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ABSTRACT. We find the range of a trace on the K0-group of a crossed prod-
uct by a time-t automorphism of a mapping torus. We also find a formula
to compute the Voiculescu-Brown entropy for such an automorphism. By
specializing to the commutative setting, we prove that the crossed products
by minimal time-t homeomorphisms of suspensions built over strongly orbit
equivalent Cantor minimal systems have isomorphic Elliott invariants. As an
application of our results we give examples of dynamical systems on (compact
metric) connected 1-dimensional spaces which are not flip conjugate (because
of different entropy) yet their associated crossed products have isomorphic
Elliott invariants.
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INTRODUCTION

Let A be a C∗-algebra and let α be an automorphism of A. The mapping torus
of α (see, e.g. V.10.3 of [1]) is the C∗-algebra

Mα = { f : [0, 1] → A | f (1) = α( f (0))}.

There is a natural action ϕ of R on Mα given by translation. That is, for t ∈ R,
f ∈ Mα and s ∈ [0, 1],

(ϕt( f ))(s) = αn( f (s + t− n))

where n is the unique integer such that n 6 s + t < n + 1. We call (Mα, ϕ) the
mapping torus flow associated to (A, α). For a fixed t ∈ R we call ϕt the time-t
automorphism of Mα.

The mapping torus flow is an extension to the non-commutative setting of
the suspension flow, a standard construction in topological dynamics which we
describe next, cf. II.5.5 of [20]. We say that (X, S) is a dynamical system if X is a
compact metric space and S is a homeomorphism of X. We call the suspension of
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S the quotient space Y obtained from the space X × [0, 1] by identifying points
(x, 1) and (S(x), 0) with each other for all x ∈ X. It turns out that Y is also a
compact metric space and has (covering) dimension dim(Y) = dim(X) + 1. Let
π : X × [0, 1] → Y be the canonical quotient map and define π(x, s) = [x, s] for
(x, s) ∈ X× [0, 1]. There is a natural action T of R on Y given by translation along
the second coordinate. That is, for t ∈ R and [x, s] ∈ Y,

Tt([x, s]) = [Sn(x), s + t− n]

where n is the unique integer such that n 6 s + t < n + 1. We call (Y, T) the
suspension flow associated to (X, S). We sometimes will refer to (X, S) (or just S)
as the base of the suspension (Y, T) and to Y as the suspension built over (X, S)
(or just S). For a fixed t ∈ R we call Tt the time-t homeomorphism of Y.

If A is a C∗-algebra and α is an automorphism of A then the crossed product
A oα Z induced by α is the (universal) C∗-algebra generated by A and a unitary
u satisfying unau−n = αn(a) for all a ∈ A and for all n ∈ Z.

A dynamical system (X, S) induces a C∗-dynamical system (C(X), α) where
α is the automorphism of C(X) defined by α( f ) = f ◦ S. We define C∗(Z, X, S)
to be the crossed product C(X) oα Z. If T is an action of R on a compact met-
ric space Y then (Y, T) induces a C∗-dynamical R-system (C(Y), ϕ) where ϕ is
the homomorphism from R to Aut(C(Y)) given by ϕt(g) = g ◦ Tt for t ∈ R
and g ∈ C(Y). Suppose that (Y, T) is the suspension flow of (X, S). Then, if
(Mα, ϕ) is the mapping torus flow associated to (C(X), α), it turns out that, for
each t ∈ T, the C∗-algebras C∗(Z, Y, Tt) and Mα oϕt Z are isomorphic. Therefore,
by studying the crossed products by time-t automorphisms of mapping tori, we
are studying the extension to the non-commutative setting of crossed products
by time-t homeomorphisms of suspension spaces.

It is well known that two minimal homeomorphisms of the unit circle S1

are flip conjugate if and only if their associated crossed products are isomorphic.
Assuming the Elliott conjecture, which says that a complete isomorphism invari-
ant for the associated crossed products is of K-theoretic nature, we find exam-
ples showing that this good behavior on S1 does not extend to other compact
metric connected 1-dimensional spaces; namely, we find examples of minimal
homeomorphisms on compact metric connected 1-dimensional spaces which are
not flip conjugate yet their associated crossed products have isomorphic Elliott
invariants. Since (topological) orbit equivalence implies flip conjugacy for min-
imal homeomorphisms of compact metric connected spaces, our examples are
not even orbit equivalent. Therefore, at the same time, we are showing that the
Krieger type theorem of Giordano, Putnam and Skau ([8], Theorem 2.1) for the
family of minimal Cantor systems does not extend to a larger class of minimal dy-
namical systems. Although this had been established, we remark that the known
examples involve spaces which are either disconnected or have dimension at least
2 (see [13] for a survey).
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We divide this paper in 3 sections. In Section 1 we find the range of a trace
on the K0-group of a crossed product by a time-t automorphism of a mapping
torus. In Section 2 we will give a formula to compute the Voiculescu-Brown en-
tropy for such an automorphism. In Section 3 we specialize our results to the
commutative setting. In particular, we show that crossed products by minimal
time-t homeomorphisms of suspensions built over strongly orbit equivalent Can-
tor minimal systems have isomorphic Elliott invariants. When the base of the
suspension is minimal we prove that, except for a countable set containing Q,
all other time-t homeomorphisms are minimal. As applications of our results
we provide examples showing the existence of dynamical systems on (compact
metric) connected 1-dimensional spaces which are not flip conjugate (because of
different entropy) yet their associated crossed products have isomorphic Elliott
invariants.

1. ORDERED K0 GROUP

The order structure on the K0-group of a C∗-algebra has played an impor-
tant role in many of the applications of K-theory to C∗-algebras, particularly to the
structure of AF algebras (see e.g. III.7 of [1]). It is usually a nontrivial problem to
determine the order structure on the K0-group of a crossed product A oα Z. How-
ever, by calculating the range of the states on K0(A oα Z) which come from traces
on the crossed product, one at least may recover partial information about the or-
der structure of K0(A oα Z). In this section we will give a formula to compute the
range of a trace on the K0-group of a crossed product by a time-t automorphism
of a mapping torus.

