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ABSTRACT. We establish some generalizations of Urysohn lemma for the hull-
kernel structure in the setting of JB∗-triples. These results are the natural exten-
sions of those obtained by C.A. Akemann in the setting of C∗-algebras. We
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INTRODUCTION

Let K be a topological compact Hausdorff space and let C(K) denote the
Banach space of all complex-valued continuous functions on K. The classical
Urysohn lemma allows us to describe the open subsets of K in the following way:
a subset A ⊆ K is open if and only if there is an increasing net (xα) in C(K)
satisfying that 0 6 xα(t) ↗ 1, for each t ∈ A, and 0 = xα(t) for each t ∈ K\A.
Clearly, a subset C ⊆ K is closed (equivalently, compact) if and only if K\C is
open. We can see the characteristic functions χA as projections in the bidual of
C(K).

In the more general setting of non-necessarily abelian C∗-algebras the no-
tions of open and compact projections in the bidual of a C∗-algebra are mainly
due to C.A. Akemann ([1], [3], see also [5], [33]). Let A be a C∗-algebra. A pro-
jection p in A∗∗ is said to be open if p is the weak*-limit of a increasing net of
positive elements in A, equivalently, pA∗∗p ∩ A is weak*-dense in pA∗∗p (com-
pare Proposition 3.11.9 of [33]). We say that p is closed whenever 1 − p is open.
Finally, a projection p is said to be compact if, and only if, p is closed and there
exists a positive element a ∈ A such that p 6 a 6 1, equivalently, there is a mono-
tone decreasing net (aλ) in A+ with p 6 aλ 6 1, converging strongly to p (see
for example [1] or Definition-Lemma 2.47 of [11]). If A is unital then every closed
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projection in A∗∗ is compact. Akemann called this collection of open projections
in A∗∗ the hull-kernel structure (HKS) of A. In the HKS of a C∗-algebra, the follow-
ing generalization of Urysohn lemma was obtained by Akemann in Theorem I.1
of [2]:

THEOREM 0.1. Let A be a unital C∗-algebra and let p and q be two closed pro-
jections in A∗∗ with pq = 0. Then there exists a in A with 0 6 a 6 1, ap = 0 and
aq = q.

The generalizations of Urysohn lemma to the setting of non-commutative
C∗-algebras are closely related with the general Stone-Weierstrass problem for
non-commutative C∗-algebras. This tool has been intensively developed since
1969 by C.A. Akemann [1], [2], [3], L.G. Brown [11], C.A. Akemann, J. Anderson
and G. Pedersen [4] and C.A. Akemann and G. Pedersen [5], among others.

C∗-algebras belong to the more general class of complex Banach spaces
known as JB∗-triples (see definition below). In this setting the role of projections is
played by those elements called tripotents. Moreover, in [20] and [22] the notions
of open, compact and closed tripotents in the bidual of a JB∗-triple are introduced
and developed. The aim of this paper is the study of the hull-kernel structure in a
JB∗-triple. In Section 2 we prove some generalizations of Urysohn lemma for this
HKS. Theorem 1.4 assures that whenever e and f are two orthogonal tripotents
in the bidual of a JB∗-triple E, with e compact and f minimal, then there exist two
orthogonal norm-one elements a1 and a2 in E such that e 6 a1 and f 6 a2. The
second Urysohn lemma type result is Theorem 1.10, where we establish the fol-
lowing: Let E be a JB∗-triple, x a norm-one element in E and u a compact tripotent
in E∗∗ relative to E satisfying that u 6 r(x). Then there exists a norm-one element
y in the inner ideal of E generated by x, such that u 6 y 6 r(x).

In the last section we find some connections between the generalizations
of Urysohn lemma to the HKS of a C∗-algebra or a JB∗-triple with the Stone-
Weierstrass problem. As main result (see Theorem 2.5) we prove that whenever B
is a JB∗-subtriple of a JB∗-triple E such that for every couple of orthogonal tripo-
tents u, v in E∗∗ with v minimal and u minimal or zero, there exist orthogonal
elements x, y in B such that ‖y‖ = 1, ‖x‖ ∈ {0, 1} and u 6 x and v 6 y (when
u = 0, then we mean x = 0), then B separates the extreme points of the closed unit
ball of E∗ and zero. This result combined with those obtained by C.A. Akemann
[2] and B. Sheppard [39], on the Stone-Weierstrass theorem for C∗-algebras and
JB∗-triples, respectively, allow us to establish some new versions of the Stone-
Weierstrass theorem in the setting of C∗-algebras and JB∗-triples.

We recall (c.f. [31]) that a JB∗-triple is a complex Banach space E together
with a continuous triple product {·, ·, ·} : E×E×E → E, which is conjugate linear
in the middle variable and symmetric bilinear in the outer variables satisfying
that:

(a) L(a, b)L(x, y) = L(x, y)L(a, b)+L(L(a, b)x, y)−L(x, L(b, a)y), where L(a, b)
is the operator on E given by L(a, b)x = {a, b, x};



COMPACT TRIPOTENTS AND THE STONE-WEIERSTRASS THEOREM 159

(b) L(a, a) is an hermitian operator with non-negative spectrum;
(c) ‖L(a, a)‖ = ‖a‖2.

Every C∗-algebra is a JB∗-triple via the triple product given by

2{x, y, z} = xy∗z + zy∗x,

and every JB∗-algebra is a JB∗-triple under the triple product

{x, y, z} = (x ◦ y∗) ◦ z + (z ◦ y∗) ◦ x − (x ◦ z) ◦ y∗.

