset \mathbf{B}_0, \quad \forall \mathbf{B} \in \mathcal{B}^*,$$

which implies that $\mathbf{B}_0 = \mathcal{U}(\widetilde{\mathcal{A}}_0[\tau]_b^{\pi})$, with \mathbf{B}_0 the greatest member in \mathcal{B}^* . Thus, from Theorem 2.2, we conclude that $\widetilde{\mathcal{A}}_0[\tau]$ is a GB^* -algebra over $\mathcal{U}(\widetilde{\mathcal{A}}_0[\tau]_b^{\pi})$ and this completes the proof.

It is known that every *-representation π of a Fréchet *-algebra $\mathcal{A}[\tau]$ is $(\tau - \tau_{s^*})$ -continuous. Indeed, take an arbitrary $\xi \in \mathcal{D}(\pi)$ and put $f_{\xi}(x) := (\pi(x)\xi|\xi)$, $x \in \mathcal{A}$. Then f_{ξ} is a positive linear functional on the Fréchet *-algebra $\mathcal{A}[\tau]$, which is continuous by Theorem 4.3 of [17]. Furthermore, since the multiplication of a Fréchet *-algebra is jointly continuous, it follows that π is $(\tau - \tau_{s^*})$ -continuous. From this fact, as well as Theorem 2.6, we conclude the following:

COROLLARY 2.7. Let $\widetilde{\mathcal{A}}_0[\tau]$ be a Fréchet *-algebra. Then the following are equivalent:

(i) $\widetilde{\mathcal{A}}_0[\tau]$ is a GB*-algebra.

(ii) There exists a faithful *-representation π of $\widetilde{\mathcal{A}}_0[\tau]$ such that $\tau \prec r_{\pi}$.

3. CASE 2

In this section we shall investigate the structure and the representation theory of $\widetilde{\mathcal{A}}_0[\tau]$ as it appears in Case 2 in the Introduction. First we recall some basic definitions and properties of partial *-algebras and quasi *-algebras (for more details, refer to [4]). A *partial* *-*algebra* is a vector space \mathcal{A} , endowed with a vector space involution $x \to x^*$ and a partial multiplication defined by a set $\Gamma \subset \mathcal{A} \times \mathcal{A}$ (a binary relation) with the properties:

(i) $(x, y) \in \Gamma$ implies $(y^*, x^*) \in \Gamma$.

(ii) $(x, y_1), (x, y_2) \in \Gamma$ implies $(x, \lambda y_1 + \mu y_2) \in \Gamma$ for all $\lambda, \mu \in \mathbb{C}$.

(iii) For any $(x, y) \in \Gamma$, a multiplication $xy \in A$, is defined on A, which is distributive with respect to addition and satisfies the relation $(xy)^* = y^*x^*$. Whenever $(x, y) \in \Gamma$, we say that x is a *left multiplier* of y and y is a *right multiplier* of x, and write $x \in L(y)$ respectively $y \in R(x)$.

Let \mathcal{A} be a vector space and let \mathcal{A}_0 be a subspace of \mathcal{A} , which is also a *algebra. \mathcal{A} is said to be a *quasi* *-*algebra* with distinguished *-algebra \mathcal{A}_0 (or, simply, over \mathcal{A}_0) if

(i₁) the left multiplication ax and the right multiplication xa of an element a of A with an element x of A_0 , that extend the multiplication of A_0 , are always defined and are bilinear;

(i₂) $x_1(x_2a) = (x_1x_2)a, (ax_1)x_2 = a(x_1x_2)$ and $x_1(ax_2) = (x_1a)x_2$, for any $x_1, x_2 \in A_0$ and $a \in A$;

(i₃) an involution * that extends the involution of A_0 is defined in A with the property $(ax)^* = x^*a^*$ and $(xa)^* = a^*x^*$ for each $x \in A_0$ and $a \in A$.

Let $\mathcal{A}_0[\tau]$ be a locally convex *-algebra. Then the completion $\widetilde{\mathcal{A}}_0[\tau]$ of $\mathcal{A}_0[\tau]$ is a quasi *-algebra over \mathcal{A}_0 equipped with the following left and right multiplications:

$$ax := \lim_{\alpha} x_{\alpha} x$$
 and $xa := \lim_{\alpha} xx_{\alpha}, \quad \forall x \in \mathcal{A}_0 \text{ and } a \in \mathcal{A},$

where $\{x_{\alpha}\}$ is a net in \mathcal{A}_0 converging to *a* with respect to the topology τ . Furthermore, the left and right multiplications are separately continuous. A *-invariant subspace \mathcal{A} of $\tilde{\mathcal{A}}_0[\tau]$ containing \mathcal{A}_0 is said to be a (*quasi-*) *-*subalgebra* of $\tilde{\mathcal{A}}_0[\tau]$ if *ax* and *xa* belong to \mathcal{A} for any $x \in \mathcal{A}_0$ and $a \in \mathcal{A}$. Then it is readily shown that \mathcal{A} is a quasi *-algebra over \mathcal{A}_0 . Moreover, $\mathcal{A}[\tau]$ is a locally convex space containing \mathcal{A}_0 as a dense subspace and the right and left multiplications are separately continuous. Such an algebra \mathcal{A} is said to be a *locally convex quasi* *-*algebra* over \mathcal{A}_0 .

