ACTION OF DISCRETE AMENABLE GROUPS ON REAL W*-ALGEBRAS

A.A. RAKHIMOV

Communicated by William B. Arveson

ABSTRACT. We consider a real analogue of the result of A. Ocneanu about the actions of discrete amenable groups on W*-algebras. One gives the classification up to outer conjugacy of the actions of amenable groups on the hyperfinite real factor of type II₁. A main result is the uniqueness up to outer conjugacy of the free action of an amenable group on the hyperfinite real factor of type II₁.

KEYWORDS: Real W*-algebra, action of groups on real W*-algebras, discrete amenable groups.

MSC (2000): 46L10.

1. INTRODUCTION

The classical papers by Connes [2] and [4] showed that the structure of factors is closely connected with properties of their automorphisms. In [5] and [3] Connes gave the complete classification of periodic automorphisms of hyperfinite type II₁ factor and described the outer conjugation classes of automorphisms of injective type II_∞ factors. On the other hand the classification of periodic automorphisms of W^{*}-algebras is a classification of the actions of a finite cyclic group \mathbb{Z}_n on W^{*}-algebra, where *n* is a period of automorphism. In [6] Jones generalized the Connes work for arbitrary finite groups. In [10] and [7] the classifications of the actions are given for amenable discrete and compact abelian groups.

The classification of periodic automorphisms of hyperfinite real types II_1 , II_{∞} factors were taken by Rakhimov and Usmanov in [12], [13]. In [11] those results generalized for arbitrary finite groups.

In the present paper the author will consider the actions of discrete amenable groups on real W*-algebras. Similarly to the complex case (Ocneanu's work), one gives a complete classification (up to outer conjugacy) of the actions of a discrete amenable group on the hyperfinite real factor of type II₁.

2. PRELIMINARIES

Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space H. A weakly closed *-subalgebra \mathfrak{A} with identity element **1** in B(H) is called a W*-algebra. A real *-subalgebra $\mathfrak{R} \subset B(H)$ is called a *real* W*-algebra if it is closed in the weak operator topology and $\mathfrak{R} \cap i\mathfrak{R} = \{0\}$. A real W*-algebra \mathfrak{R} is called a *real factor* if its center $Z(\mathfrak{R})$ contains only elements of the form $\{\lambda \mathbf{1}\}$, $\lambda \in \mathbb{R}$. We say that a real W*-algebra \mathfrak{R} is of the type I_{fin}, I_{∞}, II₁, II_{∞}, or III_{λ}, $(0 \leq \lambda \leq 1)$ if the enveloping W*-algebra $\mathfrak{A}(\mathfrak{R})$ has the corresponding type in the ordinary classification of W*-algebras. A linear mapping α of an algebra into itself with $\alpha(x^*) = \alpha(x)^*$ is called a *-automorphism if $\alpha(xy) = \alpha(x)\alpha(y)$; *involutive* *-antiautomorphism if $\alpha(xy) = \alpha(y)\alpha(x)$ and $\alpha^2(x) = x$. If α is an involutive *-antiautomorphism of W*-algebra M, we denote by (M, α) the real W*-algebra, generated by α , i.e. $(M, \alpha) = \{x \in M : \alpha(x) = x^*\}$ (see [1]).

Let *N* be a real or complex W*-algebra and *G* be a group, the identity of *G* will be written as **1**. An *action* of *G* on *N* is a homomorphism $\theta : G \to \operatorname{Aut}(N)$; θ is called *free* if $\theta_g \in \operatorname{Int}(N)$ ($g \neq \mathbf{1}$); *crossed* if $\theta_{\mathbf{1}} = \operatorname{Id}$ and $\theta_g \theta_h \theta_{gh}^{-1} \in \operatorname{Int}(N)$, for any $g, h \in G$, where $\operatorname{Aut}(N)$ (respectively $\operatorname{Int}(N)$) is the group of all *-automorphisms (respectively inner *-automorphisms) of *N*. Two actions θ and θ' of *G* on *N* are called *conjugate* if there is a *-automorphism σ of *N* such that $\sigma \theta_g \sigma^{-1} = \theta'_g$, for all $g \in G$; *outer conjugate* if there are a unitary cocycle *u* for θ , i.e. unitaries $u_g \in N$, $g \in G$ with $u_{gh} = u_g \theta_g(u_h)$ and a *-automorphism σ of *N* such that $\sigma \operatorname{Au}_g \theta_g \sigma^{-1} = \theta'_g$, for all $g \in G$.

