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ABSTRACT. We find necessary and sufficient conditions for the two-operator

weighted inequality
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We use this inequality to study embedding properties between the function

spaces Sp(u) equipped with the norm ‖ f ‖Sp(u) =
(∞∫

0
[ f ∗∗(t)− f ∗(t)]pu(t)dt

)1/p

and the classical Lorentz spaces Λp(v) and Γq(w). Moreover, we solve the only
missing open case of the embedding Λp(v) ↪→ Γq(w), where 0 < q < p 6 1.
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1. PROLOGUE

We study function spaces whose norms are defined in terms of the func-
tional f ∗∗ − f ∗, where f ∗ is the non-increasing rearrangement of a measurable func-
tion f on (0, ∞), defined by

f ∗(t) = inf{s > 0 : f∗(s) 6 t}, t ∈ [0, ∞),

with f∗(t) = µ({x ∈ (0, ∞) : | f (x)| > t}), t > 0 being the distribution function of f ,

and f ∗∗(t) = t−1
t∫

0
f ∗(s) ds.

The functional f ∗∗− f ∗ has been shown to be useful in various parts of anal-
ysis including the Interpolation Theory (see [7] for some history and references).
In [3], the functional ( ∞∫

0

t1/p[ f ∗∗(t)− f ∗(t)]q
dt
t

)1/q
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was introduced (for 1 < p < ∞ and 0 < q 6 ∞) and interesting applications were
found. In particular, the celebrated Weak-L∞ space, determined by the seminorm

sup
t∈(0,∞)

( f ∗∗(t) − f ∗(t)) (corresponding formally to the case q = ∞) was created

and proved useful in situations in which the classical L∞ fails.
It should be noticed that in the study of function spaces defined in terms

of the functional f ∗∗ − f ∗ certain care must be exercised. In particular, this func-
tional vanishes on constant functions and, moreover, the operation f → f ∗∗ − f ∗

is not subadditive. Therefore, quantities involving f ∗∗ − f ∗ do not have norm
properties, which makes the study of the corresponding function spaces difficult.

Recently, various structures involving the quantity f ∗∗ − f ∗ appear quite
regularly as natural function spaces in various situations. For example, they play
an important role in the problem of characterization of the optimal partner norms
in Sobolev-type embeddings [17], [20], [2], in the duality problem for classical
Lorentz spaces of type Γ [25], in the investigation of the boundedness of maximal
Calderón-Zygmund singular integral operators on classical Lorentz spaces [5],
and so on. For more detailed history and more references we refer the reader to
our previous paper [7].

The main object of study in this paper will be the fairly general class of
weighted function spaces denoted by Sp(v), which was introduced in [7].

Let 0 < p < ∞ and let v be a weight on (0, ∞), that is, a measurable non-
negative function. Then, the space Sp(v) is the collection of all measurable func-
tions on (0, ∞) such that ‖ f ‖Sp(v) < ∞, where

‖ f ‖Sp(v) :=
( ∞∫

0

[ f ∗∗(t)− f ∗(t)]pv(t) dt
)1/p

.

As already noted above, the functional ‖ f ‖Sp(v) is not a norm because it
vanishes on constant functions. To overcome this problem, one can either factor
out constants or assume that f ∗(∞) = 0. Even then, however, it is not necessarily
a norm. It is therefore desirable, first, to know when ‖ f ‖Sp(v) is at least equivalent
to a norm, and, second, to carry out a thorough research of relations of the spaces
Sp(v) to other, more familiar function spaces.

In [7] we studied some basic properties of the spaces Sp(v) such as linearity,
the lattice property and normability, and we also characterized their associate
spaces. In the present paper we shall concentrate on their embedding relations.

Our principal objective is to study embedding relations between the spaces
Sp(v) and the so-called classical Lorentz spaces of type Λ and Γ.

(Recall that if two spaces X, Y are endowed with certain appropriate norm-
like functionals ‖ · ‖X , ‖ · ‖Y, then we say that X is continuously embedded into Y,
written X ↪→ Y, if X ⊂ Y in the set-theoretic sense and moreover ‖ f ‖Y 6 C‖ f ‖X
for some C > 0 and all functions f ∈ X.)
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The classical Lorentz spaces Λp(v) and Γp(v) are related to the spaces Sp(v),
but their norms involve f ∗ or f ∗∗ rather than f ∗∗ − f ∗. More precisely, Λp(v)
and Γp(v) are families of all measurable functions such that ‖ f ‖Λp(v) < ∞ or
‖ f ‖Γp(v) < ∞, respectively, where

‖ f ‖Λp(v) :=
( ∞∫

0

f ∗(t)pv(t)dt
)1/p

<∞ and ‖ f ‖Γp(v) :=
( ∞∫

0

f ∗∗(t)pv(t)dt
)1/p

<∞.

