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1. INTRODUCTION AND PRELIMINARIES

Every semisimple Hermitian Banach ∗-algebra A can be considered as a ∗-
subalgebra of the algebra (B(H), ‖ · ‖) of all bounded operators on a Hilbert space
H and SpA(A) = SpB(H)(A) for each A ∈ A. Denote by An the set of all normal
operators in A. For a subset σ of C, set

An(σ) = {A ∈ An : Sp(A) ⊆ σ}.

Each bounded Borel complex-valued function g on σ defines, via the spectral
theorem, a map g : T → g(T) from the set of all normal operators with spectrum
in σ into B(H). If we restrict g to An then g(T) does not necessarily belong to A.
A function g is said to act on A if

(1.1) g(T) ∈ A for each T ∈ An(σ).

It is well known that all continuous functions act on C∗-algebras. On the
other hand, only holomorphic functions act on the Wiener-Fourier algebra l1(T)
(see [14]). For many Hermitian subalgebras of B(H), however, the situation is not
”black and white”, especially if σ ⊆ R. Bratteli, Elliott and Jorgensen [6], for ex-
ample, proved that each continuous function g in L1(R) whose Fourier transform
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satisfies
∞∫

−∞

|sĝ(s)|ds < ∞

acts on the domains of all closed ∗-derivations of C∗-algebras. A wide class of
semisimple Hermitian Banach ∗-algebras — differential algebras — was intro-
duced by Blackadar and Cuntz in [5] and by Kissin and Shulman in [15]. These
algebras are operator analogues of algebras of differentiable functions. In partic-
ular, all symmetrically normed ideals of B(H) and all domains of closed deriva-
tions of C∗-algebras are differential algebras. In [5] and [15] various smoothness
conditions were obtained for functions to act on differential algebras.

In this paper we study ”scalar” and ”operator” smoothness conditions for
functions to act on symmetrically normed ideals (for the sake of brevity, s. n. ideals)
of B(H) and on the domains of weakly closed derivations of these ideals.

Let H be a separable Hilbert space. A two-sided ideal J of B(H) is an s. n.
ideal if it is a Banach space with respect to a norm ‖ · ‖J and

(1.2) ‖AXB‖J 6 ‖A‖‖X‖J‖B‖ for A, B ∈ B(H) and X ∈ J.

By Calkin’s theorem, J ⊆ C(H), where C(H) is the ideal of all compact operators
in B(H).

In Section 2 we study functions g defined on compact subsets α of C that
act on s. n. ideals J. We show that g acts on J if and only if it is Lipschitzian at 0.
Moreover, such a function acts continuously on all separable s. n. ideals. We also
prove that g acts on the unitization J̃ = C1 + J of J if and only if it is Lipschitzian
at each point of α. It acts continuously on the unitization of separable ideals if and
only if it is Lipschitzian on α.

For more intricate classes of differential algebras such as the domains of
closed ∗-derivations, the ”scalar” smoothness conditions are not however, always
well-suited to determine the spaces of functions acting on these algebras. In these
cases more suitable conditions turn out to be various ”operator” smoothness con-
ditions imposed on the maps T → g(T).

”Operator” smoothness conditions characterize interesting and important
classes of functions. For example, the condition that the maps T → g(T) are
Gateaux or Frechet differentiable defines the classes of Gateaux and Frechet op-
erator differentiable functions; the condition that these maps are Lipschitzian de-
fines the class of operator Lipschitz functions. If, apart from the standard operator
norm on B(H), one considers symmetric operator norms ‖ · ‖J and the classes of
Gateaux (Frechet) operator differentiable and operator Lipschitz functions with
respect to these norms, one obtains a rich variety of functional spaces. Thus the
operator theory suggests its own scale of smoothness of functions and defines
naturally new functional spaces. Much work has been done to relate the ”opera-
tor” smoothness and the traditional ”scalar” smoothness conditions of functions
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in papers of Daletskii and Krein [7], Birman and Solomyak [3], [4], Davies [8],
Farforovskaya [9], [10], Peller [22] and others.

Let A be a Banach ∗-algebra. A map δ from a ∗-subalgebra D(δ) (called the
domain of δ) of A into A is a ∗-derivation if

(1.3) δ(AB) = Aδ(B) + δ(A)B and δ(A∗) = δ(A)∗, for A, B ∈ D(δ).

A derivation δ is closed if the graph G(δ) = {(A, δ(A)): A ∈ D(δ)} of δ is norm
closed in AuA. If A is the dual space of a Banach space A∗ and the graph G(δ) is
closed in AuA in the σ(AuA,A∗ uA∗)-topology, then δ is called weakly closed.

Similar to (1.1), a function g on a subset σ of R acts on the domain D(δ) of
an unbounded ∗-derivation δ of a Hermitian Banach algebra, if

(1.4) A = A∗ ∈ D(δ) and Sp(A) ⊆ σ implies that g(A) ∈ D(δ).

The first step in finding ”operator” smoothness conditions for functions to act
on the domains of closed ∗-derivations was made by Arazy, Barton and Fried-
man in [2]. They proved that Gateaux operator differentiable functions act on
the domains of the generators of one-parameter groups of automorphisms of C∗-
algebras. The authors in [16], [18] and Pedersen in [21] extended their result and
showed that these functions act on the domains of all closed ∗-derivations on C∗-
algebras. In [18] it was also established that a function acts on the domains of
all weakly closed ∗-derivations on C∗-algebras, if and only if it is operator Lips-
chitzian.

In Section 3 we consider ”operator” smoothness conditions for functions
to act on the domains of closed and weakly closed unbounded ∗-derivations on
s. n. ideals. We prove that if J is a coseparable s. n. ideal, then the operator J-
Lipschitz functions act on the domains of all weakly closed ∗-derivations of J. If
J is reflexive, then the operator J-Lipschitz functions act on the domains of all
closed ∗-derivations on J. We also extend a result of the second author in [25] and
show that, if δ is a closed ∗-derivation on a C∗-algebra or on a separable s. n. ideal
J and if δ(A) belongs to a reflexive ideal I, then g(A) ∈ D(δ) and δ(g(A)) ∈ I, for
each operator I-Lipschitz function g on Sp(A).

We apply the above results to extend some operator inequalities in Schatten
ideals Cp. It was proved in [8] that, for each 1 < p < ∞, there is a constant γp
(evaluated in [1]) such that, for all T = T∗ ∈ B(H) and all A = A∗ ∈ Cp,

‖[T, |A|]‖p 6 γp‖[T, A]‖p, where [T, A] = TA − AT and |A| = (A∗A)1/2.

