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ABSTRACT. Lax-Phillips evolutions are described by two-space scattering sys-
tems. The canonical identification operator is characterized for Lax-Phillips
evolutions, whose outgoing and incoming projections commute. In this case
a (generalized) Lax-Phillips semigroup can be introduced and its spectral the-
ory is considered. In the special case, originally considered by Lax and Phillips
(where the outgoing and incoming subspaces are mutually orthogonal), this
semigroup coincides with that introduced by Lax and Phillips. The basic con-
nection of the Lax-Phillips semigroup to the so-called characteristic semigroup
of the reference evolution is emphasized.
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1. INTRODUCTION

Recently several papers were published where the mathematical framework
of the Lax-Phillips (LP) scattering theory [10] is used for the description of reso-
nances in quantum theory, see Strauss [12], [13] and papers quoted there, e.g.
Flesia and Piron [6], Horwitz and Piron [8], Eisenberg and Horwitz [5], Strauss,
Horwitz and Eisenberg [14]. The reason is the existence of a distinguished semi-
group in the LP-scattering theory (the LP-semigroup) and the relation between
their eigenvalues and poles of the scattering matrix.

The basic concept in [10] is the (general) LP-evolution. Necessarily, its gener-
ator has pure absolutely continuous spectrum which coincides with the real line
and has constant multiplicity. The LP-semigroup is then established only under
the additional assumption that the outgoing and incoming subspaces are mutu-
ally orthogonal.

Hamiltonians in quantum scattering theory have absolutely continuous
spectrum with constant multiplicity. However, usually they are bounded below.
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Therefore there are several serious obstacles for the idea to use LP-theory to solve
quantum scattering and resonance problems.

The difficulties due to the property of Hamiltonians to be semibounded can
be overcome by using ideas of Halmos [7] (refined by Kato [9]). This approach is
pointed out in [3]. A further approach is given by Strauss [13] which is based on
the theory of Sz.-Nagy–Foias [15] of contraction operators on Hilbert space.

In this paper the obstacle resulting by the special assumption in [10] that
outgoing and incoming subspaces are mutually orthogonal is removed. This re-
quires to investigate carefully the LP-theory from the pure mathematical point
of view. This is done in the present paper. It is shown that the LP-semigroup
can be established also in the case that the projections onto the outgoing and in-
coming subspaces commute (which includes the case of mutual orthogonality of
these subspaces). However, in this case the holomorphic continuability of the
scattering matrix into the whole upper half plane does not follow in general. De-
spite of this lack the eigenvalue spectrum of the (generalized) LP-semigroup is
investigated (see Subsection 3.2). The result shows that for this part of the spec-
trum there is a similar connection to properties of the scattering matrix as in the
original LP-case (in our case for vector functions, see Proposition 3.6). Further
results which take into account further assumptions, necessary for the applica-
tion on the resonance problem in quantum scattering theory, are presented in [3].
(For example, restrictions of the characteristic semigroup (considered in Subsec-
tion 2.3) such that the semigroup property is violated, independent analyticity
properties of the scattering matrix, such that quantum scattering systems can be
handled which have poles in the upper half plane).

A result concerning the resolvent set of the infinitesimal generator in the
general case, similar to that of Lax and Phillips (see, for example, Theorem 23 in
[4], p. 263), is missing.

2. LP-EVOLUTIONS

A unitary strongly continuous evolution group U(R) on a Hilbert space H
is called an LP-evolution, if there are subspaces D+, D− in H, called outgoing
and incoming, such that

U(t)D+ ⊆ D+, t > 0, U(t)D− ⊆ D−, t 6 0,⋂
t∈R

U(t)D± = {0}, clo
{ ⋃

t∈R
U(t)D±

}
= H.

These evolutions were introduced by Lax and Phillips in [10], where the basic the-
orems are presented and the theory of these evolutions is developed, especially
for the case that outgoing and incoming subspaces are mutually orthogonal.
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2.1. THE REFERENCE EVOLUTION. Let H0 := L2(R, dx,K), where K is a separa-
ble Hilbert space and

T(t) f (x) := f (x− t), f ∈ H0,

the regular translation group representation on H0 (where multiplicity dimK is
taken into account).

For convenience of the reader we recall the properties of this LP-evolution
(see e.g. [4], p. 250):

(2.1) (P± f )(x) := χR± (x) f (x), f ∈ H0,

where R+ := [0, ∞), R− := (−∞, 0], are the projections onto the outgoing/
incoming subspaces:

P±(t) := T(−t)P±T(t), t ∈ R.

