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ABSTRACT. Several methods based on an easy geometric argument are pro-
vided to prove that a given operator is not weakly supercyclic. The methods
apply to different kinds of operators like composition operators or bilateral
weighted shifts. In particular, it is shown that the classical Volterra operator
is not weakly supercyclic on any of the Lp[0, 1] spaces, 1 6 p < ∞. This is in
contrast with the fact that the Volterra operator, extended in a natural way to
certain Hilbert spaces, is hypercyclic. With the help of Gaussian measures, a
general theorem of non-weak supercyclicity is proved, which can be applied
to bilateral shifts or analytic functions of the Volterra operator. For instance, it
is shown that a weighted bilateral shift acting on `p(Z), 1 6 p < 2, is weakly
supercyclic if and only if it is supercyclic.
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1. INTRODUCTION

Let C denote the field of complex numbers. A bounded linear operator T
on a complex Banach space B is said to be (norm) supercyclic if there is a vector x
in B such that {λTnx : λ ∈ C and n = 0, 1, 2, . . .} is (norm) dense in B (when the
scalar multiples are not needed, the operator is called hypercyclic). Supercyclic
operators have been studied intensely in the last decade, see [21] for a survey on
the subject.

Most recently, weakly supercyclic operators have come into the stage, see
[2], [22] and [27] for instance. The operator is said to be weakly supercyclic when
the norm density is replaced by the density with respect to the weak topology. Of
course, this is not a mere generalization because weakly supercyclic operators are
still cyclic. The latter is a consequence of a theorem of Mazur, [7], that asserts the
weak closure and the norm closure of convex sets coincide. Weakly supercyclic
operators is a broader class of operators that share many properties with the su-
percyclic ones. For instance, all the powers of a supercyclic operator are again
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supercyclic, see [1], and the same proof works for weakly supercyclic operators.
Another instance of this fact is that the operator αI ⊕ T : C ⊕ B, where B is a
Banach space and α 6= 0, is supercyclic if and only if (1/α)T is hypercyclic, see
Theorem 5.1 of [11]. The proof of the latter result also works if the norm topology
is replaced by the weak one (the corresponding result has been stated in the final
remarks in [20] and observed in [27]). In any case, it can be said that this weak
supercyclicity is somewhat artificial, since it comes from the fact that (1/α)T is
weakly hypercyclic. Sometimes proving a given property for weakly supercyclic
operators is much more involved than for supercyclic ones.

In this work we provide some methods to prove that a given operator is not
weakly supercyclic. Mainly, this is achieved with a geometric argument in which
we select weakly open sets which absorb the scalar multiples. The method ap-
plies to several kind of operators like the classical Volterra operator, composition
operators or bilateral weighted shifts. Of course, one cannot expect that if an op-
erator is not supercyclic, then it is not weakly supercyclic either. For instance, Ba-
yart and Matheron [2] show that even certain unitary operators on Hilbert spaces
are weakly supercyclic. Since such operators cannot be supercyclic, this provides
natural examples of weakly supercyclic, non-supercyclic operators. Weak super-
cyclicity can also be considered for real Banach spaces and the methods we use
here can also be applied.

Section 2 is devoted to the classical Volterra operator. We will prove that
the Volterra operator is not weakly supercyclic. This is in contrast with two facts.
The first one is that, the derivative operator, the unbounded left inverse of the
Volterra operator is hypercyclic, ([10], Theorem 2.1). It is known that an invertible
bounded operator is supercyclic (or hypercyclic) if and only if its inverse is, see
[13] (the corresponding result for weakly supercyclic operators is not known and
probably false). The second one, which will be proved in the next section, is that
the Volterra operator can be extended in a natural way to certain Hilbert spaces
in which it is hypercyclic.

In Section 3, we deal with composition operators. One of the difficulties
to prove that the Volterra operator is not supercyclic is that the spectrum of the
Volterra operator is just one point set. We show that linear fractional composi-
tion operators, that have much bigger spectrum, are much easier to handle in
connection with the weak supercyclicity.

In Section 4 we study the orbits of nuclear, self-adjoint and positive opera-
tors. It will be proved that such operators cannot compress the space too much in
all directions and there is certain control on the orbits. This will be achieved by
introducing a suitable Gaussian measure. The results of this section are the key
to apply the basic method to other operators.

In Section 5, we deal with bounded linear operators acting on Banach spaces
in a complete general situation. In an extensive work in preparation, Bermudo
and the authors [3] have used the latter result to show that ϕ(V), where ϕ is
holomorphic at 0 and V is the Volterra operator, is not weakly supercyclic.
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In Section 6, we include an application to bilateral weighted shifts. In par-
ticular, it is proved that a weighted bilateral shift acting on `p(Z), with 1 6 p < 2,
is weakly supercyclic if and only if it is supercyclic.

In 1982, Deddens (unpublished) proved that if T is a bounded linear op-
erator on a Hilbert space, whose matrix with respect to some orthonormal basis
consists of real entries, then T ⊕ T? is not cyclic. In Section 7, we will provide
a very short proof of the latter result for bounded linear operators T defined on
any Banach space. In particular, we use the result to prove that V ⊕ λV, where
V is the Volterra operator, is cyclic if and only if λ belongs to C \ [0, ∞). Thus
the direct sum of the Volterra operator with itself is not cyclic. The same is true
for any operator quasisimilar to its dual (Banach space adjoint) operator. Thus
there exist cyclic operators, whose adjoints have empty point spectrum, such that
the direct sum with itself is not cyclic. This proves that there are cyclic operators
whose point spectrum is the empty set which do not satisfy the Cyclicity Crite-
rion introduced in [12].

2. THE VOLTERRA OPERATOR IS NOT WEAKLY SUPERCYCLIC

The aim of this section is to get a better understanding of the cyclic prop-
erties of the Volterra operator. Recall that for 1 6 p 6 ∞, we may consider the
complex Banach space Lp[0, 1]. The Volterra operator is defined as

(V f )(x) =

x∫
0

f (t) dt, f ∈ Lp[0, 1].

It is well known and easy to show that V acts boundedly on Lp[0, 1], 1 6 p 6 ∞.
In addition, V acting on Lp[0, 1], 1 6 p < ∞, is cyclic with cyclic vector the
constant function 1, that is, the linear span of the orbit {Vn1 : n = 0, 1, 2, . . .}
is dense in Lp[0, 1]. Indeed, V is unicellular, see [28] and [18]. In a recent work,
[10], Gallardo and the first named author, solving a question posed by Salas [26],
have shown that V is not supercyclic on any of the Lp[0, 1] spaces, 1 6 p < ∞.
We remark here that there is another published article that claims to prove the
same result, but there is a gap in the proof. By Ansari’s result mentioned in the
introduction, one idea to prove that a given operator is not weakly supercyclic is
to check that there is some power which is not cyclic. This does not apply to the
Volterra operator, since, by the Müntz-Szasz Theorem [25], all positive powers Vn

are also cyclic with cyclic vector the constant function 1.
To prove that V is not weakly supercyclic, we begin with a lemma that pro-

vides lower estimates on the orbits under V of certain functions.
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LEMMA 2.1. Suppose that f is a continuous function on [0, 1] non-vanishing at
1/2. Then there is a positive constant c, depending only on f , such that

‖Vn f ‖2 >
c

4nn!
.

Proof. For each non-negative integer n consider fn(x) = xn(1 − x)n. The
n-th derivative pn = f (n)

n is the Legendre polynomial of degree n, see [23], p. 162.

An easy computation yields
1∫

0
fn(s) ds = (n!)2/(2n + 1)!. As in [10], it follows

that hn = ((2n + 1)!/(n!)2) fn, where n = 0, 1, 2, . . . is a positive summability ker-
nel at 1/2, see [15], pp. 9–10. Thus, for any g in L1[0, 1] continuous at 1/2 we have
〈g, hn〉 → g(1/2) as n → ∞.

Since V?n pn = (−1)n fn and ‖pn‖2 = n!/
√

2n + 1, we have

‖Vn f ‖2 >
|〈Vn f , pn〉|
‖pn‖2

=
|〈 f , V?n pn〉|

‖pn‖2
=
|〈 f , fn〉|
‖pn‖2

=
n!
√

2n + 1
(2n + 1)!

|〈 f , hn〉|.

