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ABSTRACT. Let ζ and η be distinct points on the unit circle and suppose that
ϕ is a linear-fractional self-map of the unit disk D, not an automorphism, with
ϕ(ζ) = η. We describe the C∗-algebra generated by the associated composition
operator Cϕ and the shift operator, acting on the Hardy space on D.
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1. INTRODUCTION

Any analytic self-map ϕ of the unit disk D induces a bounded composition
operator Cϕ : f → f ◦ ϕ on the Hardy space H2. The linear-fractional self-maps
of D form a rich class of examples, and many properties of composition operators
are profitably studied in the context of these maps (e.g. cyclicity, spectral prop-
erties, subnormality; see [8], [9], [22]). The space H2 also supports the Toeplitz
operators Tw. Here, w is a bounded measurable function on the unit circle ∂D,
and Tw acts on H2 by Tw f = P(w f ), where P is the orthogonal projection of L2

(the Lebesgue space associated with normalized arc-length measure on ∂D) onto
H2. Taking w to be the independent variable z, one obtains the shift operator Tz
on H2. A theorem of L. Coburn [4], [5] and I. Gohberg and I. Fel’dman [12], [13]
asserts that C∗(Tz), the unital C∗-algebra generated by Tz, contains the ideal K of
compact operators, as well as all Toeplitz operators Tw with continuous symbol
w. Moreover, the map sending w to the coset of Tw is a ∗-isomorphism of C(∂D),
the algebra of continuous functions on ∂D, onto the quotient algebra C∗(Tz)/K.
In this article our goal is to replace C∗(Tz) by C∗(Tz, Cϕ), the unital C∗-algebra
generated by Tz and Cϕ, for certain linear-fractional ϕ.

Section 2 presents a characterization of those analytic self-maps ϕ of D with
|ϕ(eiθ)| < 1 a.e. on ∂D for which Cϕ commutes with Tz or T∗z modulo K. In Sec-
tion 3 we show that for any linear-fractional self-map ϕ of the disk which is not



136 THOMAS L. KRIETE, BARBARA D. MACCLUER, AND JENNIFER L. MOORHOUSE

an automorphism, there is an associated linear-fractional map σ (the “Krein ad-
joint" of ϕ) and a scalar s so that C∗ϕ = sCσ + K for some compact operator K. Our
setting here is primarily that of H2, although this result is easily extended to the
Bergman space. This theorem plays a key role in the work in Section 4, where we
study C∗(Tz, Cϕ). Recent work of M. Jury [17] treats the case where ϕ is an auto-
morphism (and indeed ranges over a discrete group Γ of automorphisms), show-
ing that the C∗-algebra generated by {Cϕ : ϕ ∈ Γ} contains Tz, and exhibiting the
quotient of this algebra by K as the discrete crossed product C(∂D) × Γ. In the
present article we suppose ϕ is not an automorphism but does satisfy ‖ϕ‖∞ = 1.
In the case that ϕ is a parabolic non-automorphism (see Section 2 for a discussion
of this terminology; such maps have a fixed point on ∂D), the work of P. Bourdon,
D. Levi, S. Narayan and J. Shapiro in [3] shows that C∗ϕCϕ − CϕC∗ϕ is compact.
Such a Cϕ also commutes with Tz and T∗z modulo K, so that C∗(Tz, Cϕ)/K is com-
mutative, hence describable by Gelfand theory. Here we suppose that ϕ is neither
an automorphism nor a parabolic non-automorphism, but that there exist distinct
points ζ, η in ∂D with ϕ(ζ) = η. In this case C∗(Tz, Cϕ)/K is not commutative,
but we will see that it is tractable. As an application, in Section 4.6 we concretely
determine the essential spectrum of any element of C∗(Tz, Cϕ). Our main tool is
the localization theorem of R.G. Douglas [11].

We thank Paul Bourdon for his careful reading of this manuscript and help-
ful comments.

2. COMPOSITION OPERATORS ESSENTIALLY COMMUTING WITH Tz OR T∗z

The commutator AB− BA of two bounded operators A and B on a Hilbert
space H is denoted [A, B]. An operator is said to be essentially normal if its self-
commutator [A∗, A] is compact. In the course of their work on essentially normal
linear-fractional composition operators, Bourdon, Levi, Narayan and Shapiro [3]
show that if ϕ is a linear fractional non-automorphism mapping D into D and
fixing a point of ∂D, then [T∗z , Cϕ] is compact, where Tz is the shift on H2. Here
we will give a generalization which is perhaps of independent interest.

For α a complex number of modulus 1, and ϕ an analytic self-map of D, the
real part of (α + ϕ)/(α − ϕ) is a positive harmonic function on D. Necessarily
then this function is the Poisson integral of a finite positive Borel measure µα on
∂D; µα, |α| = 1 are the Clark measures for ϕ. We write E(ϕ) for the closure in ∂D of
the union of the closed supports of the singular parts µs

α of the Clark measures as
α ranges over the unit circle. For a linear-fractional non-automorphism ϕ which
sends ζ ∈ ∂D to η ∈ ∂D, one has µs

α = 0 when α 6= η and µs
η = |ϕ′(ζ)|−1δζ , where

δζ is the unit point mass at ζ. We will use the following result, proved in [18].
Here Mw denotes the operator on L2 = L2(∂D) of multiplication by the bounded
measurable function w.

THEOREM 2.1. [18] Let ϕ be an analytic self-map of D such that |ϕ(eiθ)| < 1 a.e.
with respect to Lebesgue measure on ∂D, and suppose that w is a bounded measurable
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function on ∂D which is continuous at each point of E(ϕ). The weighted composition
operator MwCϕ : H2 → L2 is compact if and only if w ≡ 0 on E(ϕ).

It will be convenient to recast Theorem 2.1 in terms of Toeplitz operators.

COROLLARY 2.2. Suppose that ϕ and w satisfy the hypotheses in the first sentence
of Theorem 2.1. Then TwCϕ : H2 → H2 is compact if and only if w ≡ 0 on E(ϕ).

Proof. It is enough to show that MwCϕ is compact when TwCϕ is compact.
Note that

MwCϕ = TwCϕ + HwCϕ

where Hw : H2 → (H2)⊥ is the Hankel operator defined by Hw = (I − P)Mw|H2 .
We need only check that HwCϕ is compact. Let w̃ be a continuous function on ∂D
agreeing with w on E(ϕ). We have

HwCϕ = (I − P)M(w−w̃)Cϕ + Hw̃Cϕ.

Since w̃ is continuous, Hw̃ is compact by Hartman’s theorem [14]. On the other
hand, M(w−w̃)Cϕ is compact by Theorem 2.1, and we are done.

The next result gives the above-mentioned generalization.

THEOREM 2.3. Let ϕ be an analytic self-map of D such that |ϕ(eiθ)| < 1 a.e.
with respect to Lebesgue measure. Suppose that ϕ agrees almost everywhere on ∂D with
a bounded measurable function ϕ̂ which is continuous at each point of E(ϕ). Then the
following are equivalent:

(i) [Tz, Cϕ] ∈ K.
(ii) [T∗z , Cϕ] ∈ K.

(iii) For each ζ in E(ϕ), ϕ̂(ζ) = ζ.
When these conditions hold, [Tw, Cϕ] ∈ K for every w in C(∂D).

Proof. We use the following identity from [3]:

(2.1) [T∗z , Cϕ] = T(zϕ−1)CϕT∗z .