We show that this inequality holds for all unbounded symmetric operators T and
all A = A∗ ∈ Cp that preserve the domain D(T) of T.

2. FUNCTIONS ACTING ON SYMMETRICALLY NORMED IDEALS

We start this section with a brief discussion of some basic properties of s. n.
ideals. Let J be a s. n. ideal of B(H). If V is an isometry from H onto another
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space K, then the ideal V JV∗ of B(K) with the norm ‖VAV∗‖V JV∗ = ‖A‖J , for
A ∈ J, does not depend on the choice of V. We will denote it by the same symbol
J (or J(K) if it is necessary to underline the space). Therefore when we say that
a certain statement holds for an ideal J, we mean that it holds for all ideals J(K)
with K being any separable infinite dimensional space.

Let Φ be the set of all positive symmetric norming functions on the space c0 of
all sequences of real numbers converging to 0 (see Section III.3 of [11]). The most
important classes of s. n. ideals are defined by means of these functions in the
following way (see Section III.4 of [11]). For each A ∈ C(H), the non-increasing
sequence s(A) = {si(A)} of all eigenvalues of (A∗A)1/2 belongs to c0. For φ ∈ Φ,
the set

Jφ = {A ∈ C(H) : φ(s(A)) < ∞} with norm ‖A‖Jφ = φ(s(A))

is an s. n. ideal.
Denote by F the ideal of all finite rank operators in B(H). The closure Jφ

0 of
F in ‖ · ‖Jφ is a separable s. n. ideal and Jφ

0 ⊆ Jφ. It follows from Theorem III.6.2

of [11] that an s. n. ideal is separable if and only if it coincides with some Jφ
0 .

For many functions φ ∈ Φ, the ideals Jφ and Jφ
0 coincide. An important class

of such functions consists of the s. n. functions

φp(ξ) =
( ∞

∑
i=1

|ξi|p
)1/p

for 1 6 p < ∞, and φ∞(ξ) = sup |ξi|.

The corresponding ideals Cp are called Schatten classes. In particular, C∞ =
C(H).

In the following proposition we gathered some known (see, for example,
[17]) results that will be used later on.

PROPOSITION 2.1. Let I and J be s. n. ideals.
(i) If J ⊆ I then there exists c > 0 such that ‖A‖I 6 c‖A‖J , for all A ∈ J.

(ii) There is a unique, up to equivalence, function φ ∈ Φ such that Jφ
0 ⊆ J ⊆ Jφ.

Moreover, the norms ‖ · ‖Jφ and ‖ · ‖J coincide on Jφ
0 and ‖A‖Jφ 6 ‖A‖J for all A ∈ J.

(iii) If J is reflexive then there is φ ∈ Φ such that Jφ
0 = J = Jφ.

For each s. n. function φ 6= φ1, there is an adjoint s. n. function ψ such that Jψ

can be identified with the dual space of Jφ
0 in the following way. For each T ∈ Jψ

and X ∈ Jφ
0 , the operator TX belongs to the trace class C1, the linear functional

(2.1) FT(X) = Tr(TX)

is bounded on Jφ
0 with ‖FT‖ = ‖T‖Jψ , and each bounded functional on Jφ

0 is of
this form. We write ψ = φ∗. This relation is symmetric: ψ∗ = φ if φ 6= φ1 and
φ 6= φ∞. Thus all ideals Jφ, φ 6= φ∞, are dual to separable ideals; we call such
ideals coseparable. By the weak topology in a coseparable ideal Jφ we mean the
topology σ(Jφ, Jφ∗

0 ).
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Let J̃ = C1 + J be the unitization of an s. n. ideal J. Then it is a Banach ∗-
algebra in the norm ‖λ1+A‖ J̃ = |λ| + ‖A‖J , for λ ∈ C and A ∈ J. By Jn and J̃n

we denote the spaces of all normal operators in J and J̃.
In this section α will denote a compact subset of C. For any s. n. ideal J,

we set

Jn(α) = {A ∈ Jn : Sp(A) ⊆ α} and J̃n(α) = {A ∈ J̃n : Sp(A) ⊆ α}.

Since 0 lies in the spectra of all compact operators, we always assume that 0 ∈ α

when we consider Jn(α). For J̃n(α) we do not need to assume this.
Recall that a function g on α is Lipschitzian at a point s ∈ α, if there is

D > 0 such that |g(t)− g(s)| 6 D|t − s| for all t ∈ α. Clearly, the above condition
is non-trivial only if s is a limit point of α. A function g is Lipschitzian on α if
|g(t) − g(s)| 6 D|t − s| for all t, s ∈ α. It is easy to construct an example of a
function Lipschitzian at each point of α but not Lipschitzian on α.

We set

(2.2) g̃s(t) =

{
g(t)−g(s)

t−s for t 6= s,
0 for t = s.

An operator A ∈ B(H) is diagonal, if there exists an orthonormal basis {en}
in H such that Aen = λnen for all n. We will write A = diag(λ1, . . . , λn, . . .)
without mentioning the basis.

Before discussing the question which functions act on s. n. ideals, let us note
that for the ideal C(H) the answer is well known: any continuous function g acts
on C̃(H) = C1 + C(H); it acts on C(H) if and only if g(0) = 0.

THEOREM 2.2. Let g be a bounded Borel function on α ⊂ C and let J 6= C∞.
Then:

(i) g acts on J if and only if g(0) = 0 and g is Lipschitzian at t = 0;
(ii) g acts on J̃ if and only if it is Lipschitzian at each point of α.

Proof. If g is Lipschitzian at 0 and g(0) = 0, then g(t) = tg̃0(t) and g̃0
defined in (2.2) is a bounded Borel function on α. Hence g̃0(A) ∈ B(H) so
g(A) = Ag̃0(A) ∈ J, for each A ∈ Jn(α).

Conversely, if g acts on J then g(0) = 0. If g is not Lipschitzian at 0, then
there are tk ∈ α such that |tk| 6 k−3 and

∣∣ g(tk)
tk

∣∣ > k4. By Proposition 2.1, there is

φ ∈ Φ such that Jφ
0 ⊆ J ⊆ Jφ. Set

ξn = (1, . . . , 1︸ ︷︷ ︸
n

, 0, . . .) and R(n) = φ(ξn).

As Jφ 6= C(H) we have (see Section III.3 of [11]) R(n) → ∞, as n → ∞,

(2.3) 1 6 R(n) 6 R(n − 1) + 1 and R(n) = φ(0, . . . , 0︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
n

, 0, . . .) for all m.
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Hence R(n) 6 n. Since 1 6 k−3|tk|−1 and R(n) → ∞, we can choose nk such that

(2.4) 1 6 (k3|tk|)−1 6 R(nk) 6 k(k3|tk|)−1.