Concerning *-representations of partial *-algebras and quasi *-algebras, start with a dense subspace \mathcal{D} of a Hilbert space \mathcal{H} and denote by $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$ the set of all linear operators X from \mathcal{D} to \mathcal{H} such that $\mathcal{D}(X^*) \supset \mathcal{D}$. Then $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$ is a partial *-algebra with respect to the usual sum, scalar multiplication and involution $X^{\dagger} = X^* \upharpoonright_{\mathcal{D}}$ and the (weak) partial multiplication $X \square Y = X^{\dagger *} Y$, defined whenever X is a left multiplier of Y ($X \in L(Y)$), that is, if and only if $Y\mathcal{D} \subset \mathcal{D}(X^{\dagger *})$ and $X^{\dagger}\mathcal{D} \subset \mathcal{D}(Y^*)$. A (partial) *-subalgebra of the partial *-algebra $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$ is said to be a *partial* O^* -*algebra* on \mathcal{D} . A *-*representation* of a partial *algebra \mathcal{A} is a *-homomorphism π of \mathcal{A} into a partial O^* -algebra $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$, in the sense of Definition 2.1.6 in [4], satisfying $\pi(1) = I$, whenever $I \in \mathcal{A}$.

In this case too, the spaces \mathcal{D} and \mathcal{H} will be denoted by $\mathcal{D}(\pi)$ and \mathcal{H}_{π} respectively. The algebraic conjugate dual \mathcal{D}^{\dagger} of \mathcal{D} (i.e., the set of all conjugate linear functionals on \mathcal{D}) becomes a vector space in a natural way. Denote by $\mathcal{L}(\mathcal{D}, \mathcal{D}^{\dagger})$ the set of all linear maps from \mathcal{D} to \mathcal{D}^{\dagger} . Then $\mathcal{L}(\mathcal{D}, \mathcal{D}^{\dagger})$ is a \ast -invariant vector space under the usual operations and the involution $T \to T^{\dagger}$ with $\langle T^{\dagger}\xi, \eta \rangle := \overline{\langle T\eta, \xi \rangle}, \xi, \eta \in \mathcal{D}$, where $\langle T^{\dagger}\xi, \eta \rangle \equiv T^{\dagger}\xi(\eta)$. Any linear operator X defined on \mathcal{D} is regarded as an element of $\mathcal{L}(\mathcal{D}, \mathcal{D}^{\dagger})$ such that $\langle X\xi, \eta \rangle = (X\xi|\eta), \xi, \eta \in \mathcal{D}$. For $\mathcal{L}(\mathcal{D}, \mathcal{D}^{\dagger})$ we have the following:

LEMMA 3.1. (i) $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is regarded as a *-subalgebra of $\mathcal{L}(\mathcal{D}, \mathcal{D}^{\dagger})$.

(ii) For any $X \in \mathcal{L}^{\dagger}(\mathcal{D})$ and $T \in \mathcal{L}(\mathcal{D}, \mathcal{D}^{\dagger})$ we may define the multiplications $X \circ T$ and $T \circ X$ by

$$\langle X \circ T\xi, \eta \rangle := \langle T\xi, X^{\dagger}\eta \rangle$$
 and $\langle T \circ X\xi, \eta \rangle := \langle TX\xi, \eta \rangle;$

under these multiplications, $\mathcal{L}(\mathcal{D}, \mathcal{D}^{\dagger})$ is a quasi *-algebra over $\mathcal{L}^{\dagger}(\mathcal{D})$.

(iii) The locally convex topology τ_w on $\mathcal{L}(\mathcal{D}, \mathcal{D}^{\dagger})$ is defined by the family $\{p_{\xi,\eta}(\cdot) : \xi, \eta \in \mathcal{D}\}$ of seminorms with $p_{\xi,\eta}(T) := |\langle T\xi, \eta \rangle|, T \in \mathcal{L}(\mathcal{D}, \mathcal{D}^{\dagger})$, and it is called

weak topology. It particular,

 $\mathcal{L}(\mathcal{D}, \mathcal{D}^{\dagger}) = \text{ the set of all sesquilinear forms on } \mathcal{D} \times \mathcal{D} = \mathcal{L}^{\dagger}(\mathcal{D})[\tau_w]$

and $\mathcal{L}(\mathcal{D}, \mathcal{D}^{\dagger})[\tau_w]$ is a locally convex quasi *-algebra over $\mathcal{L}^{\dagger}(\mathcal{D})$. More generally, for any O*-algebra \mathcal{M} on $\mathcal{D}, \widetilde{\mathcal{M}}[\tau_w]$ is a locally convex quasi *-algebra over \mathcal{M} .

A quasi *-representation of a quasi *-algebra \mathcal{A} over \mathcal{A}_0 is naturally defined as a linear map π of \mathcal{A} into a quasi *-algebra $\mathcal{L}(\mathcal{D}, \mathcal{D}^{\dagger})$ over $\mathcal{L}^{\dagger}(\mathcal{D})$ such that:

(i) π is a *-representation of the *-algebra A_0 ;

(ii) $\pi(a)^{\dagger} = \pi(a^*), \forall a \in \mathcal{A};$

(iii) $\pi(ax) = \pi(a) \circ \pi(x)$ and $\pi(xa) = \pi(x) \circ \pi(a), \forall a \in \mathcal{A}, \forall x \in \mathcal{A}_0$.

It is easily shown that if π is a quasi *-representation of A, then $\pi(A)$ is a quasi *-algebra over $\pi(A_0)$.

LEMMA 3.2. Let $\mathcal{A}[\tau]$ be a locally convex quasi *-algebra over \mathcal{A}_0 and π a quasi *-representation of \mathcal{A} . Suppose π is $(\tau - \tau_w)$ -continuous. Then $\pi(\mathcal{A})$ is a locally convex quasi *-algebra over $\pi(\mathcal{A}_0)$.