A JBW∗-triple is a JB∗-triple which is also a dual Banach space (with a
unique predual [9]). The second dual of a JB∗-triple is a JBW∗-triple [17]. Ele-
ments a, b in a JB∗-triple, E, are orthogonal if L(a, b) = 0. With each tripotent u (i.e.
u = {u, u, u}) in E is associated the Peirce decomposition

E = E2(u)⊕ E1(u)⊕ E0(u),

where for i = 0, 1, 2, Ei(u) is the i/2 eigenspace of L(u, u). The Peirce rules are
that {Ei(u), Ej(u), Ek(u)} is contained in Ei−j+k(u) if i − j + k ∈ {0, 1, 2} and is
zero otherwise. In addition,

{E2(u), E0(u), E} = {E0(u), E2(u), E} = 0.

The corresponding Peirce projections, Pi(u) : E → Ei(u), (i = 0, 1, 2) are contractive
and satisfy

P2(u) = D(2D − I), P1(u) = 4D(I − D), and P0(u) = (I − D)(I − 2D),

where D is the operator L(u, u) and I is the identity map on E (compare [23]). A
non-zero tripotent u ∈ E is called minimal if and only if E2(u) = Cu.

Let e and x be two norm-one elements in a JB∗-triple, E, with e tripotent. We
shall say that e 6 x (respectively, x 6 e) whenever L(e, e)x = e (respectively, x is
a positive element in the JB∗-algebra E2(e)).

The strong*-topology in a JBW∗-triple was introduced by T.J. Barton and
Y. Friedman in [8]. This strong*-topology can be defined in the following way:
Given a JBW∗-triple W, a norm-one element ϕ in W∗ and a norm-one element z in
W such that ϕ(z) = 1, it follows from Proposition 1.2 of [8] that the assignment

(x, y) 7→ ϕ{x, y, z}

defines a positive sesquilinear form on W. Moreover, for every norm-one element
w in W ϕ(w) = 1, we have ϕ{x, y, z} = ϕ{x, y, w}, for all x, y ∈ W. The law
x 7→ ‖x‖ϕ := (ϕ{x, x, z})1/2, defines a prehilbertian seminorm on W. The strong*-
topology (noted by S∗(W, W∗)) is the topology on W generated by the family
{‖ · ‖ϕ : ϕ ∈ W∗, ‖ϕ‖ = 1}.

The strong*-topology is compatible with the duality (W, W∗) (see Theo-
rem 3.2 of [8]). The strong*-topology was further developed in [36], [34]. In par-
ticular, the triple product is jointly strong*-continuous on bounded sets (see [36],
[34]).
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Let W be a JBW∗-triple and let a be a norm-one element in W. The sequence
(a2n−1) defined by a1 = a, a2n+1 = {a, a2n−1, a} (n ∈ N) converges in the strong*-
topology (and hence in the weak*-topology) of W to a tripotent u(a) in W (com-
pare Lemma 3.3 of [20]). This tripotent will be called the support tripotent of a.
There exists a smallest tripotent r(a) ∈ W satisfying that a is positive in the JBW∗-
algebra W2(r(a)), and u(a) 6 a2n−1 6 a 6 r(a). This tripotent r(a) will be called
the range tripotent of a. (Beware that in [20], r(a) is called the support tripotent
of a).

In [20], C.M. Edwards and G.T. Rüttimann introduced the concepts of open
and compact tripotents in the bidual of a JB∗-triple. In [22], the authors of the
present paper studied the notions of open and compact tripotents in a JBW∗-triple
with respect to a weak*-dense subtriple. Concretely, given a JBW∗-triple W and
a weak*-dense JB∗-subtriple E of W, a tripotent u in W is said to be compact-Gδ

relative to E if u is the support tripotent of a norm one element in E. The tripotent u
is said to be compact relative to E if u = 0 or there exist a decreasing net, (uλ) ⊆ W,
of compact-Gδ tripotents relative to E converging, in the strong*-topology of W,
to the element u (compare Section 4 of [20]). A tripotent u in W is said to be open
relative to E if E∩W2(u) is weak*-dense in W2(u). When E is a JB∗-triple, the range
(respectively, the support) tripotent of every norm-one element in E is always an
open (respectively, compact) tripotent in E∗∗ relative to E.

NOTATION 0.2. Given a Banach space X, we denote by X1, SX , and X∗ the
closed unit ball, the unit sphere, and the dual space of X, respectively. If K is any
convex subset of X, then we write ∂e(K) for the set of extreme points of K.

1. THE NON-COMMUTATIVE URYSOHN LEMMA FOR JB∗-TRIPLES

This section is mainly devoted to obtain some Urysohn lemma type results
for the HKS of a JB∗-triple. We begin by developing some new properties of
compact tripotents in the bidual of a JB∗-triple.

PROPOSITION 1.1. Let W and V be JBW∗-triples, E a weak*-dense JB∗-subtriple
of W and T : W → V a surjective weak*-continuous triple homomorphism such that
‖T(x)‖ = ‖x‖, for all x in E. Suppose that e is a tripotent in W, then T(e) is compact
relative to T(E) in V whenever e is compact relative to E. Moreover, if T is a triple
isomorphism, then e is compact relative to E in W if and only if T(e) is compact relative
to T(E) in V.

Proof. Suppose that e ∈ W is compact relative to E. If T(e) = 0, then there
is nothing to prove. Suppose that T(e) is a non-zero tripotent in V. By definition,
there exists a decreasing net (uλ)λ∈Λ ⊂ W, of compact-Gδ tripotents relative to
E (i.e., ∀λ there exists aλ ∈ SE such that uλ = u(aλ)), converging to e in the
strong*-topology of W.
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From the hypothesis we know that, for each λ ∈ Λ, ‖T(aλ)‖ = ‖aλ‖ = 1.
Since, for each λ, u(T(aλ)) coincides with the limit, in the weak*-topology of
V, of the sequence (T(aλ)2n−1) = (T(a2n−1

λ )), and T is weak*-continuous, we
have u(T(aλ)) = T(u(aλ)). The conditions (uλ) decreasing and T triple homo-
morphism imply that u(T(aλ)) = T(u(aλ)) is also a decreasing net in V. Since T
is weak*-continuous, we deduce, from Corollary 3 in [36], that T is S∗(W, W∗)−
S∗(V, V∗)-continuous. Therefore, u(T(aλ)) = T(u(aλ)) tends to T(e) in the
S∗(V, V∗)-topology. This shows that T(e) is compact relative to T(E) in V.