3. MODEL ACTION

Let *G* be an amenable group and \mathcal{K} be a paving structure of *G*, S_i^n , K_i^n and M^n the sets of *G*, constructed in the Chapter 3 of [10]. We use \mathcal{K} and those sets to index the matrix units of an UHF-algebra. Let \mathcal{E}^0 be a finite dimensional factor of dimension $|\overline{S}^0|$; \mathcal{F}^n be a factor of dimension $|M^n|$ ($n \ge 0$) and $\mathcal{E}^{n+1} = \mathcal{E}^n \otimes \mathcal{F}^n$. Let \mathcal{E} be the finite factor obtained as weak closure of the UHF-algebra $\bigcup_n \mathcal{E}^n$ on the GNS representation associated to its canonical trace. Let (e_{s_1,s_2}^n) ($s_i \in S^n$) be a

system of matrix units in
$$\mathcal{E}^n$$
 and u_g^n be a unitary of \mathcal{E}^n given by

$$u_g^n = \sum_i \sum_{(k,s)} e_{(k_1,s),(k,s)}^n$$

where $g \in G$, $i \in I_n$, $(k,s) \in K_i^n \times S_i^n$, $k_1 = \ell_g^n(k)$ and $\ell_g^n : K^n \to K^n$ is the approximate left *g*-translation defined in 3.4 of [10].

We define the canonical involutive *-antiautomorphism α_n of \mathcal{E}^n as

$$\alpha_n(e_{s_1,s_2}^n) = e_{s_2,s_1}^n.$$

It is easy see that $\alpha_n(u_g^n) = (u_g^n)^*$, $g \in G$.

Since $|\overline{S}^n| \to \infty$, \mathcal{E} is a hyperfinite factor of type II₁; for each $g \in G$, $u_g = \lim_{n \to \infty} u_g^n$ *-strongly was shown in 4.4 of [10] to exist and yield a faithful representation of *G* in \mathcal{E} . Let α be the canonical involutive *-antiautomorphism of \mathcal{E} , generated by $(\alpha_n)_{n \in \mathbb{N}}$. For each n, $\mathcal{E} = \mathcal{E}^n \otimes ((\mathcal{E}^n)' \cap \mathcal{E})$ and $(\mathcal{E}^n)' \cap \mathcal{E}$ is a hyperfinite subfactor of \mathcal{E} type II₁, on which Ad u_g acts almost trivially. The three $(\mathcal{E}, (u_g), \alpha)$ is called the *submodel*; Ad u_g the *submodel action* and α the *submodel involution*.

Let *R* be a countably infinite tensor product of copies of the submodel factor \mathcal{E} , taken with respect to the normalized trace, and for each $g \in G$, we let θ_g^o and α^o be the corresponding tensor product of copies of the submodel action Adu_g and submodel involution α respectively. Then *R* is the hyperfinite factor of type II₁, θ^o is a free action of *G* on *R* (for each $g \in G$ we have $\theta_g^o \in \operatorname{Aut}(R)$), and α^o is an involutive *-antiautomorphism of *R* with $\theta^o \cdot \alpha^o = \alpha^o \cdot \theta^o$. We call $\Re = (R, \alpha^o)$ the *real model* and $\theta^o : G \to \operatorname{Aut}(R)$ the *model action*. The restriction of θ^o to \Re we denote again by θ^o and we call it the *real model action*.