Since T∗z , the backward shift, is a partial isometry with range H2, the operator
on the right-hand side of Equation (2.1) is compact exactly when T(zϕ−1)Cϕ is
compact. This operator clearly coincides with T(zϕ̂−1)Cϕ. Corollary 2.2 gives the
equivalence of (ii) and (iii). For the equivalence of (i) and (iii) we easily check that

[Tz, Cϕ] = T(z−ϕ)Cϕ = T(z−ϕ̂)Cϕ

and again apply Corollary 2.2, with w = z − ϕ̂. The statement about [Tw, Cϕ] is
immediate.
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3. THE ADJOINT OF Cϕ

In this section we develop some properties of linear-fractional composition
operators and their adjoints. To any linear-fractional map

(3.1) ϕ(z) =
az + b
cz + d

we associate another linear-fractional map σϕ defined as

(3.2) σϕ(z) =
az− c
−bz + d

.

The map σϕ is sometimes referred to as the “Krein adjoint" of ϕ; for an explanation
of this terminology, see [10]. When no confusion can result, we write σ for σϕ.
When ϕ is a self-map of the disk, σ will be also, and if ϕ(ζ) = η for ζ, η ∈ ∂D,
then σ(η) = ζ; see [8]. Carl Cowen [8] has shown that the adjoint of any linear-
fractional Cϕ, acting on H2, is given by

(3.3) C∗ϕ = TgCσT∗h

where g(z) = (−bz + d)−1, h(z) = cz + d, and Tg, Th are the analytic Toeplitz
operators of multiplication by the H∞ functions g and h.

Our first result uses Equation (3.3) to show that when ‖ϕ‖∞ = 1 but ϕ is not
an automorphism, the adjoint of Cϕ, modulo the ideal K of compact operators, is
a scalar multiple of Cσ.

THEOREM 3.1. Suppose that ϕ given by Equation (3.1) is a linear-fractional self-
map of D, not an automorphism, which satisfies ϕ(ζ) = η for some ζ, η ∈ ∂D. Let
s = (cζ + d)/(−bη + d). Then there exists a compact operator K on H2 so that C∗ϕ =
sCσ + K, where σ is as given by Equation (3.2).

Proof. We first consider the case where ζ = η, so that ζ is a fixed point of ϕ.
Let σ, h and g be associated to ϕ as in Equations (3.2) and (3.3), and note that σ
fixes ζ also. It is immediate that [Cσ, T∗h ] = c[Cσ, T∗z ]. Invoking Theorem 2.3, it fol-
lows that CσT∗h = T∗h Cσ + K1 for some compact operator K1. From Equation (3.3)
we then have

C∗ϕ = TgCσT∗h ≡ TgT∗h Cσ (mod K) ≡ ThgCσ (mod K)

where the last equivalence is justified by Proposition 7.22 in [11]. Since E(σ) =
{η} = {ζ}, we may now apply Corollary 2.2 with w = hg− h(ζ)g(ζ) to see that

ThgCσ − h(ζ)g(ζ)Cσ = T(hg−h(ζ)g(ζ))Cσ ∈ K,

which gives the desired conclusion.
In the case that ζ 6= η we consider the map ψ(z) = ζηϕ(z) which fixes ζ.

Since C∗ϕ = CUC∗ψ where U(z) = ζηz, the first part of the argument shows that
C∗ϕ = CUC∗ψ ≡ CU(hψ(ζ)gψ(ζ)Cσψ ) (mod K). Since σψ ◦U = σϕ and hψ(ζ)gψ(ζ)

= (cζ + d)/(−bη + d), the conclusion follows.
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REMARK 3.2. An analogue of Theorem 3.1 holds in the Bergman space A2

of analytic functions in L2(D, dA), where dA is normalized area measure on D. If
ϕ given by Equation (3.1) is a self-map of D, then on A2 we have C∗ϕ = TgCσT∗h ,
where σ is as in Equation (3.2), g(z) = (−bz + d)−2, and h(z) = (cz + d)2 [15]. We
follow the outline of the proof of Theorem 3.1 to see that C∗ϕ = sCσ + K for some
compact K on A2, where now s = [(cζ + d)/(−bη + d)]2. Now the compactness of
[Cσ, T∗z ] follows from Theorem 3 in [19], and the compactness of Thg−h(ζ)g(ζ)Cσ is
obtained as an application of Lemma 1 in [20] on compact Carleson measures of
the form W(z)d(Aσ−1), with the choice W(z) = |h(z)g(z)− h(ζ)g(ζ)|2. We leave
the details to the interested reader.

The scalar s = (cζ + d)/(−bη + d) can equivalently be described as |σ′(η)|
or |ϕ′(ζ)|−1. This will be verified below, in Proposition 3.6. In particular, the
scalar s in the statement of Theorem 3.1 is strictly positive.

COROLLARY 3.3. For ϕ a linear-fractional self-map of the disk, not an auto-
morphism, with ‖ϕ‖∞ = 1, the self-commutator [C∗ϕ, Cϕ] is compact if and only if
ϕ ◦ σ = σ ◦ ϕ.

Proof. We have [C∗ϕ, Cϕ] = s(Cϕ◦σ − Cσ◦ϕ) + K where s is as in the state-
ment of Theorem 3.1 and K is compact. Since a difference of non-compact linear-
fractional composition operators is compact only if it is zero [2], [18], the result
follows.

A linear-fractional self-map whose fixed point set, relative to the Riemann
sphere, consists of a single point ζ in ∂D is termed parabolic. It is conjugate, via
the map (ζ + z)/(ζ − z), to a translation by some complex number t, Re t > 0,
in the right half-plane. When Re t = 0 we have a (parabolic) automorphism;
otherwise the map is not an automorphism. When the translation number t is
strictly positive, we call the associated linear-fractional self-map of D a positive
parabolic non-automorphism. Among the linear-fractional non-automorphisms
fixing ζ ∈ ∂D, the parabolic ones are characterized by ϕ′(ζ) = 1. For further
details on the classification of linear-fractional self-maps of D, see [3] or Chapter 0
of [22].

A linear-fractional non-automorphism ϕ with a fixed point ζ on ∂D, which
commutes with its Krein adjoint, must be parabolic. This follows by a consider-
ation of fixed points: if ϕ has another fixed point z0 in the Riemann sphere, and
it commutes with σ, then σ(z0) would also be fixed by ϕ. Neither σ(z0) = ζ nor
σ(z0) = z0 are possible, since σ fixes the boundary point ζ if ϕ does, and ϕ fixes
1/z0 if σ fixes z0. Thus Corollary 3.3 gives another view of the main result in [3]:
a non-automorphism linear-fractional composition operator Cϕ is non-trivially
essentially normal if and only if ϕ is parabolic.

PROPOSITION 3.4. Suppose ϕ, not an automorphism, is a linear-fractional self-
map of D with ϕ(ζ) = η for some ζ, η ∈ ∂D. If σ is the Krein adjoint of ϕ, then
ϕ′(ζ)σ′(η) = 1 and τ ≡ ϕ ◦ σ is a positive parabolic non-automorphism.
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Proof. Using ˜ for the Krein adjoint, we have ϕ̃ ◦ σ = σ̃ ◦ ϕ̃ = ϕ ◦ σ. Thus
the map τ = ϕ ◦ σ, a non-automorphism fixing η ∈ ∂D, is its own Krein adjoint.
By the remark preceeding the statement of Proposition 3.4, this means that τ is
parabolic and τ(z) = Φ−1(Φ(z) + t) for Φ(z) = (η + z)/(η − z) and some t with
Re t > 0. Direct calculation, using τ̃ = τ, shows that t must be positive.

Since parabolic non-automorphisms have derivative one at their (bound-
ary) fixed point ([22], p. 3), we have ϕ′(σ(η))σ′(η) = 1 or ϕ′(ζ)σ′(η) = 1, as
desired.