REMARK 1.2. Note that under the assumptions of the previous proposition
there is a relationship between compact-Gδ tripotents in W (respectively, range
tripotents in W) relative to E and compact-Gδ tripotents in V (respectively, range
tripotents in V) relative to T(E). Indeed, let x ∈ E be a norm-one element. The
sequence x2n−1 (respectively, x1/(2n−1)) tends to u(x) (respectively, r(x)) in the
weak*-topology of W. Since T is a weak*-continuous triple homomorphism iso-
metric on E, it follows that T(u(x)) = u(T(x)) (respectively, T(r(x)) = r(T(x))).
Moreover, since every compact-Gδ (respectively, range) tripotent in V relative to
T(E) is of the form u(T(x)) (respectively, r(T(x))) for a suitable norm-one element
x ∈ E, it is clear that T maps the set of compact-Gδ (respectively, range) tripotents
in W relative to E onto the set of compact-Gδ (respectively, range) tripotents in V
relative to T(E).

In Theorem 3.4 of [16] it is proved that every minimal tripotent in the bidual
of a JB∗-triple, E, is compact relative to E. The next corollary shows that this result
remains true for every minimal tripotent in a JBW∗-triple W and for any weak*-
dense JB∗-subtriple of W.

Let E be a JB∗-triple. A subtriple I of E is said to be an ideal of E if {E, E, I}+
{E, I, E} ⊆ I. We shall say that I is an inner ideal of E whenever {I, E, I} ⊆ I.

If E and F are two JB∗-triples, a representation π : E → F is any triple
homomorphism from E to F. Let j : E → E∗∗ be the canonical inclusion of E
into its bidual. Each weak*-closed ideal I of E∗∗ is an M-summand (see [27]).
Therefore there exists a weak*-continuous contractive projection π : E∗∗ → I.
The representation E → I given by x 7→ π j(x) is called the canonical representation
of E corresponding to I. Suppose that E is a weak*-dense JB∗-subtriple of a JBW∗-
triple W and let λ : E → W be the natural inclusion. From Proposition 6 of
[7], there exists a weak*-closed triple ideal M of E∗∗ and a triple isomorphism
Ψ : W → M satisfying that Ψλ is the canonical representation of E corresponding
to M.

COROLLARY 1.3. Let E be a weak*-dense JB∗-subtriple of a JBW∗-triple W. Let
M be the weak*-closed triple ideal of E∗∗ and let Ψ : W → M the triple isomorphism
described in the above paragraph, satisfying that Ψλ is the canonical representation of
E corresponding to M. Let e be a tripotent in W. Then e is compact relative to E in W
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whenever Ψ(e) is compact relative to E in E∗∗. In particular, every minimal tripotent in
W is compact relative to E.

Proof. Let π : E∗∗ → M denote the canonical projection of E∗∗ onto M.
Clearly, π is a surjective weak*-continuous triple homomorphism and if λ : E →
W and j : E → E∗∗ denote the canonical inclusions of E into W and E∗∗,
respectively, we have Ψ ◦ λ = π ◦ j.

Let e ∈ W be a tripotent in W such that Ψ(e) is compact relative to E in E∗∗.
Proposition 1.1 applied to π : E∗∗ → M, E∗∗ and E, gives Ψ(e) compact relative
to π(E) in M. Again, Proposition 1.1 assures that e is compact relative to E in W.

Finally, if e is minimal in W, that is, W2(e) = Ce, it is not hard to see that
M2(Ψ(e)) = E∗∗2 (Ψ(e)) = CΨ(e), and hence Ψ(e) is a minimal tripotent in E∗∗.
Therefore, from Theorem 3.4 of [16], it follows that Ψ(e) is compact relative to E
in E∗∗, which implies that e is compact relative to E in W.

Let x be a norm-one element in a JB∗-triple E. Throughout the paper, Ex will
denote the norm-closed JB∗-subtriple of E generated by x. It is known that Ex is
JB∗-triple isomorphic (and hence isometric) to C0(Ω) for some locally compact
Hausdorff space Ω contained in [0, 1], such that Ω ∪ {0} is compact and C0(Ω)
denotes the Banach space of all complex-valued continuous functions vanishing
at 0. Moreover, if we denote by Ψ the triple isomorphism from Ex onto C0(Ω),
then Ψ(x)(t) = t (t ∈ Ω) (cf. 4.8 in [30], 1.15 in [31] and [23]).

The following result is a first generalization of Urysohn lemma to the setting
of JB∗-triples.

THEOREM 1.4. Let E be a weak*-dense JB∗-subtriple of a JBW∗-triple W. Let u, v
be two orthogonal tripotents in W with u compact relative to E and v minimal. Then
there exist two orthogonal elements a1 and a2 in E such that ‖a2‖ = 1, ‖a1‖ ∈ {0, 1},
u 6 a1 and v 6 a2.

Proof. When u = 0, we take a1 = 0 and the existence of a2 follows from the
last statement in Corollary 1.3 (see also [16]). We may therefore assume u 6= 0.

Since v is a minimal tripotent in W, from Proposition 4 of [23] it follows that
there exists ϕ ∈ ∂e((W∗)1) satisfying ϕ(v) = 1.