Let us fix some orthonormal basis in H. The operator A = diag(t1, . . . , t1︸ ︷︷ ︸
n1

, . . . ,

tk, . . . , tk︸ ︷︷ ︸
nk

, . . .) is normal and A ∈ C(H). For each k, set

Ak = diag(t1, . . . , t1︸ ︷︷ ︸
n1

, . . . , tk, . . . , tk︸ ︷︷ ︸
nk

, 0, 0, . . .).

It follows from Properties II and III in Section III.3.1 of [11] and from (2.3) and
(2.4) that ‖Ak‖Jφ = φ(|t1|, . . . , |t1|︸ ︷︷ ︸

n1

, . . . , |tk|, . . . , |tk|︸ ︷︷ ︸
nk

, 0, 0, . . .) 6 |t1|R(n1) + · · · +

|tk|R(nk) 6
k
∑

m=1
m−2. Since Ak converge to A in the weak operator topology and

sup ‖Ak‖Jφ < ∞, it follows from Theorem III.5.1 of [11] that A ∈ (Jφ
0 )n(α) ⊆ Jn(α).

On the other hand, by Properties II, III, 1◦ in Section III.3.1 of [11] and
by (2.4),

‖g(A)‖Jφ = lim
k→∞

φ(|g(t1)|, . . . , |g(t1)|︸ ︷︷ ︸
n1

, . . . , |g(tk)|, . . . , |g(tk)|︸ ︷︷ ︸
nk

, 0, . . .)

> lim
k→∞

φ(0, . . . , 0, |g(tk)|, . . . , |g(tk)|︸ ︷︷ ︸
nk

, 0, . . .)

= lim
k→∞

|g(tk)|R(nk) > lim
k→∞

k4|tk|R(nk) > lim
k→∞

k = ∞.

Thus g(A) /∈ Jφ. Hence g(A) /∈ J, so g does not act on J. Part (i) is proved.
For s ∈ α and B ∈ Jn, let A = s1 + B ∈ J̃n(α). If g is Lipschitzian at s, then

g(t) = g(s) + (t− s)g̃s(t) and g̃s defined in (2.2) is a bounded Borel function on α.
Hence g̃s(A) ∈ B(H) so that g(A) ∈ J̃, since

(2.5) g(A) = g(s)1 + (A − s1)g̃s(A) = g(s)1 + Bg̃s(A).

Conversely, let g act on J̃. First show that g is continuous on α. If g is not
continuous at s, there are sn → s in α such that the operator B = diag(s1 − s, 0, s2 −
s, 0, . . . , sn − s, 0, . . .) belongs to Jφ

0 ⊆ J and g(sn) do not converge to g(s). Then

A= t1+B∈ J̃n(α) and g(A)=diag(g(s1), g(s), g(s2), g(s), . . . , g(sn), g(s), . . .)∈J̃.

However, since g(sn) do not converge to g(s), we have g(A) /∈ C1+C(H) — a
contradiction.

Let A = diag(t1, t2, . . . , tn, . . .) ∈ J be such that s1 + A ∈ J̃n(α). Since tn → 0
and g is continuous, g(s1 + A) − g(s)1 ∈ C(H). Since g acts on J̃, g(s1 + A) −
g(s)1 ∈ J. Hence the function h(t) = g(s + t)− g(s) defined on the set {z− s : z ∈
α} acts on J. By (i), h is Lipschitzian at t = 0. Hence g is Lipschitzian at s.
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Denote by Cρ the disk of radius ρ with centre in 0.

LEMMA 2.3. Let {Ak}∞
k=0 be normal operators, let ‖Ak − A0‖ → 0 and let a

compact set α in C contain all Sp(Ak). Let {hk}∞
k=1 be Borel functions on α such that

M = sup
k,t

|hk(t)| < ∞. Let also hk → h0 uniformly outside each disk Cρ, where the

function h0 is continuous on α \ {0}. Then

‖hk(Ak)x − h0(A0)x‖ → 0 for each x ∈ A0H.

Proof. Since sup
k
‖hk(Ak)‖ 6 M, it suffice to prove the lemma for x ∈ A0H.

We will even show that ‖hk(Ak)A0 − h0(A0)A0‖ → 0.
Setting fk(t) = thk(t) and f0(t) = th0(t), we have

‖hk(Ak)A0 − h0(A0)A0‖ 6 ‖hk(Ak)(A0 − Ak)‖+ ‖ fk(Ak)− f0(A0)‖
6 M‖A0 − Ak‖+‖ fk(Ak)− f0(Ak)‖+‖ f0(Ak)− f0(A0)‖.

The first term tends to 0. The second term tends to 0 because fk → f0 uniformly
on α, the third term tends to 0 because f0 is continuous on α.

We will consider now the question of which continuous functions act con-
tinuously on s. n. ideals.

THEOREM 2.4. Let g be a continuous function on α ⊂ C and let g(0) = 0.
(i) g acts continuously on a separable ideal J 6= C∞ if and only if it is Lipschitzian at

t = 0.
(ii) If g is differentiable at t = 0, it acts continuously on all s. n. ideals.

Proof. The part ”only if” in (i) follows from Proposition 2.2.
Let operators A and Ak belong to Jn(α) and let ‖A− Ak‖J → 0. The function

g̃0 defined in (2.2) is continuous on α\0, |g̃0(t)| < D for some D > 0, and g(t) =
tg̃0(t). Hence

‖g(A)− g(Ak)‖J = ‖g̃0(A)A − g̃0(Ak)Ak‖J(2.6)

6 ‖g̃0(A)A − g̃0(Ak)A‖J + ‖g̃0(Ak)(A − Ak)‖J ,

‖g̃0(Ak)(A − Ak)‖J 6 ‖g̃0(Ak)‖‖A − Ak‖J 6 D‖A − Ak‖J → 0.(2.7)

Let Q be the projection on AH. Then A = QA. Set all hk = g̃0, k = 0, 1, . . . ,
in Lemma 2.3. Then the operators g̃0(Ak)Q strongly converge to g̃0(A)Q. If J is
separable, it follows from Theorem III.6.3 of [11] that

‖(g̃0(A)− g̃0(Ak))A‖J = ‖(g̃0(A)Q − g̃0(Ak)Q)A‖J → 0.

Hence ‖g(A)− g(Ak)‖J → 0 in (2.6) and part (i) is proved.
Let g be differentiable at t = 0. Changing the value of g̃0(0) from 0 to g′(0),

we may assume that g̃0 is continuous on α. If ‖A− Ak‖J → 0 then ‖A− Ak‖ → 0,
so that ‖g̃0(A)− g̃0(A)‖ → 0. Hence

‖(g̃0(A)− g̃0(Ak))A‖J 6 ‖g̃0(A)− g̃0(Ak)‖‖A‖J → 0.
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Taking into account (2.6) and (2.7), we have ‖g(A)− g(Ak)‖J → 0.