Thus using Stirling’s formula one easily sees that

‖Vn f ‖2 >

√
π

2
1

4nn!
| f (1/2)|(1 + o(1)) as n → ∞.

Since f (1/2) 6= 0, there is a constant c > 0 satisfying the requirement of the
lemma. The result is proved.

To prove our next lemma we need the following one that can be found in
[8], see also Lemma 6.5, where the result is strengthened.

LEMMA 2.2. Let {xn} be a sequence in a Banach space B such that there exists
a constant c > 2 with ‖xn‖ > cn for each non-negative integer n. Then there exists a
bounded functional g in B? such that |〈g, xn〉| > 1 for each non-negative integer n.

LEMMA 2.3. Let f be a continuous function on [0, 1] non-vanishing at 1/2. Then
there are g and h in L2[0, 1], with h non-identically zero, such that, for each non-negative
integer n

|〈Vn f , g〉| > 1
12nn!

and(2.1)

|〈Vn f , h〉| 6 1
13nn!

.(2.2)

Proof. To find g, we set xn = 12nn!Vn f . By Lemma 2.1, there is a constant
c > 0 such that ‖Vn f ‖2 > c/4nn!, for n = 0, 1, . . . . Therefore, ‖xn‖ > c3n. By
Lemma 2.2, it follows that there is g in L2[0, 1] such that |〈xn, g〉| > 1 for each
non-negative integer n. Thus

|〈Vn f , g〉| > 1
12nn!

, for n = 0, 1, 2 . . . .
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To find h, we consider ha = aχ[0,13−1], where χ[0,13−1] denotes the character-
istic function of [0, 13−1] and a > 0. We have

〈Vn f , ha〉 = a

13−1∫
0

Vn f (x) dx =
a

(n− 1)!

13−1∫
0

x∫
0

f (t)(x − t)n−1 dt dx.

Let ‖ f ‖∞ denote the supremum norm of f . Then

|〈Vn f , ha〉|6
a‖ f ‖∞

(n− 1)!

13−1∫
0

x∫
0

(x − t)n−1 dt dx =
a‖ f ‖∞

n!

13−1∫
0

xn dx =
a‖ f ‖∞

13n(n + 1)!
.

Hence for h = ha with a small enough, we also find that (2.2) is true for each
non-negative integer. Of course, h 6= 0. The result is proved.

Now we can prove the main result in this section.

THEOREM 2.4. The Volterra operator is not weakly supercyclic on any of the
Lp[0, 1] spaces, 1 6 p < ∞.

Proof. Since the weak topology of L1[0, 1] is weaker than the weak topology
of Lp[0, 1], 1 6 p < ∞, and the latter spaces are weakly dense in L1[0, 1], it is
enough to prove the result for L1[0, 1]. Suppose that f in L1[0, 1] is weakly super-
cyclic for V acting on L1[0, 1]. Since V : L1[0, 1] → L2[0, 1] is weak-to-weak con-
tinuous, has dense range, and the image of a weakly dense set under an operator
with dense range is weakly dense, we find that {λVn f : λ ∈ C and n = 1, 2, . . .}
is weakly dense in L2[0, 1]. Thus, V f is weakly supercyclic for V acting on L2[0, 1].
We conclude that it is enough to show that V is not weakly supercyclic on L2[0, 1].

Proceeding by contradiction, suppose that the operator V, acting on L2[0, 1],
is weakly supercyclic. Then the set S of weakly supercyclic vectors for V is
weakly dense in L2[0, 1] and its image under V is contained in S . Let C0[0, 1]
denote the Banach space of continuous functions that vanish at 0 endowed with
the supremum norm. Since V : L2[0, 1] → C0[0, 1] is norm-to-norm continuous
and with dense range, it is also weak-to-weak continuous, and has weakly dense
range, see [7], pp. 11–12.

Therefore, the image of S under V is weakly dense in C0[0, 1]. Since the
set of functions of C0[0, 1] that vanish at 1/2 is weakly nowhere dense in C0[0, 1],
there is a weakly supercyclic function f in C0[0, 1] such that f (1/2) 6= 0. Let g
and h be the functions furnished by Lemma 2.3. In particular, since h is different
from zero, the functions g and h are linearly independent. Thus the following is
a non-empty, weakly-open set:

U = {G : |〈G, h〉| > |〈G, g〉|}.

Finally, set F = λVn f , where λ is in C and n is any non-negative integer.
From Lemma 2.3, it follows |〈F, h〉| 6 |〈F, g〉| and, therefore, F is not in U. In
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other words, {λVn f : λ ∈ C and n = 0, 1, . . .} does not meet U, a contradiction
with the weak supercyclicity of f . The proof is complete.

Apart of Lemma 2.3, one of the points in the proof above is to consider a
weakly open set in which the scalar multiples are absorbed.

REMARK 2.5. Similarly, assume that the Volterra operator acts boundedly
on a Banach space which is densely contained in L1[0, 1]. If the natural embed-
ding from B into L1[0, 1] is continuous, then V is not weakly supercyclic on B.

Next we show that the Volterra operator can be extended to a hypercyclic
operator. By natural extension of an operator defined on a Banach space B, we mean
that the operator can be boundedly defined on a bigger space, where B is dense
and in such a way that the restriction of the extension to B coincides with the
original operator. For 1 6 p < ∞ and q the conjugate exponent, the dual pairing
we use in the remainder of this section is

〈 f , g〉 =

1∫
0

f (x)g(x) dx, where f ∈ Lp[0, 1] and g ∈ Lq[0, 1].

Observe that there is no complex conjugation above.
A word about notation, when we mean Banach space adjoint, we write T∗

instead of T?.

PROPOSITION 2.6. The Volterra operator extends, in a natural way, to a Hilbert
space where it is hypercyclic.

Proof. For each a > 0, consider the Hilbert space Ha consisting of entire
functions

g(z) =
∞

∑
n=0

an

ann!
(z− 1)n for which ‖g‖2

Ha
=

∞

∑
n=0

|an|2

is finite. Clearly,Ha is densely contained in Lp[0, 1], 1 6 p < ∞. For each bounded
linear functional f̃ in H?

a , the dual space of Ha, let 〈 f̃ , g〉 denote f̃ acting on g in
Ha. Observe that we do not perform the usual identification of H?

a with Ha. Since
each f in L1[0, 1] defines on Ha a unique bounded linear functional

〈 f , g〉 =

1∫
0

f (x)g(x) dx, for each g ∈ Ha,

we may identify f with an element f̃ in H?
a . In particular, 〈 f̃ , g〉 = 〈 f , g〉 for each

g in Ha. In this way, Ha ⊂ L1[0, 1] ⊂ H?
a .

Let V∗ denote the dual of the Volterra operator V acting from L∞[0, 1] into
itself with respect to the above dual pairing. One can easily verify that V∗ acts

according to (V∗ f )(x) =
1∫

x
f (t) dt. Then, the image of Ha under V∗ is contained
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in Ha. Indeed, for a function g(z) =
∞
∑

n=0
an(z− 1)n/(ann!) ∈ Ha, we have

(V∗g)(z) =
∞

∑
n=0

an

ann!

1∫
z

(t− 1)n dt = −
∞

∑
n=1

aan−1

ann!
(z− 1)n ∈ Ha.

This allows us to extend the Volterra operator to H?
a . Indeed, for f̃ ∈ H?

a , we
define Ṽ f̃ to be the unique element in H?

a such that

〈Ṽ f̃ , g〉 = 〈 f̃ , V∗g〉, for each g ∈ Ha.