The function t → P+(t) is monotonically increasing,

P+(t1) 6 P+(t2), t1 6 t2, and s- lim
t→+∞

P+(t) = 1lH0 , s- lim
t→−∞

P+(t) = 0.

Similarly, P−(·) is monotonically decreasing and

(2.2) s- lim
t→+∞

P−(t) = 0, s- lim
t→−∞

P−(t) = 1lH0 .

Furthermore, T(t)P+H0 ⊆ P+H0 for t > 0 or T(t)P+ = P+T(t)P+, t > 0 and
correspondingly, T(t)P− = P−T(t)P−, t 6 0. The unitary evolution group T(·)
on H0 is called the reference LP-evolution, P+H0 is the outgoing and P−H0 the
incoming subspace. In this case P+H0 and P−H0 are mutually orthogonal and
P+H0 ⊕ P−H0 = H0.

By Fourier transformation the representation T(R) is transformed into

T̂(t) := FT(t)F−1, where (T̂(t) f̂ )(p) = e−itp f̂ (p), f̂ ∈ H0,

i.e. the multiplication operator H0 on H0 given by

(H0 f̂ )(p) := p f̂ (p), f̂ ∈ dom H0,

is the generator of T̂(R) :

T̂(t) = e−itH0 , t ∈ R.

T̂(R) is called the spectral representation of the reference evolution. One has
spec H0 = R and it is pure absolutely continuous. Note that we use the Fourier
transformation in the form

(F f )(p) := (2π)−1/2
∞∫

−∞

e−ipx f (x)dx.
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The projection P+, defined by (2.1), is an element from the spectral measure
of H0, therefore P+T̂(t) = T̂(t)P+, t ∈ R, and T̂(t) � P+H0 is a positive repre-
sentation, spec (H0 � P+H0) = [0, ∞), and it is pure absolutely continuous. The
projections

Q∓ := FP±F−1

are the projections onto the Hardy spaces H2
∓(R,K) =: H2

∓ ⊂ H0 (see e.g. [2]).
That is, these spaces are outgoing/incoming subspaces for T̂(R) and Q± are the
corresponding projections.

The projection Q+ is given by

(2.3) H0 3 g → (Q+g)(z) = (2iπ)−1
∞∫

−∞

g(λ)
λ− z

dλ.

2.2. THE MAIN THEOREM FOR LP-EVOLUTIONS. Let U(R) be an LP-evolution on
H with outgoing/incoming subspaces D±. Then there are isometric operators V±
from H onto H0 with an appropriate multiplicity space K such that

V±U(t)V∗
± = e−itH0 , t ∈ R, and Q∓H0 = V±D±.

The isometries V± are unique up to isomorphisms of K. This means, if V ′
± is

a second pair of isometries then there are unitaries K± on K such that V ′
+ =

K+V+, V ′
− = K−V− where (K± f )(λ) := K± f (λ) (see Sinai [11] and Lax and

Phillips [10], see also [4]). V± maps onto the so-called outgoing/incoming spectral
representation of U(R). In general V+ 6= V−.

An important implication of the main theorem is that U(t) = e−itH , where
spec H = R and H has constant multiplicity.

We introduce the orthoprojections D± onto the subspaces D±. Then

D+ = V∗
+Q−V+, D− = V∗

−Q+V−

and D+ = V∗
+H2

−, D− = V∗
−H2

+.
The LP-scattering operator is defined by SLP := V+V−1

− . SLP commutes with
the reference evolution, i.e.

SLPe−itH0 = e−itH0 SLP,

therefore SLP acts as

(SLP f )(λ) = SLP(λ) f (λ), f ∈ H0.

The operators SLP(λ) are unitaries on K a.e. on R. The operator function SLP(·) is
called the LP-scattering matrix.
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2.3. SEMIGROUPS CONNECTED WITH THE REFERENCE EVOLUTION. First the
semigroup

(2.4) T+(t) := Q+e−itH0 Q+ = Q+e−itH0 , t > 0,

is considered, respectively its restriction T+(t) � H2
+, which we call the character-

istic semigroup. It plays an important role as an "intermediate step" to obtain the
Lax-Phillips semigroup. It was already introduced by Y. Strauss [3]. Further we
need its adjoint

(2.5) T+(t)∗ = Q+eitH0 Q+ = eitH0 Q+, t > 0,

respectively T+(t)∗ � H2
+. The last equations in (2.4) and (2.5) are true because

Q+ is the incoming projection for T̂(·), i.e. it is the outgoing projection for T̂(·)∗.
First we recall the properties of T+(·)∗ � H2

+. It is a strongly continuous and
isometric semigroup, i.e.