When dealing with the K-theory of crossed products, one has two funda-
mental tools (see e.g. V.10.2 of [1]), namely:

THEOREM 1.1 (Pimsner-Voiculescu exact sequence). Let A be a C∗-algebra
and let α be an automorphism of A. Then there is a natural cyclic six-term exact sequence

K0(A)
Id−α∗ // K0(A)

i∗ // K0(A oα Z)

∂
��

K1(A oα Z)

OO

K1(A)
i∗oo K1(A)

Id−α∗oo

where the maps i∗ : Kj(A) → Kj(A oα Z) for j = 0, 1, are the maps on K-theory induced
by the inclusion A → A oα Z.

THEOREM 1.2 (Connes’ Thom Isomorphism). If ϕ : R → Aut(A) is an action
of R on the C∗-algebra A then Ki(A oϕ R) ∼= K1−i(A) for i = 0, 1.

As a corollary of his Thom Isomorphism, Connes ([5], Corollary V.6) proved
the following important result.
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THEOREM 1.3 (Connes’ Isomorphism). Let α be an automorphism of a C∗-
algebra A and let Mα be the mapping torus of α. Then Ki(Mα) ∼= K1−i(A oα Z) for
i = 0, 1.

Explicit formulas for Connes’ Isomorphisms (1.3) have been found by Pash-
ke [12]. (See also Proposition V.10.4.3 of [1] and V.4 of [6].) One of Connes’ Iso-
morphisms will be used often in this section so it will be convenient to label it.
We do this in the following.

DEFINITION 1.4. Let α be an automorphism of a C∗-algebra A and let Mα

be the mapping torus of α. We will denote by

kα : K1(Mα) → K0(A oα Z)

the corresponding Connes’ Isomorphism of Theorem 1.3.

We now define the following homomorphism for later reference. It relates
the K1-groups of a mapping torus and a “double" mapping torus.

DEFINITION 1.5. Let A be a C∗-algebra, let α ∈ Aut(A) and let (Mα, ϕ) be
the mapping torus flow associated to (A, α). Let t ∈ R and let Mϕt be the mapping
torus of ϕt. Define a homomorphism

θt : K1(Mα) → K1(Mϕt )

by θt([u]) = [ϕst(u)], where u is a unitary representing an element in K1(Mα) and
ϕst(u) stands for the map s 7→ ϕst(u).

It is straightforward to check that the map θt of Definition 1.5 in fact gives a
homomorphism (of abelian groups).

Let A be a C∗-algebra, let α ∈ Aut(A) and let (Mα, ϕ) be the mapping torus
flow associated to (A, α). For t ∈ R consider the time-t automorphism ϕt of Mα.
Since ϕt is homotopic to the identity, the Pimsner-Voiculescu exact sequence gives
us the short exact sequence

(1.1) 0 // K0(Mα)
i∗ // K0(Mα oϕt Z) ∂ // K1(Mα) // 0

where i∗ : K0(Mα) → K0(Mα oϕt Z) is the map induced by the inclusion Mα →
Mα oϕt Z.

LEMMA 1.6. The short exact sequence (1.1) splits. A splitting map is given by the
composition

kϕt ◦ θt : K1(Mα) → K0(Mα oϕt Z)

where θt : K1(Mα) → K1(Mϕt ) is the map of Definition 1.5 and kϕt : K1(Mϕt ) →
K0(Mα oϕt Z) is the Connes’ Isomorphism (1.4).

Proof. Let (ev0)∗ : K1(Mϕt ) → K1(Mα) be the map induced by the evalua-
tion at zero map ev0 : Mϕt → Mα. As a consequence of Lemma 1 in [12], we have
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that ∂ ◦ kϕt = (ev0)∗. Hence, if u is a unitary representing an element in K1(Mα)
then

(∂ ◦ kϕt ◦ θt)([u]) = (ev0)∗(θt([u]))

= (ev0)∗([ϕst(u)])

= [u].

THEOREM 1.7. Let A be a C∗-algebra, let α be an automorphism on A and let
(Mα, ϕ) be the mapping torus flow associated to (A, α). If t ∈ R then the map

K0(Mα)⊕ K0(A oα Z)
i∗+kϕt ◦θt◦k−1

α−−−−−−−−→ K0(Mα oϕt Z)

is an isomorphism, where i∗ : K0(Mα) → K0(Mα oϕt Z) is the map induced by the inclu-
sion Mα → Mα oϕt Z, the maps kϕt : K1(Mϕt ) → K0(Mα oϕt Z) and kα : K1(Mα) →
K0(A oα Z) are Connes’ Isomorphisms (1.4) and θt : K1(Mα) → K1(Mϕt ) is as in Def-
inition 1.5.

Proof. From Lemma 1.6, the map i∗ + kϕt ◦ θt gives an isomorphism from
K0(Mα) ⊕ K1(Mα) onto K0(Mα oϕt Z). Compose i∗ + kϕt ◦ θt with the isomor-
phism Id⊕ k−1

α : K0(Mα)⊕K0(A oα Z) → K0(Mα)⊕K1(Mα), where kα is Connes’
Isomorphism (1.4), to obtain the desired result.

The isomorphism of Theorem 1.7 will be crucial in obtaining a formula to
calculate the range of states on K0(Mα oϕt Z) which come from traces on the
crossed product A oα Z. In Section 3 we will present some good cases for which
our results in this section yield complete information about the order structure of
Mα oϕt Z.