4. PROPERLY AND STRONGLY OUTER AUTOMORPHISM. NONABELIAN ROHLIN THEOREM

Let *M* be a W*-algebra and ω be a free ultrafilter on \mathbb{N} (i.e. a maximal filter which doesn't contain finite sets). A sequence $(x_n)_{n \in \mathbb{N}}$ of elements in *M* is called *central* (respectively ω -*central*), if it is the element of the *C**-algebra $L^{\infty}(\mathbb{N}, M)$, and for each $\psi \in M_*$ we have $\|[\psi, x]\| \to 0$, when $n \to \infty$ (respectively $n \to \omega$). Let $\bigoplus_{\infty} M$ be the direct sum of a countable number of copies of *M* and let $J_{\omega} =$ $\{(x_n) \in \bigoplus_{\infty} M: x_n \to 0 \text{ *-strongly, when } n \to \omega\}$, $\widetilde{M} = \{(x_n) \in \bigoplus_{\infty} M: x_n = x, \forall n\}$. Let ρ be the canonical homomorphism of $\bigoplus_{\infty} M$ onto $\bigoplus_{\infty} M/J_{\omega}$. Put $M_{\omega} =$ $(\bigoplus_{\infty} M/J_{\omega}) \cap \rho(\widetilde{M})'$. It is known that M_{ω} is the algebra of all equivalence classes of ω -centralizing sequences in *M* (see [9]). Moreover, the quotient *C**-algebra $(\mathcal{M}^{\omega}/J_{\omega}) \cap \rho(\widetilde{M})'$ we denote by M^{ω} , where \mathcal{M}^{ω} is the normalizing algebra of J_{ω} .

Similarly we define \Re_{ω} , where \Re is a real W*-algebra, moreover, in [14] it is proved that the *-algebra of central sequences \Re_{ω} is a real W*-algebra and $\mathfrak{A}(\Re)_{\omega} = \Re_{\omega} + i \Re_{\omega}$.

For a *-automorphism (or *-antiautomorphism) β of M (respectively of \Re) the mapping $(x_n)_{n\in\mathbb{N}} \to (\beta(x_n))_{n\in\mathbb{N}}$ defines a *-automorphism (or *-antiautomorphism) β_{ω} of M_{ω} (respectively of \Re_{ω}). If α is an involutive *-antiautomorphism of M it is easy to see that the real W*-algebra $(M_{\omega}, \alpha_{\omega})$ coincides with $(M, \alpha)_{\omega}$. a *-automorphism β is called *properly outer* if none of its restrictions under a nonzero invariant central projection is inner. By Lemma 2.4.1 of [1] a *-automorphism β of σ -finite real W*-algebra \Re is properly outer if and only if its linear extension on $\mathfrak{A}(\mathfrak{R})$ is so. In other words, a *-automorphism β of W*algebra M with $\beta \alpha = \alpha \beta$ is properly outer if and only if β is properly outer on (M, α) . We call β strongly outer if the restriction of β to the relative commutant of any countable β -invariant subset of M_{ω} is properly outer. An action θ of G on M_{ω} is strongly free if all θ_g ($g \neq 1$) are strongly outer. It is easy to show that a *-automorphism β of M with $\beta \alpha = \alpha \beta$ is strongly outer if and only if β is strongly outer on (M, α) , and an action θ of G on M_{ω} with $\theta_g \alpha = \alpha \theta_g$ ($\forall g$) is strongly free if and only if the action $\theta|_{\mathfrak{R}_{\omega}}$ of G on $(M, \alpha)_{\omega}$ is strongly free.

Now we shall give a real analogue of Rohlin Theorem, the proof of which is carried out easily, similarly to the proof of Theorem 6.1 in [10], if we also follow the scheme of Subsections 2.3 and 2.4 of [1].

THEOREM 4.1 (Nonabelian Real Rohlin Theorem). Let *G* be a discrete countable amenable group, *M* be a *W*^{*}-algebra with separable predual and α be an involutive *antiautomorphism of *M*. Let θ : $G \rightarrow \operatorname{Aut}(M_{\omega})$ be a crossed action which is semiliftable (see 5.2 of [10]), strongly free and α_{ω} -invariant. Let ϕ be a faithful normal α -invariant state on *M* such that $\theta|_{Z(M)}$ leaves $\phi|_{Z(M)}$ invariant. Let $\varepsilon > 0$ and K_1, \ldots, K_N be an ε -paving family of subsets of *G*. Then there is a partition of unity $(e_{i,k})_{i=1,\ldots,N_j;k\in K_i}$ in $(M, \alpha)_{\omega}$ such that:

(i)
$$\sum_{i=1}^{N} |K_i|^{-1} \sum_{k,\ell \in K_i} |\theta_{k\ell^{-1}}(e_{i,\ell}) - e_{i,k}|_{\phi} \leq 5\sqrt{\varepsilon}$$
;
(ii) $[e_{i,k}, \theta_g(e_{j,\ell})] = 0$, for all g, i, j, k, ℓ ;
(iii) $\theta_g \theta_h(e_{i,k}) = \theta_{gh}(e_{i,k})$, for all g, h, i, k .