‖T+(t)∗ f ‖ = ‖ f ‖, f ∈ H2
+, we have T+(t)∗ � H2

+ = eitC− , t > 0,

and the generator C−, a closed operator on H2
+, with domain dom C− dense in

H2
+, satisfies

(2.6) C− ⊂ res C−,

where C− := {ζ ∈ C : Im ζ < 0}. For a closed operator A with dense domain
dom A on a Hilbert space we denote by res A the (open) set of all z ∈ C (complex
plane) such that (z − A)−1 exists and is bounded. It is called the resolvent set
of A.

PROPOSITION 2.1. The generator C− satisfies the following properties:
(i) dom C− = { f ∈ dom H0 ∩H2

+ : H0 f ∈ H2
+} and

(C− f )(z) = z f (z), Im z > 0, f ∈ dom C−.

(ii) The deficiency space

Nζ := H2
+ 	 (ζ − C−)dom C−, Im ζ > 0

is given by

(2.7) Nζ = { f ∈ H2
+ : f (z) = (z− ζ)−1k, k ∈ K}.

Moreover, (ζ − C−)dom C− is a subspace and it coincides with

Mζ := { f ∈ H2
+ : f (ζ) = 0}.

Proof. (i) is obvious because of (2.5).
(ii) First we prove that Mζ is a subspace. Let fn ∈ H2

+, fn(ζ) = 0 and
‖ fn − f ‖ → 0 for n → ∞, where f ∈ H2

+. We have to show that f (ζ) = 0. We put

hζ(x) :=
1

x− ζ
.
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Then hζ ∈ L2(R, dx). According to (2.3) we have f (ζ) = 1
2πi

∞∫
−∞

hζ(x) f (x)dx and

fn(ζ) = 1
2πi

∞∫
−∞

hζ(x) fn(x)dx. Then

‖ f (ζ)− fn(ζ)‖K 6
1

2π

∞∫
−∞

|hζ(x)| · ‖ f (x)− fn(x)‖Kdx

6
1

2π

( ∞∫
−∞

|hζ(x)|2dx
)1/2

·
( ∞∫
−∞

‖ f (x)− fn(x)‖2
Kdx

)1/2
.

This implies ‖ f (ζ) − fn(ζ)‖K → 0 hence f (ζ) = 0 follows. Now we prove (ζ −
C−)dom C− = Mζ . The inclusion ⊆ is obvious because for f ∈ dom C− the
function g(z) := (ζ − z) f (z) vanishes at the point ζ i.e. g(ζ) = 0. To prove the
other inclusion let f ∈ Mζ , i.e. f (ζ) = 0. Then

(2.8) f (z) = (z− ζ)g(z),

where the function g(z) := f (z)
z−ζ is holomorphic on the upper half plane. More-

over, one calculates easily that g ∈ H2
+. Now from (2.8) one gets

zg(z) = ζg(z) + f (z)

and the right hand side is an element of H2
+. Therefore g ∈ dom C− follows, i.e.

f ∈ (ζ − C−)dom C−.
Finally we prove (2.7). Let

fζ,k(z) :=
k

z− ζ
, k ∈ K and g ∈ H2

+.

Then

(2.9) ( fζ,k, g) =

∞∫
−∞

( k
x− ζ

, g(x)
)
K

dx =

∞∫
−∞

1
x− ζ

(k, g(x))Kdx = 2iπ(k, g(ζ))K.

Now, if g ∈ Mζ then fζ,k⊥g follows or fζ,k ∈ M
⊥
ζ . On the other hand, if ( fζ,k, g) =

0 for all k ∈ K then (k, g(ζ))K = 0 follows, i.e. g(ζ) = 0 or g ∈ Mζ .

Proposition 2.1 implies that the deficiency number dimNζ of C− with re-
spect to the upper half plane coincides with dimK. (2.6) implies that the defi-
ciency number of C− for the lower half plane is 0.

C− is even maximal symmetric, there is no symmetric extension of C−.
Now let C∗− be the adjoint of C−. Then C∗− is an extension of C−, C− ⊂ C∗−.

PROPOSITION 2.2. The adjoint C∗− of C− satisfies the following properties:
(i) One has

dom C∗− = dom C− ⊕Nζ ,
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where Im ζ < 0, ζ fixed but arbitrary and

C∗− f = ζ f , f ∈ Nζ ,

i.e. each point ζ ∈ C− is an eigenvalue of C∗− and the corresponding eigenspace is given
by Nζ i.e. all eigenvectors are given by

C+ 3 z → fζ,k(z) :=
k

z− ζ
, k ∈ K, Im ζ < 0.