The spaces Λp(v) were introduced by Lorentz in 1951 in [18]. The spaces Γp(v)
with 0 < p < ∞ were first defined by Sawyer in [23].

Again, there is a plenty of motivation for such research. For example, the
well-known inequality (cf. [4])

t−1/n( f ∗∗(t)− f ∗(t)) 6 C(∇ f )∗∗(t),

which is valid for every smooth f and every t > 0, leads, for p > 1, to

‖t−1/n( f ∗∗(t)− f ∗(t))‖p 6 C‖∇ f (t)‖p,

which can be regarded as an embedding of certain Sobolev space into the space
Sp(t−p/n). Since quite a lot is known about the embeddings of Sobolev spaces into
other types of spaces including Lorentz spaces and classical Lorentz spaces, the
knowledge about relations between the spaces Sp(v) and other function spaces
would be quite useful.

As we shall see, the characterization of one of the embeddings below in this
paper requires a necessary and sufficient condition for the two-operator weighted
norm inequality

(1.1) ‖Ph‖Lq(w) . ‖Qh‖Lp(v)

for every positive measurable h on (0, ∞), where P is the average Hardy operator,

(1.2) (Ph)(t) :=
1
t

t∫
0

h(s) ds, h > 0,

and Q is its dual operator (under the pairing
∞∫
0

f g),

(1.3) (Qh)(t) :=

∞∫
t

h(s)
s

ds, h > 0.

The inequality (1.1) is clearly of independent interest, and it will have many other
important consequences apart from the one we have in mind. It has not been
studied in the required generality; apparently the only result available in litera-
ture seems to be its characterization when 1 < p = q < ∞ and v = w due to
Neugebauer [21].
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The study of the inequality (1.1) constitutes the second main goal of this
paper.

In fact, we will deal with this second problem first. In Section 2, we give
necessary and sufficient conditions for (1.1) to hold. In order not to make this
paper too long, we restrict ourselves to the case 1 6 q 6 ∞ (the technical reason
for this restriction is the use of duality in our methods). Other cases have to be
treated in a different way and we will study them in a future paper.

Since 1990, an enormous effort has been spent by many authors in the hunt
of a characterization of embeddings between classical Lorentz spaces of both
types Λ and Γ. Thanks to this extensive research powerful new techniques and
methods were developed, and most of the desired characterizations have been
obtained ([1], [23], [28], [8], [9], [24], [27], [6], [15], [10], [11], [25], [26], [13]). In
fact, at this moment, there is only one “missing case” left open, namely the em-
bedding of Λp(v) into Γq(w) with 0 < q < p 6 1, whose characterization has not
been known (for certain related results see [14]).

The third main goal of this paper is to solve this open problem. Namely, in
Section 3 we establish necessary and sufficient conditions on weights v, w such
that the inequality( ∞∫

0

f ∗∗(t)qw(t) dt
)1/q

.
( ∞∫

0

f ∗(t)pv(t) dt
)1/p

holds when 0 < q < p 6 1. This result will be then found useful in the proofs of
our other main results.

Having the theory of embeddings of the spaces of type Λ and Γ complete,
it is time for the spaces of type S to come into the play. The rest of the paper is
devoted to the study of embeddings between the spaces of type S, Λ and Γ. How-
ever, as mentioned above, the functional f ∗∗(t)− f ∗(t) is zero when f is constant
on (0, ∞). Hence, constant functions always belong to any Sp(v) whereas they do
not necessarily belong to analogous spaces of type Λ and Γ. For this reason, we
will study the appropriate embeddings restricted to the set

A =
{

f ∈ M+(0, ∞) : lim
t→∞

f ∗(t) = 0
}

(here and in the sequel, we denote by M(0, ∞) the family of all measurable func-
tions on (0, ∞), and byM+(0, ∞) the set of nonnegative functions fromM(0, ∞)).
We will denote this restriction by writing, for example,

Sp(v) ↪→ Λq(w), f ∈ A,

meaning( ∞∫
0

f ∗(t)qw(t) dt
)1/q

6 C
( ∞∫

0

( f ∗∗(t)− f ∗(t))pv(t) dt
)1/p

for all f ∈ A,

and so on.
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In Section 4 we observe some general relations between the three types of
spaces. In Section 5 we characterize pairs of weights v, w such that the embedding
Sp(v) ↪→ Sq(w) holds. In Section 6 we give necessary and sufficient conditions for
embeddings Sp(v) ↪→ Γq(w) and Γp(v) ↪→ Sq(w). Finally, in Section 7 we study
the analogous problem with Γ replaced by Λ. The results of this last section lead
to the inequality (1.1) and therefore are, naturally, restricted to 1 6 q < ∞.