If f in L1[0, 1] is identified with f̃ in H?
a , then, for each g ∈ Ha, we have 〈Ṽ f̃ , g〉 =

〈 f̃ , V∗g〉 = 〈 f , V∗g〉 = 〈V f , g〉. Thus Ṽ coincides with V on L1[0, 1].
Now, for each non-negative integer n, let δ(n) denote the linear functional,

which is in H?
a , that to each f ∈ Ha assigns the value (−1)n f (n)(1). As usual,

the 0-th derivative of f is f itself. Easy considerations, involving the Riesz Rep-
resentation Theorem, show that {en = anδ(n)}n>0 is an orthonormal basis of the
Hilbert space H?

a . It is easy to see that Ṽδ(n) = −δ(n−1) for n > 1 and Ṽδ(0) = 0. It
follows that Ṽnen = −aen−1, that is, Ṽ acting on H?

a is a scalar multiple of the un-
weighted unilateral backward shift. Now, Rolewicz [24] proved that this operator
is hypercyclic as soon as a > 1. The proof is complete.

If a > 0, then Ṽ is supercyclic because λṼ is hypercyclic for |λ| > a−1.

REMARK 2.7. The idea of the proof of Proposition 2.6 has a nice application.
Let f be a cyclic vector for the Volterra operator. Then, since the topology of
L1[0, 1] is stronger than the one it inherits from H?

a and L1[0, 1] is dense in H?
a , we

find that f̃ is also cyclic for the backward shift. Although cyclic vectors for the
backward shift are characterized in terms of analytic pseudo-continuations, see
Chapter V in [5], the characterization is not very useful to determine whether a
given function is cyclic for the backward shift or not.

REMARK 2.8. If only supercyclicity is required, instead of the spaces of en-
tire functions in the proof of Proposition 2.6, one can consider spaces of ana-
lytic functions on the disk D(1, 1) of the complex plane centered at 1 and of
radius 1. For instance, for any real ν, one can consider the weighted Dirich-

let space Sν of functions
∞
∑

n=0
an(z − 1)n analytic on D(1, 1) for which the norm

‖ f ‖2
ν =

∞
∑

n=0
(n + 1)2ν|an|2 is finite. The Volterra operator can be extended to S?

ν in

a similar fashion. The extended V’s become weighted backward unilateral shifts,
which are always supercyclic, see [14]. Indeed, they satisfy the Supercyclicity
Criterion, see [20]. It is easily seen that if ν > 1/4, then S?

ν contains L1[0, 1].
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3. LINEAR FRACTIONAL COMPOSITION OPERATORS

One of the problems in order to prove Theorem 2.4 is the fact that the
Volterra operator has the smallest possible spectrum. When the operator has
bigger spectrum it is much easier to prove that a given operator is not weakly
supercyclic. To exemplify this, we will check that linear fractional composition
operators, which are not supercyclic, are not weakly supercyclic either. Our set-
ting will be the weighted Dirichlet spaces Sν, as defined in the Remark 2.7, with
the disk centered at 1 and of radius 1 replaced by the unit disk D of the complex
plane.

For special choices of the parameter ν the space Sν turns out to be the Hardy
space, the Bergman space or the Dirichlet space, see [6]. Let ϕ be a linear frac-
tional map that takes D into itself. Then Cϕ, defined by Cϕ f = f ◦ ϕ with f ∈ Sν,
is a bounded linear operator on Sν. A complete description of the cyclicity, su-
percyclicity and hypercyclicity properties of Cϕ is given in [9]. The proof of the
next proposition shows four different ways to prove that a given operator is not
weakly supercyclic.

PROPOSITION 3.1. If a linear fractional composition operator is not supercyclic
on Sν, then it is not weakly supercyclic either.

Proof. Since non-cyclic operators are not weakly supercyclic, an analysis of
Table I in [9] shows that we need only consider four cases:

(i) The map ϕ is an elliptic automorphism conjugate to a rotation by an irra-
tional multiple of π.

(ii) The map ϕ has an interior and an exterior fixed point.
(iii) The map ϕ is a hyperbolic non-automorphism.
(iv) The map ϕ is a parabolic non-automorphism.

In Case (i), Cϕ cannot be weakly supercyclic because its adjoint has many
eigenvalues and, as for supercyclic operators, the adjoint of a weakly supercyclic
operator has at most one eigenvalue.

In Case (ii), ϕ has a fixed point p in D. Let ϕ0 denote the identity map and
ϕn = ϕ ◦ ϕn−1. Let f be in Sν. Then (Cn

ϕ f )(p) = ( f ◦ ϕn)(p) = f (p). If f (p) = 0,
then f cannot be weakly supercyclic because the set of functions that vanish at p
is weakly nowhere dense. If f (p) 6= 0, we may suppose that f (p) = 1. In this case,
see [9], p. 15, f ◦ ϕn → 1 in the norm of Sν as n → ∞. Then, taking the functions
g = 1 and h = 1/2 + z, we have that |〈Cn

ϕ f , g〉| > 4/5 and |〈Cn
ϕ f , h〉| 6 3/4 for

large enough n. A similar argument to the one of the proof of Theorem 2.4 shows
that f is not weakly supercyclic for Cϕ.

In Case (iii), Cϕ is hypercyclic for ν < 1/2 and supercyclic for ν = 1/2, see
Table I in [9]. Therefore, we need only to consider the case in which ν > 1/2.
In [9] it is proved that this operator is not supercyclic using a result of Herrero
that if for an operator T there is r > 0 such that each component of the spectrum
of T does not meet the circle of radius r, then T is not supercyclic. The same
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argument shows that Cϕ is not weakly supercyclic, since Herrero’s theorem holds
true for supercyclicity replaced by weak supercyclicity, see Lemma 4.3 in [2] or
Theorem 4.2 in [22].

In Case (iv), it follows from Chapter V in [9] that if Cϕ is weakly supercyclic
on Sν, then there is an operator Ĉϕ defined on Ŝ1

ν ⊕ Ŝ2
ν which is weakly super-

cyclic and such that Ŝi
ν, 1 = 1, 2, are reducing subspaces for Ĉϕ. In addition, the

decomposition can be done in such a way that, for some λ > 0, the spectrum
of λĈ1

ϕ is contained in C \ D and the spectrum of λĈ2
ϕ is contained in D. Then,

the same arguments of the proof of Lemma 4.3 in [2] show that Ĉϕ is not weakly
supercyclic. The proof is complete.

REMARK 3.2. As for the Volterra operator, in the four cases in the proof of
Proposition 3.1 any positive power of Cϕ is again cyclic.

REMARK 3.3. We remark here that Lemma 4.3 in [2] or Theorem 4.2 in [22]
has a further consequence. T. Miller and V. Miller [19] proved that if T is super-
cyclic and decomposable, then the spectrum of T must be contained in a circle. It
follows from Lemma 4.3 in [2] that the result is also true for weakly supercyclic
operators.

4. ORBITS OF NUCLEAR SELF-ADJOINT, POSITIVE OPERATORS AND GAUSSIAN MEASURES

To prove non-weakly supercyclicity of more general operators we need to
analyze the orbits of nuclear, self-adjoint, positive operators. In this section, K
stands for the field of real numbers R or the field of complex numbers C. Recall
that an operator A acting on a Hilbert space H is positive if 〈Ax, x〉 > 0 for every
x ∈ H. An operator A is said to be nuclear if there are sequences {xn} and {zn}
in H such that

∞

∑
n=0

‖xn‖‖zn‖ < ∞ and Ax =
∞

∑
n=0

〈x, xn〉zn, for each x ∈ H.

The next theorem is the key for most of what follows.

THEOREM 4.1. Let A be a nuclear, self-adjoint, positive, bounded linear operator
on a separable infinite-dimensional Hilbert space H over the field K. Let {yn}n>0 be in
H satisfying 〈Ayn, yn〉 = 1 for each n > 0 and let {αn}n>0 be a sequence of positive

numbers such that
∞
∑

n=0
αdk

n < ∞ for some positive integer k, where d = 1 if K = R or

d = 2 if K = C. Then there exist g1, . . . , gk ∈ H such that

(4.1) max
16j6k

|〈gj, yn〉| > αn, for each n > 0.
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The idea of the proof of Theorem 4.1 is to introduce an appropriate measure
on Hk. Then one shows that the set of g’s in Hk, satisfying the statement of The-
orem 4.1 has positive measure. In order to do this, we need the sigma-additivity
criterion for Gaussian cylindrical measures.