(ii) 1
2iπ fζ,k coincides with the Dirac linear forms (evaluation forms) for the scalar

holomorphic function C+ 3 z → (k, f (z))K on the upper half plane.

Proof. (i) is obvious because of the formulas of von Neumann (see for exam-
ple [1], p. 292).

(ii) follows from the "boundary value formula" (2.9) for Hardy class func-
tions.

Concerning the semigroup (2.4) we obtain

PROPOSITION 2.3. The semigroup t → T+(t) � H2
+ has the following properties:

(i) It is strongly continuous and contractive, i.e.

T+(t) � H2
+ = e−itC+ , t > 0,

where the generator C+ is closed on H2
+, dom C+ is dense and C+ ⊂ res C+.

(ii) C+ = C∗−.

(iii) (T+(t) f )(z) = 1
2iπ

∞∫
−∞

e−itλ

λ−z f (λ)dλ, f ∈ H2
+.

(iv) One has s- lim
t→∞

e−itC+ = 0.

Proof. (i) is obvious.

(ii) One has
∞∫
0

eitze−itC+dt = i(z− C+)−1, z ∈ C+. Then

∞∫
0

e−itz(e−itC+ )∗dt = −i((z− C+)−1)∗ = −i((z− C+)∗)−1 = −i(z− C∗+)−1.

On the other hand the left hand side equals
∞∫
0

e−itzeitC−dt = −i(z− C−)−1, hence

(z− C∗+)−1 = (z− C−)−1 follows for all z ∈ C−. This implies the assertion.
(iii) follows from (2.3).
(iv) One has T+(t)∗T+(t)=eitH0 Q+e−itH0 = F(T(−t)P−T(t))F−1=FP−(t)F−1,

which, according to (2.2), converges strongly to zero for t → ∞, i.e. one has

s- lim
t→∞

T+(t)∗T+(t) � H2
+ = 0.

However T+(t)∗ � H2
+ is isometric, therefore s- lim

t→∞
e−itC+ = 0 follows.
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PROPOSITION 2.4. Let T+(t) � H2
+ = Q+e−itH0 � H2

+, t > 0, as before. Then:
(i) res C+ = C+.

(ii) The eigenvalue spectrum of C+ coincides with C−, i.e. a real point cannot be an
eigenvalue.

(iii) The eigenspace of the eigenvalue ζ ∈ C− is given by the following subspace

Nζ :=
{

f ∈ H2
+ : f (z) :=

k
z− ζ

, k ∈ K
}

,

and one has

(2.10) T+(t) f = e−itζ f , f ∈ Nζ .

Proof. It is obvious because of Proposition 3. The equations

(T+(t) fζ,k, g) = ( fζ,k, T+(t)∗g) = 2iπ(k, eitζ g(ζ))K = 2iπeitζ(k, g(ζ))K

= eitζ( fζ,k, g) = (e−itζ fζ,k, g)

for g ∈ H2
+ and fζ,k(z) = k

z−ζ prove relation (2.10) directly.

The von Neumann characterization of dom C+ can be rewritten into the fol-
lowing modified one.

PROPOSITION 2.5. f ∈ dom C+ if and only if the function

g f (z) := z f (z)− i√
2π

lim
x→−0

(F−1 f )(x)

is from H2
+. Then C+ f = g f .

Proof. Without restriction of generality one can choose ζ := −i as the refer-
ence point of the von Neumann characterization.

(i) Let f (z) := a(z) + k
i+z , k ∈ K. Then

g f (z) = za(z) + k
(

1− i
i + z

)
− i√

2π
lim

x→−0
(F−1a(x) + kF−1{(i + z)−1}(x)).

Using i√
2π

lim
x→−0

F−1{(i + z)−1}(x) = 1 and lim
x→−0

(F−1a)(x) = 0, one obtains

g f ∈ H2
+.

(ii) Conversely, let f ∈ H2
+ and g f ∈ H2

+. The last term in the expression for
g f is a constant k ∈ K, i.e. we have z → z f (z)− k is from H2

+. Now z → b(z) :=
k

z+i is from H2
+, hence also z → z

(
f (z)− k

z+i
)

is from H2
+, i.e. the functions z →

a(z) := f (z)− k
z+i and z → za(z) are from H2

+, i.e. f = a + b, where a ∈ dom C−
and b ∈ Ni.
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2.4. TWO-SPACE SCATTERING. There is a one-to-one correspondence between
LP-evolutions and complete two-space scattering systems {H, H0}, whose iden-
tification operators satisfy characteristic conditions. H0 denotes, as before, the
generator of the reference LP-evolution.