The spectrum of a composition operator whose symbol is a parabolic non-
automorphism has been described in [7]. In particular, we have the following
result.

PROPOSITION 3.5. [7] Let τ = ϕ ◦ σ, where ϕ is a non-automorphism with
ϕ(ζ) = η for ζ, η ∈ ∂D. The spectrum σ(Cτ) and essential spectrum σe(Cτ) are both
equal to [0, 1].

Proof. The map τ fixes η ∈ ∂D, and by conjugating by a rotation, Cτ is
unitarily equivalent to a composition operator with positive parabolic symbol
fixing 1. Such a map can be written as

(2− t)z + t
−tz + 2 + t

for some positive t. Applying Corollary 6.2 in [7], we have σ(Cτ) = [0, 1]. Since
every point of σ(Cτ) is a boundary point of the spectrum, and none is isolated,
we also have σe(Cτ) = σ(Cτ) = [0, 1] ([6], Theorem 37.8).

As promised, we can describe the scalar s appearing in Theorem 3.1 in a
more useful way:

PROPOSITION 3.6. Let ϕ, σ and s be as in the statement of Theorem 3.1. We have
s = |σ′(η)| = |ϕ′(ζ)|−1.

Proof. Direct calculation shows that

σ′(η)
ϕ′(ζ)

=
( cζ + d
−bη + d

)2
.

By Proposition 3.4, ϕ′(ζ) = (σ′(η))−1, so that s2 = |σ′(η)|2. By Theorem 3.1,
CϕC∗ϕ ≡ sCϕCσ (mod K) = sCσ◦ϕ, and by Proposition 3.5, the essential spectrum
of Cσ◦ϕ is [0, 1]. Since CϕC∗ϕ is positive, the scalar s must be positive, and we have
s = |σ′(η)|.

COROLLARY 3.7. If ϕ is a non-automorphism, linear-fractional map with ϕ(ζ) =
η for some ζ, η ∈ ∂D, then σe(C∗ϕCϕ) = σe(CϕC∗ϕ) = [0, s].

Proof. We have C∗ϕ ≡ sCσ (mod K) for s = 1/|ϕ′(ζ)| by Theorem 3.1 and
Proposition 3.6. Thus CϕC∗ϕ ≡ sCσ◦ϕ (mod K) and C∗ϕCϕ ≡ sCϕ◦σ (mod K), and
the conclusion follows from Proposition 3.5 and Proposition 3.6.
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Note that since the non-zero points in σ(CϕC∗ϕ) and σ(C∗ϕCϕ) are the same,
we also have σ(CϕC∗ϕ)=σ(C∗ϕCϕ). Moreover, this common spectrum consists of
[0, s] plus at most finitely many eigenvalues greater than s, and of finite multiplic-
ity.

4. THE UNITAL C∗-ALGEBRA GENERATED BY Cϕ AND Tz

Throughout this section, ϕ will be a fixed but arbitrary linear-fractional self-
map of D satisfying the following:

(i) ϕ is not an automorphism.
(ii) ϕ(ζ) = η for some ζ 6= η ∈ ∂D.

Conditions (i) and (ii) imply that C2
ϕ is compact on H2, since ‖ϕ ◦ ϕ‖∞ < 1.

The algebra C∗(Tz, Cϕ) is the closed linear span of all words in Tz, T∗z , Cϕ, C∗ϕ
and I, and contains all Toeplitz operators Tw with w continuous. We set A =
C∗(Tz, Cϕ)/K, and denote the cosets of Cϕ, C∗ϕ, and Tw by x, x∗, and tw, respec-
tively. Let e denote the coset of the identity. A main goal of this section is a
description of A. This description will allow us, for example, to determine the
essential norm and essential spectrum of any element of C∗(Tz, Cϕ). For ϕ as de-
scribed above, E(ϕ) = {ζ}, and Corollary 2.2 implies that Tw−w(ζ)Cϕ is compact,
that is,

TwCϕ ≡ w(ζ)Cϕ (mod K).

Since E(σ) = {η}, we also see from Corollary 2.2, Theorem 3.1, and Propo-
sition 3.6 that

CϕTw =(TwC∗ϕ)∗≡ s(TwCσ)∗ (mod K)≡ s(w(η)Cσ)∗ (mod K)≡w(η)Cϕ (mod K)

where s = |ϕ(ζ)|−1. In addition, TvTw − Tvw is compact whenever v and w are in
C(∂D). Phrasing these relations in terms of the cosets yields

twx = w(ζ)x, xtw = w(η)x, twx∗ = w(η)x∗, x∗tw = w(ζ)x∗, tvtw = tvw,

for all w and v in C(∂D). Since x2 = (x∗)2 = 0, we generate A as a Banach space
from linear combinations of

tw, (x∗x)m, (xx∗)n, x(x∗x)j, x∗(xx∗)k,

where w ∈ C(∂D), the integers m, n are positive, and the integers j and k are
non-negative.

Let K be a compact subset of the non-negative real numbers which contains
[0, s]. We write C0(K) for the space of functions in C(K) which vanish at zero. We
will need the next result, which follows easily from the Hahn-Banach Theorem
and the Riesz Representation Theorem; here t denotes the independent variable.

LEMMA 4.1. (i) Let R and S be dense linear manifolds in C0(K) and C(K), re-
spectively. If α > 0, then

tαR = tαS = C0(K).
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(ii) Suppose 0 < λ 6 s and let T be a linear manifold which is dense in the subspace
{ f ∈ C(K) : f (λ) = 0}. Then

tαT = { f ∈ C0(K) : f (λ) = 0}.

We next introduce the various objects which are central to our analysis and
record some observations about them.

4.1. THE C∗-ALGEBRA C . It follows from the relations described above that for
every continuous function w on ∂D, tw commutes with x∗x and xx∗. Further, if
we let Cζ,η denote the algebra of all w in C(∂D) satisfying w(η) = w(ζ), then tw
commutes with x and x∗ whenever w lies in Cζ,η(∂D). Finally note that the self-
adjoint element a ≡ xx∗ + x∗x commutes with both x and x∗. The spectrum of a
is easily identified:

PROPOSITION 4.2. Let x be the coset of Cϕ in A, where ϕ = (az + b)/(cz + d)
satisfies conditions (i)–(ii) stated at the beginning of Section 4. If a = xx∗ + x∗x, then
σ(a) = σ(xx∗) ∪ σ(x∗x) = [0, s] where s = 1/|ϕ′(ζ)|.

Proof. The elements x∗x and xx∗ generate a commutative C∗-algebra. It fol-
lows from Gelfand theory, the facts that (xx∗)(x∗x) = (x∗x)(xx∗) = 0, and (by
Corollary 3.7) σ(xx∗) = σ(x∗x) = [0, s], that σ(a) = σ(xx∗) ∪ σ(x∗x).

Let C denote the (necessarily commutative) C∗-algebra generated by a and
the Toeplitz cosets {tw : w ∈ Cζ,η(∂D)}. Clearly, C lies in the center of A. We next
describe the Gelfand theory of C. First we look at the algebra Cζ,η(∂D).

It is easy to see that the multiplicative linear functionals on Cζ,η(∂D) are all
point evaluations

`λ : f → f (λ)

with the proviso that `η = `ζ . Accordingly, the maximal ideal space of Cζ,η(∂D)
is a “figure eight", namely, the circle ∂D with ζ and η identified. We denote by Λ
the disjoint union of ∂D and [0, s], with ζ, η and 0 identified to a point p (a figure
eight with an interval attached). Given w in Cζ,η(∂D), let us agree to extend w
continuously to Λ by setting w(λ) = w(ζ) = w(η) when λ = p or 0 < λ 6 s.
Similarly, if f ∈ C0([0, s]), extend f continuously to Λ by putting f (p) = f (0) = 0
and f (λ) = 0 for λ ∈ ∂D\{ζ, η}. With these understandings, which remain in
force throughout, we have the following result.