Proof. From Lemma 3.1(iii) and the $(\tau - \tau_w)$ -continuity of π we have

$$\pi(\mathcal{A}_0) \subset \pi(\mathcal{A}) \subset \widetilde{\pi(\mathcal{A}_0)}[\tau_w] \text{ and} \\ \pi(x) \circ \pi(a) = \pi(xa), \quad \pi(a) \circ \pi(x) = \pi(ax)$$

for each $a \in A$ and $x \in A_0$, which implies that $\pi(A)$ is a quasi *-subalgebra of $\widetilde{\pi(A_0)}[\tau_w]$. Hence, $\pi(A)$ is a locally convex quasi *-algebra over $\pi(A_0)$. So the proof is complete.

Let $\mathcal{A}_0[\|\cdot\|_0]$ be a C^* -algebra with 1 and τ a locally convex topology on \mathcal{A}_0 such that $\tau \prec \|\cdot\|_0$ and $\mathcal{A}_0[\tau]$ a locally convex *-algebra whose multiplication is not jointly continuous.

In general, $\widetilde{\mathcal{A}}_0[\tau]$ is a quasi *-algebra over \mathcal{A}_0 (but not a *-algebra!). For this reason, the theory of quasi *-algebras must be used. We remark that for any $\mathcal{A} \in C^*(\mathcal{A}_0, \tau)$, $\widetilde{\mathcal{A}}[\tau] = \widetilde{\mathcal{A}}_0[\tau]$ as locally convex spaces, but $\widetilde{\mathcal{A}}[\tau]$ is different from $\widetilde{\mathcal{A}}_0[\tau]$ as a quasi *-algebra. Moreover, the wedge $\widetilde{\mathcal{A}}_0[\tau]_+$ of the quasi *algebra $\widetilde{\mathcal{A}}_0[\tau]$ over \mathcal{A}_0 , defined as the τ -closure of the positive cone $(\mathcal{A}_0)_+$, does not necessarily coincide with the wedge $\widetilde{\mathcal{A}}[\tau]_+$ of the quasi *-algebra $\widetilde{\mathcal{A}}[\tau]$ over \mathcal{A} , in contrast with Case 1 (see the discussion before Theorem 2.4).

A linear functional f on $\widetilde{\mathcal{A}}_0[\tau]$, such that $f(x) \ge 0$, for each $x \in \overline{\mathcal{A}}_0[\tau]_+$, is said to be *a strongly positive* linear functional on the *quasi* *-*algebra* $\widetilde{\mathcal{A}}_0[\tau]$ *over* \mathcal{A}_0 . Regarding the representation theory of $\widetilde{\mathcal{A}}_0[\tau]$ we have the next:

THEOREM 3.3. The following statements are equivalent:

(i) $\widetilde{\mathcal{A}}_0[\tau]_+ \cap (-\widetilde{\mathcal{A}}_0[\tau]_+) = \{0\}.$

(ii) There exists a faithful $(\tau - \tau_w)$ -continuous quasi *-representation of the quasi *-algebra $\widetilde{\mathcal{A}}_0[\tau]$ over \mathcal{A}_0 .

Proof. (i) \Rightarrow (ii) Let \mathcal{F} be the set of all τ -continuous strongly positive linear functionals on the quasi *-algebra $\widetilde{\mathcal{A}}_0[\tau]$ over \mathcal{A}_0 . For any $f \in \mathcal{F}$ we denote by $(\pi_f, \lambda_f, \mathcal{H}_f)$ the GNS-construction for $f \upharpoonright \mathcal{A}_0$. Let $f \in \mathcal{F}$. For any $a \in \widetilde{\mathcal{A}}_0[\tau]$ we put

$$\langle \widetilde{\lambda}_f(a), \lambda_f(x) \rangle = f(x^*a), \quad x \in \mathcal{A}_0.$$

Then since *f* is τ -continuous, it follows that

$$|f(x^*a)|^2 = \lim_{\alpha} |f(x^*x_{\alpha})|^2 \leq \lim_{\alpha} f(x^*x)f(x^*_{\alpha}x_{\alpha}),$$

for each $a \in \widetilde{\mathcal{A}}_0[\tau]$ and $x \in \mathcal{A}_0$, where $\{x_\alpha\}$ is a net in \mathcal{A}_0 converging to a with respect to τ ; it follows that $\widetilde{\lambda}_f(a)$ is well-defined and belongs to the algebraic conjugate dual $\lambda_f(\mathcal{A}_0)^+$ of the vector space $\lambda_f(\mathcal{A}_0)$. It is clear that $\widetilde{\lambda}_f$ is a linear map of $\widetilde{\mathcal{A}}_0[\tau]$ into the vector space $\lambda_f(\mathcal{A}_0)^+$, which is an extension of λ_f . Put

$$\mathcal{D}(\pi) := \Big\{ (\lambda_f(x_f))_{f \in \mathcal{F}} \in \bigoplus_{f \in \mathcal{F}} \mathcal{H}_f : x_f \in \mathcal{A}_0 \text{ and } \lambda_f(x_f) = 0 \Big\}$$

except for a finite number of $f \in \mathcal{F}$,

and for $(\lambda_f(x_f)) \in \mathcal{D}(\pi)$

$$\langle (\widetilde{\lambda}_f(a_f)), (\lambda_f(x_f)) \rangle = \sum_{f \in \mathcal{F}} \langle \widetilde{\lambda}_f(a_f), \lambda_f(x_f) \rangle = \sum_{f \in \mathcal{F}} f(x_f^*a_f), \quad a_f \in \widetilde{\mathcal{A}}_0[\tau].$$