Let H be a Hilbert space and R 3 t → U(t) = e−itH a strongly continuous
unitary group on H. Further let H0 be as before and

J : H0 → H

a bounded linear operator. Then one can consider the two-space wave operators

W± := s- lim
t→±∞

U(−t)Je−itH0 ,

(see e.g. [4], p. 168). Usually J is called the identification operator.
Since the aim is to reformulate LP-scattering in the framework of two-space

scattering with respect to H0 and H we assume a priori that the wave operators
W± : H0 → H are isometric, i.e. W∗

±W± = 1lH0 and also complete, i.e. W±W∗
± = 1lH.

The scattering operator S is given by S := W∗
+W−.

Two (identification) operators J, J̃ are called asypmptotically equivalent if
W±(J) = W±( J̃). This condition is equivalent to

‖(J − J̃)e−itH0 f ‖ → 0, t → ±∞

for all f ∈ H0. Now it is always possible to replace J by an equivalent identifica-
tion operator J̃ such that

(2.11) W±Q∓ = J̃Q∓.

We put

(2.12) J̃ := W+Q− + W−Q+.

Then one calculates easily W±( J̃) = W±(J) and (2.11). That is, for our purpose
without restriction of generality we may assume that the identification operator
J is given by (2.12). It is called the canonical identification operator. This identifi-
cation operator satisfies the equations

J∗ J = 1lH0 + Q+S∗Q− + Q−SQ+,(2.13)

J J∗ = W+Q−W∗
+ + W−Q+W∗

−.(2.14)

Note that W+Q−W∗
+, W−Q+W∗

− are projections which do not commute in gen-
eral. These equations lead to

LEMMA 2.6. J∗ J is asymptotically equivalent to 1lH0 , i.e. J∗ is an asymptotic left
inverse for J, and J J∗ is asymptotically equivalent to 1lH, i.e. J is an asymptotic left inverse
for J∗.

Proof. One has eitH0(J∗ J − 1lH0)e−itH0 = eitH0 Q+e−itH0 S∗eitH0 Q−e−itH0

+eitH0 Q−e−itH0 SeitH0 Q+e−itH0 , hence

s- lim
t→±∞

(J∗ J − 1lH0)e−itH0 → 0, t → ±∞
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follows. Similarly for the second property.

2.5. LP-EVOLUTIONS AS TWO-SPACE SCATTERING SYSTEMS. Let U(R) be an LP-
evolution on H, D± the outgoing/incoming subspaces, V± the isometric opera-
tors from H onto H0 (with an appropriate multiplicity space K) such that
V±U(t)V∗

± = e−itH0 . Then one has

PROPOSITION 2.7. Let U(R),H,H0,D±, V± as above. Put

J := V∗
+Q− + V∗

−Q+.

Then

U(t)JQ− = Je−itH0 Q−, t > 0, and U(t)JQ+ = Je−itH0 Q+, t 6 0,

and the two-space wave operators exist and are given by

W+ = V∗
+, W− = V∗

−,

i.e. they are isometric and complete. That is: with respect to J the given LP-evolution
U(R) forms, together with the reference evolution, a complete two-space scattering sys-
tem and its scattering operator S coincides with the LP-scattering operator SLP.

The proof is given by straightforward calculation (see e.g. [4], p. 255, where
only the case D+⊥D− is considered). Conversely, one has

PROPOSITION 2.8. Let {H, H0; J} be a complete two-space scattering system with
(isometric) wave operators W±, such that J can be given by

(2.15) J := W+Q− + W−Q+.

Then {U(R),D±}, where U(t) := e−itH , is an LP-evolution where the outgoing/
incoming subspaces are given byD+ := W+H2

−, D− := W−H2
+, i.e. their projections by

(2.16) D+ := W+Q−W∗
+ = JQ− J∗, D− := W−Q+W∗

− = JQ+ J∗.

The corresponding transformations to the out/in spectral representations are given by
V+ := W∗

+, V− := W∗
−. The LP-scattering operator SLP and S coincide.