Moreover, $(e_{i,k})_{i,k}$ can be chosen in the relative commutant in $(M, \alpha)_{\omega}$ of any given countable subset of $(M, \alpha)_{\omega}$.

5. MAIN RESULTS

A (real) cocycle crossed action of countable discrete group *G* on real W*algebra (M, α) is a pair (θ, u) , where $\theta : G \to Aut(M)$ and $u : G \times G \to U(M)$ satisfy for $g, h, k \in G$

$$\begin{aligned} \theta_g \theta_h &= \mathrm{Ad} u_{g,h} \theta_{gh}, \quad u_{g,h} u_{gh,k} = \theta_g (u_{h,k}) u_{g,hk}, \\ \theta_g \alpha &= \alpha \theta_g, \quad \alpha (u_{g,h}) = u_{g,h}^*, \quad u_{1,g} = u_{g,1} = \mathbf{1}. \end{aligned}$$

 (θ, u) is called *centrally free* if θ is free with the obvious adaptation of the definition. The real cocycle u is the real coboundary of v (denote as $u = \partial v$), if $v : G \to U(M)$ satisfies $u_{g,h} = \theta_g(v_h^*)v_g^*v_{gh}$ and $\alpha(v_g) = v_g^*, \forall g, h \in G$.

Throughout in future, G will be an amenable group.

THEOREM 5.1. Let M be a W^{*}-algebra with separable predual and α be an involutive *-antiautomorphism of M. Let $\phi \in M_*^+$ be faithful and α -invariant. If (θ, u) is

a centrally free (real) cocycle crossed action of G on (*M*, α)*, such that* $\theta|_{Z(M)}$ *preserves* $\phi|_{Z(M)}$ *, then u is a real coboundary.*

Moreover, given any $\varepsilon > 0$ and any finite $F \subset G$, there exists $\delta > 0$ and a finite $K \subset G$ such that if $||u_{g,h} - \mathbf{1}||_{\phi}^{\#} < \delta$ $(g, h \in K)$, then $u = \partial v$ with $||v_g - \mathbf{1}||_{\phi}^{\#} < \delta$, $g \in F$.

The proof of theorem follows from Theorem 7.5 of [10] with regard to $\alpha(v_g) = v_g^*$ ($g \in G$), since it is given for the (real) cocycle *u*.

A real factor \Re is called a real McDuff factor if it is isomorphic to $R \otimes \Re$, where *R* is the hyperfinite real factor of type II₁. It is easy to see that the enveloping W*-algebra of a real McDuff factor is also a McDuff factor, since $\mathfrak{A}(R \otimes \Re) = \mathfrak{A}(R) \otimes \mathfrak{A}(\Re)$ ([8]) and $\mathfrak{A}(R)$ is the hyperfinite factor of type II₁ ([1]).

LEMMA 5.2. Let \Re be a real McDuff factor. If $\theta : G \to Aut(\Re_{\omega})$ is a semiliftable strongly free action, then $(\Re_{\omega})^{\theta}$ is of the type II₁.

Proof. Since $\mathfrak{A}(\mathfrak{R})$ is a McDuff factor and the linear extension $\overline{\theta}$: $G \to \operatorname{Aut} \mathfrak{A}(\mathfrak{R})_{\omega}$ of θ is also a semiliftable strongly free action by Lemma 8.3 of [10] the fixed point algebra $(\mathfrak{A}(\mathfrak{R})_{\omega})^{\overline{\theta}}$ is of the type II₁. Hence $(\mathfrak{R}_{\omega})^{\theta}$ is also of the type II₁.

By means of the lemma that follows we can lift constructions from \Re_{ω} to \Re .