Then $(\widetilde{\lambda}_f(a_f)) \in \mathcal{D}(\pi)^{\dagger}$. Furthermore, for any $a \in \mathcal{A}$, put

$$\pi(a)(\lambda_f(x_f)) = (\widetilde{\lambda}_f(ax_f)), \quad (\lambda_f(x_f)) \in \mathcal{D}(\pi).$$

It is easily shown that π is a quasi *-representation of the quasi *-algebra $\widetilde{\mathcal{A}}_0[\tau]$ over \mathcal{A}_0 . Moreover, the $(\tau - \tau_w)$ -continuity of π follows from

$$\langle \pi(a)(\lambda_f(x_f)), (\lambda_f(y_f)) \rangle = \sum_{f \in \mathcal{F}} f(y_f^*ax_f)$$

for any $a \in A$, $(\lambda_f(x_f))$ and $(\lambda_f(y_f))$ in $\mathcal{D}(\pi)$ and from the τ -continuity of $f \in \mathcal{F}$. The faithfulness of π is shown in a similar way as in the proof of Theorem 2.4(i) \Rightarrow (v).

(ii) \Rightarrow (i) Let π be a faithful $(\tau - \tau_w)$ -continuous quasi *-representation of $\widetilde{\mathcal{A}}_0[\tau]$ and $a \in \widetilde{\mathcal{A}}_0[\tau]_+ \cap (-\widetilde{\mathcal{A}}_0[\tau]_+)$. Then there is a net $\{x_\alpha\}$ in $(\mathcal{A}_0)_+$ such that $x_\alpha \xrightarrow{\tau} a$. By the $(\tau - \tau_w)$ -continuity of π we now have

$$\langle \pi(a)\xi,\xi\rangle = \lim_{\alpha} (\pi(x_{\alpha})\xi|\xi) \ge 0$$
 and similarly $\langle \pi(-a)\xi,\xi\rangle \ge 0$,

for each $\xi \in \mathcal{D}(\pi)$. Hence, $\langle \pi(a)\xi,\xi \rangle = 0$ for each $\xi \in \mathcal{D}(\pi)$, which implies $\langle \pi(a)\xi,\eta \rangle = 0$ for any $\xi,\eta \in \mathcal{D}(\pi)$, that is $\pi(a) = 0$. By the faithfulness of π we have a = 0. This completes the proof.

It is natural to consider the question: When there exists a faithful *-representation π of the quasi *-algebra $\widetilde{\mathcal{A}}_0[\tau]$ over \mathcal{A}_0 (into $\mathcal{L}^{\dagger}(\mathcal{D}(\pi), \mathcal{H}_{\pi})$)? For that, we define the following notion: A subset \mathcal{G} of \mathcal{F} is said to be *separating* if $a \in \widetilde{\mathcal{A}}_0[\tau]$ with f(a) = 0, for each $f \in \mathcal{G}$, implies a = 0. For example, if \mathcal{F} is separating and \mathcal{G} is dense in \mathcal{F} with respect to the weak*-topology, then \mathcal{G} is separating.

PROPOSITION 3.4. The following statements are equivalent:

(i) There exists a faithful $(\tau - \tau_w)$ -continuous *-representation π of the quasi *algebra $\widetilde{\mathcal{A}}_0[\tau]$ over \mathcal{A}_0 (into $\mathcal{L}^{\dagger}(\mathcal{D}(\pi), \mathcal{H}_{\pi})$).

(ii) $\widetilde{\mathcal{A}}_0[\tau]_+ \cap (-\widetilde{\mathcal{A}}_0[\tau]_+) = \{0\}$ and \mathcal{F}_b is separating, where

$$\mathcal{F}_{\mathsf{b}} = \{ f \in \mathcal{F} : \forall a \in \widetilde{\mathcal{A}}_0[\tau] \exists \gamma_a > 0 \text{ with } |f(a^*x)|^2 \leqslant \gamma_a f(x^*x), \forall x \in \mathcal{A}_0 \}.$$

Proof. (i) \Rightarrow (ii) By Theorem 3.3 we have $\widetilde{\mathcal{A}}_0[\tau]_+ \cap (-\widetilde{\mathcal{A}}_0[\tau]_+) = \{0\}$. For each $\xi \in \mathcal{D}(\pi)$ we put $f_{\xi}(a) = (\pi(a)\xi|\xi)$, $a \in \widetilde{\mathcal{A}}_0[\tau]$. Then it is easily shown that $\{f_{\xi} : \xi \in \mathcal{D}\}$ is contained in \mathcal{F}_b and it is separating by the faithfulness of π . Hence, \mathcal{F}_b is separating.

(ii) \Rightarrow (i) As shown in the proof of (i) \Rightarrow (ii) in Theorem 3.3, $\tilde{\lambda}_f(a) \in \lambda_f(\mathcal{A}_0)^{\dagger}$ for each $f \in \mathcal{F}$ and $a \in \tilde{\mathcal{A}}_0[\tau]$. Take arbitrary $f \in \mathcal{F}_b$ and $a \in \tilde{\mathcal{A}}_0[\tau]$. Then since

$$\langle \widetilde{\lambda}_f(a), \lambda_f(x) \rangle |^2 = |f(x^*a)|^2 \leq \gamma_a f(x^*x),$$

for each $x \in A_0$, it follows from the Riesz theorem that $\widetilde{\lambda}_f(a)$ is regarded as an element of \mathcal{H}_f . Now we put

$$\mathcal{D}(\pi) = \{ (\lambda_f(x_f))_{f \in \mathcal{F}_{\mathbf{b}}} : x_f \in \mathcal{A}_0 \text{ and } \lambda_f(x_f) = 0 \\ \text{except for a finite number of } f \in \mathcal{F}_{\mathbf{b}} \}$$

and for $a \in \widetilde{\mathcal{A}}_0[\tau]$,

$$\pi(a)((\lambda_f(x_f))) = ((\widetilde{\lambda}_f(ax_f))), \quad (\lambda_f(x_f)) \in \mathcal{D}(\pi).$$

Then π is a *-representation of $\widetilde{\mathcal{A}}_0[\tau]$ into $\mathcal{L}^+(\mathcal{D}(\pi), \mathcal{H}_\pi)$. Furthermore, by the τ continuity of the elements of \mathcal{F}_b it is easily shown that π is $(\tau - \tau_w)$ -continuous,
while π is faithful since \mathcal{F}_b is separating. This completes the proof.