4.1. BASIC FACTS FROM THE THEORY OF CYLINDRICAL MEASURES. In order to
make this work more self-contained, we collect a few basic facts on cylindrical
measures needed to prove Theorem 4.1. The contents of this subsection can be
found in [16], for instance.

Let H be a separable infinite-dimensional Hilbert space over the field K. Let
F denote the set of linearly independent finite subsets Y = {y1, . . . , yn} of H. Let
B denote any Borel subset of Kn and BY denote the family of sets of the form

{x ∈ H such that (〈x, y1〉, . . . , 〈x, yn〉) ∈ B}.

Obviously, BY is a sub-sigma-algebra of the Borel sigma-algebra B(H). A cylin-
dric set is any element of

R(H) =
⋃

Y∈F
BY.

Although R(H) is not a sigma-algebra, it is an algebra of subsets of H.
A cylindrical measure on H is a finite finitely-additive, non-negative mea-

sure µ on the algebraR(H) such that for each Y in F , the restriction µ|BY is sigma-
additive. In what follows, we shall always assume that µ(H) = 1. The Fourier
transform of µ is the function µ̂ : H → C defined by

µ̂(y) =
∫
H

e−i<〈x,y〉 dµ(x).

Indeed, the integral above is a standard one with respect to a sigma-additive
measure, since the function x → e−i<〈x,y〉 is bounded and B{y}-measurable and
the restriction µ|B{y} is sigma-additive.

One of the many equivalent definitions of Gaussian cylindrical measure is
a cylindrical measure whose Fourier transform is of the form

µ̂(x) = e−(1/2)〈Ax,x〉+i<〈u,x〉,

where A is a self-adjoint, positive, bounded linear operator and u belongs to H.
Note also that any function as in the above display is the Fourier transform of
some cylindrical measure, that is, there is a one-to-one correspondence between
the set of Gaussian cylindrical measures and the set of pairs (A, u). The operator
A is called the covariance operator of µ.

We need the following theorem of Prohorov, see [16], p. 29.

THEOREM GM. A Gaussian cylindrical measure is sigma-additive if and only if
its covariance operator is nuclear.
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4.2. PROOF OF THEOREM 4.1. Without loss of generality, we may assume that the
operator A is one-to-one. Indeed, for any self-adjoint positive nuclear operator
A on H there is a self-adjoint positive one-to-one, nuclear operator Ã such that
Ã− A is positive and we can replace A by Ã.

Consider the space Hk =
k⊕

j=1
H endowed with the inner product

〈x, y〉Hk =
k

∑
j=1
〈xj, yj〉H

and the projections Pj : Hk → H defined by Pjx = xj. Let T : Hk → Hk be the
operator defined by

Tx = (Ax1, . . . , Axk) =
k

∑
j=1

P?
j APjx.

Clearly, T : Hk → Hk is a self-adjoint positive nuclear operator. Let also yn,j =
P?

j yn ∈ Hk. One can easily verify, where δj,l is the Kronecker delta, that

(4.2) 〈Tyn,j, yn,l〉 = δj,l , for 1 6 j, l 6 k and n = 0, 1, . . . .

Consider the Gaussian cylindrical measure µ on Hk, whose Fourier trans-
form is

(4.3) µ̂(x) = e−(1/2)〈Tx,x〉.

Upon applying Theorem GM, it follows that µ is sigma-additive and, therefore, it
admits a unique sigma-additive extension to the Borel sigma-algebra. In particu-
lar, µ is a usual Borel probability measure.

We take c > 0 and consider

Bn,c =
{

x ∈ Hk such that
k

∑
j=1

|〈xj, yn〉|2 6 c2α2
n

}
.

We need to estimate the value of µ(Bn,c). Consider the Borel measure ν defined
on each Borel set B of Kk by

ν(B) = µ{x ∈ Hk such that (〈x1, yn〉, . . . , 〈xk, yn〉) ∈ B}.

From (4.2), (4.3) and the definition of ν, it follows that the Fourier transform of
ν is ν̂(t) = e−|t|

2/2. Hence, ν has the density ρν(s) = (2π)−dk/2e−|s|
2/2. Denote

Dk
a = {x ∈ Kk : |x| 6 a}. Then

µ(Bn,c) = ν(Dk
cαn ) = (2π)−dk/2

∫
Dk

cαn

e−|s|
2/2 ds < (2π)−dk/2λ(Dk

cαn ) = vkcdkαdk
n ,
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where λ is the Lebesgue measure on Kk and vk = (2π)−dk/2λ(Dk
1). Hence,

µ
( ∞⋃

n=0
Bn,c

)
6

∞
∑

n=0
µ(Bn,c) < vkcdk

∞
∑

n=0
αdk

n . Thus, by taking c small enough we

can ensure that µ(Λc) < 1 = µ(H), where Λc =
∞⋃

n=0
Bn,c. Therefore, there must

be f = ( f1, . . . , fk) in Hk \Λc. Clearly,

k

∑
j=1

|〈 f j, yn〉|2 > c2 α2
n, for n = 0, 1, 2, . . . .

Hence max
16j6k

|〈gj, yn〉| > αn, where g = (
√

k/c) f . Thus g = (g1, . . . , gk) satisfies

the statement of the theorem. The proof is complete.

REMARK 4.2. Theorem 4.1 is sharp in the sense that if A is a compact posi-
tive self-adjoint operator on a real Hilbert space H with dimH > 2, then there is
a sequence {yn} in H with 〈Ayn, yn〉 = 1 for all n and a sequence {αn} of positive

numbers such that
∞
∑

n=0
α

ρ
n is finite for each ρ > 1 in such a way that for each g ∈ H,

there is n such that |〈g, yn〉| < αn.

5. IN THE GENERAL SITUATION

In this section, it will be shown how the ideas to prove that the Volterra
operator is not weakly supercyclic along with Theorem 4.1 can be used in the
complete general situation of a bounded linear operator T acting on a Banach
space B. The dual space of B will be denoted by B? and the Banach space adjoint
of T, called also the dual of T, that acts on B? will be denoted by T∗. As usual,
〈x, y〉 will denote both the linear functional y in B? acting on x in B and, when
x and y are vectors in a Hilbert space, their Hilbert inner product. It worths
mentioning that although we run all the proofs for complex spaces, the same
arguments works as well for the real case. We begin with

LEMMA 5.1. Let T be a bounded linear operator on a Banach space B. Let f be in
B such that zero does not belong to the orbit {Tn f }n>0. Assume also that there exist a
bounded operator R from B into a separable Hilbert space H, a Hilbert-Schmidt operator
S acting onH and non-zero x1, . . . , xm in B? such that SRTn f 6= 0 for each non-negative
integer and for some ρ > 0 the following holds

(5.1)
∞

∑
n=0

( min
16l6m

‖T∗nxl‖B?

‖SRTn f ‖H

)ρ
< ∞.

Then f is not weakly supercyclic for T.
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Proof. We may assume that T∗ is one-to-one, otherwise T can not be weakly
supercyclic. Let k be a positive integer such that k > ρ. The proof will be accom-
plished by applying Theorem 4.1. We set

βn =
min

16l6m
‖T∗nxl‖B?

‖SRTn f ‖H
and αn = β

ρ/k
n for n = 1, 2 . . . .

Since T∗ is one-to-one and xl 6= 0 for 1 6 l 6 m, we see that the numbers αn

and βn are positive. From (5.1), it follows that
∞
∑

n=0
αk

n < ∞. In particular, αn → 0

as n → ∞. Consider the operator A = S?S and, for each non-negative n, set
yn = RTn f /‖SRTn f ‖H. Then A is a self-adjoint positive operator on H and

〈Ayn, yn〉 =
〈S?SRTn f , RTn f 〉

‖SRTn f ‖2
H

=
〈SRTn f , SRTn f 〉
‖SRTn f ‖2

H
= 1.