Proof. The equation (2.15) implies

e−itH JQ− = Je−itH0 Q−, t > 0, and e−itH JQ+ = Je−itH0 Q+, t 6 0.

and the equations in (2.16). Further, the equation

U(−t)D+U(t) = U(−t)W+Q−W∗
+U(t) = W+eitH0 Q−e−itH0W∗

+, t ∈ R

shows that D+ is an outgoing projection with respect to U(·). Similarly for D−.
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3. LAX-PHILLIPS EVOLUTIONS WITH COMMUTING OUTGOING/INCOMING PROJECTIONS

3.1. IDENTIFICATION OPERATORS. Let {H, H0; J} and the associated LP-evolu-
tion {U(R),D±} be as in Proposition 2.8, in particular J is given by formula (2.15).
Then the question arises in which case D+ and D− commute, D+D− = D−D+.
First we consider the special case that D+D− = 0, i.e. D+ and D− are mutually
orthogonal.

In this case Lax and Phillips introduced in Chapter III 0f [10] their famous
semigroup, which is a special restriction of the semigroup (2.4) in Subsection 2.3.

Later on we show that also in the case of commuting projections D+, D−
the corresponding restriction leads to a semigroup (see Subsection 3.2).

PROPOSITION 3.1. Let {U(R),D±} be as before. Then the following conditions
are equivalent:

(i) J is isometric;
(ii) D+⊥D−;

(iii) SQ+ = Q+SQ+.

Proof. (i)⇔ (iii): One calculates

J∗ J = (W+Q− + W−Q+)∗(W+Q− + W−Q+) = Q− + Q+S∗Q− + Q−SQ+ + Q+.

If J∗ J = 1lH0 then Q+S∗Q− + Q−SQ+ = 0 follows, i.e. Q−SQ+ = 0 or (iii) and
vice versa.

(ii)⇔ (iii): Using D± = V∗
±Q∓V± one obtains

D+D− = V∗
+Q−V+V∗

−Q+V− = V∗
+Q−SQ+V−

and the assertion is obvious.

The characterization of J in the general case (commuting outgoing and in-
coming projections) is given by

THEOREM 3.2. Let {U(R),D±} be as before. Then

D+D− = D−D+ if and only if J∗ J = 1lH0 + E− F,

where E, F are selfadjoint projections with EF = 0.
Moreover either E = F = 0 or both projections are nonzero, E 6= 0, F 6= 0.

Note that the first case of the last statement corresponds to D+⊥D−, the
second one to D+D− 6= 0.

Proof. (i) Assume D+D− = D−D+. Then a straightforward calculation
yields that this is equivalent to

(3.1) Q−SQ+S∗ = SQ+S∗Q−.

Using (2.13) we have J∗ J = 1lH0 + A + A∗, where A := Q+S∗Q−. That is, we have
to prove A + A∗ = E − F, where E, F have the mentioned properties. Note that
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(A + A∗)2 = AA∗ + A∗A, and (AA∗ + A∗A)2 = AA∗AA∗ + A∗AA∗A. Now

AA∗A = Q+S∗Q− ·Q−SQ+ ·Q+S∗Q− = Q+S∗ ·Q−SQ+S∗ ·Q−

= Q+S∗ · SQ+S∗ ·Q− = Q+S∗Q− = A,

hence A∗AA∗ = A∗ and

(AA∗ + A∗A)2 = AA∗ + A∗A =: P,

i.e. P is a selfadjoint projection and (A + A∗)2 = P. Put A + A∗ =: V. Then
V = V∗ and V2 = P. This implies V = E − F with selfadjoint projections E, F,
where EF = 0 and E + F = PP.

(ii) Conversely, assume J∗ J = 1lH0 + E− F. Then we have to prove D+D− =
D−D+, or, equivalently, Q− · SQ+S∗ = SQ+S∗ · Q−. Put E + F =: P. We have
A + A∗ = E− F. Then (E− F)2 = E + F = P, i.e. (A + A∗)2 = P or AA∗ + A∗A =
P. Put X := AA∗, Y := A∗A. Then X + Y = P and XY = 0. This implies
X2 = XP = PX and X2(1lH0 − P) = (X(1lH0 − P))2 = 0, hence X(1lH0 − P) = 0 or
X = XP follows. Thus we get

(3.2) X2 = X,

i.e. X is a selfadjoint projection. Correspondingly, Y is a selfadjoint projection,
too. Recall that X = Q+S∗Q− ·Q−SQ+ = Q+S∗Q−SQ+. Then (3.2) yields

Q+S∗Q−SQ+S∗Q−SQ+ = Q+S∗Q−SQ+,

or, by multiplication with S∗Q−S from the right, (Q+ · S∗Q−S)3 = (Q+ · S∗Q−S)2.
For brevity put Q+S∗Q−S =: B. Then (B2 − B)2 = 0 follows. This implies |B2 −
B| = 0 and B2 = B. Therefore we obtain

s- lim
n→∞

(Q+ · S∗Q−S)n = Q+ · S∗Q−S.