Corollary 1.3 implies v compact relative to E. Now, Proposition 2.3 of [22] as-
sures that v and u are closed tripotents relative to E, that is, W0(u)∩E and W0(v)∩
E are subtriples of W which are weak*-dense in W0(u) and W0(v),
respectively. From the orthogonality of u and v we have u ∈ W0(v) and v ∈
W0(u).

Let us denote F = W0(u) ∩ E. Since Theorem 2.8 of [16] remains true when
E∗∗ is replaced with any JBW∗-triple W such that E is weak*-dense in W, then
applying this result to F and W0(u), it follows that for every ε, δ > 0, there exist
y ∈ F and a tripotent e ∈ W0(u) such that e 6 v, Pi(e)(v − y) = 0, for i =
1, 2, ‖y‖ 6 (1 + δ)‖(P2(e) + P1(e))(v)‖ and |ϕ(v − e)| < ε. Since ε can be chosen
arbitrary small and v is a minimal tripotent in W0(u), we have e = v. The same
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arguments given in Lemma 3.1 of [16] assure the existence of a norm-one element
b2 ∈ F such that v 6 b2.

Let Fb2 denote the JB∗-subtriple of F generated by b2. As we have com-
mented above, there exists a locally compact Hausdorff space L ⊆ [0, 1] with
L ∪ {0} compact such that Fb2 is isometrically isomorphic to C0(L) under some
surjective isometry denoted by ψ and ψ(b2)(t) = t, for any t ∈ L. Let a2 and
ã2 ∈ Fb2 the norm-one elements given by the expressions

ψ(a2)(t) :=


0 if 0 6 t 6 3/4,
affine if 3/4 6 t 6 1,
1 if t = 1;

ψ(ã2)(t) :=


0 if 0 6 t 6 1/2,
affine if 1/2 6 t 6 3/4,
1 if t > 3/4.

Clearly v 6 u(b2) 6 u(a2) 6 a2 6 r(a2) 6 ã2.
Now, Theorem 2.6 in [22] assures the existence of a norm-one element x in

E such that u 6 x. We define

c1 = P0(ã2)(x) := x − 2L(z, z)x + Q(z)2(x) ∈ E,

where z is the element in F̃a2 = Eã2 satisfying {z, r(ã2), z} = ã2 (compare Section 2
of [22]). From Lemma 2.5 of [22], we have c1 ∈ E∩W0(r(a2)), which, in particular,
implies that c1 and a2 are orthogonal. We claim that

L(u, u) c1 = u.

Indeed, since x > u, then x = u + P0(u)(x). Moreover, since z ∈ F̃a2 = Eã2 ⊆
W0(u), it follows, from Peirce rules, that

L(u, u)c1 = {u, u, x − 2L(z, z)x + Q(z)2(x)}

= {u, u, u + P0(u)(x)− 2L(z, z)(u + P0(u)(x)) + Q(z)2(u + P0(u)(x))}

={u, u, u}+{u, u, P0(u)(x)−2L(z, z)(P0(u)(x))+Q(z)2(P0(u)(x))}=u.

Again, the same arguments given in Lemma 3.1 of [16] imply the existence of a
norm-one element a1 ∈ Ec1 such that u 6 a1.

In the case of von Neumann algebras the above theorem generalizes The-
orem II.19 in [1] from the setting of biduals of C∗-algebras to the more general
setting of von Neumann algebras.

COROLLARY 1.5. Let A be a weak*-dense C∗-subalgebra of a von Neumann al-
gebra W. Let p, q be two orthogonal projections in W with p compact relative to A and
q minimal. Then there exist two orthogonal positive elements a1 and a2 in A such that
‖a2‖ = 1, ‖a1‖ ∈ {0, 1}, p 6 a1 and q 6 a2.

In some particular triple representations the results stated in Proposition 1.1
and Remark 1.2 can be improved. This is the case of the canonical representation
of a JB∗-triple into the atomic part of its bidual. We recall that, given a JB∗-triple
E, then E∗∗ decomposes into an orthogonal direct sum of two weak*-closed triple
ideals A and N, where A (called the atomic part of E∗∗) coincides with the weak*-
closure of the linear span of all minimal tripotents in E∗∗, E∗ = A∗ ⊕`1 N∗ and the
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closed unit ball of N∗ has no extreme points, which implies that ∂e(E∗1) = ∂e(A∗,1)
(compare Theorems 1 and 2 of [23]). If π denotes the natural weak*-continuous
projection of E∗∗ onto A and j : E → E∗∗ is the canonical inclusion, then the
mapping π ◦ j : E → A is an isometric triple embedding called the canonical
embedding of E into the atomic part of its bidual (see proof of Proposition 1 in
[24]).

We recall some notation needed in what follows. Let X be a Banach space.
For each pair of subsets G, F in the unit ball of X and X∗, respectively, let the
subsets G

′
and F′ be defined by

G
′
= { f ∈ BX∗ : f (x) = 1, ∀x ∈ G} and F′ = {x ∈ BX : f (x) = 1, ∀ f ∈ F},

respectively.

PROPOSITION 1.6. Let E be a JB∗-triple, let π denote the canonical projection of
E∗∗ onto its atomic part and let i : E → E∗∗ be the canonical embedding of E into its
bidual. The following assertions hold:

(i) Let u and v be two compact tripotents in E∗∗ relative to E. Then u 6 v if and only
if π(u) 6 π(v).

(ii) For each compact tripotent u in π(E∗∗) relative to π(E) there exists a unique
compact tripotent e in E∗∗ relative to E such that π(e) = u.