Since S is a Hilbert-Schmidt operator, it also follows that A is nuclear. Thus we
can apply Theorem 4.1 to see that there are g1, . . . , gk in H with max

16j6k
|〈gj, yn〉| >

αn for each non-negative integer n. Using the definitions of yn and αn in the
second and third equality below, we have

max
16j6k

|〈R∗gj, Tn f 〉| = max
16j6k

|〈gj, RTn f 〉|= max
16j6k

|〈gj, yn〉| ‖SRTn f ‖H>αn‖SRTn f ‖H

= α
(ρ−k)/ρ
n βn‖SRTn f ‖H = α

(ρ−k)/ρ
n min

16l6m
‖T∗nxl‖B?

>
α

(ρ−k)/ρ
n
‖ f ‖B

min
16l6m

|〈 f , T∗nxl〉| =
α

(ρ−k)/ρ
n
‖ f ‖B

min
16l6m

|〈xl , Tn f 〉|.

Since ρ < k and αn → 0 as n → ∞, we obtain

(5.2) min
16l6m

|〈xl , Tn f 〉| = o
(

max
16j6k

|〈R∗gj, Tn f 〉|
)

as n → ∞.

Since xl 6= 0 for 1 6 l 6 m, we can choose u in B such that 〈xl , u〉 6= 0 for 1 6 l 6
m. Taking c > 0 small enough, we ensure that min

16l6m
|〈xl , u〉| > c max

16j6k
|〈R∗gj, u〉|.

Hence u belongs to the weakly open set

U =
{

y ∈ B such that min
16l6m

|〈xl , y〉| > c max
16j6k

|〈R∗gj, y〉|
}

,

which means that U is non-empty. On the other hand, from (5.2) we see that
for each positive integer n large enough, λTn f does not meet U for any complex
number λ. Hence, f cannot be weakly supercyclic for T. The result is proved.

We will see that the next definition turns to be a natural one in connection
with weak supercyclicity.

DEFINITION 5.2. Let T be a bounded linear operator on a Banach space B
and for each non-negative integer n let Bn denote the Banach space Tn(B) en-
dowed with the norm ‖y‖Bn = ‖y‖B + inf{‖x‖B : x ∈ B, Tnx = y}. A set X



52 ALFONSO MONTES-RODRÍGUEZ AND STANISLAV A. SHKARIN

included in B is said T-big if there exists a non-negative integer n such that X
contains a non-empty, weakly-open subset of Bn.

Note that the topology of Bn is stronger than the one it inherits from B.

REMARK 5.3. It is clear that any weakly open set is T-big. Of course, the
converse is not true, as for the Volterra operator.

PROPOSITION 5.4. Let T be a bounded weakly supercyclic operator on a Banach
space B. Then each T-big subset of B contains a weakly supercyclic vector for T.

Proof. Let S denote the set of weakly supercyclic vectors for T. Since S
is weakly dense in B and the operator Tn : B → Bn is bounded and onto, we
find that Tn(S) is weakly dense in Bn. Since each non-empty open subset of
a topological space meets each weakly dense set, it follows that each T-big set
meets Tn(S) ⊂ S for some n. The result is proved.

THEOREM 5.5. Let T be a bounded linear operator on a Banach space B. Assume
that there exists a T-big set X included in B such that for each f in X either zero belongs
to the orbit {Tn f }n>0 or there exist a bounded operator R from B into a separable Hilbert
space H, a Hilbert-Schmidt operator S acting on H and non-zero x1, . . . , xm in B? such
that SRTn f 6= 0 for each non-negative integer n and for some ρ > 0 the following holds

∞

∑
n=0

( min
16l6m

‖T∗nxl‖B?

‖SRTn f ‖H

)ρ
< ∞.

Then T is not weakly supercyclic.

Proof. Suppose that T is weakly supercyclic. According to Proposition 5.4,
there is f in X weakly supercyclic for T. In particular, zero is not in the orbit
{Tn f }n>0. Hence, f must be under the hypotheses of Lemma 5.1 and, conse-
quently, cannot be weakly supercyclic for T, a contradiction. The proof is com-
plete.

The next corollary in the Hilbert space setting has a simpler appearance than
that of Theorem 5.5.

COROLLARY 5.6. Let T be a Hilbert-Schmidt operator on a separable Hilbert space
H. Assume that there exists a T-big set X included in H such that for each f in X either
zero belongs to the orbit {Tn f }n>0 or there exist ρ > 0 and non-zero y1, . . . , ym in H
such that

∞

∑
n=0

( min
16l6m

‖T?nyl‖

‖Tn f ‖

)ρ
< ∞.

Then T is not weakly supercyclic.

Proof. Without loss of generality, we may assume that T? is one-to-one, oth-
erwise T cannot be weakly supercyclic. Thus the functionals xl = 〈·, T?yl〉 are
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non-zero and it is enough to take R to be equal to the identity and S = T to be
under the hypotheses of Theorem 5.5.

Next theorem, in the Banach space setting, does not require that T is Hilbert-
Schmidt.

THEOREM 5.7. Let T be a bounded operator on a Banach space B. Assume that
there exists a T-big set X included in B such that for each f in X either zero belongs to the
orbit {Tn f }n>0 or there exist non-zero x1, . . . , xm ∈ B? such that for some 0 < r < 1
the following holds

(5.3)
∞

∑
n=0

( min
16l6m

‖T∗nxl‖B?

‖Tn f ‖B

)r
< ∞.

Then T is not weakly supercyclic.

Proof. Let f be in X such that zero does not belong to {Tn f }n>0. Thus we
may suppose that (5.3) holds. Let `2 be the Hilbert space of square summable
sequences of complex numbers and {en}n>0 its canonical basis. Upon applying
the Hahn-Banach Theorem for each non-negative integer n, there exists gn in B?

such that ‖gn‖B? = 1 and 〈Tn f , gn〉 = ‖Tn f ‖B . Let R : B → `2 and S : `2 → `2 be
defined by

Rg =
∞

∑
n=0

cn〈g, gn〉en and Sh =
∞

∑
n=0

cn〈h, en〉en,

where

(5.4) cn =
( min

16l6m
‖T∗nxl‖B?

‖Tn f ‖B

)r/2
.

From (5.3), it follows that R is bounded and S is a Hilbert-Schmidt operator.
Obviously, ‖SRTn f ‖`2 > |〈SRTn f , en〉| = |〈Tn f , gn〉| c2

n = ‖Tn f ‖Bc2
n. We take

ρ = r/(1− r) and using (5.3) and (5.4), we have

∞

∑
n=0

( min
16l6m

‖T∗nxl‖B?

‖SRTn f ‖B

)ρ
6

∞

∑
n=0

( min
16l6m

‖T∗nxl‖B?

‖Tn f ‖B
c2

n

)ρ
=

∞

∑
n=0

( min
16l6m

‖T∗nxl‖B?

‖Tn f ‖B

)ρ(1−r)
<∞.

Upon applying Theorem 5.5, it follows that T is not weakly supercyclic. The proof
is complete.

6. BILATERAL WEIGHTED SHIFTS

In this section, we illustrate how the general theorems in the previous sec-
tions can be applied to weighted bilateral shifts. Let {en}n∈Z be the canonical ba-
sis of the sequence space `p(Z), 1 6 p < ∞. Given a bounded sequence {wn}n∈Z
of non-zero complex numbers the bilateral weighted shift acting on `p(Z) is de-
fined by Wen = wnen−1 for each n ∈ Z. Clearly, W acts boundedly on `p(Z),
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1 6 p < ∞. Since weak supercyclicity is invariant under similarity, we may
suppose that the weights wn are positive. As usual we denote

β(k, n) =
n

∏
j=k

wj for k, n ∈ Z with k 6 n.

PROPOSITION 6.1. Let W be a bilateral weighted shift with the weight sequence
{wn}n∈Z acting on `p(Z), 1 6 p < ∞. Suppose also that there exist a positive integer
m and 0 < r < 1 such that

(6.1)
∞

∑
n=0

(
min

|j|,|l|6m

β(l, l + n)
β(j− n, j)

)r
< ∞.

Then W is not weakly supercyclic.

Proof. Consider X = { f ∈ `p(Z) : 〈 f , ej〉 6= 0 for |j| 6 m}, where 〈·, ·〉
denotes the usual dual pairing of `p(Z) and `q(Z) with 1/p + 1/q = 1. Clearly, X
is weakly open and, therefore, is W-big. We take f in X. As functionals, the el’s
are also bounded and non-zero. In addition, one can easily verify that

min
−m−16l6m−1

‖W∗n+1el‖ = min
|l|6m

β(l, l + n).