Although, by Proposition 2.2(ii), functions Lipschitzian at every point of α
act on the unitizations of s. n. ideals, only ”globally” Lipschitz functions on α act
continuously.

THEOREM 2.5. Let J = Jφ
0 6= C∞ be a separable s. n. ideal. A function g on α acts

continuously on J̃ if and only if it is Lipschitzian (in the usual sense) on α.

Proof. Suppose that g is a Lipschitz function on α. Let B0, Bk ∈ J and let
A0 = t01 + B0, Ak = tk1 + Bk belong to J̃n(α). Replacing g by the function g(t + t0)
and α by the set {z − t0: z ∈ α}, we may assume that t0 = 0 and A0 = B0.

Each function hk = g̃tk defined in (2.2) is continuous on α\{tk}. Since g is
Lipschitzian on α, there is D > 0 (see (2.2)) such that |hk(t)| 6 D for all t ∈ α.
We have from (2.5) that g(Ak) = g(tk)1 + hk(Ak)Bk and ‖hk(Ak)‖ 6 D. Hence
‖g(A0)− g(Ak)‖ J̃ = |g(0)− g(tk)|+ ‖h0(A0)B0 − hk(Ak)Bk‖J , and

‖h0(A0)B0 − hk(Ak)Bk‖J

6‖h0(A0)(B0 − Bk)‖J+‖(h0(A0)− hk(Ak))(B0 − Bk)‖J+‖(h0(A0)− hk(Ak))B0‖J

6 (2‖h0(A0)‖+ ‖hk(Ak)‖)‖B0 − Bk‖J + ‖(h0(A0)− hk(Ak))B0‖J .

Hence

(2.8) ‖g(A0)− g(Ak)‖ J̃ 6 D|tk|+ 3D‖B0 − Bk‖J + ‖(h0(A0)− hk(Ak))B0‖J .

Let ‖A0 − Ak‖ J̃ → 0. Since tk → t0 = 0, the functions hk converge uniformly
to h0 on α outside Cρ for any ρ > 0. Therefore, by Lemma 2.3, the operators
hk(Ak) strongly converge to h0(B0) on B0H. Let Q be the projection on B0H. Then
B0 = QB0 and hk(Ak)Q strongly converge to h0(B0)Q. Since J is separable, it
follows from Theorem III.6.3 of [11] that

‖(h0(B0)− hk(Ak))B0‖J = ‖(h0(B0)Q − hk(Ak)Q)B0‖J → 0.

Hence, by (2.8), ‖g(A0)− g(Ak)‖ J̃ → 0, so g acts continuously on J̃.
Conversely, let g be a non-Lipschitz function α. There exist λ, tk, sk ∈ α such

that tk → λ, |sk| 6 k−2 and |g(sk + tk)− g(tk)| > k3|sk|. Without loss of generality,
assume that λ = 0.

Since J = Jφ
0 6= C∞ and since 1 < |sk|−1k−2, one can find nk, as in the

proof of Proposition 2.2, such that 1 6 |sk|−1k−2 6 R(nk) 6 k1/2(|sk|−1k−2),
so k−2 6 |sk|R(nk) 6 k−3/2. Set Ak = diag(sk, . . . , sk︸ ︷︷ ︸

nk

, 0, . . .). Then ‖Ak‖J =

φ(|sk|, . . . , |sk|︸ ︷︷ ︸
nk

, 0, . . .) = |sk|R(nk) → 0, so that ‖tk1 + Ak‖ J̃ = |tk| + ‖Ak‖J → 0.

Hence tk1 + Ak converge to 0 in J̃.
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On the other hand,

g(tk1+Ak)= diag(g(tk+sk),. . ., g(tk+sk)︸ ︷︷ ︸
nk

, g(tk),. . .)= g(tk)1+ diag(rk,. . ., rk︸ ︷︷ ︸
nk

, 0,. . .),

where rk = g(tk + sk)− g(tk) and |rk| > k3|sk|. Since g(0) = g(0)1, we have

‖g(tk1+Ak)−g(0)‖ J̃ = |g(tk)−g(0)|+ diag(|rk|, . . . , |rk|︸ ︷︷ ︸
nk

, 0, . . .)

= |g(tk)−g(0)|+|rk|R(nk)> |g(tk)−g(0)|+k3|sk|R(nk)→∞.

Therefore g does not act continuously on J̃.

REMARK 2.6. It follows from (2.8) that, for all (not only separable) ideals,
the following statement holds: if g is a Lipschitz function on α, then there is D > 0
such that

‖g(A)− g(B)‖ J̃ 6 4D‖A − B‖ J̃ + 2D‖A‖ J̃ ,

for A, B ∈ J̃n(α). Thus the map A → g(A) is locally bounded on J̃n.

Denote by Lip(α) the Banach algebra of all Lipschitz functions g on α with
norm

‖g‖Lip = sup
t∈α

|g(t)|+ K(g, α), where K(g, α) = sup
t,s∈α

|g̃s(t)|.

Denote by Lip0(α) the Banach algebra of all continuous functions g on α Lips-
chitzian at t = 0 with g(0) = 0 and with norm

‖g‖Lip0
= sup

t∈α
|g(t)|+ K(g, 0), where K(g, 0) = sup

t∈α
|g̃0(t)|.

PROPOSITION 2.7. Let J 6= C∞ be an s. n. ideal.
(i) For A ∈ Jn(α), the homomorphism g → g(A) from Lip0(α) into J is bounded.

(ii) For A ∈ J̃n(α), the homomorphism g → g(A) from Lip(α) into J̃ is bounded.

Proof. Let A ∈ Jn(α). By Proposition 2.2(i), the map g → g(A) is a ho-
momorphism from Lip0(α) into J. The function g̃0 is continuous on α\{0} and
‖g̃0(A)‖ 6 sup{|g̃0(t)| : t ∈ α} = K(g, 0). Thus

‖g(A)‖J = ‖Ag̃0(A)‖J 6 ‖A‖J‖g̃0(A)‖ 6 ‖A‖J‖g‖Lip0
.