Let us recall that one of the principal achievements of [7] was the introduc-
tion of the operator T, which is defined for every positive non-increasing function
f on (0, ∞) such that lim

t→∞
f (t) = 0 by

(1.4) (T f )(t) :=
1
t
((P f )(1/t)− f (1/t)).

As observed in [7],

(1.5) T ◦ T = id

and, for f ∈ A,

(1.6) f ∗∗(t)− f ∗(t) =
1
t
(T f ∗)(1/t).

Note that, for f ∈ A, T f ∗ is non-increasing, and also that given p ∈ (0, ∞), we
have

(1.7) ‖ f ‖Sp(v) = ‖T f ∗‖Λp(ṽp).

Here, and throughout the paper, we denote

(1.8) ṽp(t) := v(1/t)tp−2 and w̃q(t) := w(1/t)tq−2.

We also write

V(t) =

t∫
0

v(s) ds, W(t) =

t∫
0

w(s) ds.

For the benefit of the reader, the constants in inequalities are denoted as
A(5.3), A(5.4) and so on. The subscript indicates the label of the formula in which
the corresponding constant is introduced.

Constants, whose precise value is immaterial, are throughout the paper de-
noted by C. We write A . B if A 6 CB, where C does not depend on appropriate
quantities in A and B; if both A . B and B . A are true, we write A ≈ B.

When 1 6 p 6 ∞, we set

p′ =


∞ if p = 1,

p
p−1 if 1 < p < ∞,

1 if p = ∞.
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2. WEIGHTED NORM INEQUALITIES INVOLVING TWO HARDY-TYPE OPERATORS

In this section we study the inequality (1.1). Our ultimate aim is to charac-
terize the quantity

(2.1) A := sup
h>0

‖Ph‖Lq(w)

‖Qh‖Lp(v)
,

where 0 < p 6 ∞, 1 6 q 6 ∞, v, w are weights on (0, ∞) and

‖ f ‖Lp(v) :=


( ∞∫

0
| f (x)|pv(x) dx

)1/p
if 0 < p < ∞,

ess sup
x∈(0,∞)

| f (x)|v(x) if p = ∞.

We start with recalling a useful inequality, which is just a particular case of
the general result in Theorem 3.2 of [9] (cf. also [27]). Let 0 < p 6 1 and let v be
a weight on (0, ∞). Then,

(2.2)
( t∫

0

f ∗(s)1/pv(s) ds
)p

6 p

t∫
0

f ∗(s)V(s)p−1v(s) ds, t ∈ (0, ∞).

We will now find a necessary and sufficient condition for the reverse Hardy
inequality involving the operator Q. Given a function f ∈ M+(0, ∞), a weight v
and p ∈ (0, ∞], we define

(2.3) B( f ) := sup
g>0

∫ ∞
0 f (t)g(t) dt
‖Qg‖Lp(v)

.

THEOREM 2.1. Let f be a non-negative measurable function on (0, ∞). Let v be
a weight on (0, ∞) and let B( f ) be given by (2.3).

(i) Assume that 1 < p < ∞. Then

(2.4) B( f ) ≈
( ∞∫

0

[
ess sup

0<s6t
s f (s)

]p′ v(t)
Vp′ (t)

dt
)1/p′

+
ess sup0<s<∞ s f (s)

V(∞)1/p .

(ii) Assume that 0 < p 6 1. Then B( f ) ≈ ess sup
0<s<∞

s f (s)
V(s)1/p .

(iii) Assume that p = ∞. Then

B( f ) ≈
∞∫

0

ess sup
0<s6t

s f (s) d
( −1

ess sup0<s6t v(s)

)
+

ess sup0<s6∞ s f (s)
ess sup0<s6∞ v(s)

.

Proof. (i) The assertion is a simple modification of a recent result of Sinna-
mon ([26], Corollary 3.8) (for various related results see also [16]).
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(ii) We recall the inequality (cf. [9], [27] and [28])

(2.5)

∞∫
0

h∗(t)V(t)1/p−1v(t) dt .
( ∞∫

0

h∗(t)pv(t) dt
)1/p

, h ∈ M+(0, ∞).