On the other hand, since f is in X, there is a constant c = c( f ) > 0 such that

‖Wn+1 f ‖ > c max
|j|6m

‖Wn+1ej‖ > c max
|j|6m

β(j− n, j).

From the last two displays we have

min
−m−16l6m−1

‖W∗n+1el‖

‖Wn+1 f ‖
6 c−1 min

|j|,|l|6m

β(l, l + n)
β(j− n, j)

.

For the case of a symmetric weight sequence, that is, wn = w−n for every n
in Z, the following simpler condition follows immediately.

COROLLARY 6.2. Let W be a weighted bilateral shift with symmetric sequence
{wn}n∈Z acting on `p(Z), with 1 6 p < ∞. Assume that there is a real number r and a
positive integer k such that

∞

∑
n=0

β(n, n + k)r < ∞.

Then W is not weakly supercyclic.

It should be noted that a bilateral weighted shift with a symmetric weight
sequence is never supercyclic. However, the summability condition in Corol-
lary 6.2 cannot be omitted.

In the case 1 6 p < 2, Theorem 4.1 allows us to obtain a much stronger
result than the one of Proposition 6.1.

THEOREM 6.3. A weighted bilateral shift acting on `p(Z), with 1 6 p < 2 is
weakly supercyclic if and only if it is supercyclic.
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We need two lemmas about weak closures of sequences. The first one is
fairly easy.

LEMMA 6.4. Let {xn}n>0 be a sequence in a Hilbert space H and consider Ω =
{λxn : λ ∈ C, n > 0}. If y in H with ‖y‖ = 1 belongs to the weak closure of Ω, then it
belongs to the weak closure of

Λ =
{ xn

〈xn, y〉
such that 〈xn, y〉 6= 0 and n > 0

}
.

Proof. Let H0 = {u ∈ H : 〈u, y〉 = 0} be the orthogonal complement of y
and considerM = H\H0, Ω0 = Ω∩H0 and Ω1 = Ω \H0. Clearly, Ω = Ω0 ∪Ω1
and y is not in the weak closure of Ω0, since Ω0 is contained in H0. Hence, y is in
the weak closure of Ω1.

Now consider N = {u ∈ H : 〈u, y〉 = 1}. Then the map

F : M→ N , F(u) =
u

〈u, y〉

is weak-to-weak continuous. Since y is in the weak closure of Ω1, we obtain that
F(y) = y is in the weak closure of F(Ω1) = Λ, as required.

Observe that in order to prove the next lemma we need the full strength of
Theorem 4.1. Indeed, if p approaches to 2, then the integer k in Theorem 4.1 tends
to ∞.

LEMMA 6.5. Let {xn}n>0 be a sequence in a Hilbert space H and let 0 < p < 2
be such that

(6.2)
∞

∑
n=0

‖xn‖−p < ∞.

Then zero does not belong to the weak closure of {xn : n > 0}.

Proof. Without loss of generality we may assume that H is infinite-dimensi-
onal and separable and that the sequence ‖xn‖ is monotonically non-decreasing.

Set sn = ‖xn‖−p/2 and αn = ‖xn‖p/2−1. Using the Gramm-Schmidt proce-
dure, we may choose an orthonormal basis {en}n>0 in H such that

(6.3) xn ∈ span{e0, . . . , en} for n = 0, 1, 2, . . . .

Consider the diagonal operator A : H → H defined by Aen = snen. Using (6.2),
one immediately checks that A2 is a positive self-adjoint nuclear operator. Now,
if we set yn = xn/‖Axn‖, then

〈A2yn, yn〉 = 〈Ayn, Ayn〉 = ‖Ayn‖2 =
‖Axn‖2

‖Axn‖2 = 1.

Choose a positive integer k > 2p/(2 − p). From (6.2), we find that
∞
∑

n=0
αk

n < ∞.

Thus applying Theorem 4.1, we can ensure that there are g1, . . . , gk ∈ H, for which
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max
16j6k

|〈yn, gj〉| > αn, for n = 0, 1, . . . . Upon substituting the values of yn and αn

into the last display, we obtain

max
16j6k

|〈xn, gj〉| > ‖Axn‖‖xn‖p/2−1 > sn‖xn‖‖xn‖p/2−1 = 1, for n = 0, 1, . . . ,

where in the last inequality we have used that {sn} is monotonically non-increa-
sing and (6.3). Therefore, none of the xn’s belongs to

{
u ∈ H : max

16j6k
|〈u, gj〉| < 1

}
,

which means that zero is not in the weak closure of {xn : n > 0}. The result is
proved.

COROLLARY 6.6. Let {xn} be a sequence in a Hilbert space H and let (6.2) be
satisfied for some 0 < p < 2. Then {xn : n > 0} is weakly closed.

Proof. If y in H is different from xn for every n, then {xn − y} satisfies (6.2)
as well. By Lemma 6.5 zero is not in the weak closure of {xn − y : n > 0}, or
equivalently, y is not in the weak closure of {xn : n > 0}, which proves the
result.

For sake of completeness we provide the following Banach space analog to
Corollary 6.6.

COROLLARY 6.7. Let {xn} be a sequence in a Banach space B and let (6.2) be
satisfied for some 0 < p < 1. Then {xn : n > 0} is weakly closed.

Proof. Applying the Hahn-Banach theorem, we see that there exist fn ∈ B?

such that ‖ fn‖ = 1 and 〈 fn, xn〉 = ‖xn‖ for each non-negative integer n. Since
{‖xn‖−p} is summable and ‖ fn‖ = 1, we find that

‖x‖0 =
( ∞

∑
n=0

‖xn‖−p|〈 fn, x〉|2
)1/2

defines a continuous seminorm on B. Moreover, taking quotient by the kernel of
this seminorm, if necessary, we obtain a pre-Hilbert space. Since 〈 fn, xn〉 = ‖xn‖,
we see ‖xn‖0 > ‖xn‖(2−p)/2. From (6.2) it follows that ∑ ‖xn‖

2p/(p−2)
0 < ∞. Since

2p/(2 − p) < 2, Corollary 6.6 implies that {xn : n > 0} is closed in the weak
topology of (B, ‖ · ‖0), which is weaker than the weak topology of B. Hence
{xn : n > 0} is weakly closed, which is the required result.

In addition to the previous lemmas, we need Salas’s Theorem, see [26],
that characterizes supercyclic weighted bilateral shifts in terms of the sequence
of weights.
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THEOREM S. Let W be a weighted bilateral shift with weight sequence {wn}
acting on `p(Z) with 1 6 p < ∞. Then W is supercyclic if and only if

lim
n→+∞

max
|j|6m

β(j− n, j)

min
|k|6m

β(k, k + n)
= 0, for each m = 0, 1, 2, . . . .

Proof of Theorem 6.3. Suppose that W is a bilateral weighted shift acting on
`p(Z), with 1 6 p < 2, which is weakly supercyclic and non-supercyclic. By
Theorem S there are c1 > 0, a positive integer m and two sequences {jn}n>0,
{kn}n>0 of integers such that |jn| < m, |kn| < m and β(jn − n, jn) > c1β(kn, kn +
n) for each non-negative integer n. Let M denote the supremum of the weight
sequence of W. Since

β(jn − n, m− n− 1)β(m− n, m) =β(jn − n, jn)β(jn + 1, m) and

β(kn, m− 1)β(m, m + n) =β(kn, kn + n)β(kn + n + 1, m + n),

we see that
β(m− n, m)
β(m, m + n)

=
β(jn − n, jn)
β(kn, kn + n)

β(jn + 1, m)β(kn, m− 1)
β(jn − n, m− n− 1)β(kn + n + 1, m + n)

.