Let now A = s1 + B ∈ J̃n(α), where s ∈ α and B ∈ Jn. By Proposition 2.2(ii),
the map g → g(A) is a homomorphism from Lip(α) into J̃. The function g̃s(t)
is continuous on α\{s} and ‖g̃s(A)‖ 6 sup{|g̃s(t)| : t ∈ α} 6 K(g, α). Thus
‖g̃s(A)‖ 6 K(g, α), so that, by (2.5),

‖g(A)‖ J̃ 6 |g(s)|+ ‖B‖J‖g̃s(A)‖ 6 |s|K(g, α) + ‖B‖JK(g, α) 6 ‖A‖ J̃‖g‖Lip.
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3. J-LIPSCHITZ FUNCTIONS ACT ON THE DOMAINS OF WEAKLY CLOSED DERIVATIONS

It was proved in [18] that Operator Lipschitz functions act on the domains
of all weakly closed ∗-derivations of C∗-algebras. In this section we show that
J-Lipschitz functions act on the domains of all weakly closed ∗-derivations of
coseparable s. n. ideals J.

Let δ be a ∗-derivation on Jφ (see (1.3)). It is closed (weakly closed) if its
graph {(A, δ(A)) : A ∈ D(δ)} is closed in Jφ⊕Jφ in norm (respectively, in the
weak topology σ(Jφ u Jφ, Jφ∗

0 u Jφ∗

0 )).
In this section we denote by α a compact subset of R and by Γ an open

subset of R. Let Jsa be the set of all selfadjoint operators in J. Set

Jsa(α) = {A ∈ Jsa : Sp(A) ⊆ α}.

DEFINITION 3.1. Let J be an s. n. ideal or B(H). A continuous function g on
α is J-Lipschitzian, if there is D > 0 such that

(3.1) ‖g(A)− g(B)‖J 6 D‖A − B‖J for A, B ∈ Jsa(α).

A function g on Γ is J-Lipschitzian, if it is J-Lipschitzian on each α ⊂ Γ (the
constant D in (3.1) depends on α).

J-Lipschitz functions are Lipschitzian in the usual sense: if Q is a rank one
projection then ‖Q‖J = 1 and, for t, s ∈ α,

|g(t)− g(s)| = ‖(g(t)− g(s))Q‖J = ‖g(tQ)− g(sQ)‖J < D‖tQ− sQ‖J = D|t− s|.

We call B(H)-Lipschitz functions Operator Lipschitzian. They are differ-
entiable (see [13]), but not necessarily continuously differentiable (see [17]). The
class of Operator Lipschitz functions on [a, b] lies between two Besov spaces
B1

∞1(a, b) and B1
11(a, b) (see [22]). Cp-Lipschitz functions, for p ∈ (1, ∞), constitute

wider classes than Operator Lipschitz functions; they contain non-differentiable
functions, in particular, g(t) = |t| (see [8]).

It was proved in [19] that if g is a J-Lipschitz function, for J = Jφ or Jφ
0 , then

property (3.1) can be extended from Jsa to B(H)sa in the following way: there is a
minimal constant k J(g, α) > 0 such that the condition A−B ∈ J, for A, B ∈ B(H)sa(α),
implies

(3.2) g(A)− g(B) ∈ J and ‖g(A)− g(B)‖J 6 k J(g, α)‖A − B‖J .

DEFINITION 3.2. Let J be an s. n. ideal or B(H). A continuous function g on
Γ is Gateaux J-differentiable at A = A∗ with Sp(A) ⊂ Γ, if there is a bounded linear
operator g∇A from Jsa into J such that, for any X ∈ Jsa and sufficiently small t ∈ R,

g(A + tX)− g(A) ∈ J and
∥∥∥1

t
(g(A + tX)− g(A))− g∇A (X)

∥∥∥
J
→ 0, as t → 0.

If g is Gateaux J-differentiable at each A ∈ B(H)sa(Γ), it is called Gateaux J-
differentiable on Γ.
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For separable ideals J the following conditions are equivalent (see [18]):

(i) g is a differentiable, J-Lipschitz function on an open set Γ;
(ii) g is Gateaux J-differentiable on Γ.

Let g be a Gateaux J-differentiable function on Γ, let α be a compact in Γ
and let Sp(A) lie in the interior int(α) of α. It follows from (3.2) and Definition 3.2
that, for any X ∈ Jsa,

(3.3) ‖g∇A (X)‖J 6 k J(g, α)‖X‖J .

The next lemma (see, for example, [3],[18]) gives us many examples of Gateaux
J-differentiable and J-Lipschitz functions.

LEMMA 3.3. Let g ∈ L1(R) be a continuous function. Let ĝ(s) be its Fourier
transform and

(3.4)

∞∫
−∞

|sĝ(s)|ds < ∞

(for example, g′′ ∈ L2(R)). Let J be an s. n. ideal or B(H). Then g is J-Lipschitzian and
Gateaux J-differentiable on R. For each A = A∗ and X ∈ Jsa,

(3.5) g∇A (X) =
1

2π

∞∫
−∞

(−is)ĝ(s)
( 1∫

0

e−istAXe−is(1−t)Adt
)

ds.

A stronger fact follows from the results of Peller in [23] that the conclusion
of Lemma 3.3 holds for all functions from the Besov space B1

∞1.
Bratteli, Elliott and Jorgensen [6] proved that each function g that satisfies

(3.4) acts on the domains of all closed ∗-derivations δ of C∗-algebras. It was shown
in [18] that

δ(g(A)) = gO
A(δ(A)) for A = A∗ ∈ D(δ).

To extend this result to closed ∗-derivations on s. n. ideals we need the following
adaptation of Lemma 2 of [24] to derivations on Banach algebras.

LEMMA 3.4. Let δ be a closed derivation on a unital Banach algebra A. If A ∈
D(δ) then

(3.6) eA ∈ D(δ) and δ(eA) =

1∫
0

etAδ(A)e(1−t)Adt.

Any ∗-derivation δ on J extends to a ∗-derivation δ̃ on J̃ by setting

(3.7) δ̃(λ1 + A) = δ(A) ∈ J for all A ∈ D(δ), λ ∈ C.

It is (weakly) closed if δ is (weakly) closed. If J = B(H), we set J̃ = B(H) and
δ̃ = δ.
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If J is an s. n. ideal and A = diag(a1, . . . , an, . . .) ∈ Jsa with an ∈ R, then
eiA − 1 = diag(eia1 − 1, . . . , eian − 1, . . .) ∈ J and |eian − 1| = 2 sin(an/2) 6 an. It
follows from III.3.1 in [11] that, for s ∈ R,

(3.8) ‖eiA − 1‖J 6 ‖A‖J so ‖eisA‖ J̃ 6 1 + ‖sA‖J 6 (1 + ‖A‖J)(1 + |s|).

Hence, for λ1 + A ∈ J̃ and λ, s ∈ R,

(3.9) ‖eis(λ1+A)‖ J̃ = ‖eisA‖ J̃ 6 (1 + ‖A‖J)(1 + |s|).