PROPOSITION 4.3. The algebra C consists of all elements of the form b = tw +
f (a) where w is in Cζ,η(∂D) and f is in C0([0, s]). Moreover, b uniquely determines w
and f . The maximal ideal space of C coincides with Λ, and the Gelfand transform from C
to C(Λ) has the form

tw + f (a) → w + f .

Proof. We temporarily write C0 for {tw + f (a) : w ∈ Cζ,η(∂D) and f ∈
C0([0, s])}. If w(ζ) = w(η) and f is in C0([0, s]), then, since f is a uniform
limit of polynomials vanishing at zero (and (x∗x)(xx∗) = 0), we have tw f (a) =
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tw( f (x∗x) + f (xx∗)) = w(η) f (x∗x) + w(ζ) f (xx∗) = w(ζ) f (a). Since twtv = twv
for continuous w and v, we see that C0 is an algebra.

Suppose ` is a multiplicative linear functional on C. Restricting ` to

{tw : w ∈ Cζ,η(∂D)} ∼= Cζ,η(∂D)

we see that there is a unique α ∈ ∂D with `(tw) = w(α) for all continuous w with
w(ζ) = w(η). Restricting ` to

{ f (a) : f ∈ C([0, s])} ∼= C([0, s])

shows that there is a unique point β in [0, s] with `( f (a)) = f (β). Thus

`(tw f (a)) = `(tw)`( f (a)) = w(α) f (β).

Also, if f (0) = 0, then tw f (a) = w(ζ) f (a) as seen above, so `(tw f (a)) = w(ζ) f (β).
Since any function in C0([0, s]) vanishes at 0, we can have α ∈ ∂D\{ζ, η} if β = 0,
but if 0 < β 6 s, α ∈ {ζ, η}. Thus with the understandings stated prior to the
statement of the proposition, `(tw + f (a)) = w(λ) + f (λ) for a unique λ in Λ and
any tw + f (a) in C0.

The above arguments show that C(Λ) is the Gelfand representation for C.
Moreover, the map

tw + f (a) → w + f
from C0 to C(Λ) is an isometric ∗-homomorphism from C0 to C(Λ). But C(Λ)
consists of exactly such sums w + f , so this ∗-homomorphism is onto C(Λ). Since
C(Λ) is complete, so is C0. Since C0 is dense in C, we conclude C0 = C.

4.2. THE POLAR DECOMPOSITION OF Cϕ AND THE ALGEBRA A0. We begin with
some observations on the polar decomposition of any operator T on a Hilbert
space H. Suppose that T = U

√
T∗T, where U is a partial isometry with initial

space (ker T)⊥ = T∗H and final space TH = (ker T∗)⊥. The operators U∗U and
UU∗ are, respectively, the projections onto (ker T)⊥ and TH. Moreover, UT∗T =
TT∗U and so

(4.1) U f (T∗T) = f (TT∗)U

for all functions continuous on the spectra of both T∗T and TT∗. Taking f to be the
square root function shows that the polar decomposition for T∗ is T∗ = U∗√TT∗.
The partial isometry U is unitary if T and T∗ are one-to-one. Observe that every
non-trivial composition operator is one-to-one, and the adjoint formula of Equa-
tion (3.3) guarantees that, for linear-fractional composition operators, the adjoint
is also one-to-one. Thus the linear-fractional composition operators under con-
sideration here have the polar decomposition Cϕ = U

√
C∗ϕCϕ where U is uni-

tary. If we apply these remarks to T = Cϕ = U
√

C∗ϕCϕ, we have x = u
√

x∗x

and x∗ = u∗
√

xx∗ where u = [U], the coset of U modulo K, and x = [Cϕ].
Moreover, as observed above, U, and hence u, are unitary. By Corollary 3.7, the
sets σ(x∗x) = σe(C∗ϕCϕ) and σ(xx∗) = σe(CϕC∗ϕ) both coincide with [0, s], where
s = |ϕ′(ζ)|−1.
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Now C∗(Tz, Cϕ) is the closed linear span of elements of the form

Tw, f (C∗ϕCϕ), g(CϕC∗ϕ), Cϕ p(C∗ϕCϕ), C∗ϕq(CϕC∗ϕ), K,

where f , g, p and q are polynomials with f (0) = g(0) = 0, w is in C(∂D), and
K is a compact operator. The map f → f (C∗ϕCϕ) extends to a ∗-isomorphism of
C0(σ(C∗ϕCϕ)) onto the closed subspace { f (C∗ϕCϕ) : f ∈ C0(σ(C∗ϕCϕ))} in B(H2);
the analogous statement holds for the map g → g(CϕC∗ϕ). Writing

Cϕ p(C∗ϕCϕ) = U
√

C∗ϕCϕ p(C∗ϕCϕ),

we see by Lemma 4.1 that {Cϕ p(C∗ϕCϕ) : p a polynomial} = {Uh(C∗ϕCϕ) : h ∈
C0(σ(C∗ϕCϕ))}; similarly, {C∗ϕq(CϕC∗ϕ) : q a polynomial} = {U∗k(CϕC∗ϕ) : k ∈
C0(σ(CϕC∗ϕ))}. Thus A = C∗(Tz, Cϕ)/K contains, and is the closure of, the set
A0 of elements of the form

(4.2) b = tw + f (x∗x) + g(xx∗) + uh(x∗x) + u∗k(xx∗)

where w ∈ C(∂D), and f , g, h and k are in C0([0, s]), with s = 1/|ϕ′(ζ)|. We will
see later that A0 = A; for now we show that A0 is an algebra, and each element
of A0 has a unique representation in the above form. To this end, we record some
consequences of the next pair of equations, which follow from Equation (4.1) by
taking cosets and adjoints:

(4.3) u f (x∗x) = f (xx∗)u and u∗ f (xx∗) = f (x∗x)u∗

for all f ∈ C([0, s]).

PROPOSITION 4.4. If A0 is defined as above, then A0 is an algebra.

Proof. We must show that given elements b1 ∈ A0 and b2 ∈ A0 having the
form

bj = twj + f j(x∗x) + gj(xx∗) + uhj(x∗x) + u∗k j(xx∗), j = 1, 2

with wj ∈ C(∂D) and f j, gj, hj, k j in C0([0, s]), then b1b2 has the same form. To do
this, it suffices to show that the product of any of the five terms of b1 with any of
the five terms of b2 is again in A0. Some of these verifications are immediate, for
example f1(x∗x) f2(x∗x) = f1 f2(x∗x), where f1 f2 is in C0([0, s]) if f1 and f2 are.
For the others, we make use of the basic Equations of (4.3) together with:

(4.4) f (x∗x)g(xx∗) = 0 = g(xx∗) f (x∗x)

for f and g in C0([0, s]). Equation (4.4) follows by uniformly approximating f and
g by polynomials vanishing at 0. From these equations we see that:

g1(xx∗)uh2(x∗x) = ug1(x∗x)h2(x∗x), uh1(x∗x)g2(xx∗) = 0,

uh1(x∗x)uh2(x∗x) = uh1(x∗x)h2(xx∗)u∗ = 0,

uh1(x∗x)u∗k2(xx∗) = h1(xx∗)uu∗k2(xx∗) = h1(xx∗)k2(xx∗),

u∗k1(xx∗)uh2(x∗x) = u∗uk1(x∗x)h2(x∗x) = k1(x∗x)h2(x∗x),

u∗k1(xx∗)u∗k2(xx∗) = u∗k1(xx∗)k2(x∗x)u∗ = 0.
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Similarly we see (using the coset identities preceeding Lemma 4.1) that for f , g, h,
and k in C0([0, s]) and w ∈ C(∂D),

tw f (x∗x) = w(η) f (x∗x), twg(xx∗) = w(ζ)g(xx∗),

twuh(x∗x) = w(ζ)uh(x∗x), twu∗k(xx∗) = w(η)u∗k(xx∗).