4. EXAMPLES

In this section we give some examples, illustrating the results presented in Sections 2 and 3.

EXAMPLE 4.1. Let $\mathcal{A}[\tau]$ be a pro- C^* -algebra, or more generally a C^* -like locally convex *-algebra with a C^* -like family $\Gamma = \{p_\lambda\}_{\lambda \in \Lambda}$ of seminorms determining the topology τ . Then $p_{\Gamma} \equiv \sup p_{\lambda}$ is a C^* -norm on the C^* -algebra $\mathcal{A}_0 \equiv \mathcal{D}(p_{\Gamma}) := \{x \in \mathcal{A} : p_{\Gamma}(x) < \infty\}$ and $\mathcal{A} = \widetilde{\mathcal{A}}_0[\tau]$. In this case, $B_{\tau} \equiv \overline{\mathcal{U}(p_{\Gamma})}^{\tau} = \mathcal{U}(p_{\Gamma})$. Here we give a concrete example.

Let Ω be a locally compact space. We consider the following locally convex *-algebras of functions on Ω with the usual operations f + g, λf , fg and the complex conjugate as involution:

 $C_0(\Omega)$: the C*-algebra of all continuous functions on Ω which converge to 0 at the infinite point;

 $C_{b}(\Omega)$: the *C*^{*}-algebra of all continuous and bounded functions on Ω ;

 $B(\Omega)$: the C*-algebra of all bounded functions on Ω ;

 $C(\Omega)$: the pro- C^* -algebra of all continuous functions on Ω equipped with the locally uniform topology τ_{lu} defined by the family $\{\|\cdot\|_K : K \text{ a compact subset of } \Omega\}$ of C^* -seminorms with $\|f\|_K := \sup_{t \in K} |f(t)|;$

 $F(\Omega)$: the pro- C^* -algebra of all functions on Ω with the simple convergence topology τ_s defined by the family of C^* -seminorms $\{p_t : t \in \Omega\}$ with $p_t(f) := |f(t)|$.

Then

$$\begin{array}{rclcrcl} C_0(\Omega) & \subset & C_b(\Omega) & \subset & C(\Omega) & = & \widetilde{C_0(\Omega)}[\tau_{lu}] & = & \widetilde{C_b(\Omega)}[\tau_{lu}] \\ & & \cap & & \\ & & B(\Omega) & \subset & \widetilde{B(\Omega)}[\tau_s] & = & \widetilde{C_0(\Omega)}[\tau_s] & = & \widetilde{C_b(\Omega)}[\tau_s] = \mathcal{F}(\Omega). \end{array}$$

EXAMPLE 4.2. Let $\mathcal{A}[\tau]$ be a GB^* -algebra over \mathbf{B}_0 . Then $A[\mathbf{B}_0][\|\cdot\|_{\mathbf{B}_0}]$ is a C^* -algebra and $\widetilde{A[\mathbf{B}_0]}[\tau] = \widetilde{\mathcal{A}}[\tau]$. In this case, $\mathbf{B}_{\tau} = \overline{\mathcal{U}(A[\mathbf{B}_0])}^{\tau} = \mathcal{U}(A[\mathbf{B}_0])$. The Arens algebra (see [5]) $\mathcal{A} = L^{\omega}[0,1] := \bigcap_{1 \leq p < \infty} L^p[0,1]$ is a GB^* -algebra with the

usual operations f + g, λf , fg, usual involution f^* and the topology τ_{ω} defined by the family $\{ \| \cdot \|_p : 1 \leq p < \infty \}$ of the L^p -norms; moreover,

$$A[\mathbf{B}_0] = L^{\infty}[0,1] \subset L^{\omega}[0,1] = \widetilde{L^{\infty}[0,1]}[\tau_{\omega}]$$

and

$$\widetilde{L^{\infty}[0,1]}[\|\cdot\|_p] = L^p[0,1], \quad 1 \leqslant p \leqslant \infty,$$

where $L^p[0,1]$ is a Banach quasi *-algebra over $L^{\infty}[0,1]$.