For the rest of this section we will consider only unital C∗-algebras, so as
to ensure that the order structure and states on K0-groups make sense. Recall
that a trace τ on a unital C∗-algebra A is a linear function τ : A → C satisfying
τ(ab) = τ(ba) and τ(a∗a) > 0 for all a and b in A. We also require that τ(1) = 1,
that is, our traces are normalized. For all n > 1, a trace τ extends naturally to

the ∗-algebra Mn(A) of all n× n matrices over A by the formula τ(a) =
n
∑

i=1
τ(ai,i)

for all a = (ai,j)16i,j6n in Mn(A). A trace τ then defines a group homomorphims
τ : K0(A) → R, via the formula τ([p] − [q]) = τ(p) − τ(q). Given a trace pre-
serving automorphism α of A, τ extends canonically to a trace on A oα Z by the
formula τ(∑ anun) = τ(a0). It turns out that any other extension of τ to A oα Z
defines the same state on K0(A oα Z). Conversely, any trace on A oα Z restricts
to an α-invariant trace on A. Observe that we are using the same notation τ for
the original trace, its natural extensions and the corresponding state on K0.

DEFINITION 1.8. Let A be a unital C∗-algebra, let α be an automorphism
of A and let (Mα, ϕ) be the mapping torus flow associated to (A, α). If τ is an
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α-invariant trace on A then τ induces a ϕ-invariant trace τ on Mα via the formula

τ( f ) =
∫

[0,1]

τ( f (s)) dλ(s)

for f ∈ Mα and where λ is Lebesgue measure on [0, 1].

It is straightforward to check that the map τ of Definition 1.8 is in fact a ϕ-
invariant trace. We now prove a technical lemma. Recall that U∞(A) denotes the
unitary group of A defined to be the inductive limit of the sequence of groups

U1(A)
i1 // U2(A)

i2 // · · ·
in−1 // Un(A)

in // Un+1(A)
in+1 // · · ·

where, for all n > 1, Un(A) is the subgroup of unitary matrices of Mn(A) and in

maps a in Un(A) to
(a 0

0 1

)
in Un+1(A).

LEMMA 1.9. Let the notation be as in Definition 1.8. Let u be an element in
U∞(Mα).Viewing u as a function u : [0, 1] → U∞(A), assume that u is smooth and that
u is constant on small neighborhoods of 0 and 1. Let t ∈ R and let Mϕt be the mapping
torus of ϕt. Denote by ϕst(u) ∈ Mϕt the map defined by s 7→ ϕst(u). Then ϕst is smooth
and

d
ds

ϕst(u) = t ϕst(u′),

where t ϕst(u′) stands for the map s 7→ t ϕst(u′).

Proof. For 0 6 r 6 1, by definition we have

ϕst(u)(r) = αn(u(r + st− n)),

where n is the unique integer such that 0 6 r + st − n < 1. The lemma will then
follow after a standard computation, which we omit.

Since it plays a relevant role in what follows, we state a result of Exel [6] for
the reader’s convenience.

THEOREM 1.10 ([6], Theorem V.11). Let A be a unital C∗-algebra, let α be an
automorphism of A and let τ be an α-invariant trace on A. If n > 1 and u is a smooth
path in Un(Mα) = { f : [0, 1] → Un(A) | f (1) = α( f (0))} then

τ(kα([u])) =
1

2πi

1∫
0

τ(u′(s)∗u(s)) dλ(s)

where kα : K1(Mα) → K0(A oα Z) is the Connes’ Isomorphism (1.4) and λ is Lebesgue
measure on [0, 1].

The following proposition is the key to the main result of this section.
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PROPOSITION 1.11. Let the notation be as in Definition 1.8. Let t ∈ R and let
Mϕt be the mapping torus of ϕt. Then the following diagram is commutative:

K1(Mα)
θt //

kα

��

K1(Mϕt )

kϕt
��

K0(A oα Z)

tτ
$$JJJJJJJJJJ

K0(Mα oϕt Z)

τ
yysssssssssss

R
Proof. Let x ∈ K1(Mα). Choose u to be a smooth path in

U∞(Mα) = { f : [0, 1] → U∞(A) | f (1) = α( f (0))}

such that u is constant on small neighborhoods of 0 and 1 and x = [u] (such a
choice is always possible since any element in U∞(Mα) is homotopic to one of
these). Then

(τ ◦ kϕt ◦ θt))(x) = (τ ◦ kϕt )([ϕst(u)]) by Definition 1.5

=
1

2πi

1∫
0

τ(( d
ds ϕst(u))∗ϕst(u)) dλ(s) by Theorem 1.10

=
1

2πi

1∫
0

t τ(ϕst((u′)∗)ϕst(u)) dλ(s) by Lemma 1.9

=
t

2πi

1∫
0

τ((u′)∗u) dλ(s) by ϕ invariance of τ

=
t

2πi
τ((u′)∗u) by computation of the integral

=
t

2πi

1∫
0

τ(u′(t)∗u(t)) dλ(t) by Definition 1.8

= (t τ ◦ kα)(x) by Theorem 1.10,

as was to be proved.

We are ready to prove the main result of this section.

THEOREM 1.12. Let A be a unital C∗-algebra, let α be an automorphism of A and
let τ be an α-invariant trace on A. Consider the mapping torus flow (Mα, ϕ) associated
to (A, α) and let τ be the ϕ-invariant trace on Mα induced by τ, as in Definition 1.8. If
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t ∈ R then

K0(Mα oϕt Z) ∼= K0(Mα)⊕ K0(A oα Z) ∼= K1(Mα oϕt Z)

and, for each (x, y) ∈ K0(Mα)⊕ K0(A oα Z),

τ(x, y) = τ(x) + t τ(y).

Proof. Since ϕt is homotopic to the identity map Id on Mα, it follows that the
K-groups of Mα oϕt Z and Mα oId Z are isomorphic (see, e.g. Corollary 10.5.2 of
[1]). But since the K-groups of Mα oId Z are isomorphic to K0(Mα)⊕ K1(Mα) (cf.
10.1.1(a) and 9.4.1 in [1]) and K1(Mα) is isomorphic to K0(A oα Z) (via Connes’
Isomorphism (1.4)), we conclude that

K0(Mα oϕt Z) ∼= K0(Mα)⊕ K0(A oα Z) ∼= K1(Mα oϕt Z),

as desired. Now, from Proposition 1.11 we obtain the following commutative
diagram.