This shows that A0 is an algebra.

The next result addresses the uniqueness of representation of elements inA0.

PROPOSITION 4.5. For an element b in A0, there is a unique w ∈ C(∂D) and
unique functions f , g, h and k in C0([0, s]) so that Equation (4.2) holds.

Proof. It suffices to show that if

(4.5) 0 = tw + f (x∗x) + g(xx∗) + uh(x∗x) + u∗k(xx∗),

then each term on the right-hand side is zero. Multiplying on the right by x∗x
yields 0 = twx∗x+ f (x∗x)x∗x+g(xx∗)x∗x + uh(x∗x)x∗x + u∗k(xx∗)x∗x = w(η)x∗x
+ f (x∗x)x∗x + uh(x∗x)x∗x so that

uh(x∗x)x∗x = −[w(η)x∗x + f (x∗x)x∗x].

The right-hand side is normal, and the left-hand side has square zero, so both
sides must vanish. Thus h ≡ 0 and f + w(η) ≡ 0 on [0, s]; since f (0) = 0, we must
have w(η) = 0 and f ≡ 0. Thus Equation (4.5) is now

0 = tw + g(xx∗) + u∗k(xx∗).

Multiplying on the left by xx∗ gives 0 = xx∗tw + xx∗g(xx∗) + xx∗u∗k(xx∗) =
w(ζ)xx∗ + xx∗g(xx∗) + xx∗u∗k(xx∗) so that

−[w(ζ)xx∗ + xx∗g(xx∗)] = xx∗u∗k(xx∗) = 0.

It follows that g + w(ζ) ≡ 0 on [0, s]; since g(0) = 0, we see that w(ζ) = 0 and
g ≡ 0 on [0, s]. Returning again to Equation (4.5) we have

0 = tw + u∗k(xx∗).

Multiplying on the left by x∗x yields

0 = x∗xtw + x∗xu∗k(xx∗) = w(η)x∗x + x∗xk(x∗x)u∗.

Since w(η) = 0, this forces k ≡ 0, and from this it follows finally that tw = 0.

4.3. LOCALIZATION AND THE STRUCTURE OF A. For λ in Λ, let Iλ denote the
closed, two-sided ideal in A generated by the maximal ideal

Jλ = {tw + f (a) : w ∈ Cζ,η(∂D), f ∈ C0([0, s]) and w(λ) + f (λ) = 0}

of C. Here w and f are understood to extend to Λ as described prior to Propo-
sition 4.3. For b in A, we write [b]Iλ

for the coset of b in A/Iλ. The localization
theorem of R.G. Douglas ([11], p. 196) tells us that

‖b‖ = sup
λ∈Λ

‖[b]Iλ
‖,
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and the map
b → {[b]Iλ

}λ∈Λ

is an isometric ∗-homomorphism of A into ∑
λ∈Λ

⊕
A/Iλ. Moreover, a given b in

A is invertible if and only if each coset [b]λ is invertible, for λ ∈ Λ. Our immediate
objective is to compute the local algebras A/Iλ.

For λ in Λ we define a map Φλ : A0 → M2, the algebra of 2× 2 matrices, as
follows. Let b in A0 be given by Equation (4.2). We put

(4.6) Φλ(b) =



[
w(ζ) + g(λ) h(λ)
k(λ) w(η) + f (λ)

]
if 0 < λ 6 s,

[
w(ζ) 0
0 w(η)

]
if λ = p,

[
w(λ) 0
0 w(λ)

]
if λ ∈ ∂D\{ζ, η}.

We write I2×2 for the identity matrix in M2 and Mdiag
2 for the algebra of 2 × 2

diagonal matrices. The range of Φλ will be denoted Ran Φλ.

PROPOSITION 4.6. For each λ in Λ, Φλ is a ∗-homomorphism from A0 to M2
with

(4.7) Ran Φλ =


M2 when 0 < λ 6 s,

Mdiag
2 when λ = p,

{cI2×2 : c ∈ C} when λ ∈ ∂D\{ζ, η}.

Proof. First consider λ > 0. Any element b in A0 has the form b = tw + y,
where w is in C(∂D) and

(4.8) y = f (x∗x) + g(xx∗) + uh(x∗x) + u∗k(xx∗)

with f , g, h, k in C0([0, s]). Given b1 = tw1 + y1 and b2 = tw2 + y2 in A0,

(4.9) b1b2 = tw1 tw2 + y1tw2 + tw1 y2 + y1y2.

Taking the notation from Equation (4.8) for y1 and y2, we have

y1y2 =[ f1(x∗x) f2(x∗x) + k1(x∗x)h2(x∗x)]+u[g1(x∗x)h2(x∗x) + h1(x∗x) f2(x∗x)]

+u∗[k1(xx∗)g2(xx∗) + f1(xx∗)k2(xx∗)]+[g1(xx∗)g2(xx∗) + h1(xx∗)k2(xx∗)],

where we have used the list of identities in the proof of Proposition 4.4 and col-
lected like terms. Thus

Φλ(y1y2) =
[

g1(λ)g2(λ) + h1(λ)k2(λ) g1(λ)h2(λ) + h1(λ) f2(λ)
k1(λ)g2(λ) + f1(λ)k2(λ) f1(λ) f2(λ) + k1(λ)h2(λ)

]
= Φλ(y1)Φλ(y2).
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Now tw1 y2=w1(η) f2(x∗x)+w1(ζ)g2(xx∗)+w1(ζ)uh2(x∗x)+w1(η)u∗k2(xx∗).
Thus

Φλ(tw1 y2) =
[

w1(ζ)g2(λ) w1(ζ)h2(λ)
w1(η)k2(λ) w1(η) f2(λ)

]
=

[
w1(ζ) 0
0 w1(η)

] [
g2(λ) h2(λ)
k2(λ) f2(λ)

]
= Φλ(tw1)Φλ(y2).

Similarly, we find Φλ(y1tw2) = Φλ(y1)Φλ(tw2). Since tw1 tw2 = tw1w2 , it
follows that Φλ(tw1 tw2) = Φλ(tw1)Φλ(tw2). Applying Φλ to both sides of Equa-
tion (4.9) and invoking the above identities, we see that

Φλ(b1b2) = Φλ(tw1)Φλ(tw2) + Φλ(y1)Φλ(tw2) + Φλ(tw1)Φλ(y2) + Φλ(y1)Φλ(y2)

= (Φλ(tw1) + Φλ(y1))(Φλ(tw2) + Φλ(y2)) = Φλ(b1)Φλ(b2)

as desired. Clearly the range of Φλ is M2, which yields the conclusion for 0 <
λ 6 s.

The remaining cases λ = p and λ ∈ ∂D\{ζ, η}, which are considerably
easier since there one has Φλ(tw + y) = Φλ(tw), are left for the reader.

PROPOSITION 4.7. For λ ∈ Λ, kerΦλ = Iλ.

Proof. For λ in Λ, denote by Ialg
λ the two-sided algebraic ideal in A0 gener-

ated by Jλ. Since ker Φλ is an ideal containing Jλ, we know Jλ ⊂ Ialg
λ ⊂ ker Φλ.