EXAMPLE 4.3. (i) The *-algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators on a Hilbert space \mathcal{H} is a locally convex *-algebra equipped with the weak topology τ_{w} . We investigate the structure of $\widetilde{\mathcal{B}(\mathcal{H})}[\tau_{w}]$. Let $S(\mathcal{H})$ be the set of all sesquilinear forms on $\mathcal{H} \times \mathcal{H}$. Then $S(\mathcal{H})$ is a complete locally convex space under the weak topology τ_{w} defined by the family $\{p_{\xi,\eta}(\cdot) : \xi, \eta \in \mathcal{H}\}$ of seminorms with $p_{\xi,\eta}(\varphi) = |\varphi(\xi,\eta)|, \varphi \in S(\mathcal{H})$. An element φ of $S(\mathcal{H})$ is said to be *bounded* if there exists a constant $\gamma > 0$ such that $|\varphi(\xi,\eta)| \leq \gamma ||\xi|| ||\eta||$ for each $\xi, \eta \in \mathcal{H}$. Denote by $S_{b}(\mathcal{H})$ the set of all bounded sesquilinear forms on $\mathcal{H} \times \mathcal{H}$, and put $S(\mathcal{H})_{+} \equiv \{\varphi \in S(\mathcal{H}) : \varphi \ge 0 \text{ if and only if } \varphi(\xi,\xi) \ge 0, \forall \xi \in \mathcal{H}\}$ and $S_{b}(\mathcal{H})_{+} \equiv \{\varphi \in S_{b}(\mathcal{H}) : \varphi \ge 0\}$. It is easily shown that $\varphi \in S_{b}(\mathcal{H})$ if and only if there exists an element A of $\mathcal{B}(\mathcal{H})$ such that $\varphi(\xi,\eta) = \varphi_{A}(\xi,\eta) := (A\xi|\eta)$ for any $\xi, \eta \in \mathcal{H}$, and $\varphi \in S_{b}(\mathcal{H})_{+}$ *if and only if* $A \ge 0$. Hence, $S_{b}(\mathcal{H})[\tau_{w}]$ is a locally convex *-algebra equipped with the multiplication $\varphi_{A}\varphi_{B} := \varphi_{AB}$ and the involution $\varphi_{A}^{*} := \varphi_{A^{*}}$; it is also isomorphic to the locally convex *-algebra $\mathcal{B}(\mathcal{H})[\tau_{w}]$ with respect to the map $\mathcal{B}(\mathcal{H})[\tau_{w}] \supseteq A \mapsto \varphi_{A} \in S_{b}(\mathcal{H})[\tau_{w}]$. So $\widetilde{\mathcal{B}(\mathcal{H})}[\tau_{w}]$ is isomorphic to $\widetilde{S_{b}(\mathcal{H})}[\tau_{w}] = S(\mathcal{H})$ and it is a locally convex quasi *-algebra over $\mathcal{B}(\mathcal{H})$ under the multiplications

$$(\varphi \circ \varphi_A)(\xi,\eta) := \varphi(A\xi,\eta), \quad (\varphi_A \circ \varphi)(\xi,\eta) := \varphi(\xi,A^*\eta), \quad \xi,\eta \in \mathcal{H},$$

for $A \in \mathcal{B}(\mathcal{H})$ and $\varphi \in \widetilde{S_{\mathsf{b}}(\mathcal{H})}[\tau_{\mathsf{w}}]$. Furthermore, it is easily shown that

$$\widetilde{\mathcal{B}(\mathcal{H})}[\tau_{w}]_{+} \cap (-\widetilde{\mathcal{B}(\mathcal{H})}[\tau_{w}]_{+}) = \{0\}$$

(ii) Let \mathcal{D} be a dense subspace in a Hilbert space \mathcal{H} . We introduce on $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ the strong *-topology $\tau_{s^*}^{\mathcal{D}}$ defined by the family $\{p_{\xi}, p_{\xi}^{\dagger} : \xi \in \mathcal{D}\}$ of seminorms with $p_{\xi}(X) := \|X\xi\|, p_{\xi}^{\dagger}(X) := \|X^{\dagger}\xi\|, X \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$. Then $(\mathcal{B}(\mathcal{H}) \upharpoonright \mathcal{D}) [\tau_{s^*}^{\mathcal{D}}] =$ $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, but $(\mathcal{B}(\mathcal{H}) \upharpoonright \mathcal{D}) [\tau_{s^*}^{\mathcal{D}}]$ is not a locally convex *-algebra, and so $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is not a locally convex *-algebra over $\mathcal{B}(\mathcal{H}) \upharpoonright \mathcal{D}$. We put

$$\mathcal{B}(\mathcal{D}) := \{A \upharpoonright \mathcal{D} : A \in \mathcal{B}(\mathcal{H}), A\mathcal{D} \subset \mathcal{D} \text{ and } A^*\mathcal{D} \subset \mathcal{D} \}.$$

Then $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is a quasi *-algebra over $\mathcal{B}(\mathcal{D})$, but as $\widetilde{\mathcal{B}(\mathcal{D})}[\tau_{s^*}^{\mathcal{D}}] \subsetneq \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, in general, $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})[\tau_{s^*}^{\mathcal{D}}]$ is not necessarily a locally convex quasi *-algebra over $\mathcal{B}(\mathcal{D})$. Let H be an unbounded positive self-adjoint operator on \mathcal{H} with $H \ge I$, $H = \int_{1}^{\infty} \lambda \, dE_H(\lambda)$ the spectral resolution of H and $\mathcal{D}^{\infty}(H) = \bigcap_{n=1}^{\infty} \mathcal{D}(H^n)$. Then for any $A \in \mathcal{B}(\mathcal{H}), E_H(n)AE_H(n) \in \mathcal{B}(\mathcal{D}^{\infty}(H))$, for each $n \in \mathbb{N}$ and for $n \to \infty$ it converges to A with respect to $\tau_{s^*}^{\mathcal{D}^{\infty}(H)}$; so $\mathcal{L}^{\dagger}(\mathcal{D}^{\infty}(H), \mathcal{H})[\tau_{s^*}^{\mathcal{D}^{\infty}(H)}]$ is a locally convex quasi *-algebra over $\mathcal{B}(\mathcal{D}^{\infty}(H))$.