Using (2.5) and the Fubini theorem,

B( f ) 6 ess sup
0<t<∞

t f (t)
V(t)1/p sup

g>0

∫ ∞
0

g(s)
s V(s)1/p ds
‖Qg‖Lp(v)

≈ ess sup
0<t<∞

t f (t)
V(t)1/p sup

g>0

∫ ∞
0

g(s)
s
∫ s

0 V(y)1/p−1v(y) dy ds
‖Qg‖Lp(v)

= ess sup
0<t<∞

t f (t)
V(t)1/p sup

g>0

∫ ∞
0 (Qg)(s)V(s)1/p−1v(s) ds

‖Qg‖Lp(v)
. ess sup

0<t<∞

t f (t)
V(t)1/p .

(The last inequality is (2.5) applied to h∗ = Qg.)
Conversely, given ε > 0 and x ∈ (0, ∞), set

gε,x(t) :=
t
ε

χ(x−ε,x)(t), t ∈ (0, ∞).

Then, (Qgε,x)(t) 6 χ(0,x)(t), whence we have the following proving the claim:

B( f ) > sup
x,ε

∫ ∞
0 f (t)gε,x(t) dt
‖Qgε,x‖Lp(v)

> sup
x,ε

1
ε

∫ x
x−ε t f (t) dt

‖χ(0,x)‖Lp(v)
> ess sup

0<x<∞

x f (x)
V(x)1/p .

(iii) Let p = ∞. We claim that then

(2.6) B( f ) = sup
g>0

∫ ∞
0 g(t) ess sup0<s6t s f (s) dt

ess sup0<t<∞ v(t)
∫ ∞

t g(s) ds
.

By Theorem 2.1, (2.3) of [26], we have

sup
g>0

∫ ∞
0 g(t) ess sup0<s6t s f (s) dt

ess sup0<t<∞ v(t)
∫ ∞

t g(s) ds
= sup

g>0
sup∫ ∞

t h6
∫ ∞

t g

∫ ∞
0 h(t)t f (t) dt

ess sup0<t<∞ v(t)
∫ ∞

t g(s) ds

6 sup
g>0

sup∫ ∞
t h6

∫ ∞
t g

∫ ∞
0 h(t)t f (t) dt

ess sup0<t<∞ v(t)
∫ ∞

t h(s) ds

6 sup
h>0

∫ ∞
0 h(t)t f (t) dt

ess sup0<t<∞ v(t)
∫ ∞

t h(s) ds
.

Since the converse inequality is trivial, this proves (2.6).
We now claim that

∞∫
0

g(t) ess sup
0<s6t

s f (s) dt = sup∫ t
0 h6ess sup0<s6t s f (s)

∞∫
0

g(t)

t∫
0

h(s) ds dt.
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Indeed, we first observe that the inequality “>” is obvious. To get the converse
one, note that, for every non-decreasing function Φ on (0, ∞), there is a sequence
{Hn}∞

n=1 of smooth increasing functions such that Hn ↗ Φ as n → ∞. By the
Fatou Lemma,

∞∫
0

g(t)Φ(t) dt 6 lim sup
n→∞

∞∫
0

g(t)Hn(t) dt.

Applying this to the (non-decreasing) function Φ(t) = ess sup
0<s6t

s f (s) and noting

that the functions Hn, being smooth, can be represented as Hn(t) =
t∫

0
hn(s) ds for

some positive measurable functions hn on (0, ∞), we obtain

∞∫
0

g(t) ess sup
0<s6t

s f (s) dt 6 sup∫ t
0 h6ess sup0<s6t s f (s)

∞∫
0

g(t)

t∫
0

h(s) ds dt,

proving our claim. Thus, we have

∞∫
0

g(t) ess sup
0<s6t

s f (s) dt = sup∫ t
0 h6ess sup0<s6t s f (s)

∞∫
0

g(t)

t∫
0

h(s) ds dt

= sup∫ t
0 h6ess sup0<s6t s f (s)

∞∫
0

h(t)

∞∫
t

g(s) ds dt.

Inserting this into (2.6), we have

B( f ) = sup
g>0

sup∫ t
0 h6ess sup0<s6t s f (s)

∫ ∞
0 h(t)

∫ ∞
t g(s) ds dt

ess sup0<t<∞ v(t)
∫ ∞

t g(s) ds
.