K0(A oα Z)
kϕt ◦θt◦k−1

α //

t τ
**TTTTTTTTTTTTTTTTTTT

K0(Mα oϕt Z)

τ

��

K0(Mα)
i∗oo

τ
uukkkkkkkkkkkkkkkkkk

R
An application of Theorem 1.7 completes the proof.

2. ENTROPY

Topological entropy has been very successful in topological dynamics as an
invariant for conjugacy of dynamical systems. Roughly speaking, it measures the
total exponential complexity of the orbit structure with a single number (see, e.g.
Chapter 7 of [21]). Voiculescu introduced a notion of entropy for automorphisms
of unital nuclear C∗-algebras based on local approximation [19] and Brown sub-
sequently extended this notion to automorphisms of exact C∗-algebras using nu-
clear embeddability [4]. The Voiculescu-Brown entropy is an extension of the
original notion of entropy in topological dynamics. Indeed, it was proved in
Proposition 4.8 of [19] that the topological entropy for a homeomorphism on a
compact metric space coincides with the Voiculescu-Brown entropy for the auto-
morphism (of the commutative C∗-algebra) induced by the homeomorphism.

Suppose that A is an exact C∗-algebra and α is an automorphism of A. De-
note by (Mα, ϕ) the mapping torus flow associated to (A, α). Then Mα is an exact
C∗-algebra and ϕt is an automorphims of Mα for all t ∈ R. (Mα is exact because it
is (isomorphic to) a subalgebra of C([0, 1])⊗ A which is exact since it is the tensor
product of a nuclear and an exact C∗-algebra.) In this section we find a formula
to compute the Voiculescu-Brown entropy of ϕt in terms of t and the Voiculescu-
Brown entropy of α.
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We start by recalling the definition of the Voiculescu-Brown entropy [4]. Let
A be an exact C∗-algebra and let α be an automorphism of A. Let π : A → B(H)
be a faithful ∗-representation of A. We denote by CPA(π, A) the collection of all
triples (ϕ, ψ, B) where B is a finite dimensional C∗-algebra and ϕ : A → B and
ψ : B → B(H) are contractive completely positive maps. Given δ > 0 and a finite
set ω ⊂ A, we denote by

rcp(ω, δ) = inf{rank(B) : (ϕ, ψ, B) ∈ CPA(π, A) and

‖ψ ◦ ϕ(x)− π(x)‖ < δ for all x ∈ ω}

where rank(B) is the dimension of a maximal abelian subalgebra of B. As the
notation indicates, rcp(ω, δ) is independent of the faithful ∗-representation π, as
proved in Proposition 1.3 of [4].

We now define:

(i) ht(α, ω, δ) = lim sup
m→∞

1
m log(rcp(ω ∪ α(ω) ∪ · · · ∪ αm−1(ω), δ)),

(ii) ht(α, ω) = sup
δ>0

ht(α, ω, δ),

(iii) ht(α) = sup
ω

ht(α, ω),

where the last supremum is taken over all finite sets ω ⊂ A. We call this last
quantity the Voiculescu-Brown entropy of α.

The following proposition extends a result of Bowen ([2], Proposition 21)
to the non-commutative setting. Recall that an action of R on a C∗-algebra A is a
homomorphism ϕ of R into the group of automorphisms of A such that s 7→ ϕs(a)
is continuous for each fixed a ∈ A.

PROPOSITION 2.1. Let A be an exact C∗-algebra and let ϕ be an action of R on
A. If t ∈ R then

ht(ϕt) = |t| ht(ϕ1).

Proof. To prove the proposition, it will suffice to show that

(2.1) ht(ϕt) 6
t
s

ht(ϕs)

for all reals s, t > 0. Indeed, this would give us that the proposition is valid for
all reals t > 0. This would then imply the proposition for reals t < 0 since by
Proposition 2.5 of [4] we also get

ht(ϕt) = ht(ϕ−1
−t ) = ht(ϕ−t) = −t ht(ϕ1) = |t| ht(ϕ1).

We now prove (2.1). For this purpose, let s, t > 0 be real numbers. Let
ω ⊂ A be a finite set and let ε > 0. Since the set

Γ = {ϕr(a) : 0 6 r 6 s, a ∈ ω}

is compact, it can be covered by finitely many ε
4 -balls with centers in Γ. Let

ϕr1(a1), ϕr2(a2), . . . , ϕrk (ak) be the centers of such balls. Put

ω′ = {ϕri (ai) : 1 6 i 6 k}.
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By Proposition 1.3 of [4], we may assume that A is faithfully represented on
a Hilbert space H. Let (α, β, B) ∈ CPA(IdA, A). Then ‖β ◦ α(b) − b‖ < ε for all
b ∈ Γ whenever ‖β ◦ α(a)− a‖ < ε

2 for all a ∈ ω′. Let δ = ε
2 . This proves that

rcp(ω, ε) 6 rcp(ω′, δ).

Furthermore, since ϕs is an isometry we obtain, whenever (m − 1)t < (n − 1)s,
that

rcp(ω ∪ ϕt(ω) ∪ · · · ∪ ϕm−1
t (ω), ε) 6 rcp(ω′ ∪ ϕs(ω′) ∪ · · · ∪ ϕn−2

s (ω′), δ).

Hence

ht(ϕt, ω, ε) 6 lim sup
m→∞

1
m log(rcp(ω′ ∪ ϕs(ω′) ∪ · · · ∪ ϕ

[(m− 1)t/s]
s (ω′), δ))

6 ht(ϕs, ω′, δ) lim sup
m→∞

1
m ([(m− 1)t/s])

=
t
s

ht(ϕs, ω′, δ) 6
t
s

ht(ϕs).

Letting ε and ω vary, ht(ϕt) 6 t
s ht(ϕs), as wanted.

The following proposition is a slight generalization of Proposition 2.10 in
[4], i.e. without assuming that the C∗-algebras involved are unital. As N. Brown
kindly pointed out to me, a proof can be obtained by imitating the proof of Propo-
sition 2.10 in [4] without making any changes.