LEMMA 5.3. Let M be a factor, α be an involutive *-antiautomorphism of M and θ : $G \rightarrow \operatorname{Aut}(M)$ be a centrally free α -invariant action. Let $(v_g) \subset (M, \alpha)^{\omega}$ (i.e. $(v_g) \subset M^{\omega}$ with $\alpha^{\omega}(v_g) = v_g^*$) be a (real) cocycle for $(\theta_g)^{\omega}$ and $(e_{i,j})_{i,j\in I}$ ($|I| < \infty$) be matrix units in $(M, \alpha)^{\omega}$ such that

$$(\operatorname{Adv}_{g} \theta_{g}^{\omega})(e_{i,j}) = e_{i,j}, \quad i, j \in I, \ g \in G.$$

Then there exist representing sequences $(E_{i,j}^{\nu})_{\nu}$ for $e_{i,j}$, which for $\nu \in \mathbb{N}$ are matrix units in (M, α) , and $(\mathbf{v}_{g}^{\nu})_{\nu}$ for \mathbf{v}_{g} , which for each ν form a (θ_{g}) -cocycle in (M, α) , such that

$$(\operatorname{Adv}_{g}^{\nu} \theta_{g})(E_{i,j}^{\nu}) = E_{i,j}^{\nu}, \quad i, j \in I, \ g \in G, \ \nu \in \mathbb{N}.$$

The proof of lemma follows from Lemma 8.4 of [10] with regard to $\alpha \theta_g = \theta_g \alpha$, $\alpha^{\omega}(\mathbf{v}_g) = \mathbf{v}_g^*$ and $\alpha^{\omega}(e_{i,j}) = e_{j,i}$ (*i*, *j* \in *I*, *g* \in *G*).

In future let (M, α) be a real McDuff factor with separable predual and θ : $G \rightarrow \text{Aut}(M)$ be a centrally free α -invariant action, let $\varepsilon > 0$, Ψ be a finite α invariant subset of M_*^+ and F be a finite subset of G. If we use lemmas and the
scheme of proof of Theorem 8.5 in [10], we obtain

THEOREM 5.4. There exists a cocycle (v_g) for (θ_g) with $\alpha(v_g) = v_g^*$ and a II₁ hyperfinite real subfactor $R \subset (M, \alpha)$ such that

$$(M, \alpha) = R \otimes (R' \cap (M, \alpha)), \quad (\mathrm{Adv}_g \, \theta_g)|_R = \mathrm{id}_R \quad \text{and} \\ \|\mathbf{v}_g - \mathbf{1}\|_{\psi}^{\#} < \varepsilon, \quad \|\psi \circ P_{R' \cap (M, \alpha)} - \psi\| < \varepsilon, \quad \psi \in \Psi, \ g \in F.$$

This implies

COROLLARY 5.5. θ is outer conjugate to $id_R \otimes \theta$.

Moreover, given any $\varepsilon > 0$, finite $F \subset G$, and $\psi \in M_*^+$ with $\psi \cdot \alpha = \psi$, there exists an (θ_g) -cocycle (v_g) such that $\alpha(v_g) = v_g^*$, $(\operatorname{Adv}_g \theta_g)$ is conjugate to $\operatorname{id}_R \otimes \theta$ and $||v_g - \mathbf{1}||_{\psi}^{\#} < \varepsilon \ (g \in F)$.

Similarly to Theorem 5.4 we may obtain the following theorem.

THEOREM 5.6. There exists a cocycle (v_g) for (θ_g) with $\alpha(v_g) = v_g^*$ and a II_1 hyperfinite real subfactor $R \subset (M, \alpha)$ such that

$$(M, \alpha) = R \otimes (R' \cap (M, \alpha)), \quad (\operatorname{Adv}_g \theta_g)(R) = R,$$

 $(\operatorname{Adv}_g \theta_g|_R)$ is conjugate to the model action θ^o and

$$\|\mathbf{v}_g - \mathbf{1}\|_{\psi}^{\#} < \varepsilon, \quad \|\psi \circ P_{R' \cap (M,\alpha)} - \psi\| < \varepsilon, \quad \psi \in \Psi, \ g \in F.$$

This implies

COROLLARY 5.7. θ is outer conjugate to $\theta^{o} \otimes \theta$.