LEMMA 3.5. Let J be an s. n. ideal or B(H) and let δ be a closed ∗-derivation on J.
If g satisfies (3.4), then, for each A = A∗ ∈ D(δ̃),

(3.10) g(A) ∈ D(δ̃) and δ̃(g(A)) = gO
A(δ̃(A)).

Proof. It follows from (3.9) and (3.4) that

g(A) =
1

2π

∞∫
−∞

e−isA ĝ(s)ds =
1

2π
lim

n→∞

n∫
−n

e−isA ĝ(s)ds.

Since g is Lipschitzian (in the usual sense), we have g(A) ∈ J̃, by Proposition 2.2.
We have from (3.7) and Lemma 3.4 that δ̃(A) ∈ J and δ̃(e−isA) ∈ J, for s ∈ R, and

‖δ̃(e−isA)‖J =
∥∥∥ 1∫

0

e−istA δ̃(−isA)e−is(1−t)Adt
∥∥∥

J

6

1∫
0

‖e−istA‖‖sδ̃(A)‖J‖e−is(1−t)A‖Jdt = |s|‖δ̃(A)‖J .(3.11)

This implies that δ̃(e−isA) is continuous in norm ‖ · ‖J with respect to s, since

‖δ̃(e−isA)−δ̃(e−itA)‖J =‖δ̃(e−isA(1 − e−i(t−s)A))‖J

6‖δ̃(e−isA)‖J‖1 − e−i(t−s)A‖ J̃+‖e−isA‖ J̃‖δ̃(e−i(t−s)A)‖J →0,

as t → s. Since g ∈ L1(R), the function ĝ is continuous. Hence the integral
n∫

−n
δ̃(e−isA)ĝ(s)ds is the limit of Riemann sums. Since δ̃ is a closed derivation,

we have
n∫

−n
e−isA ĝ(s)ds ∈ D(δ̃) and

n∫
−n

δ̃(e−isA)ĝ(s)ds = δ̃
( n∫
−n

e−isA ĝ(s)ds
)

. Tak-

ing (3.4) and (3.11) into account, we have that the integral
∞∫

−∞
δ̃(e−isA)ĝ(s)ds =

lim
n→∞

n∫
−n

δ̃(e−isA)ĝ(s)ds converges. Since δ̃ is a closed derivation, we have that

g(A) ∈ D(δ̃) and δ̃(g(A)) =
1

2π

∞∫
−∞

δ̃(e−isA)ĝ(s)ds.
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Substituting (3.6) in this formula and comparing it with (3.5), we have

δ̃(g(A)) =
1

2π

∞∫
−∞

(−is)ĝ(s)
( 1∫

0

e−istA δ̃(A)e−is(1−t)Adt
)

ds = gO
A(δ̃(A)).

COROLLARY 3.6. Let g have a continuous second derivative on Γ. If J is an s. n.
ideal or B(H) then:

(i) g is J-Lipschitzian and Gateaux J-differentiable on Γ;
(ii) for any closed ∗-derivation δ on J and for each A = A∗ ∈ D(δ̃) with Sp(A) ⊂ Γ,

g(A) ∈ D(δ̃) and δ̃(g(A)) = gO
A(δ̃(A)) ∈ J.

Proof. Let α ⊂ Γ and let h be an infinitely differentiable function on R such
that supp(h) ⊂ Γ and h(t) = 1 in some neighbourhood U of α. The function
gh has a continuous second derivative on Γ and supp(gh) ⊂ Γ. Extend gh
to R by setting (gh)(t) = 0, for t /∈ Γ, and denote this extension also by gh.
By Lemma 3.3, gh is J-Lipschitzian and Gateaux J-differentiable on R. Since
(gh)(B) = g(B)h(B) = g(B), for B = B∗ with Sp(B) ⊂ U, we have that g is
J-Lipschitzian on α, Gateaux J-differentiable on U and gO

B = (gh)OB . Hence g is
J-Lipschitzian and Gateaux J-differentiable on Γ.

Let A = A∗ ∈ D(δ̃) with Sp(A) ⊆ α. By Lemma 3.5, g(A) = (gh)(A) ∈
D(δ̃) and

δ̃(g(A)) = δ̃((gh)(A)) = (gh)OA(δ̃(A)) = gO
A(δ̃(A)) ∈ J

which completes the proof.

Let g and ϕ be continuous functions on R and ϕ have a compact support.
The convolution

(g ∗ ϕ)(t) =

∞∫
−∞

g(t − r)ϕ(r)dr

is a continuous function. For h(t) = tn,

(h ∗ ϕ)(t) =

∞∫
−∞

(t − r)n ϕ(r)dr =
n

∑
i=0

(
n
i

)
tn−i

∞∫
−∞

ri ϕ(r)dr.

For a bounded operator A,

(h ∗ ϕ)(A) =
n

∑
i=0

(
n
i

)
An−i

∞∫
−∞

ri ϕ(r)dr =

∞∫
−∞

(A − r1)n ϕ(r)dr.

Therefore for any polynomial h,

(h ∗ ϕ)(A) =

∞∫
−∞

h(A − r1)ϕ(r)dr.
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Let g be a continuous function on Γ and let A = A∗ with Sp(A) ⊂ Γ. For a
compact β in Γ with Sp(A) ⊂ int(β), choose α in Γ and a > 0 such that

(3.12) Sp(A) ⊂ int(α), α ⊂ int(β) and t + r ∈ β, for t ∈ α and r ∈ [−a, a].

Choose a non-negative infinitely differentiable function ϕ with supp(ϕ)= [−a, a]
and

(3.13)

∞∫
−∞

ϕ(r)dr = 1.

Considering polynomials that uniformly converge to g on β, we obtain

(3.14) (g ∗ ϕ)(A) =

∞∫
−∞

g(A − r1)ϕ(r)dr.

Set

ϕn(t) = nϕ(nt) and gn = g ∗ ϕn.

Then

(3.15)

∞∫
−∞

ϕn(t)dt = 1 and γn = supp(ϕn) = [− a
n

,
a
n

].

LEMMA 3.7. Let g be a Lipschitz function (in the usual sense) on each compact
subset of Γ.

(i) If J is a separable s. n. ideal or B(H), then ‖g(A)− gn(A)‖ J̃ → 0 for each A ∈
J̃sa(Γ).

(ii) If J is a coseparable s. n. ideal, then g(A)− gn(A) → 0 in the weak topology on
J̃, for each A ∈ J̃sa(Γ).