Proof. (i) Let us denote A := π(E∗∗). If u 6 v in E∗∗, then π(u) 6 π(v), since
π is a triple homomorphism. Suppose now that π(u) 6 π(v). From Theorem 4.4
of [18], we have

(1.1) {π(u)}′
A∗

⊆ {π(v)}′
A∗

By Theorem 4.5 of [20] together with the comments preceding Corollary 3.5
in [16], every non-zero compact tripotent in E∗∗ relative to E majorises a minimal
tripotent of E∗∗. In particular, if e is a compact tripotent in E∗∗ with π(e) = 0,
then e = 0. We may therefore assume that π(u) and hence π(v) are not zero.

From Theorem 4.2 of [20], it follows that the sets {u}′
E∗

and {v}′
E∗

are non-

empty σ(E∗, E)-compact and convex subsets of E∗1 . By the Krein-Milman theorem
we have

{u}′
E∗

= coσ(E∗ ,E)(∂e({u}′
E∗

)),(1.2)

{v}′
E∗

= coσ(E∗ ,E)(∂e({v}′
E∗

)).(1.3)

Since ∂e(E∗1) = ∂e(A∗,1), we have

{π(u)}′
A∗
∩ ∂e(A∗,1) = {π(u)}′

E∗
∩ ∂e(E∗1) = {u}′

E∗
∩ ∂e(E∗1) = ∂e({u}′

E∗
).

Similarly,
{π(v)}′

A∗
∩ ∂e(A∗,1) = ∂e({v}′

E∗
).
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Finally, we deduce, from (1.1), (1.2), (1.3) and the last two expressions, that

{u}′
E∗
⊆ {v}′

E∗

which shows that u 6 v (compare Theorem 4.4 of [18]).
(ii) Let u be a non-zero compact tripotent in A = π(E∗∗) relative to π(E).

Then there exists a decreasing net (uλ) of compact-Gδ tripotents in A relative to
π(E) converging in the strong*-topology of A to u. By Remark 1.2, for each λ,
there is a norm-one element xλ ∈ E such that

uλ = u(π(xλ)) = π(u(xλ)).

Since π(u(xλ)) is a decreasing net of compact-Gδ tripotents, then (i) implies that
(u(xλ)) is a decreasing net in E∗∗. By Theorem 4.5 of [20] there exists a non-zero
compact tripotent e ∈ E∗∗ relative to E such that e coincides with the infimum
of the family (u(xλ)). Since π is weak*-continuous and (u(xλ)) tends to e in
the weak*-topology of E∗∗, we have that π((u(xλ)) → π(e) in the σ(E∗∗, E∗)-
topology, and hence π(e) = u. Finally, the uniqueness of e follows from (i).

The above result is a partial generalization of Theorem II.17 in [1]. In the
more particular setting of JB∗-algebras we have:

COROLLARY 1.7. Let A be a JB∗-algebra, let π denote the canonical projection of
A∗∗ onto its atomic part and let j : A → A∗∗ be the canonical embedding of A into its
bidual. The following assertions hold:

(i) Let p and q be two compact projections in A∗∗ relative to A. Then p 6 q if and
only if π(p) 6 π(q).

(ii) For each compact projection p in π(A∗∗) relative to π(A) there exists a unique
compact projection q in A∗∗ relative to A such that π(q) = p.

Given a JB∗-algebra A, the cone of all positive elements in A will be denoted
by A+, while A∗

+ will denote the set of positive elements in A∗. Let W be a JBW∗-
algebra. The symbol Q∗(W) will denote the set of all positive elements in W∗ with
norm less or equal to one. Q∗(W) will be called the normal quasi-state space of W.
The normal state space, S∗(W), is the set of all elements in Q∗(W) with norm equal
to one. Given a projection p in W we shall denote F(p) = FW(p) := {ϕ ∈ Q∗(W) :
ϕ(p) = ‖ϕ‖}. If A is a JB∗-algebra, then the set Q(A) (respectively, S(A)) of quasi-
states (respectively, states) of A is defined as Q∗(A∗∗) (respectively, S∗(A∗∗)).

The following result was proved by M. Neal in Lemma 3.2 and Theorem 5.2
of [32].

PROPOSITION 1.8. Let A be a JB∗-algebra and let p be a projection in A∗∗. Then
we have:

(i) p is open relative to A if and only if there exists an increasing net (aλ) in A1,+
with least upper bound p.

(ii) p is closed relative to A if and only if F(p) is σ(A∗, A)-closed in Q(A).
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The next result gives a characterization of compact projections in JB∗-algebra
biduals. A similar result was obtained by C.A. Akemann, J. Anderson and
G.K. Pedersen in the setting of C∗-algebra biduals (see Lemma 2.4 of [4]).

Given a JB∗-algebra A, Ã = A ⊕C1 will stand for the result of adjoining a
unit to A (compare Section 3.3 of [26]). Ã is also called the unitization of A.

PROPOSITION 1.9. Let A be a JB∗-algebra and let p be a projection in A∗∗. Then
p is compact relative to A if and only if F(p) ∩ S(A) is σ(A∗, A)-closed in Q(A).

Proof. The proof given in Lemma 2.4 of [4] can be literally adapted to the
present setting. We include here a sketch of the proof for completeness reasons.
Suppose first that p is a non-zero compact projection in A∗∗. From Theorem 4.2
of [20] we have F(p) ∩ S(A) = {p}′ is σ(A∗, A)-closed in Q(A).

Let Ã be the unitization of A. Each element φ ∈ Q(Ã) can be written in
the form φ = ψ + αφ0, with ψ ∈ Q(A), ‖φ‖ = ‖ψ‖ + |α|, where φ0 is the unique
state of Ã satisfying φ0(A) = 0 (compare Lemma 3.6.6 of [26]). Since p ∈ A∗∗ and
hence φ0(p) = 0, we easily check that

FA∗ (p) ∩ S(A) = FÃ∗ (p) ∩ S(Ã).