EXAMPLE 4.4. Let \mathcal{A}_{\flat} be a unital C^* -algebra, with norm $\|\cdot\|_{\flat}$ and involution \flat . Let $\mathcal{A}[\|\cdot\|]$ be a right Banach module over the C^* -algebra \mathcal{A}_{\flat} , with isometric involution * and such that $\mathcal{A}_{\flat} \subset \mathcal{A}$. Set $\mathcal{A}_{\#} = (\mathcal{A}_{\flat})^*$. We say that $\{\mathcal{A}, *, \mathcal{A}_{\flat}, b\}$ is a CQ^* -algebra if

(i) \mathcal{A}_{\flat} is dense in \mathcal{A} with respect to its norm $\|\cdot\|$;

- (ii) $\mathcal{A}_0 \equiv \mathcal{A}_{\flat} \cap \mathcal{A}_{\#}$ is dense in \mathcal{A}_{\flat} with respect to its norm $\|\cdot\|_{\flat}$;
- (iii) $(xy)^* = y^*x^*, \forall x, y \in \mathcal{A}_0;$

(iv)
$$||x||_{\flat} = \sup_{a \in \mathcal{A}, ||a|| \leq 1} ||ax||, x \in \mathcal{A}_{\flat}.$$

Since * is isometric, it is easy to see that the space $\mathcal{A}_{\#}$ itself is a C^* -algebra with respect to the involution $x^{\#} \equiv (x^*)^{\flat*}$ and the norm $||x||_{\#} \equiv ||x^*||_{\flat}$. A CQ*-algebra is called *proper* if $\mathcal{A}_{\#} = \mathcal{A}_{\flat}$. For CQ*-algebras we refer to [9], [10].

Let $\{A, *, A_{\flat}, \flat\}$ be a proper CQ*-algebra. Then we have

 $||xy|| \leq ||x|| ||y||_{\flat}$, $||xy|| \leq ||y|| ||x||_{\#}$, $||x^*|| = ||x||$, and $(xy)^* = y^*x^*$,

for any $x, y \in A_{\flat}$, and so $A_{\flat}[\|\cdot\|]$ is a locally convex *-algebra with the involution *. Furthermore, since $\mathcal{A} = \widetilde{\mathcal{A}}_{\flat}[\|\cdot\|]$, it follows that $\mathcal{A}[\|\cdot\|]$ is a locally convex quasi *-algebra over \mathcal{A}_{\flat} . Consider the set $S_{\flat}(\mathcal{A})_{+}$ of all sesquilinear forms φ on $\mathcal{A} \times \mathcal{A}$ such that:

- (i₁) $\varphi(a,a) \ge 0, \forall a \in \mathcal{A};$
- (i₂) $\varphi(ax, y) = \varphi(x, a^*y), \forall a \in \mathcal{A}, \forall x, y \in \mathcal{A}_{\flat};$
- (i₃) $|\varphi(a,b)| \leq ||a|| ||b||, \forall a,b \in \mathcal{A}.$

Then $(\mathcal{A}, *, \mathcal{A}_{\flat}, \flat)$ is called *-*semisimple* if $a \in \mathcal{A}$ and $\varphi(a, a) = 0$, for every $\varphi \in S_{\flat}(\mathcal{A})_+$, implies a = 0. Suppose $(\mathcal{A}, *, \mathcal{A}_{\flat}, \flat)$ is a *-semisimple proper CQ*algebra. Then $\mathcal{A}_+ \cap (-\mathcal{A}_+) = \{0\}$. Indeed, for any $\varphi \in S_{\flat}(\mathcal{A})_+$ we define a strongly positive linear functional on the quasi *-algebra \mathcal{A} over \mathcal{A}_{\flat} by $f_{\varphi}(a) = \varphi(a, 1), a \in \mathcal{A}$. Take an arbitrary $h \in \mathcal{A}_+ \cap (-\mathcal{A}_+)$. Then

$$f_{\varphi}(h) = \lim_{n \to \infty} f_{\varphi}(x_n) \ge 0,$$

where $\{x_n\} \subset (\mathcal{A}_{\flat})_+$ converges to *h* with respect to $\|\cdot\|$. Thus, $f_{\varphi}(h) = 0$, for each $\varphi \in S_{\flat}(\mathcal{A})_+$. We want to prove that $\varphi(h,h) = 0$ for each $\varphi \in S_{\flat}(\mathcal{A})_+$. Let $x \in A_{\flat}$ with $\|x\| \leq 1$. Then we may define an element φ_x of $S_{\flat}(\mathcal{A})_+$ by $\varphi_x(a,b) = \varphi(ax,bx)$ with $a, b \in \mathcal{A}$. Hence, $\varphi(hx,x) = 0$ for each $x \in \mathcal{A}_{\flat}$, which implies that $\varphi(hx,y) = 0$ for all $x, y \in \mathcal{A}_{\flat}$. Thus,

$$\varphi(h,h) = \lim_{n \to \infty} \varphi(h, x_n) = 0, \quad \forall \varphi \in S_{\flat}(\mathcal{A})_+ \text{ and therefore } h = 0,$$

from the *-semisimplity of $(\mathcal{A}, *, \mathcal{A}_{\flat}, \flat)$.

Acknowledgements. The second author thankfully acknowledges partial support of this work by the Special Research Account: Grant Nr 70/4/5645, University of Athens.

REFERENCES

- J. ALCANTARA, J. YNGVASON, Algebraic quantum field theory and non commutative moment problem. II, Ann. Inst. H. Poincaré Phis. Théor. 48(1988), 147–159.
- [2] G.R. ALLAN, A spectral theory for locally convex algebras, *Proc. London Math. Soc.* (3) 15(1965), 399–421.
- [3] G.R. ALLAN, On a class of locally convex algebras, *Proc. London Math. Soc.* (3) **17**(1967), 91–114.
- [4] J.-P. ANTOINE, A. INOUE, C. TRAPANI, *Partial *-Algebras and their Operator Realizations*, Math. Appl., vol. 553, Kluwer Acad. Publ., Dordrecht 2002.
- [5] R. ARENS, The space L^{ω} and convex topological rings, *Bull. Amer. Math. Soc.* **52**(1946), 931–935.