Since the left hand side is a selfadjoint projection (onto the intersection subspace
Q+H0 ∩ S∗Q−SH0), finally we get Q+S∗Q−S = S∗Q−SQ+ or

Q− · SQ+S∗ = SQ+S∗ ·Q−,

and this is the assertion.
Now we prove the last statement. First we assume E = 0. Then F = P and

(3.3) J∗ J = 1lH0 − P.

Then also J J∗ = D+ + D− = W+Q−W∗
+ + W−Q+W∗

− = W+(Q− + SQ+S∗)W∗
+ is

a projection, i.e. Q− + SQ+S∗ is a projection. This gives SQ+S∗Q− + Q−SQ+S∗

= 0. But (3.3) implies

Q+S∗Q−SQ+ + Q−SQ+S∗Q− = −Q+S∗Q− −Q−SQ+,

hence Q−SQ+S∗Q− = −Q−SQ+ and Q−SQ+ = 0 follows. Since P = −(Q+S∗Q−
+Q−SQ+), we get P = F = 0.

On the other hand, if F = 0, i.e. E = P, we have J∗ J = 1lH0 + P and P =
Q+S∗Q− + Q−SQ+. Now, together with S also −S is an admissible scattering
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operator, assigned to a complete two-space scattering system {H̃, H0} (see [4],
p. 238). The corresponding identification operator J̃ satisfies J̃∗ J̃ = 1lH0 − P and
J̃ J̃∗ = W̃+(Q− + SQ+S∗)W̃∗

+. That is, also in this case Q− + SQ+S∗ is a projection
and we obtain, by similar arguments as before, that P = F = 0.

3.2. THE LAX-PHILLIPS SEMIGROUP. As it is mentioned in Subsection 3.1 in the
case D+⊥D− Lax and Phillips introduced an important semigroup by a charac-
teristic restriction of the LP-evolution.

In this subsection we show that also in the case of commuting outgoing/
incoming projections by an analogous restriction a semigroup can be introduced
which in the special case of mutually orthogonal outgoing and incoming sub-
spaces coincides with the LP-semigroup.

We start with the semigroup

(3.4) D⊥
+e−itH D⊥

+ = D⊥
+e−itH , t > 0.

Its transformation into the outgoing spectral representation yields the character-
istic semigroup T+(·) (see Subsection 2.3). Now we define a second restriction of
(3.4) by

Z(t) := D⊥
+e−itH D⊥

− , t > 0.

A straightforward calculation gives Z(t) = W+Q+e−itH0 SQ−W∗
−, i.e. the trans-

formation into the outgoing spectral representation yields

Z+(t) = W∗
+Z(t)W+ = Q+e−itH0 Q+ · SQ−S∗.

Recall that the condition D+D− = D−D+ is equivalent with (3.1). Then we have

THEOREM 3.3. If D+ and D− commute then Z+(·) hence Z(·) is a semigroup for
t > 0.

Proof. We calculate

Z+(t1)Z+(t2)=Q+e−it1 H0 Q+SQ−S∗Q+e−it2 H0 Q+SQ−S∗

=Q+e−it1 H0 SQ−S∗e−it2 H0 SQ−S∗=Q+Se−it1 H0 Q−e−it2 H0 Q−S∗

=Q+Se−it1 H0e−it2 H0 Q−S∗=Q+e−i(t1+t2)H0 Q+ · SQ−S∗

= Z+(t1+t2).

Note that Q+ · SQ−S∗ is the projection of the subspace Q+H0 ∩ SQ−H0
hence we obtain

Q+SQ−S∗H0 = Q+H0 ∩ SQ−H0 = H2
+ ∩ SH2

− = H2
+ ∩ S(H2

+)⊥ = H2
+ ∩ (SH2

+)⊥.

This means: the elements of this subspace are exactly those vectors f ∈ H2
+ which

are orthogonal with respect to SH2
+, i.e. f⊥SH2

+.
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According to Theorem 3.3 this subspace is invariant with respect to the
semigroup Z+(·). Moreover the semigroup vanishes on the orthogonal comple-
ment. The restriction

(3.5) Z+(t) � H2
+ ∩ (SH2

+)⊥, t > 0

is a strongly continuous contractive semigroup which is a restriction of the char-
acteristic semigroup T+(·) � H2

+ considered in Subsection 2.3. This restriction we
call the generalized Lax-Phillips semigroup.