PROPOSITION 2.2 (N. Brown). Let A and B be two exact C∗-algebras and let α
and β be automorphisms of A and B, respectively. If ρ : A → B is an injective completely
positive map such that ρ−1 : ρ(A) → A is also completely positive and ρ ◦ α = β ◦ ρ,
then ht(α) 6 ht(β).

Let A be an exact C∗-algebra and let α be an automorphism of A. Let (Mα, ϕ)
be the mapping torus flow associated to (A, α). Then, for f ∈ Mα, ϕ1( f ) = α ◦ f .
It is then expected that ϕ1 and α have the same Voiculescu-Brown entropy. We
prove this in the following.

PROPOSITION 2.3. Let A be an exact C∗-algebra and let α be an automorphism of
A. Consider the mapping torus flow (Mα, ϕ) associated to (A, α). Then

ht(ϕ1) = ht(α).

Proof. For each a ∈ A, define fa ∈ Mα by the formula fa(s) = (1 − s)a +
sα(a), for s ∈ [0, 1]. Let ρ : A → Mα be the linear map given by ρ(a) = fa. Using
the fact that α is an automorphism and that the set of positive elements of a C∗-
algebra forms a closed cone, we see that ρ is a completely positive map. We claim
that also ρ−1 : ρ(A) → A is completely positive. To prove that ρ−1 : ρ(A) → A
is positive, one considers a positive element fa in ρ(A). Then fa = g∗g for some
g ∈ Mα. Hence

g∗(0)g(0) = fa(0) = a = ρ−1( fa)
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is positive, as wanted. The proof of the claim will be completed after we con-
sider the isomorphism between Mα(A) ⊗ Mn and Mα⊗Idn (A ⊗ Mn) and repeat
the argument above; we omit details. Futhermore, since ρ ◦ α = ϕ1 ◦ ρ, we apply
Proposition 2.2 to obtain ht(α) 6 ht(ϕ1).

For the opposite inequality, consider the inclusion map ι : Mα → C([0, 1], A).
Then it is clear that both ι and ι−1 : ρ(Mα) → Mα are completely positive. Con-
sider now ψ ∈ Aut(C([0, 1], A)) defined by ψ( f ) = α ◦ f for f ∈ C([0, 1], A). Then
ι intertwines ϕ1 and ψ, that is, ι ◦ ϕ1 = ι ◦ ψ. Using Proposition 2.2 we conclude
that

(2.2) ht(ϕ1) 6 ht(ψ).

Now, since ψ is conjugate to Id⊗ α ∈ Aut(C([0, 1])⊗ A), it follows that

(2.3) ht(ψ) = ht(Id⊗ α).

But since ht(Id) = 0, by Proposition 2.7 of [4], we also get

(2.4) ht(Id⊗ α) = ht(α).

Thus, combining (2.2), (2.3) and (2.4) we obtain ht(ϕ1) 6 ht(α). This completes
the proof.

We are ready to prove the main result of this section.

THEOREM 2.4. Let A be an exact C∗-algebra and let α be an automorphism of A.
Suppose that (Mα, ϕ) is the mapping torus flow corresponding to (A, α). If t ∈ R then

ht(ϕt) = |t| ht(α).

Proof. The proof of this theorem is just an application of Propositions 2.1
and 2.3.

3. APPLICATIONS

In this section we specialize to the commutative setting some of the results
of the previous sections. We prove that crossed products by minimal time-t home-
omorphisms of suspensions built over strongly orbit equivalent Cantor minimal
systems have isomorphic Elliott invariants. As an application, we show the exis-
tence of dynamical systems on (compact metric) connected 1-dimensional spaces
which are not flip conjugate (because of different entropy) yet their associated
crossed products have isomorphic Elliott invariants. We will also address some
interesting questions emanating from our investigation.

We begin with some definitions complementing the ones given in the intro-
duction. Let (X, S) be a dynamical system. We say that (X, S) (or just S) is min-
imal if there is no non-trivial S-invariant closed subset of X. Equivalently, (X, S)
is minimal if the orbit {Sn(x) : n ∈ Z} of each x ∈ X is dense in X. By M(X, S)
we will denote the set of S-invariant Borel probability measures. If M(X, S) has
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only one element, then we say that (X, S) (or just S) is uniquely ergodic. When a
dynamical system is both minimal and uniquely ergodic, we say that it is strictly
ergodic. If T is an action of R on the compact metric space Y, we denote by M(Y, T)
the set of all T-invariant Borel probability measures on Y (i.e. M(Y, T) contains
all Borel probability measures ν on Y satisfying ν(Tt(E)) = ν(E) for all t ∈ R
and for all measurable sets E ⊂ Y). In analogy to our terminology for (discrete)
dynamical systems, we say that (Y, T) is minimal, uniquely ergodic or strictly
ergodic if there is no non-trivial closed T-invariant subset of Y, M(Y, T) has only
one element or is both minimal and uniquely ergodic, respectively.

It is well known that if (X, S) is a minimal (uniquely ergodic) dynamical
system and X is infinite then its associated crossed product C∗(Z, X, S) is simple
(has a unique normilized trace). For this reason, we will always assume X to be
infinite.

Two dynamical systems (X1, S1) and (X2, S2) are said to be:

(i) conjugate if there is a homeomorphism F : X1 → X2, called a conjugation
map, such that F ◦ S1 = S2 ◦ F.

(ii) flip conjugate if (X1, S1) is conjugate to either (X2, S2) or (X2, S−1
2 ).

(iii) orbit equivalent if there is homeomorphism F : X1 → X2, called an orbit
map, such that F({Sn

1 (x) : n ∈ Z}) = {Sn
2 (F(x)) : n ∈ Z} for all x ∈ X1. If in addi-

tion (X1, S1) and (X2, S2) are minimal then we can uniquely define two functions
m, n : X1 → Z, called the orbit cocycles of F, such that F(S1(x)) = Sm(x)

2 (F(x))

and F(Sn(z)
1 (x)) = S2(F(x)) for x ∈ X1. When there is an orbit map so that the

associated orbit cocycles have at most one point of discontinuity each, then we
say that (X1, S1) and (X2, S2) are strongly orbit equivalent, cf. Definition 1.3 of [8].