Therefore, FA∗ (p) ∩ S(A) is σ(A∗, A)-closed in Q(A) if and only if FÃ∗ (p) ∩ S(Ã)
is σ(Ã∗, Ã)-closed in Q(Ã). By Proposition 1.8, it follows that p is closed in (Ã)∗∗

and in A∗∗. Since clearly p 6 1Ã, we deduce from Theorem 2.6 of [22] that p is
compact in (Ã)∗∗ relative to Ã. Let p0 be the minimal projection in (Ã)∗∗ satisfy-
ing φ0(p0) = 1. Theorem 1.4 implies the existence of a norm-one element x ∈ Ã
such that p0 and x are orthogonal and L(p, p)x = x ◦ p = p. In particular x ∈ A,
which gives p compact in A∗∗ relative to A (compare Theorem 2.6 of [22]).

Let B be a JB∗-subtriple of a JB∗-triple E. Throughout the paper, we shall
identify the weak*-closure of B in E∗∗ with B∗∗. Let x be a norm-one element and
let E(x) denote the norm closure of {x, E, x} in E. It was proved by L.J. Bunce,
Ch.-H. Chu and B. Zalar in [14], [15], that E(x) coincides with the norm-closed
inner ideal of E generated by x, E(x) is a JB∗-subalgebra of the JBW∗-algebra
E(x)∗∗ = E∗∗2 (r(x)), where r(x) is the range tripotent of x in E∗∗. Moreover, x ∈
E(x)+.

We can now state the following version of Urysohn lemma which is a par-
tial generalization of the result obtained by C.A. Akemann, J. Anderson and
G.K. Pedersen in Lemma 2.5 of [4] (see also Lemma III.1 of [3], Corollary 2.48
of [11], Lemma 2.7 of [5]).

THEOREM 1.10. Let E be a JB∗-triple, x a norm-one element in E and u a compact
tripotent in E∗∗ relative to E satisfying that u 6 r(x). Then there exists a norm-one
element y in E(x) such that u 6 y 6 r(x). Moreover, u is a compact tripotent in
E∗∗2 (r(x)) = (E(x))∗∗ relative to E(x).
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Proof. We may assume that 0 6= u 6 r(x). From Theorem 4.2 of [20], there
exists a set of norm-one elements {aλ} ⊂ E satisfying that

(1.4) {u}′
E∗

=
⋂

λ∈Λ

{u(aλ)}′ =
⋂

λ∈Λ

{aλ}
′
.

Since u 6 r(x), then u is a projection in E(x)∗∗ = E∗∗2 (r(x)).
Since E(x) is a norm-closed inner ideal of E, it follows from Theorem 2.6

of [19] that every element ϕ ∈ E(x)∗ has a unique norm-preserving linear exten-
sion to E. The restriction mapping Ψ : E∗1 → E(x)∗1, φ 7→ φ|E(x), is σ(E∗, E) −
σ(E(x)∗, E(x))-continuous. Let φ ∈ {u}′

E∗
. Since u is a projection in E∗∗2 (r(x)) and

φ(u) = 1 = ‖φ|E∗∗2 (r(x))‖, we deduce that φ|E∗∗2 (r(x)) belongs to S∗(E∗∗2 (r(x))) =
S(E(x)), and hence ‖φ|E(x)‖ = 1. Again, the unique extension property (see The-
orem 2.6 of [19]) assures that

FE(x)∗ (u) ∩ S(E(x)) = {u}′
E(x)∗

= Ψ({u}′
E∗

).

If we show that FE(x)∗ (u) ∩ S(E(x)) is σ(E(x)∗, E(x))-closed in Q(E(x)), the
thesis of the theorem will follow from Proposition 1.9 and Theorem 2.6 of [22]. To
see this, let (ϕµ) be a net in FE(x)∗ (u)∩S(E(x)) converging to some ϕ in FE(x)∗ (u)∩
S(E(x)) in the σ(E(x)∗, E(x))-topology. Since Ψ is surjective, there exist a net
(φµ) in {u}′

E∗
and φ ∈ E∗1 such that Ψ(φµ) = ϕµ and Ψ(φ) = ϕ. Since E∗1 is

σ(E∗, E)-compact, there exists a subnet (φδ) converging to some φ
′
in the σ(E∗, E)-

topology. For each λ ∈ Λ we have φδ(aλ) → φ
′
(aλ). In particular, since (φδ) ⊂

{u}′
E∗

, we have, by (1.4), φδ(aλ) = 1 for all δ, λ, which implies φ
′ ∈ {u}′

E∗
. Finally,

Ψ(φδ) = ϕδ tends to Ψ(φ
′
) in the σ(E(x)∗, E(x))-topology, thus

ϕ = Ψ(φ) = Ψ(φ
′
) ∈ Ψ({u}′

E∗
) = FE(x)∗ (u) ∩ S(E(x)),

which finishes the proof.

Theorem 1.10 allows us to get the following generalization of Theorem II.17
of [1] and [3].

PROPOSITION 1.11. Let E be a JB∗-triple, let π denote the canonical projection of
E∗∗ onto its atomic part and let j : E → E∗∗ be the canonical embedding of E into its
bidual. Then, for each range tripotent e in π(E∗∗) relative to π(E) there exists a unique
range tripotent r in E∗∗ relative to E such that π(r) = e.