Therefore,

(6.4) β(m− n, m) > c β(−m, n−m), for n = 0, 1, 2 . . . ,

where c = c1

(
min

−m6j6k6m
β(j, k)

)2
(max{1, M4m})−1. Since the set of x’s in `p(Z)

such that 〈x, em〉 6= 0 is non-empty and weakly open, it is W-big and, therefore,
there is a weakly supercyclic vector x in `p(Z) for W with 〈x, em〉 6= 0. The
comparison principle implies that x is also weakly supercyclic for W acting on
`2(Z). In particular, em−1 is in the weak closure of {λWnx : λ ∈ C and n > 0}
in `2(Z). Consider Λ = {n : 〈Wn+1x, em−1〉 6= 0 and n > 0} and for n ∈ Λ set
un = Wn+1x/〈Wn+1x, em−1〉. According to Lemma 6.4, em−1 is in the weak closure
in `2(Z) of {un : n ∈ Λ}. Clearly,

‖un‖2 =
‖Wn+1x‖2

|〈Wn+1x, em−1〉|
=

‖Wn+1x‖2

|〈x, W∗n+1em−1〉|
=

‖Wn+1x‖2

β(m, m + n)|〈x, em+n〉|
.

Since ‖Wn+1x‖2 > |〈x, em〉|‖Wn+1em‖ = |〈x, em〉|β(m− n, m), we obtain

‖un‖2 >
|〈x, em〉|β(m− n, m)
|〈x, em+n〉|β(m, m + n)

.

Using (6.4), we have

‖un‖2 >
c |〈x, em〉|
|〈x, em+n〉|

.

Since x is in `p(Z), we see that ∑ ‖un‖
−p
2 < ∞. Thus by Corollary 6.6, we find that

{un : n ∈ Λ} is weakly closed in `2(Z). Therefore, the only way for em−1 to be in
the weak closure of {un : n > 0 and 〈Wn+1x, em−1〉 6= 0} is to be one of the un’s.
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But this implies that x is a scalar multiple of some ej, which is a contradiction,
since such a vector cannot be even cyclic for a bilateral weighted shift. The proof
is complete.

REMARK 6.8. In connection with Lemma 6.5, we remark that from the fa-
mous theorem of Dvoretzky about almost spherical sections one can derive that
for any infinite dimensional Banach space B and any sequence {αn} of positive
numbers with ∑ α2

n = ∞ there is a sequence {xn} in B such that ‖xn‖ = α−1
n and

zero is in the weak closure of {xn}. This shows that one cannot expect anything
better than ∑ ‖xn‖−2 < ∞ to ensure that zero is not in the weak closure of {xn}.

REMARK 6.9. Considering sequences with disjoint support in the sequence
space c0, one can see that (6.2) with p > 1 in Corollary 6.7 is not enough to ensure
that zero is not in the weak closure of {xn : n > 0}.

7. OPERATORS SIMILAR TO THEIR ADJOINTS

In this final section, it is shown that an operator similar to its adjoint cannot
be cyclic. As a consequence, it follows that V⊕V is not cyclic on Lp[0, 1]⊕ Lp[0, 1].
We will also determine for which complex numbers λ the operator V ⊕ λV is
cyclic.

PROPOSITION 7.1. Let T be a bounded linear operator on a Banach space B. Then
T⊕ T∗ acting on B ⊕B? is not cyclic. Moreover, if there exists a bounded linear operator
S : B → B? with dense range such that ST = T∗S, then T ⊕ T acting on B ⊕ B is not
cyclic.

Proof. Let f ⊕ g? ∈ B ⊕ B? be different from zero. Then the continuous
linear functional F on B ⊕ B? defined by

〈x ⊕ y?, F〉 = 〈x, g?〉 − 〈 f , y?〉

is different from zero. We have, 〈Tn f ⊕ T∗ng?, F〉 = 〈Tn f , g?〉 − 〈 f , T∗ng?〉 =
0 for n = 0, 1, 2, . . . . Thus, the orbit of any non-zero vector under T ⊕ T∗ is con-
tained in the kernel of a non-zero continuous linear functional. Therefore, T ⊕ T∗

is not cyclic.
Suppose now that S : B → B? is a bounded linear operator with dense

range such that ST = T∗S and x ⊕ y is a cyclic vector for T ⊕ T. Then

(T ⊕ T∗)n(x ⊕ Sy) = Tnx ⊕ T∗nSy = Tnx ⊕ STny = (I ⊕ S)(T ⊕ T)n(x ⊕ y).

Since x⊕ y is cyclic for T⊕ T and I ⊕ S : B ⊕B → B⊕B? has dense range, x⊕ Sy
is cyclic for T ⊕ T∗ and, therefore, T ⊕ T∗ is cyclic, which is a contradiction.

The first part of the proposition above was also proved by Deddens, with
a different proof, for operators defined on Hilbert space with a matrix with real
entries with respect to some orthonormal basis.
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Observe that V acting on L1[0, 1] cannot be quasisimilar to its Banach space
adjoint. However, we have,

COROLLARY 7.2. The direct sum of the Volterra operator with itself is not cyclic
on any of the spaces Lp[0, 1]⊕ Lq[0, 1], 1 6 p, q < ∞.

Proof. Since V acting on L2[0, 1] is unitarily similar to its Banach space ad-
joint V∗, it follows that V ⊕ V acting on L2[0, 1] ⊕ L2[0, 1] is similar to V ⊕ V∗.
Thus, by Proposition 7.1, the operator V ⊕ V is not cyclic on L2[0, 1] ⊕ L2[0, 1].
Now, if f ⊕ g is a cyclic vector for V ⊕V acting on L1[0, 1]⊕ L1[0, 1], then V f ⊕Vg
is a cyclic vector for V ⊕V acting on L2[0, 1]⊕ L2[0, 1], a contradiction. Finally, for
1 6 p, q < ∞, the result follows by the Comparison Principle, see [26]. The proof
is complete.

REMARK 7.3. Note that p(V) is cyclic for any polynomial p different from
constant and again p(V)⊕ p(V) is not cyclic.

REMARK 7.4. Let σp(T) denote the point spectrum of T, that is, the set of
eigenvalues of T. The following question was posed in [20]: does every super-
cyclic operator with σp(T∗) = ∅ satisfy the Supercyclicity Criterion? There is also
a corresponding Cyclicity Criterion, see [11]. In particular, one may ask whether
every cyclic operator T, with σp(T∗) = ∅, satisfies the Cyclicity Criterion. This
latter question has a negative answer. Indeed, if T satisfies the Cyclicity Crite-
rion, so does T ⊕ T and, therefore, T ⊕ T is cyclic. We can conclude that V does
not satisfy the Cyclicity Criterion.

Question 1. Is there any supercyclic operator similar to its Banach space (or
Hilbert space) adjoint?

Using the Volterra operator, it is possible to produce more examples to
which Proposition 7.1 and the remarks above apply. A direct application of the
Müntz-Szasz Theorem shows that V ⊕ λV is always cyclic whenever λ 6= 1 is of
modulus 1 and rational in π. This is also true for λ irrational in π, but the proof
requires a little more work. We have

PROPOSITION 7.5. Let V denote the Volterra operator. Then V ⊕ λV acting on
Lp[0, 1]⊕ Lq[0, 1], 1 6 p, q < ∞, is cyclic if and only if λ belongs to C \ [0, +∞).

Proof. We only prove the result for L2[0, 1] ⊕ L2[0, 1], if p or q is different
from 2, the result follows in a similar way or from the latter.

For λ = 0 the result is trivial. For λ > 0 we find that λV acting on L2[0, 1]
is similar to V acting on L2[0, λ]. Thus V ⊕ λV is similar to V ⊕ V acting on
L2[0, 1] ⊕ L2[0, λ]. If λ > 1, the latter is not cyclic, since it is not on L2[0, 1] ⊕
L2[0, 1]. If 0 < λ < 1, then V ⊕V is not cyclic on L2[0, λ]⊕ L2[0, λ], therefore, nor
is V ⊕V on L2[0, 1]⊕ L2[0, λ].