(iii) Let J be an s. n. ideal or B(H) and let δ be a closed ∗-derivation on J. If g is a
J-Lipschitz function on Γ and A = A∗ ∈ D(δ) with Sp(A) ⊂ Γ, then

(3.16) gn(A) ∈ D(δ̃) and δ̃(gn(A)) = (gn)OA(δ(A)) ∈ J.

For each compact subset β of Γ such that Sp(A) ⊂ int(β),

(3.17) ‖δ̃(gn(A))‖J 6 k J(g, β)‖δ(A)‖J .

Proof. For A ∈ J̃sa(Γ), let α ⊂ β in Γ and a > 0 be as in (3.12) and let ϕn be
as in (3.15). Since g and all gn are Lipschitzian in the usual sense on α, we have
from Proposition 2.2 that g(A), gn(A) ∈ J̃. By (3.14),

‖g(A)− gn(A)‖ J̃ =
∥∥∥ ∞∫
−∞

(g(A)− g(A − r1))ϕn(r)dr
∥∥∥

J̃
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6

∞∫
−∞

‖g(A)− g(A − r1)‖ J̃ ϕn(r)dr 6 sup
r∈γn

‖g(A)− g(A − r1)‖ J̃ .(3.18)

If J 6= B(H) is separable, it follows from Theorem 2.5 that ‖g(A) − g(A −
r1)‖ J̃ → 0, as r → 0.

If J = B(H), then ‖g(A) − g(A − r1)‖ → 0, as r → 0. Thus in both cases
‖g(A)− gn(A)‖ J̃ → 0. Part (i) is proved.

Let J = Jφ be a coseparable s. n. ideal. Set Bn = g(A) − gn(A). It fol-
lows from Remark 2.6 that sup

r∈β

‖g(A) − g(A − r1)‖ J̃ < ∞. Hence, by (3.18),

sup
n
‖Bn‖ J̃ 6 ∞.

Similar to (3.18), we have the following estimate for the operator norm of Bn:
‖Bn‖ = ‖g(A) − gn(A)‖ 6 sup

r∈γn

‖g(A) − g(A − r1)‖, where γn = supp(ϕn) =

[− a
n , a

n ]. Since

‖g(A)− g(A − r1)‖ = sup
λ∈Sp(A)

|g(λ)− g(λ − r)| 6 K(g, β)|r|,

where K(g, β) was defined after Remark 2.6, we have ‖Bn‖ 6 K(g, β) a
n → 0, as

n → ∞, where the constant was defined after Remark 2.6.
Let Bn = λn1 + An ∈ J̃. Since sup

n
‖Bn‖ J̃ 6 ∞ and ‖Bn‖ → 0, we have λn →

0, M = sup
n
‖An‖J < ∞ and ‖An‖ → 0. Let I = Jφ∗

0 , T ∈ I and ε > 0. Since I is a

separable ideal, there is a finite rank operator Tε such that ‖T−Tε‖I 6 ε
M . By (2.1),

|FT(An)|6 |FTε (An)|+ |FT−Tε (An)| 6 |FTε (An)|+ ‖T− Tε‖I‖An‖J 6 |FTε (An)|+ ε.
Since ‖An‖ → 0, we have FTε (An) → 0, so FT(An) → 0. Thus Bn → 0 in the weak
topology on J̃. Part (ii) is proved.

Let now J be an s. n. ideal or B(H). Let A = A∗ ∈ D(δ) with Sp(A) ⊂
int(β) ⊂ Γ. Choose a compact subset α of β and a > 0 as in (3.12). We have

Sp(A − r1) ⊆ β, for r ∈ γn = supp(ϕn) = [− a
n

,
a
n

] and all n.

Since gn are infinitely differentiable functions on int(α), it follows from Corol-
lary 3.6(ii) that (3.16) holds for them.

If g is J-Lipschitzian on Γ, we have from (3.3) and (3.16) that

(3.19) ‖δ̃(gn(A))‖J = ‖(gn)OA(δ(A))‖J 6 k J(gn, α)‖δ(A)‖J .

We obtain from (3.2) and (3.14) that, if B, C ∈ B(H)sa(α) and B − C ∈ J, then

‖gn(B)− gn(C)‖J 6

∞∫
−∞

‖g(B − r1)− g(C − r1)‖J ϕn(r)dr
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6

∞∫
−∞

k J(g, β)‖B − C‖J ϕn(r)dr = k J(g, β)‖B − C‖J .

Hence k J(gn, α) 6 k J(g, β), so (3.17) follows from (3.19).

THEOREM 3.8. Let J be a coseparable ideal. Each J-Lipschitz function g on Γ ⊆ R
with g(0) = 0 acts on the domain of every weakly closed ∗-derivation δ on J:

if A = A∗ ∈ D(δ) and Sp(A) ⊂ Γ then g(A) ∈ D(δ).

Moreover, for each compact β in Γ such that Sp(A) ⊂ int(β),

‖δ(g(A))‖J 6 k J(g, β)‖δ(A)‖J .

Proof. Let β be a compact in Γ such that Sp(A) ⊂ int(β). Choose α in Γ and
a > 0 satisfying (3.12) and let ϕ satisfy (3.13). For gn = g ∗ ϕn, it follows from
(3.16) and Lemma 3.7(ii) and (iii) that

gn(A) ∈ D(δ̃), δ̃(gn(A)) ∈ J, ‖δ̃(gn(A))‖J 6 k J(g, β)‖δ(A)‖J

and gn(A) → g(A) in the weak topology on J̃.
Since the sequence {δ̃(gn(A))} is bounded in J, it has a weak cluster point

R ∈ J and ‖R‖J 6 k J(g, β)‖δ(A)‖J . Hence the pair (g(A), R) belongs to the weak
closure of the graph of δ̃. Since δ is weakly closed, the derivation δ̃ is also weakly
closed. Thus g(A) ∈ D(δ̃) and δ(g(A)) = R. Since g(0) = 0, we have g(A) ∈ J.
Hence g(A) ∈ D(δ).

For J = B(H), Theorem 3.8 was proved in [18].

COROLLARY 3.9. Let J be a reflexive ideal (for example, J = Cp, 1 < p < ∞).
Each J-Lipschitz function g on Γ ⊆ R with g(0) = 0 acts on the domains of all closed
∗-derivations on J.

Proof. By Proposition 2.1, J is coseparable. Since J is reflexive, each closed
∗-derivation on J is weakly closed. Thus the proof follows from Theorem 3.8.

For a bounded derivation δ on B(H) and A = A∗ ∈ B(H), Kittaneh obtained
in [20] (see also [12]) that δ(A) ∈ C2 implies δ(g(A)) ∈ C2 for all Lipschitz (in the
usual sense) functions g on Sp(A). In Section 4 of [19] this result was generalized
to all separable and coseparable s. n. ideals J : δ(A) ∈ J implies δ(g(A)) ∈ J for
all J-Lipschitz functions g on Sp(A).