REMARK 3.4. If even D+D− = 0, i.e.D+ andD− are orthogonal then Propo-
sition 3.1 yields SQ+ = Q+SQ+. This means SH2

+ ⊆ H2
+. In this case we obtain

H2
+ ∩ (SH2

+)⊥ = H2
+ 	 SH2

+,

i.e. in this case Z+(·) acts on H2
+ 	 SH2

+ and it is nothing else than the original
Lax-Phillips semigroup. Further it turns out that in this case S(·) is holomorphic
in C+ with sup

z∈C+

‖S(z)‖ 6 1 such that S(λ) = s- lim
ε→+0

S(λ + iε). That is, in this

case the existence of the Lax-Phillips semigroup is simultaneously coupled with
strong implications on the analytic continuability of the scattering matrix.

Next we study the spectral theory of (3.5). It is a restriction of the charac-
teristic semigroup T+(·) � H2

+ whose spectral theory is already known. There-
fore, in view of the problem to characterize the eigenvalue spectrum of (3.5) the
crucial question is: Which eigenvalues of the characteristic semigroup, i.e. of
T+(·) on H2

+, survive the restriction to the subspace H2
+ ∩ (SH2

+)⊥? That is, for
fζ,k ∈ Nζ , ζ ∈ C−, i.e.

fζ,k(λ) :=
k

λ− ζ
, 0 6= k ∈ K,

one has to analyze the condition fζ,k⊥SH2
+ or, equivalently,

(3.6) S∗ fζ,k ∈ H2
−.

We have (S∗ fζ,k)(λ) = S(λ)∗ fζ,k(λ) = S(λ)∗k
λ−ζ . Therefore (3.6) is equivalent to

∞∫
−∞

S(λ)∗k
(λ− ζ)(λ− z)

dλ = 0, z ∈ C+,

because of (2.3). In particular, (3.6) implies that (S∗ fζ,k)(·) has a holomorphic
continuation into C−. Then

(3.7) ‖(S∗ fζ,k)(z)‖K 6
‖k‖
|Im ζ|

, z ∈ C−,

follows. On the other hand, C− 3 z → (z − ζ)(S∗ fζ,k)(z) is the holomorphic
continuation of R 3 λ → S(λ)∗k into C− and ζ is a zero of this function. This
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implies

|z− ζ| · ‖(S∗ fζ,k)(z)‖K 6 sup
λ∈R

‖S(λ)∗k‖ = ‖k‖

or

(3.8) ‖(S∗ fζ,k)(z)‖K 6
‖k‖
|z− ζ|

, ζ 6= z ∈ C−.

Therefore we obtain

PROPOSITION 3.5. Let (S∗ fζ,k)(·) be holomorphically continuable into C−. Then
S∗ fζ,k ∈ H2

− follows, i.e. the condition of holomorphic continuability of S∗ fζ,k(·) into
C− is sufficient for (22).

Proof. Choose a square C− ⊃ Gε := {z : |Re z − Re ζ| 6 ε, |Im z − Im ζ| 6

ε}, ε > 0, and let y > 0. If (R − iy) ∩ Gε = ∅ then
∞∫
−∞

‖(S∗ fζ,k)(x − iy)‖2
Kdx 6

‖k‖2 π
ε , where we have used (3.8). If (R− iy) ∩ Gε 6= ∅ then

∞∫
−∞

=

Re ζ−ε∫
−∞

+

Re ζ+ε∫
Re ζ−ε

+

∞∫
Re ζ+ε

.

To estimate the first and the third term we use (3.8), for the second term we use
(3.7). Thus in this case we obtain

∞∫
−∞

‖(S∗ fζ,k)(x− iy)‖2
Kdx 6 ‖k‖2

(2
ε

+
2ε

|Im ζ|2
)

,

i.e. sup
y>0

∞∫
−∞

‖(S∗ fζ,k)(x − iy)‖2
Kdx < ∞. Therefore, according to the Paley-Wiener

theorem, the assertion follows.

PROPOSITION 3.6. The vector fζ,k ∈ H2
+ is an eigenvector of the (generalized)

LP-semigroup, i.e. fζ,k ∈ SH2
− if and only if the vector function R 3 λ → S(λ)−1k is

holomorphically continuable into C− and S(ζ)−1k = 0.

REMARK 3.7. In the case D+⊥D− the operator function S(·)−1 is a priori
holomorphic in C−. Then S∗ fζ,k(·) is holomorphic in C− if and only if S(ζ)−1k =
0. But this means that S(·), which is also analytically continuable int C−, has
necessarily a pole at ζ (see Lax and Phillips [10]).
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