Proof. Remark 1.2 assures the existence of such a tripotent, so the proof ends
by proving the uniqueness. Suppose that there exist norm-one elements x, y ∈ E
such that π(r(x)) = π(r(y)) = e. By [31], there exists a locally compact Hausdorff
space L ⊆ [0, 1] with L ∪ {0} compact such that Ex is isometrically isomorphic to
C0(L). Let us define un = χL∩[1/n,1] , n ∈ N. Clearly, un is a compact tripotent
in E∗∗ relative to E and un is an increasing sequence converging to r(x) in the
weak*-topology of E∗∗. π(un) 6 π(r(x)) = e = π(r(y)) and by Proposition 1.6
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and Theorem 1.10 there is a sequence of norm-one positive elements (zn) ⊂ E(y)
satisfying that π(un) 6 u(π(zn)) 6 π(zn) 6 π(r(y)). Again, Proposition 1.6
gives un 6 u(zn) 6 r(y). Finally, since E∗∗2 (r(y)) is weak*-closed and (un) tends
to r(x) in the weak*-topology we have r(x) 6 r(y). Symmetrically, we get r(y) 6
r(x).

In the setting of C∗-algebras, C.A. Akemann, J. Anderson and G.K. Pedersen
proved, in Proposition 2.6 of [4], the following stronger version of the Urysohn
lemma. Let A be a C∗-algebra and let p and q be two closed orthogonal projections
in A∗∗ with p compact and ‖ap‖ < ε for some a in A. Then there are orthogonal
open projections r, s ∈ A∗∗ such that p 6 r, q 6 s and ‖ar‖ < ε. We do not know
if we can obtain a similar result in the setting of JB∗-triples.

PROBLEM 1.12. Let E be a JB∗-triple and let e, f be two non-zero orthogo-
nal compact tripotents in E∗∗ relative to E. Do there exist orthogonal norm-one
elements x, y in E such that e 6 x and f 6 y ?

PROBLEM 1.13. Can one replace in Theorem 1.10 the range tripotent, r(x),
with any open tripotent in E∗∗ relative to E ?

2. CONNECTIONS WITH THE STONE-WEIERSTRASS THEOREM
FOR C∗-ALGEBRAS AND JB∗-TRIPLES

As we have commented in the introduction, the generalizations of Urysohn
lemma to the setting of non-commutative C∗-algebras are closely related with the
general Stone-Weierstrass problem for non-commutative C∗-algebras. This tool
has been intensively developed and applied to the Stone-Weierstrass problem in
papers like [1], [2], [3], [4], [5] and [11].

The Stone-Weierstrass problem for C∗-algebras can be concretely stated as
follows:

Let B be a C∗-subalgebra of a C∗-algebra A. Suppose that B sep-
arates the pure states of A and zero. Is B equal to A?

I. Kaplansky gave a positive answer to the above problem for the special
class of type I C∗-algebras in [29]. For general C∗-algebras, many authors gave
partial answer to the Stone-Weierstrass problem by including various additional
conditions (see for example [29], [28], [25], [1], [2], [37], [21], [12], [6] and [10]
among others).

We are particularly interested in the following Stone-Weierstrass type The-
orem proved by C.A. Akemann in Theorem II.7 of [2].

THEOREM 2.1. Let B be a C∗-subalgebra of a unital C∗-algebra A such that B sep-
arates the pure states of A and zero. Suppose that for every pair of orthogonal projections
p, q in A∗∗ with q minimal and p compact relative to A, there exist orthogonal (positive)
elements x, y in B such that ‖y‖ = 1, ‖x‖ ∈ {0, 1}, p 6 x and q 6 y. Then B = E.
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In the statement of Theorem II.7 in [2] it is not explicitly included in the
hypothesis that B separates the pure states of A and zero. However, the proof
uses the results in Section 3 of [1], where this condition is assumed (see page 285
of [1] and page 305 of [2]).

In the setting of JB-algebras and JB∗-triples an intensive study of the Stone-
Weierstrass problem was developed by B. Sheppard [38], [39]. Among other re-
sults, B. Sheppard generalizes the result obtained by Kaplansky for postliminal
JB∗-algebras and JB∗-triples in the following result.

THEOREM 2.2 ([39], Theorem 5.7). Let B be a JB∗-subtriple of a JB∗-triple E
such that B separates the extreme points of the closed unit ball of E∗. Then, if E or B is
postliminal, E = B.

The aim of this section is an analysis of the connections between the Stone-
Weierstrass theorem and the Urysohn lemma type results for JB∗-triples, analo-
gous to that made by C.A. Akemann in the setting of C∗-algebras.

The following definition is inspired by Urysohn lemma for JB∗-triples
proved in Theorem 1.4. We introduce this property just to simplify the notation
in this paper.

DEFINITION 2.3. Let B be a JB∗-subtriple of a JB∗-triple E. We say that B
satisfies the SW-property with respect to E if and only if for every couple of or-
thogonal tripotents u, v in E∗∗ with v minimal and u compact relative to E, there
exist orthogonal elements x, y ∈ B such that ‖y‖ = 1, ‖x‖ ∈ {0, 1}, u 6 x and
v 6 y. When u = 0, we mean x = 0 in u 6 x.

Theorem 1.4 shows that every JB∗-triple has the SW-property with respect
to itself.

LEMMA 2.4. Let A be a JBW∗-algebra and let p, q be minimal projections in A.
Suppose that q = q2 + q1 + q0 is the Peirce decomposition of q with respect to p and ϕq
in ∂e(A∗,1) such that ϕq(q) = 1. Then, either p = q or ϕq(q0) 6= 0.

Proof. By 2.4.16 and 2.4.21 of [26] we have

P2(p) = U2
p ◦ ∗ = Up2 ◦ ∗, P0(p) = U1−p ◦ ∗,

where Up(x) := {p, x∗, p} and ∗ denotes the canonical involution of A. Suppose
that ϕq(q0) = 0. We claim that q = p. Indeed, by Proposition 1 of [23] and the
hypothesis we have

0 = ϕq(q0) = ϕq(U1−p(q)) = ϕq(UqU1−p(q)).

Since q is minimal and ϕq is faithful in A2(q) = Cq, we have

UqU1−p(q) = 0.