By definition, Iλ = Ialg
λ . It suffices to show that ker Φλ ⊂ Ialg

λ , for then we will
have

Iλ = Ialg
λ ⊂ ker Φλ ⊂ Ialg

λ = Iλ,

which gives the desired conclusion.
Consider first the case 0 < λ 6 s. An element b in A0, given by Equa-

tion (4.2), lies in ker Φλ exactly when w(ζ) + g(λ), w(η) + f (λ), h(λ) and k(λ) are
all zero. We claim that the sum of the first three terms on the right side of Equa-
tion (4.2) lies in Ialg

λ . To see this, pick m and n in C(∂D) with m + n ≡ 1, m(ζ) =
0, m(η) = 1, and n(ζ) = 1, n(η) = 0. Then w = mw + nw so that tw = tmw + tnw.
To prove the claim, it is enough to show that both tmw + f (x∗x) and tnw + g(xx∗)
lie in Ialg

λ . Consider tmw + f (x∗x).

Case 1. w(η) 6= 0.

Putting m1 = mw/w(η), we see that

tmw + f (x∗x) = tmw + m1(η) f (x∗x) + m1(ζ) f (xx∗)

= tm1w(η) + tm1( f (x∗x) + f (xx∗)) = tm1(tw(η) + f (a)).

Since w(η) is constant (and hence lying in Cζ,η(∂D)) and w(η) + f (λ) = 0, tw(η) +

f (a) lies in Jλ, so tmw + f (x∗x) ∈ Ialg
λ .

Case 2. w(η) = 0.
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If m and n are as above, mw vanishes at both ζ and η. Fix a closed arc I in
∂D whose interior contains ζ, but with η not in I. This time, define m1 = |mw|1/2

on I, m1 > 0 on ∂D\I, and m1(η) = 1. Let w1 be mw/|mw|1/2 when mw 6= 0 and
0 otherwise. Note that w1 is continuous and mw = m1w1 on ∂D. Thus

tmw + f (x∗x) = tmw + m1(η) f (x∗x) + m1(ζ) f (xx∗)

= tm1w1 + tm1( f (x∗x) + f (xx∗)) = tm1(tw1 + f (a)).

Since w1(ζ) = w1(η) = 0 and f (λ) = 0, tw1 + f (a) lies in Jλ. We conclude that
tmw + f (x∗x) is in Ialg

λ in Case 2, as well as Case 1. A similar argument shows

that tnw + g(xx∗) lies in Ialg
λ in both cases, thus proving the claim.

Next we show that the fourth term in b, uh(x∗x), is in Ialg
λ . If p is continuous

on [0, s], with p(0) = p(λ) = 0, then p(a) lies in Jλ. Thus xp(x∗x) = xp(a) is in
Ialg

λ . Writing x = u
√

x∗x, we see that xp(a) = u
√

x∗xp(x∗x). According to (ii) of
Lemma 4.1, the closure of such objects includes our fourth term uh(x∗x), so that
uh(x∗x) is in Ialg

λ . Similarly, Ialg
λ contains u∗k(xx∗), the fifth term of b, so that b is

in Ialg
λ as desired. This completes the proof for 0 < λ 6 s.

Next we consider the case λ = p = {0, ζ, η}, the triple point in Λ. Recall
that if f is in C0([0, s]), then f (p) = f (0) = 0, while any w in Cζ,η(∂D) satisfies
w(p) = w(ζ) = w(η). An element b of A0, specified by Equation (4.2), lies in the
kernel of Φp exactly when w(ζ) = w(η) = 0. We want to show that ker Φp ⊂ Ialg

p .
Let m and n be as described above. For f in C0([0, s]),

tm f (a) = tm( f (x∗x) + f (xx∗)) = m(η) f (x∗x) + m(ζ) f (xx∗) = f (x∗x),

and similarly, for g ∈ C0([0, s]), tng(a) = g(xx∗). Thus f (x∗x) and g(xx∗) lie in
Ialg

p . If w(ζ) = w(η) = 0, then tw lies in Jp ⊂ Ialg
p . As noted above for the case

0 < λ 6 s, uh(x∗x) and u∗k(xx∗) both lie in Ialg
λ and thus so does b, establishing

the conclusion for λ = p.
Finally, if λ is in ∂D\{ζ, η}, note that Jλ consists of those elements tw + f (a)

with w(λ) = 0, while the elements of ker Φλ have the form given by Equa-
tion (4.2), with w(λ) = 0. It follows easily (and similarly), that Ialg

λ contains
ker Φλ in this case as well.

PROPOSITION 4.8. Let λ ∈ Λ.
(i) If 0 < λ 6 s,A/Iλ is ∗-isomorphic to M2.

(ii) A/Ip is ∗-isomorphic to Mdiag
2 .

(iii) If λ is in ∂D\{ζ, η}, A/Iλ is ∗-isomorphic to {cI2×2 : c ∈ C}.

Proof. For an ideal I in an algebra B, we write [b]I throughout for the coset
in B/I of an element b in B. First suppose 0 < λ 6 s. Since ker Φλ ⊂ A0 ∩ Iλ,
we may define a ∗-homomorphism

Γλ : A0/ker Φλ → A0/(A0 ∩ Iλ) by Γλ([b]ker Φλ
) = [b](A0∩Iλ).
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By Proposition 4.6 we know that A0/ker Φλ is ∗-isomorphic to M2; write this
isomorphism as Tλ : M2 → A0/ker Φλ. Thus we have a sequence of onto ∗-
homomorphisms

(4.10) M2 →
A0

ker Φλ
→ A0

A0 ∩ Iλ
→ A0 + Iλ

Iλ
,

where the first map is Tλ, the second is Γλ and the last, call it Rλ, is provided by
the first isomorphism theorem for rings (see, for example, p. 105 in [16]) and has
the form Rλ : [b]A0∩Iλ

→ [b]Iλ
. Since A0 is dense in A, so is A0 + Iλ, and we have

(A0 + Iλ)/Iλ both dense in A/Iλ and finite-dimensional. Therefore
A0 + Iλ

Iλ
=
A
Iλ

.

Thus we have a homomorphism Sλ = Rλ ◦ Γλ ◦ Tλ from M2 onto A/Iλ. Since
M2 has no non-trivial ideals, the kernel of Sλ is either M2 or {0}. Since A is a
C∗-algebra, Iλ 6= A (see [1], p. 33), and thus our homomorphism is injective; that
is M2 ∼= A/Iλ.

Next consider (ii), with λ = p. We repeat the above argument, but this
time, by Proposition 4.6, we may replace M2 on the left side of (4.10) by Mdiag

2 .

Again, the above argument yields a homomorphism Sp from Mdiag
2 onto A/Ip.

However, unlike M2, Mdiag
2 contains two non-trivial ideals, namely

(4.11)
{[

a 0
0 0

]
: a ∈ C

}
and

{[
0 0
0 b

]
: b ∈ C

}
.

Again, Ip 6= A and so ker Sp is either {0} or one of these two ideals. If it is the first
ideal in (4.11), then Sp induces an isomorphism of C and A/Ip whose inverse has
the form [b]Ip → w(η) when b is given by Equation (4.2). In particular, for b = tw,
we see that ‖[tw]Ip‖ = |w(η)|. However, for 0 < λ 6 s, we know that

‖[tw]Iλ
‖ =

∥∥∥∥[
w(ζ) 0
0 w(η)

]∥∥∥∥
M2

= max{|w(ζ)|, |w(η)|}.

The map λ → ‖[b]Iλ
‖ is known to be upper semi-continuous on Λ (see Theo-

rem 1.34 of [1]), which implies that for each w in C(∂D),

max{|w(ζ)|, |w(η)|} = lim sup
λ↓0

‖[tw]Iλ
‖ 6 ‖[tw]Ip‖ = |w(η)|.