- [6] R. ARENS, Convex topological algebras, Bull. Amer. Math. Soc. 52(1946), p. 829 (:52-9– 336).
- [7] R. ARENS, A generalization of normed rings, Pacific J. Math. 2(1952), 455–471.
- [8] F. BAGARELLO, A. INOUE, C. TRAPANI, Unbounded C*-seminorms and *-representations of partial *-algebras, Z. Anal. Anwendungen 20(2001), 1–20.
- [9] F. BAGARELLO, C. TRAPANI, States and representations of CQ*-algebras, Ann. Inst. H. Poincaré Phis. Théor. 61(1994), 103–133.
- [10] F. BAGARELLO, C. TRAPANI, CQ*-algebras: Structure properties, *Publ. Res. Inst. Math. Sci.* 32(1996), 85–116.
- [11] S.J. BHATT, M. FRAGOULOPOULOU, A. INOUE, Existence of well-behaved *-representations of locally convex *-algebras, *Math. Nachr.* 279(2006), 86–100.
- [12] S.J. BHATT, A. INOUE, K.-D. KÜRSTEN, Well-behaved unbounded operator representations and unbounded C*-seminorms, J. Math. Soc. Japan 56(2004), 417–445.
- [13] S.J. BHATT, A. INOUE, H. OGI, Unbounded C*-seminorms and unbounded C*spectral algebras, J. Operator Theory 45(2001), 53–80.
- [14] D. BIRBAS, Pták function and symmetry, Rend. Circ. Mat. Palermo 47(1998), 431–446.
- [15] N. BOURBAKI, Espaces Vectoriels Topologiques, Hermann, Paris 1966.
- [16] P.G. DIXON, Generalized B*-algebras, Proc. London Math. Soc. 21(1970), 693-715.
- [17] P.G. DIXON, Automatic continuity of positive functionals on topological involution algebras, Bull. Austral. Math. Soc. 23(1981), 265–281.
- [18] M. DUBOIS-VIOLETTE, A generalization of the classical moment problem on *algebras with applications to relativistic quantum theory. I and II, *Comm. Math. Phys.* 43(1975), 225–254 and 54(1977), 151–172.
- [19] M. FRAGOULOPOULOU, Introduction to the Representation Theory of Topological *-Algebras, Schriftenreihe Math. Inst. Univ. Münster 2 Ser., vol. 48, Univ. Münster, Münster 1988, pp. 1–81.
- [20] M. FRAGOULOPOULOU, The Shirali-Ford theorem as a consequence of Pták theory for hermitian Banach algebras, *Studia Math.* **150**(2002), 121–132.
- [21] M. FRAGOULOPOULOU, A. INOUE, K.-D. KURSTEN, On the completion of a C*normed algebra under a locally convex algebra topology, *Contemp. Math.*, to appear.
- [22] A. INOUE, Locally C*-algebras, Mem. Fac. Sci. Kyushu Univ. Ser. A 25(1971), 197–235.
- [23] A. INOUE, *Tomita-Takesaki Theory in Algebras of Unbounded Operators*, Lecture Notes in Math., vol. 1699, Springer-Verlag, Berlin 1998.
- [24] A. INOUE, K.-D. KÜRSTEN, On C*-like locally convex *-algebras, Math. Nachr. 235(2002), 51–58.
- [25] E.A. MICHAEL, Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc. 11(1964).
- [26] A. MALLIOS, Topological Algebras. Selected Topics, North-Holland, Amsterdam 1986.
- [27] N.C. PHILLIPS, Inverse limits of C*-algebras, J. Operator Theory 19(1988), 159–195.
- [28] V. PTÁK, Banach algebras with involution, Manuscripta Math. 6(1972), 245–290.

- [29] H. RENDER, An order-theoretic approach to involutive algebras, *Studia Math.* **17**(1989), 177–186.
- [30] K. SCHMÜDGEN, Unbounded Operator Algebras and Representation Theory, Birkhäuser-Verlag, Basel 1990.
- [31] K. SCHMÜDGEN, On well behaved unbounded representations of *-algebras, J. Operator Theory 48(2002), 487–502.
- [32] M. TAKESAKI, *Theory of Operator Algebras.* I, Springer-Verlag, New York-Heidelberg-Berlin 1979.
- [33] J. YNGVASON, Algebraic quantum field theory and non-commutative moment problem. I, *Ann. Inst. Henri Poincaré Phis. Théor.* **48**(1988), 161–173.

FABIO BAGARELLO, DIPARTIMENTO DI METODI E MODELLI MATEMATICI, FA-COLTÀ DI INGEGNERIA, UNIVERSITA DI PALERMO, PALERMO, I-90128, ITALY *E-mail address*: bagarell@unipa.it

MARIA FRAGOULOPOULOU, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ATHENS, ATHENS, 15784, GREECE

E-mail address: fragoulop@math.uoa.gr

ATSUSHI INOUE, DEPARTMENT OF APPLIED MATHEMATICS, FUKUOKA UNIVER-SITY, FUKUOKA, 814-0180, JAPAN *E-mail address*: a-inoue@fukuoka-u.ac.jp

CAMILLO TRAPANI, DIPARTIMENTO DI MATEMATICA ED APPLICAZIONI, UNI-VERSITA DI PALERMO, PALERMO, I-90123, ITALY *E-mail address*: trapani@unipa.it

Received January 20, 2005.

ADDED IN PROOFS. While this paper was under publication, question A was proved in full and the answer can be found in Theorem 2.1 of [21].