Now by 2.4.18 of [26] it follows that

UqU1−p(q) = UqU1−pUq(q) = U{q,1−p,q}(q) = 0.
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However, since 1 − p > 0, by 3.3.6 of [26], we have {q, 1 − p, q} is a positive ele-
ment in A2(q). Moreover, since q is the unit element in A2(q) and U{q,1−p,q}(q) =
0, it follows that {q, 1 − p, q} = q − P2(q)p = 0. Finally, the equality p = q can
be derived from the minimality of p, since q − P2(q)p = 0 and Lemma 1.6 of [23]
imply that p = q + P0(q)p.

Let E be a JB∗-triple. Throughout the paper MinTri(E) will stand for the set
of all minimal tripotents in E.

THEOREM 2.5. Let B be a JB∗-subtriple of a JB∗-triple E. Suppose that for every
u 6= v in MinTri(E) ∪ {0}, with u and v orthogonal, there exist orthogonal elements
x, y ∈ B such that ‖y‖, ‖x‖ ∈ {0, 1} and u 6 x and v 6 y (if u = 0 or v = 0, we mean
x = 0 or y = 0, respectively). Then B separates ∂e(E∗1) ∪ {0}.

Proof. Let ϕ1 6= ϕ2 in ∂e(E∗1) ∪ {0}. If ϕ1 = 0, then there is a minimal
tripotent u2 in E∗∗ such that ϕ2(u2) = 1 (compare Proposition 4 of [23]). Now,
the hypothesis on B applied to 0 and u2, assure the existence of orthogonal ele-
ments x, y ∈ B such that ‖y‖, ‖x‖ ∈ {0, 1} and 0 6 x and u2 6 y. In particular
0 = ϕ1(y) 6= ϕ2(y) = 1. We may therefore assume ϕ1, ϕ2 6= 0.

Take u1 6= u2 minimal tripotents in E∗∗, such that ϕi(ui) = 1, for i = 1, 2.
As we have commented in the previous paragraph, the hypothesis implies the
existence of a norm-one element a ∈ B, such that u1 6 a and hence ϕ1(a) = 1.
If ϕ2(a) 6= 1, then B separates ϕ1, ϕ2 and we finish. We may therefore assume
that ϕ2(a) = 1. In this case, by Propositions 1, 2 and Lemma 1.6 of [23] u2 6 a.
Therefore, u1, u2 6 a 6 r(a), which implies that u1 and u2 are minimal pro-
jections in the JBW∗-algebra E∗∗2 (r(a)). From Lemma 2.4 and the hypothesis,
we have ϕ2(P0(u1)(u2)) 6= 0. Moreover, from page 258 of [8], it follows that
0 < |(P0(u1)(u2))| 6 ‖ϕ2(P0(u1)(u2))‖ϕ2 .

Let A denote the atomic part of E∗∗. Clearly, P0(u1)(A) ⊂ A and hence
P0(u1)(A) coincides with the weak*-closure of the linear span of MinTri(E∗∗) ∩
E∗∗0 (u1) (compare [23]). Since

0 < |ϕ2(P0(u1)(u2))|

we have ϕ2|P0(u1)(A) 6=0, and hence there exists a minimal tripotent w∈MinTri(E∗∗)
∩E∗∗0 (u1), such that 0 < ϕ2(w) 6 ‖w‖ϕ2 .

Finally, by hypothesis, there are two orthogonal norm-one elements x, y in
B such that u1 6 x and w 6 y. In particular 0 < ‖w‖ϕ2 6 ‖y‖ϕ2 and ϕ1(x) = 1.
Therefore,

|ϕ2(x)|2 6 ‖x‖2
ϕ2

< ‖x‖2
ϕ2

+ ‖y‖2
ϕ2

= ‖x + y‖2
ϕ2

6 ‖x + y‖2 = 1,

which proves the desired statements.

Since every minimal tripotent in the bidual of a JB∗-triple is compact (see
Theorem 3.4 of [16]) we have:
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COROLLARY 2.6. Let B be a JB∗-subtriple of a JB∗-triple E. Suppose that B has
the SW-property with respect to E. Then B separates ∂e(E∗1) ∪ {0}.

The significant results obtained by B. Sheppard on the Stone-Weierstrass
theorem for JB∗-triples in [39] allow us to get the following result connecting the
SW-property and the Stone-Weierstrass Theorem for postliminal JB∗-triples.

COROLLARY 2.7. Let B a JB∗-subtriple of a JB∗-triple E. Suppose that B has the
SW-property with respect to E, and E or B is postliminal. Then B = E.

Proof. This follows from Theorems 2.5 and 2.2 (see Theorem 5.7 of [39]).

REMARK 2.8. Let A be a C∗-algebra regarded as a JB∗-triple and let p be
a projection in A∗∗. Let ◦ denote the Jordan product on A. Suppose that x is a
norm-one element in A such that L(p, p)x = p (that is, p 6 x in A∗∗ regarded the
latter as a JB∗-triple), and hence x = p + P0(p)(x). In this case L(p, p)(x ◦ x∗) = p.
This shows that p 6 x ◦ x∗.

Now, the proof given in Theorem 2.5 can be literally adapted, via Remark 2.8,
to show that the assumption of B separating the pure states of A and zero can be
dropped in Theorem 2.1 (see also Theorem II.7 of [2]).

COROLLARY 2.9. Let B be a C∗-subalgebra of a C∗-algebra A. Suppose that for
every pair of orthogonal projections p, q in A∗∗ with q minimal and p compact relative to
A, there exists orthogonal (positive) elements x, y in B such that ‖y‖ = 1, ‖x‖ ∈ {0, 1},
p 6 x and q 6 y. Then B = A.

Proof. The proof of Theorem 2.5 can be literally followed up to its last part.
To finish, in this case, we note that the element w can be chosen as a minimal
projection, for example ww∗ or w∗w.
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