This is clearly impossible. Thus ker Sp cannot be the first ideal in (4.11), or sim-
ilarly, the second. Therefore, Sp has kernel {0} and provides an isomorphism of

Mdiag
2 and A/Ip, proving (ii).

Finally, for (iii), one can repeat the general argument from (i), with λ ∈
∂D\{ζ, η}, replacing M2 in (4.10) by {cI2×2 : d ∈ C} ∼= C, an algebra with no
non-trivial ideals.

One easily checks that the isomorphism S−1
λ from A/Iλ into M2 is given for

b in A0 by
S−1

λ : [b]Iλ
→ Φλ(b).
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By Equation (4.6), S−1
λ , and thus Sλ, are manifestly ∗-maps.

REMARK 4.9. For future reference, we note that by the above proof, the com-
position Sλ of the three homomorphisms in (4.10) is an isomorphism, and thus
the map Γλ is an isomorphism of A0/ker Φλ and A0/(A0 ∩ Iλ). In other words,
ker Φλ = A0 ∩ Iλ.

By Proposition 4.6 and Proposition 4.8, we have ∗-isomorphisms

(4.12) A/Iλ
∼= A0/ker Φλ

∼=


M2 when 0 < λ 6 s,

Mdiag
2 when λ = p,

{cI2×2 : c ∈ C} when λ ∈ ∂D\{ζ, η},

the composition being S−1
λ . The objects on the right are C∗-algebras, so that S−1

λ
is isometric. Thus, for b ∈ A0,

‖[b]Iλ
‖A/Iλ

= ‖Φλ(b)‖(4.13)

=



∥∥∥∥∥
[

w(ζ) + g(λ) h(λ)
k(λ) w(η) + f (λ)

]∥∥∥∥∥ if 0 < λ 6 s,

∥∥∥∥∥
[

w(ζ) 0
0 w(η)

]∥∥∥∥∥ if λ = p,

∥∥∥∥∥
[

w(λ) 0
0 w(λ)

]∥∥∥∥∥ if λ∈∂D\{ζ, η},

the norm on the right being the operator norm in M2.
Now we write B(Λ, M2) for the C∗-algebra of all bounded functions F from

Λ to M2, with norm
‖F‖ = sup

λ∈Λ

‖F(λ)‖M2 .

We can define a ∗-homomorphism Φ from A0 to B(Λ, M2) by letting Φ(b) be the
function whose value at λ in Λ is Φλ(b). We writeD for the range of Φ. According
to the above results and Douglas’ theorem, ‖b‖A = sup

λ∈Λ

‖Φλ(b)‖, so that Φ is an

isometric ∗-isomorphism of A0 onto the ∗-algebra D. It is easy to verify that D
consists of all

F =
[

f11 f12
f21 f22

]
in B(Λ, M2) such that each fij is continuous on {p} ∪ (0, s) and ∂D\{ζ, η}, f12
and f21 vanish at p and on ∂D\{ζ, η}, f11 = f22 on ∂D\{ζ, η}, while f11(p) =
lim
λ→ζ

f11(λ) and f22(p) = lim
λ→η

f22(λ), the limits being taken as λ → ζ or λ → η

through points in ∂D\{ζ, η}. One easily checks thatD is closed in B(Λ, M2). Since
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Φ is isometric, A0 is complete. Since A0 is dense in A, we can close the circle to
obtain the following result.

PROPOSITION 4.10. The algebra A0 coincides with A, and ker Φ = Iλ.

Let us define two closed subspaces M and N in A:

M ≡ { f (x∗x) : f ∈ C0([0, s])}, N ≡ {g(xx∗) : g ∈ C0([0, s])}.

We have already seen that A0 is an algebraic direct sum of the closed subspaces
{tw : w ∈ C(∂D)}, M,N , uM and u∗N . Since A0 = A, a Banach space, we have
the following corollary.

COROLLARY 4.11. As a Banach space, A = C∗(Tz, Cϕ)/K has the direct sum
decomposition

A = {tw : w ∈ C(∂D)} ⊕M⊕N ⊕ uM⊕ u∗N .

In summary we have the following:

THEOREM 4.12. The map Φ is a ∗-isomorphism of A onto D.

REMARK 4.13. Given the form of the algebra D, it is not hard to show that
every irreducible representation of C∗(Tz, Cϕ)/K is unitarily equivalent either to
one of the two-dimensional representations Φλ, λ in (0, s], or to one of the scalar
representations `λ : b → w(λ), λ in ∂D, where b is given by Equation (4.2).

4.4. C∗(Tz, Cϕ) REVISITED AND THE MAP Ψ. Let E and F be the spectral projec-
tions of C∗ϕCϕ and CϕC∗ϕ respectively, which are associated to their common es-
sential spectrum [0, s]. We have

C∗ϕCϕ = EC∗ϕCϕE+(I− E)C∗ϕCϕ(I− E) and CϕC∗ϕ = FCϕC∗ϕF+(I− F)CϕC∗ϕ(I− F).

Notice that the second term on the right-hand side of each of these expressions
is a finite rank operator. Thus if f and g are continuous on σ(C∗ϕCϕ) = σ(CϕC∗ϕ),
then

(4.14) f (C∗ϕCϕ) = f (EC∗ϕCϕE) + K1, g(CϕC∗ϕ) = g(FCϕC∗ϕF) + K2

for finite rank operators K1 and K2. Also note that the maps f → f (EC∗ϕCϕE) and
g → f (FCϕC∗ϕF) are isometries from C0([0, s]) onto closed subspaces M and N in
C∗(Tz, Cϕ).

THEOREM 4.14. As a Banach space, C∗(Tz, Cϕ) is the direct sum of closed sub-
spaces:

(4.15) C∗(Tz, Cϕ) = {Tw : w ∈ C(∂D)} ⊕M⊕N⊕UM⊕U∗N⊕K.

Proof. Given B ∈ C∗(Tz, Cϕ), the coset b = [B] satisfies Equation (4.2) for
unique w ∈ C(∂D) and f , g, h and k in C0([0, s]). Since the coset map B → [B] is
one-to-one when restricted to each of the first five direct summands (for example,
[Uh(C∗ϕCϕ)] = uh(x∗x)), we see that

(4.16) B = Tw + f (EC∗ϕCϕE) + g(FCϕC∗ϕF) + Uh(EC∗ϕCϕE) + U∗k(FCϕC∗ϕF) + K
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for a unique compact operator K.

Now consider the map Ψ : C∗(Tz, Cϕ) → D defined by Ψ(B) = Φ([B]).
Clearly we have the following result.

THEOREM 4.15. We have a short exact sequence of C∗-algebras,

0 → K i→ C∗(Tz, Cϕ) Ψ→ D → 0,

where i is inclusion.