We now proceed to describe the Elliott invariants for crossed products as-
sociated to minimal dynamical systems. Let A be the crossed product associ-
ated to a minimal dynamical system (X, S). Let T(A) denote the set of (nor-
malized) traces on A, let S(K0(A)) be the state space of the group K0(A), and
let rA : T(A) → S(K0(A)) be the canonical map given by rA(τ)(w) = τ(w) for
τ ∈ T(A) and w ∈ K0(A). The Elliott invariant of A = C∗(Z, X, S) is given by the
following data:

(i) The abelian group K1(A), which we will denote by K1(X, S).
(ii) The scaled ordered abelian group K0(A), which we will denote by K0(X, S).

The scale is the distinguished element [1] and the order is defined by x > 0 if and
only if x = [p] for some integer n > 1 and some projection p ∈ Mn(A).

(iii) The simplex T(A) equipped with the weak*-topology, see Theorem 3.1.18
of [16].

(vi) The natural continuous affine map rA : T(A) → S(K0(A)).

The Elliott invariant of A is, according to the Elliott conjecture, a complete
isomorphism invariant for A.
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An isomorphism from the Elliott invariant of A1 = C∗(Z, X1, S1) to that of
A2 = C∗(Z, X2, S2) consists of an isomorphism ϕ1 : K1(X1, S1) → K1(X2, S2) of
(abstract) abelian groups, an isomorphism ϕ0 : K0(X1, S1) → K0(X2, S2) of scaled
ordered abelian groups, and an affine homeomorphism f : T(A2) → T(A1) such
that the diagram

T(A2)
f //

rA2
��

T(A1)

rA1
��

S(K0(A2))
ϕ̂0

// S(K0(A1))

commutes, where ϕ̂0 is the dual of ϕ0 (i.e. ϕ̂0(σ) = σ ◦ ϕ0 for σ ∈ S(K0(A2))). In
this case we will say that A1 and A2 have isomorphic Elliott invariants.

We will need the following natural result, which is most likely well known
to the specialist. We could not find the second part of it in the literature, however.
We sketch here a proof for completeness.

LEMMA 3.1. Let (X, S) be a dynamical system and let (Y, T) be its associated
suspension flow. Then we have the following:

(i) (X, S) is minimal if and only if (Y, T) is minimal.
(ii) There is an affine homeomorphism between M(X, S) and M(Y, T).

(iii) (X, S) is strictly ergodic if and only if (Y, T) is strictly ergodic.

Proof. Part (i) is 5.12.12 of [20]. Part (iii) follows trivially from part (i) and
(ii). We now sketch the proof of part (ii).

If µ is in M(X, S) then µ induces an element ν in M(Y, T) via the formula

E 7→ (µ× λ)(π−1(E))

where λ is Lebesgue measure on [0, 1], E is a measurable set in Y, and π is the
canonical quotient map X × [0, 1] → Y. Conversely, suppose that ν is a measure
in M(Y, T). Define µ by

F 7→ ν(π(F × [0, 1))

where F is a measurable set in X. One checks that µ is in M(X, S) and that this cor-
respondence defines an affine homeomorphism between M(X, S) and M(Y, T),
as desired.

We now combine Theorem 1.12 with Theorem 4.5 in [14] to prove a result
which will allow us to compute the Elliott invariants of crossed products by min-
imal time-t homeomorphisms on suspensions built over finite dimensional dy-
namical systems.

PROPOSITION 3.2. Let (X, S) be a dynamical system and let (Y, T) be the sus-
pension flow associated to (X, S). Suppose that τµ and τν are the traces on C(X) and
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C(Y) associated to some µ ∈ M(X, S) and its corresponding ν ∈ M(Y, T), respectively.
If t ∈ R then

K1(Y, Tt) ∼= K0(Y)⊕ K0(X, S) ∼= K0(Y, Tt)

and, for each (w, z) ∈ K0(Y)⊕ K0(X, S),

τν(w, z) = τν(w) + t τµ(z).

Furthermore, if X is finite dimensional and Tt is minimal then A = C∗(Z, Y, Tt) satisfies
the following K-theoretical version of Blackadar’s Second Fundamental Comparability
Question: if w ∈ K0(Y, Tt) satisfies τ(w) > 0 for all (normalized) traces τ on A, then
there is a projection p ∈ M∞(A) such that x = [p].

Proof. Let (Mα, ϕ) be the mapping torus flow associated to (C(X), α), where
α is the automorphism of C(X) induced by S. It follows that the automorphism of
C(Y) induced by Tt is conjugate to ϕt using the conjugation map σ : Mα → C(Y)
given by σ( f )([x, s]) = ( f (s))(x), where f ∈ Mα and [x, s] ∈ Y. Therefore σ
induces an isomorphism between Mα oϕt Z and C∗(Z, Y, Tt). Let τ be the trace
on Mα induced by τµ as in Definition 1.8. One also verifies that τν ◦ σ = τ. Hence,
the proposition follows from Theorem 1.12 by taking A, α and τ to be C(X), the
automorphism induced by S and τµ, respectively.

If X is finite dimensional and Tt is minimal then Y is also finite dimensional
and so we may apply Theorem 4.5 of [14] to obtain the last assertion of the corol-
lary.

It has been proved by Giordano, Putnam and Skau ([8], Theorem 2.1) that
strong orbit equivalence of Cantor minimal systems corresponds to isomorphism
of their associated crossed products. In the following theorem we show that
crossed products by minimal time-t homeomorphisms of suspensions built over
strongly orbit equivalent Cantor minimal systems have isomorphic Elliott invari-
ants.

THEOREM 3.3. Let (X1, S1) and (X2, S2) be strongly orbit equivalent Cantor
minimal systems and let (Y1, T1) and (Y2, T2) be the suspension flows associated to
(X1, S1) and (X2, S2), respectively. Let t ∈ R such that:

(i) Tt
1 and Tt

2 are minimal;
(ii) M(Y1, T1) = M(Y1, Tt

1) and M(Y2, T2) = M(Y2, Tt
2).