In [25] the second author obtained an analogue of these results for un-
bounded closed ∗-derivations δ on C∗-subalgebras of B(H): if A = A∗ ∈ D(δ)
and δ(A) ∈ Cp, for 1 < p < ∞, then g(A) ∈ D(δ) and δ(g(A)) ∈ Cp, for all func-
tions g on Sp(A) from a special subclass of Cp-Lipschitz functions introduced in
[8]. The next theorem extends this result to all reflexive ideals I and all I-Lipschitz
functions.
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THEOREM 3.10. Let J be a separable s. n. ideal or B(H) and let δ be a closed ∗-
derivation on J. Let I be a reflexive s. n. ideal and I ⊆ J. Suppose that δ(A) ∈ I, for some
A = A∗ ∈ D(δ), and Sp(A) ⊂ Γ. Then for each I-Lipschitz function g on Γ (assume
that g(0) = 0 if J 6= B(H))

g(A) ∈ D(δ) and δ(g(A)) ∈ I.

Moreover, for each compact subset β of Γ such that Sp(A) ⊂ int(β),

‖δ(g(A))‖I 6 kI(g, β)‖δ(A)‖I .

Proof. Let α, β in Γ and a > 0 be as in (3.12) and let ϕn be as in (3.15). Since
g is a Lipschitz function in the usual sense, it follows from Lemma 3.7(i) that
‖g(A)− gn(A)‖ J̃ → 0, for gn = g ∗ ϕn. Since g is an I-Lipschitz function, we have
from (3.16) and (3.17) that

gn(A) ∈ D(δ̃), δ̃(gn(A)) ∈ I and ‖δ̃(gn(A))‖I 6 kI(g, β)‖δ(A)‖I .

Let I∗ be the dual space of I. Since I is reflexive and the sequence {δ̃(gn(A))}
is bounded in I, it has a cluster point R ∈ I in the σ(I, I∗)-topology and ‖R‖I 6
kI(g, β)‖δ(A)‖I . Hence there are linear finite combinations

Rk =
nk

∑
n=mk

λn δ̃(gn(A)) ∈ I with
nk

∑
n=mk

λn = 1, where mk < nk,

converging to R in ‖ · ‖I and mk → ∞, as k → ∞. Set Bk =
nk
∑

n=mk

λngn(A). Then

Bk ∈ D(δ̃), Rk = δ̃(Bk) and

‖g(A)− Bk‖ J̃ 6
nk

∑
n=mk

λn‖g(A)− gn(A)‖ J̃ < sup
mk6n6nk

‖g(A)− gn(A)‖ J̃ → 0.

Since I ⊆ J, we have from Proposition 2.1(i) that there is c > 0 such that
‖X‖J 6 c‖X‖I , for X ∈ I. Hence Rk = δ̃(Bk) converge to R in ‖ · ‖J . Since δ̃ is
closed, g(A) ∈ D(δ̃) and δ̃(g(A)) = R ∈ I.

If J = B(H), then δ̃ = δ and the theorem is proved. If J 6= B(H), then
the condition g(0) = 0 implies g(A) ∈ J. Hence g(A) ∈ D(δ) and δ(g(A)) =
R ∈ I.

Repeating the proof of Theorem 3.10 and using part (ii) of Lemma 3.7 in-
stead of part (i), we obtain the following result.

THEOREM 3.11. Let J be a coseparable s. n. ideal and let δ be a weakly closed ∗-
derivation on J. Let I be a reflexive s. n. ideal and I ⊆ J. Suppose that δ(A) ∈ I, for some
A = A∗ ∈ D(δ), and Sp(A) ⊂ Γ. Then for each I-Lipschitz function g on Γ (assume
that g(0) = 0 if J 6= B(H))

g(A) ∈ D(δ) and δ(g(A)) ∈ I.
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Moreover, for each compact subset β of Γ such that Sp(A) ⊂ int(β),

‖δ(g(A))‖I 6 kI(g, β)‖δ(A)‖I .

It was proved in [8] that, for each 1 < p < ∞, the function h(t) = |t| is Cp-
Lipschitzian on R and there is a universal constant γp such that, for all bounded
selfadjoint operators T and all selfadjoint A ∈ Cp,

(3.20) ‖[T, |A|]‖p 6 γp‖[T, A]‖p.

The constants γp were evaluated in [1] and it was shown there in Theorem 1 that

(3.21) kCp (h, β) 6 γp,

for every compact subset β of R. Using Theorem 3.10, we will extend now in-
equality (3.20) to unbounded operators.

Each symmetric densely defined operator T with domain D(T) defines a
closed ∗-derivation δT on Cp by the formula:

(3.22) δT(A) = i[T, A], where [T, A] = Closure((TA − AT)|D(T)),

with domain

D(δT) = {A ∈ Cp : AD(T) ⊆ D(T), A∗D(T) ⊆ D(T) and [T, A] ∈ Cp}.

Applying (3.21) and Theorem 3.10 to such derivations, we have

COROLLARY 3.12. Let T be an unbounded symmetric operator. If A = A∗ ∈ Cp,
AD(T) ⊆ D(T) and [T, A] ∈ Cp (see (3.22)), then |A|D(T) ⊆ D(T), [T, |A|] ∈
Cp and

‖[T, |A|]‖p 6 γp‖[T, A]‖p.

Problem 3.13. It was proved in [18] that functions act on the domains of all
weakly closed ∗-derivations on C∗-algebras if and only if they are Operator Lips-
chitzian. It follows from Theorem 3.8 that, for coseparable J, J-Lipschitz functions
act on the domains of weakly closed ∗-derivations on J. Do only J-Lipschitz func-
tions act on all weakly closed ∗-derivations on J?

Problem 3.14. It was shown in [18] that Gateaux B(H)-differentiable func-
tions act on the domains of all closed ∗-derivations δ on C∗-algebras and

(3.23) δ(g(A)) = gO
A(δ(A)).

It follows from Corollary 3.9 that J-Lipschitz functions and, therefore, Gateaux J-
differentiable functions act on the domains of all closed ∗-derivations on reflexive
ideals J.

1. Do Gateaux J-differentiable functions act on the domains of all closed ∗-deriva-
tions on all s. n. ideals J?

2. All functions g satisfying (3.4) act on the domains of all closed ∗-deriva-
tions on all s. n. ideals and (3.23) holds for them. Does (3.23) hold for every Gateaux
J-differentiable function that acts on the domain of a closed ∗-derivation δ on J?
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