Applying the scheme of proof of [11] and 9.1–9.4 of [10] we obtain

THEOREM 5.8. If θ is an approximately inner and $\psi_o \in M^+_*$ with $\psi_o \alpha = \psi_o$, then there exists a cocycle (v_g) for (θ_g) with $\alpha(v_g) = v_g^*$ and a II₁ hyperfinite real subfactor $R \subset (M, \alpha)$ such that

$$(M, \alpha) = R \otimes (R' \cap (M, \alpha)), \quad (\operatorname{Adv}_{g} \theta_{g})(R) = R,$$

 $(\operatorname{Adv}_{g} \theta_{g}|_{R})$ is conjugate to the model action θ^{o} and

 $(\mathrm{Adv}_g \,\theta_g|_{R'\cap(M,\alpha)}) = \mathrm{id}_{R'\cap(M,\alpha)}, \quad \|\mathbf{v}_g - \mathbf{1}\|_{\psi_0}^{\#} < \varepsilon, \quad g \in F.$

From the above results we can easily obtain

THEOREM 5.9. If θ is an approximately inner, θ is outer conjugate to $\theta^{o} \otimes id_{(M,\alpha)}$.

Proof. By Corollary 5.7 θ^o is outer conjugate to $\theta^o \otimes \operatorname{id}_R$. From Theorem 5.8 we infer that θ is outer conjugate to $\theta^o \otimes \operatorname{id}_{R'\cap(M,\alpha)}$ and hence to $\theta^o \otimes \operatorname{id}_R \otimes \operatorname{id}_{R'\cap(M,\alpha)} = \theta^o \otimes \operatorname{id}_{(M,\alpha)}$.

From the uniqueness, up to conjugacy, of an involutive *-antiautomorphism of the hyperfinite type II₁ factor M ([14]) and from $Ct(M, \alpha) = Int(M, \alpha)$, $\overline{Int}(M, \alpha)$ = Aut(M, α) ([1]) we obtain the main result of the paper

COROLLARY 5.10. Any two free actions of the amenable group G on the hyperfinite real factor of type II₁ are outer conjugate.

REFERENCES

[1] S.A. AYUPOV, A.A. RAKHIMOV, S.M. USMANOV, *Jordan, Real and Lie Structures in Operator Algebras*, Math. Appl., vol. 418, Kluwer Academic Publ., Dordrecht 1997.

- [2] A. CONNES, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. (4) 6(1973), 133–252.
- [3] A. CONNES, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. (4) 8(1975), 383–420.
- [4] A. CONNES, Classification of injective facteurs, Ann. Math. 1(1976), 73–115.
- [5] A. CONNES, Periodic automorphisms of the hyperfinite factor of type II₁, *Acta Sci. Math. (Szeged)* **39**(1977), 39–66.
- [6] V. JONES, Actions of finite groups on the hyperfinite type II₁ factor, *Mem. Amer. Math. Soc.* 237(1980), vol. 28.
- [7] V. JONES, M. TAKESAKI, Actions of compact abelian groups on semifinite injective factors, *Acta Math.* 153(1984), 213–258.
- [8] B.-R. LI, Real Operator Algebras, World Sci. Publ., River Edge, NL 2003.
- [9] D. MCDUFF, To the structure of II₁-factors, Uspekhi Mat. Nauk 6(1970), 29–53.
- [10] A. OCNEANU, Actions of Discrete Amenable Groups on von Neumann Algebras, Lecture Notes in Math., vol. 1138, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1985.
- [11] A.A. RAKHIMOV, Actions of finite groups on the hyperfinite real type II₁ factor, *Methods Funct. Anal. Topology* 4(1998), 72–88.
- [12] A.A. RAKHIMOV, S.M. USMANOV, Periodic *-automorphisms and *-antiautomorphisms of injective factors, *Funktsional. Anal. i Prilozhen.* 29(1995), 87–89.
- [13] A.A. RAKHIMOV, S.M. USMANOV, Outer conjugacy classes of automorphisms and antiautomorphisms of real and complex injective factors, J. Funct. Anal. 144(1997), 475–485.
- [14] E. STORMER, Real structure in the hyperfinite factor, Duke Math. J. 1(1980), 145–153.

A.A. RAKHIMOV, DEPARTMENT OF MATHEMATICS, KARADENIZ TECHNICAL UNIVERSITY, TRABZON, 61080, TURKEY

E-mail address: rakhimov@ktu.edu.tr

Received June 22, 2005.