Then C∗(Z, Y1, Tt
1) and C∗(Z, Y2, Tt

2) have isomorphic Elliott invariants.

Proof. Since (X1, S1) and (X2, S2) are strongly orbit equivalent, one may as-
sume that S1 and S2 act on the same space X, have the same orbits and that the
orbit cocycles m, n : X → Z defined by S1(x) = Sn(x)

2 (x) and S2(x) = Sm(x)
1 (x), for

all x ∈ X, have at most one point of discontinuity. It also follows that M(X, S1) =
M(X, S2), cf. the proof of (i)⇒(ii) in Theorem 2.1 of [8], pages 78–79. For i = 1, 2,
we may identify K0(X, Si) with C(X, Z)/Im(Id − (Si)∗) where C(X, Z) denotes
the (countable) abelian group (under addition) of continuous functions on X
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with values in Z and Im(Id − (Si)∗) = { f − f ◦ S−1
i : f ∈ C(X, Z} (see Theo-

rem 1.1 of [15]). Using this identification, let [ f ]i, where f ∈ C(X, Si), denote the
class in K0(X, Si) represented by f . Following the proof (i)⇒(ii) in Theorem 2.1
of [8], pages 78–79, we see that the map I : K0(X, S1) → K0(X, S2) defined by
I([ f ]1) = [ f ]2 for f ∈ C(X, Z), gives a scaled ordered isomorphism of abelian
groups.

On the other hand, for i = 1, 2, since K1(X, Si) is isomorphic to Z (cf. The-
orem 1.1 of [15]) and since C(Yi) is isomorphic to the mapping torus of the au-
tomorphism of C(X) induced by Si, we may use the Connes’ Isomorphism (1.4)
to obtain that K0(Yi) is isomorphic to Z and so K0(Yi) is generated by [1]. Thus,
from Proposition 3.2, we conclude that K1(Y1, Tt

1) is isomorphic to K1(Y2, Tt
2).

Let us denote by Fi : M(X, Si) → M(Yi, Ti), for i = 1, 2, the affine home-
omorphisms obtained by Lemma 3.1. Define a function F : T(C∗(Z, Y2, Tt

2)) →
T(C∗(Z, Y1, Tt

1)) in the following natural way. Let τν2 be in T(C∗(Z, Y2, Tt
2)) where

ν2 is an element of M(Y2, Tt
2). Then since M(X, S1) = M(X, S2), M(Y1, T1) =

M(Y1, Tt
1) and M(Y2, T2) = M(Y2, Tt

2), we may let F (τν2) be τν1 , where ν1 =
(F1 ◦ F−1

2 )(ν2). Since F1 and F2 are affine homeomorphisms, one verifies that F is
also an affine homeomorphism.

We claim that Id ⊕ I : Z ⊕ K0(X, S1) → Z ⊕ K0(X, S2) gives a scaled or-
dered isomorphism from K0(Y1, Tt

1) onto K0(Y2, Tt
2). Indeed, suppose that 0 <

(n, [ f ]1) ∈ Z⊕ K0(X, S1). Let ν2 be a measure in M(Y2, Tt
2) and let µ = F−1

2 (ν2)
and ν1 = F1(µ) be the corresponding measures in M(X, S1) and M(Y1, Tt

1). Then,
using Proposition 3.2 in the second and third step and the fact that (n, [ f ]1) > 0
and C∗(Z, Y1, Tt

1) is simple in the last step below, we get:

τν2((Id⊕ I)(n, [ f ]1)) = τν2(n, [ f ]2) = n + tτµ( f ) = τν1(n, [ f ]1) > 0.

Since ν2 was arbitrary, the last part of Proposition 3.2 gives us that (Id⊕ I)(n, [ f ]1)
> 0. Hence Id⊕ I is a scaled ordered isomorphism, proving the claim.

To complete the proof of the theorem, let τν2 be in M(Y2, Tt
2) where ν2 is an

element of M(Y2, Tt
2) and let (n, [ f ]1) be in Z ⊕ K0(X, S1). If µ = F−1

2 (ν2) and
ν1 = F1(µ) are the measures in M(X, S1) and M(Y1, Tt

1) corresponding to ν2 then,
by using Proposition 3.2 in the second and third step and the definition of F in
the last step below, we get:

(Îd⊕ I ◦ rA2)(τν2)(n, [ f ]1) = rA2(τν2)(n, [ f ]2) = n + tτµ( f )

= rA1(τν1)(n, [ f ]1) = (rA1 ◦ F )(τν2)(n, [ f ]1).

Hence C∗(Z, Y1, Tt
1) and C∗(Z, Y2, Tt

2) have isomorphic Elliott invariants.

We now turn to the problem of finding minimal time-t homeomorphisms of
suspensions. Let (X, S) be a dynamical system and let (Y, T) be the suspension
flow associated to (X, S). The following proposition will tell us that the minimal-
ity of (X, S) is a necessary and sufficient condition for the existence of t ∈ R such
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that Tt is minimal. The author would like to thank E. Glasner for referring us to
a result in his book [7] which helped to improve our original proposition.

PROPOSITION 3.4. Let (X, S) be a dynamical system and let (Y, T) be the sus-
pension flow associated to (X, S). Then:

(i) (X, S) is minimal if and only if the set

{t ∈ R : Tt is not minimal}

is a countable subset of R which contains Q.
(ii) (X, S) is strictly ergodic if and only if the set

{t ∈ R : Tt is not strictly ergodic}

is a countable subset of R which contains Q.

Proof. If there is t ∈ R such that Tt is minimal then S must be minimal. (If
M ⊂ X is closed nontrivial S-invariant then π(M× [0, 1]) ⊂ Y is closed nontrivial
Tt-invariant.) For the converse, observe that Tr is not minimal whenever r is ra-
tional. Assume now that (X, S) is minimal. Then (Y, T) is minimal by Lemma 3.1
and therefore

{t ∈ R : Tt is not minimal}
is a countable set, cf. 4.24.1 of [7].