4.5. THE DENSE SEMI-POLYNOMIAL SUBALGEBRA P . We write P for the dense
non-commutative semi-polynomial ∗-algebra consisting of finite linear combina-
tions of all Tw, w in C(∂D), all words in Cϕ and C∗ϕ, and all compact operators.
Every element of P has the form

(4.17) B = Tw + f (C∗ϕCϕ) + g(CϕC∗ϕ) + Cϕ p(C∗ϕCϕ) + C∗ϕq(CϕC∗ϕ) + K,

where w is in C(∂D), f , g, p and q are polynomials with f (0) = 0 = g(0), and K
is compact. Cutting C∗ϕCϕ and CϕC∗ϕ down by the spectral projections E and F re-

spectively, we find B = Tw + f (EC∗ϕCϕE) + g(FCϕC∗ϕF) + UE
√

C∗ϕCϕ p(C∗ϕCϕ)E +

U∗F
√

CϕC∗ϕq(CϕC∗ϕ)F + K′, where we have absorbed each of the finite ranks aris-

ing from Equations (4.14) into the new compact operator K′. By Theorem 4.14,
B determines each of the six summands here. Since f , g, p and q are polynomi-
als, and so are determined by their restrictions to [0, s], the decomposition of B in
Equation (4.17) is unique. Since C∗ϕCϕ − sCϕ◦σ and CϕC∗ϕ − sCσ◦ϕ, are compact,
we see that Equation (4.17) becomes

B = Tw + A1 + A2 + A3 + A4 + K′′

where K′′ is compact, and A1, A2, A3, A4 are finite linear combinations of com-
position operators whose associated self-maps of D are taken from the respective
lists (ϕ ◦ σ)n1 , (σ ◦ ϕ)n2 , (ϕ ◦ σ)n3 ◦ ϕ, and (σ ◦ ϕ)n4 ◦ σ, for integers n1, n2 > 1
and n3, n4 > 0, where τn denotes the nth iterate of the map τ. Since all of these
self-maps are distinct, Corollary 5.17 in [18] says the corresponding composition
operators are linearly independent modulo K. Thus the operator B determines
the coefficients in each of the sums A1, A2, A3, A4, and w and K′′ as well. We
summarize these observations in the following theorem.

THEOREM 4.16. Every operator in P is a sum of a unique Toeplitz operator with
continuous symbol, a unique compact operator and a unique finite linear combination of
composition operators with associated disk maps taken from the set

{(ϕ ◦ σ)n1 , (σ ◦ ϕ)n2 , (ϕ ◦ σ)n3 ◦ ϕ, (σ ◦ ϕ)n4 ◦ σ}

where nk > 1 for k = 1, 2 and nk > 0 for k = 3, 4.

For an operator B given by Equation (4.17), the matrix function Ψ(B) can
properly be called the “symbol of B". In particular, if r is the function defined on
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Λ by r(λ) =
√

λ for 0 < λ 6 s and r(λ) = 0 otherwise, then

Ψ(Cϕ) =
[

0 r
0 0

]
.

4.6. ESSENTIAL SPECTRA AND ESSENTIAL NORMS IN C∗(Tz, Cϕ).

THEOREM 4.17. Let B in C∗(Tz, Cϕ) be given by Equation (4.16). The essential
spectrum of B is the union of w(∂D) with the image of

1
2

[
f (t) + w(η) + g(t) + w(ζ)±

√
( f (t) + w(η)− g(t)− w(ζ))2 + 4h(t)k(t)

]
as t ranges over [0, s].

Proof. By Theorem 4.12 or Theorem 4.15, the essential spectrum of B is

{z ∈ C : det (Φλ([B])− zI2×2) = 0 for some λ ∈ Λ}.

Evaluating this determinant via Equation (4.6) gives the desired result.

We start with some examples of Theorem 4.17 in which w = 0.

EXAMPLE 4.18. The essential spectrum of the real part of Cϕ is the interval
[−
√

s/2,
√

s/2], where s = |ϕ′(ζ)|−1. This follows from using f (t) = g(t) = 0 and
h(t) = k(t) =

√
t in Theorem 4.17 to see that

σe(Cϕ + C∗ϕ) = [−
√

s,
√

s].

EXAMPLE 4.19. The essential spectrum of the self-commutator [C∗ϕ, Cϕ] is
[−s, s]. This is obtained from Theorem 4.17, using f (t) = t, g(t) = −t, and k(t) =
h(t) = 0. Similarly, the anti-commutator C∗ϕCϕ + CϕC∗ϕ has essential spectrum
[0, s].

EXAMPLE 4.20. Let

B1 = Cϕ◦σ + Cσ◦ϕ + Cϕ − Cσ,

so that f (t) = t/s = g(t), h(t) =
√

t and k(t) = −
√

t/s. Then σe(B1) is the
parabolic curve y2 + iy, −1 6 y 6 1.

EXAMPLE 4.21. Let

B2 = Cϕ◦σ − Cσ◦ϕ +
1
2

Cϕ − Cσ,

so that f (t) = t/s, g(t) = −t/s, h(t) =
√

t/2 and k(t) = −
√

t/s. Then σe(B2) is
the union of two complex line segments, [−1/

√
2, 1/

√
2] and [−i/4, i/4].

EXAMPLE 4.22. Let

B3 = 2Cϕ◦σ + Cϕ − Cσ,

so that f (t) = 2t/s, g(t) = 0, h(t) =
√

t and k(t) = −
√

t/s. Here σe(B3) is the
circle of radius 1/2 centered at z = 1/2.
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Next we look at the effect of adding a Toeplitz operator. Consider an oper-
ator B = Tw + Y given by Equation (4.16), with

Y = f (ECϕC∗ϕE) + g(FCϕC∗ϕF) + Uh(EC∗ϕCϕE) + U∗k(FCϕC∗ϕF) + K.

According to Theorem 4.17, adding Y to Tw does not affect the part of the essential
spectrum coming from σe(Tw) = w(∂D). If w takes a common value c at the points
ζ and η, Theorem 4.17 also implies that

σe(B) = σe(Tw) ∪ σe(cI + Y).

In this case, the effect of adding Tw, on the part of the essential spectrum coming
from Y, is to merely translate it by c. However if w(ζ) 6= w(η), adding Tw can
non-trivially deform Y′s contribution to σe(B).

EXAMPLE 4.23. For r > 0, suppose w in C(∂D) satisfies

w(η) = r
1 + i√

2
, w(ζ) = −r

1 + i√
2

.

Let B = Tw + Y where Y = Cϕ + C∗ϕ. Taking f , g, h, and k as in Example 4.18, we
see from Theorem 4.17 that

σe(B) = w(∂D) ∪ {±
√

t + r2i : 0 6 t 6 s}.

Thus when r = 0 (so that w(ζ) = w(η) = 0),

σe(B) = w(∂D) ∪ [−
√

s,
√

s] = σe(Tw) ∪ σe(Y).

However, when r > 0, adding Tw to Y disconnects the essential spectrum of the
latter operator, deforming the two halves of σe(Y), [0,

√
s] and [−

√
s, 0], into the

curves {
√

t + r2i : 0 6 t 6 s} and {−
√

t + r2i : 0 6 t 6 s}, respectively. The first
of these curves lies in the open first quadrant, is convex, and falls downhill to the
right. The second, of course, is its reflection through the origin.

Finally, we consider essential norms. If B in C∗(Tz, Cϕ) is given by Equa-
tion (4.16), we know that the essential norm ‖B‖e is given by

‖B‖e = sup
λ∈Λ

‖Φλ([B])‖M2 .

EXAMPLE 4.24. Let B = Tz + Cϕ + C∗ϕ. Here we have w(eiθ) = eiθ , f (t) =
g(t) = 0 and h(t) = k(t) =

√
t. If λ is in ∂D\{ζ, η} or λ = p, then Φλ([B]) is a

diagonal unitary matrix. For 0 < λ 6 s,

Φλ([B]) =
[

ζ
√

λ√
λ η

]
.
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A well-known formula for the operator norm on M2 (see [21], p. 17) gives

‖B‖2
e = sup

0<λ6s

∥∥∥∥[
ζ

√
λ√

λ η

]∥∥∥∥2

= sup
0<λ6s

{
1 + λ +

√
(1 + λ)2 − |ζη − λ|2

}

= 1 +
1

|ϕ′(ζ)|
+

√
2

|ϕ′(ζ)|

√
1 + Re(ζη) .
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