Now, assume that λ = eu with u = a + bi, where a and b are real with
0 < |b| 6 π. We claim that 1⊕ 1 is a cyclic vector for V ⊕ λV acting on L2[0, 1]⊕



60 ALFONSO MONTES-RODRÍGUEZ AND STANISLAV A. SHKARIN

L2[0, 1]. In fact, suppose that f ⊕ −g, where f and g are non-null functions in
L2[0, 1], is orthogonal to the orbit of 1⊕ 1 under V ⊕ euV. One easily checks that
this is equivalent to the fact that

Φ(z) =

1∫
0

f (t)tzdt− euz
1∫

0

g(t)tzdt

vanishes at each non-negative integer n. On the other hand, Φ is a holomorphic
function on the right half plane of finite exponential type and extends contin-
uously to the imaginary axis. In addition, since the indicator function hΦ(θ) =
lim sup

r→+∞
(1/r) log |Φ(reiθ)| for −π/2 6 θ 6 π/2 satisfies hΦ(−π/2) + hΦ(π/2) 6

|b| 6 π < 2π, Carlson’s Theorem, see in [17] (Theorem 2.9.1, p. 116), implies that
Φ is identically zero. This means that F(z) = euzG(z), where

F(z) =

1∫
0

f (t)tzdt and G(z) =

1∫
0

g(t)tzdt.

Since F and G are bounded, we may apply Cartwright’s Theorem, see [17] (The-
orem 7, p. 243), to find that there are real numbers α = α( f ) and β = β(g) such
that lim sup

r→+∞
(1/r) ln |F(reiθ)| = α cos θ and lim sup

r→+∞
(1/r) ln |G(reiθ)| = β cos θ, for

all θ on (−π/2, π/2). Since F(z) = euzG(z), it also follows that

α cos θ = (a + β) cos θ − b sin θ for − π

2
< θ <

π

2
.

Since the equality above is only possible for b = 0, the result follows. The proof
is complete.

REMARK 7.6. Of course, there are other examples of cyclic operators, with
σp(T∗) = ∅, for which the direct sum with itself is not cyclic. For instance, the
unweighted bilateral shift B defined on `2(Z) is similar to B∗ and, therefore, by
Proposition 7.1 B⊕ B is not cyclic on `2(Z)⊕ `2(Z). From Ansari’s result [1] that if
T is weakly supercyclic, then so is any positive power of T, it follows that B is not
weakly supercyclic either. In fact, whenever T is a normal operator, the operator
T ⊕ T is not cyclic by the Spectral Theorem.

REMARK 7.7. As for supercyclic operators, one may wonder whether weak
supercyclicity with σp(T∗) = ∅ implies that T ⊕ T is cyclic. The referee has
pointed out to us that this question has a negative answer. Indeed, by Bayart
and Matheron’s result we can take a unitary operator U which is weakly super-
cyclic. Then σp(U?) = σp(U∗) = ∅ and U ⊕ U is not cyclic. Moreover U is
similar to U∗ and, therefore, Question 1 has an affirmative answer if one replaces
supercyclicity by weak supercyclicity.



NON-WEAKLY SUPERCYCLIC OPERATORS 61

Acknowledgements. We thank the referee for very helpful comments that have im-
proved the presentation of this work. In particular, the referee simplified the first part of
the proof of Lemma 2.3, for which we previously used Gaussian measures.

Partially supported by Plan Nacional I+D+I grant no. MTM2006-09060, Junta de An-
dalucía P06-FQM-02225 and FQM-260. The second named author was partially supported
by Alexander von Humboldt Foundation and British Engineering and Physical Research
Council Grant GR/T25552/01.

REFERENCES

[1] S.I. ANSARI, Hypercyclic and cyclic vectors, J. Funct. Anal. 128(1995), 374–383.

[2] F. BAYART, E. MATHERON, Hyponormal operators, weighted shifts and weak forms
of supercyclicity, Proc. Edinburgh Math. Soc. 49(2006), 1–15.

[3] S. BERMUDO, A. MONTES-RODRÍGUEZ, S.A. SHKARIN, Orbits of analytic functions
of the Volterra operator, in preparation.

[4] R.P. BOAS, Entire Functions, Academic Press Inc., New York 1954.

[5] J.A. CIMA, W. ROSS, The Backward Shift on the Hardy Space, Amer. Math. Soc., Provi-
dence, RI 2000.

[6] C.C. COWEN, B.D. MACCLUER, Composition Operators on Spaces of Analytic Functions.
Studies in Advanced Mathematics, CRC Press, Boca Raton 1995.

[7] J. DIESTEL, Sequences and Series in Banach Spaces, Springer-Verlag, New York 1984.

[8] S. DILWORTH, V. TROITSKY, Spectrum of a weakly hypercyclic operator meets the
unit circle, Contemp. Math. 321(2003), 67–69.

[9] E. GALLARDO-GUTIÉRREZ, A. MONTES-RODRÍGUEZ, The role of the spectrum in the
cyclic behavior of composition operators, Mem. Amer. Math. Soc. 167(2004), 1–81.

[10] E. GALLARDO-GUTIÉRREZ, A. MONTES-RODRÍGUEZ, The Volterra operator is not
supercyclic, Integral Equations Operator Theory 50(2004), 211–216.

[11] M. GONZÁLEZ, F. LEÓN-SAAVEDRA, A. MONTES-RODRÍGUEZ, Semi-Fredholm the-
ory: hypercyclic and supercyclic subspaces, Proc. London Math. Soc. 81(2000), 169–189.

[12] S. GRIVAUX, Hypercyclic operators, mixing operators, and the bounded steps prob-
lem, J. Operator Theory 54(2005), 147–168.

[13] D.A. HERRERO, C. KITAI, On invertible hypercyclic operators, Proc. Amer. Math. Soc.
116(1992), 873–875.

[14] H.M. HILDEN, L.J. WALLEN, Some cyclic and non-cyclic vectors of certain operators,
Indiana Univ. Math. J. 23(1973), 557–565.

[15] Y. KATZNELSON, An Introduction to Harmonic Analysis, Dover Publ. Inc., New York
1976.

[16] T. KUO, Gaussian Measures on Banach Spaces, Lecture notes in Math., vol. 463, Springer-
Verlag, New York 1975.

[17] B.Y. LEVIN, Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, R.I.
1980.



62 ALFONSO MONTES-RODRÍGUEZ AND STANISLAV A. SHKARIN

[18] B.Y. LEVIN, Lectures on Entire Functions, Amer. Math. Soc., Providence RI 1996.

[19] T.L. MILLER, V.G. MILLER, Local spectral theory and orbits of operators, Proc. Amer.
Math. Soc. 127(1999), 1029–1037.

[20] A. MONTES-RODRÍGUEZ, H.N. SALAS, Supercyclic subspaces: spectral theory and
weighted shifts, Adv. Math. 163(2001), 74–134.

[21] A. MONTES-RODRÍGUEZ, H.N. SALAS, Supercyclic subspaces, Bull. London Math.
Soc. 35(2003), 721–737.

[22] G. PRAJITURA, Limits of weakly hypercyclic and supercyclic operators, Glasgow
Math. J. 47(2005), 255–260.

[23] E.D. RAINVILLE, Special Functions, Chealsea Publ. Comp., New York 1971.

[24] S. ROLEWICZ, On orbits of elements, Studia Math. 32(1969), 17–22.

[25] W. RUDIN, Real and Complex Analysis, McGraw-Hill, New York 1987.

[26] H.N. SALAS, Supercyclicity and weighted shifts, Studia Math. 135(1999), 55–74.

[27] R. SANDERS, Weakly supercyclic operators, J. Math. Anal. Appl. 292(2004), 148–159.

[28] D. SARASON, Invariant subspaces, in Topics in Operator Theory, Math. Surveys Mono-
graphs, vol. 13, Amer. Math. Soc., Providence, RI 1974, pp. 1–47.

ALFONSO MONTES-RODRÍGUEZ, DEPARTAM. DE ANÁLISIS MATEMÁTICO,
UNIVERSIDAD DE SEVILLA, SEVILLA, 41080, SPAIN

E-mail address: amontes@us.es

STANISLAV A. SHKARIN, DEPARTMENT OF MATHEMATICS, KING’S COLLEGE

LONDON, LONDON, WC2R 2LS, UK
E-mail address: stanislav.shkarin@kcl.ac.uk

Received May 18, 2005; revised November 17, 2005 and April 8, 2006.