For the second part of the proposition, suppose that Tt is strictly ergodic.
Then S must also be strictly ergodic. (An argument for minimality is given in
the above paragraph. For unique ergodicity, observe that if M(X, S) has more
that one element then so does M(Y, T) by Lemma 3.1. Since M(Y, T) ⊂ M(Y, Tt)
then M(Y, Tt) also has more than one element.) For the converse, observe that Tr

is not strictly ergodic whenever r is rational. Assume now that (X, S) is strictly
ergodic. Then (Y, T) is strictly ergodic by Lemma 3.1 and therefore

{t ∈ R : Tt is not strictly ergodic}

is a countable set, cf. 4.24.2 of [7].

We now specialize Theorem 2.4 to the commutative setting. If (X, S) is a
dynamical system, the topological entropy of S, which we will denote by htop(S),
is either a nonnegative real number or infinite. Topological entropy is an invariant
of conjugacy, cf. Theorem 7.2 of [21].

COROLLARY 3.5. Let (X, S) be a dynamical system and let (Y, T) be the suspen-
sion flow associated to (X, S). If t ∈ R then

htop(Tt) = |t| htop(S).

Proof. Let α be the automorphism of C(X) induced by S and let ϕ be the
action of R on C(Y) induced by T. Then for each t ∈ R, the Voiculescu-Brown
entropy of ϕt and the topological entropy of Tt coincide, cf. Proposition 4.8 of [19].
By the same token, the Voiculescu-Brown entropy of α is equal to the topological
entropy of S. Thus the corollary follows from Theorem 2.4.
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We remark that Corollary 3.5 can be obtained, without Theorem 2.4, using
tools from classical topological entropy, cf. Theorem IV.5 of [10]. Using our results
above we are able to give the following.

EXAMPLE 3.6. There are dynamical systems on (compact metric) connected
1-dimensional spaces which are not flip conjugate yet their associated crossed
products have isomorphic Elliott invariants.

Let (X1, S1) be a strictly ergodic Cantor system and let s 6= htop(S1) be a non-
negative real number or infinity. By Theorem 6.1 of [17] and Theorem 7.1 of [18],
there is a minimal Cantor system (X2, S2) strongly orbit equivalent to (X1, S1)
and with entropy equal to s. (We remark that these theorems of Sugisaki [17], [18]
are generalizations of results by M. Boyle and D. Handelman [3] when (X1, S1)
is the dyadic adding machine.) Since orbit equivalence preserves the space of in-
variant Borel probability measures (cf. Theorem 2.2 of [8]), we have that (X2, S2)
is also a strictly ergodic Cantor system. Let (Y1, T1) and (Y2, T2) be the suspen-
sion flows of (X1, S1) and (X2, S2). Then, by Proposition 3.4, there is a t ∈ R
such that Tt

1 and Tt
2 are both strictly ergodic. Hence (Y1, Tt

1) and (Y2, Tt
2) are dy-

namical systems on (compact metric) connected 1-dimensional spaces which are
not flip conjugate (because they have different entropy, by Corollary 3.5) yet their
associated crossed products have isomorphic Elliott invariants (by Theorem 3.3).

We conclude this paper with a brief discussion about the classifiability of
the C∗-algebras whose Elliott invariants were calculated in Proposition 3.2. We
conjecture they are classifiable. For the particular case of minimal rotations of
suspensions arising from group rotations the result follows from a theorem of
Gjerde and Johansen [9]. Indeed, suppose that the dynamical systems (X1, S1)
and (X2, S2) are minimal group rotations. Let (Y1, T1) and (Y2, T2) be the suspen-
sion flows associated to (X1, S1) and (X2, S2), respectively. Then it is easy to see
that (Y1, Tt1

1 ) and (Y2, Tt2
2 ) are also group rotations for all t1, t2 ∈ R. Hence, when

t1 and t2 are real numbers such that Tt1
1 and Tt2

2 are minimal (and so they are
strictly ergodic, cf. Corollary 6.20 of [21]) we may use Theorem 6 of [9] to obtain
that C∗(Z, Y1, Tt1

1 ) and C∗(Z, Y2, Tt2
2 ) are isomorphic if and only if C∗(Z, Y1, Tt1

1 )
and C∗(Z, Y2, Tt2

2 ) have isomorphic Elliott invariants. We have proved the fol-
lowing.

PROPOSITION 3.7. Suppose that the dynamical systems (X1, S1) and (X2, S2)
are minimal group rotations. Let (Y1, T1) and (Y2, T2) be the suspension flows associated
to (X1, S1) and (X2, S2), respectively. If t1 and t2 are real numbers such that Tt1

1 and
Tt2

2 are minimal then C∗(Z, Y1, Tt1
1 ) and C∗(Z, Y2, Tt2

2 ) are isomorphic if and only if
C∗(Z, Y1, Tt1

1 ) and C∗(Z, Y2, Tt2
2 ) have isomorphic Elliott invariants.

Proposition 3.7 does not cover the C∗-algebras of Example 3.6, unfortu-
nately. However, it does cover the important example of irrational rotation al-
gebras: An irrational rotation on S1 can be thought as a time-t homeomorphism
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of the suspension built over the one-point dynamical system. Since the dynam-
ical system formed by the one-point space is a minimal group rotation, Propo-
sition 3.7 applies. Hence two irrational rotation algebras At1 and At2 are iso-
morphic if and only if they have isomorphic Elliott invariants. Since irrational
rotations on the unit circle are strictly ergodic, we may use our Propostion 3.2 to
obtain the Elliott invariants of At1 and At2 . This invariants will be isomorphic if
and only if Z + t1 Z = Z + t2 Z if and only if t1 has the same image as ±t2 in R/Z.
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ADDED IN PROOFS. Recently, H. Lin and N. C. Phillips have proved, in [11], a result
which shows that the C∗-algebras of Theorem 3.3 (and in particular, those of Example 3.6)
are in fact isomorphic.