Thus, by the monotonicity of
∞∫
t

g(s) ds, the Fubini theorem, and Theorem 3.3 or

Theorem 9.1 (ii) of [11], we have

B( f ) = sup∫ t
0 h6ess sup0<s6t s f (s)

sup
k∈M+(0,∞)

∫ ∞
0 h(t)k∗(t) dt

ess sup0<t<∞ v(t)k∗(t)

= sup∫ t
0 h6ess sup0<s6t s f (s)

sup
k∈M+(0,∞)

∫ ∞
0 h(t)k∗(t) dt

ess sup0<t<∞(ess sup0<s6t v(s))k∗(t)

= sup∫ t
0 h6ess sup0<s6t s f (s)

∞∫
0

h(t)
ess sup0<s6t v(s)

dt.
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Finally, the integration by parts for the Stieltjes integral and the Fatou lemma give

B( f ) = sup∫ t
0 h6ess sup0<s6t s f (s)

[ ∞∫
0

( t∫
0

h(s)ds
)

d
( −1

ess sup0<s6tv(s)

)
+

∫ ∞
0 h(t)dt

ess sup0<s<∞v(s)

]

=
[ ∞∫

0

ess sup
0<s6t

s f (s) d
( −1

ess sup0<s6t v(s)

)
+

ess sup0<s<∞ s f (s)
ess sup0<s<∞ v(s)

]
.

Of course, the last summand disappears if ess sup
0<s<∞

v(s) = ∞.

Given weights u, v and t ∈ (0, ∞), we define

u(t) := ess sup
0<s<t

u(s) and σp(t) :=


( ∞∫

t

v(s)1−p′

sp′ ds
)1/p′

if p > 1,

ess sup
t6s6∞

1
sv(s) if p = 1.

PROPOSITION 2.2. Let 0 < p < ∞, 1 6 q < ∞, 0 < α < ∞ and let v, w be
weights on (0, ∞). If q < p, set r = pq

p−q . Then the inequality

(2.7)
( ∞∫

0

[
sup

0<s6t
sα(Qg)(s)

]q
w(t) dt

)1/q
.
( ∞∫

0

g(t)pv(t) dt
)1/p

holds for all g > 0 if and only if one of the following conditions holds:
(i) 1 6 p 6 q < ∞ and

(2.8) A(2.8) := sup
0<t<∞

(
tαq

∞∫
t

w(s) ds +

t∫
0

sαqw(s) ds
)1/q

σp(t) < ∞;

(ii) 0 < q < p, 1 6 p < ∞,

A(2.9) :=
( ∞∫

0

( t∫
0

sαqw(s) ds
)r/q

w(t)tαq[σp(t)]r dt
)1/r

< ∞,(2.9)

A(2.10) :=
( ∞∫

0

( ∞∫
t

w(s) ds
)r/p

w(t) sup
0<s6t

(sαr[σp(s)]r) dt
)1/r

< ∞.(2.10)

Moreover, the best constant in (2.7) is comparable to A(2.8) in the case (i) and to A(2.9) +
A(2.10) in the case (ii).

Proof. We will prove both assertions for the case when α = 1 (the general
case can be then obtained by a simple change of variables).
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(i) Assume that 1 6 p 6 q < ∞. Then, by a consecutive change of variables,

∞∫
0

[
sup

0<s6t
s(Qg)(s)

]q
w(t) dt =

∞∫
0

[
sup

0<s6t
s

1/s∫
0

g(1/y)
y

dy
]q

w(t) dt

=

∞∫
0

[
sup

1/t6s<∞

1
s

s∫
0

g(1/y)
y

dy
]q

w(t) dt

=

∞∫
0

[
sup

t6s<∞

1
s

s∫
0

g(1/y)
y

dy
]q w(1/t)

t2 dt,

while
∞∫

0

g(t)pv(t) dt =

∞∫
0

g(1/t)pt−pṽp(t) dt.

Thus, putting h(y) := g(1/y) 1
y , we obtain that (2.7) is equivalent to

(2.11)
( ∞∫

0

[
sup

t6s<∞

1
s

s∫
0

h(y) dy
]q w(1/t)

t2 dt
)1/q

.
( ∞∫

0

h(t)pṽp(t) dt
)1/p

.

Then, by Theorem 4.1 of [12], (2.11) holds if and only if

(2.12) sup
0<t<∞

( 1
tq

t∫
0

w(1/s)
s2 ds +

∞∫
t

w(1/s)
sq+2 ds

)1/q
σp(1/t) < ∞.

By calculation, we have, for every t ∈ (0, ∞),

t∫
0

w(1/s)
s2 ds =

∞∫
1/t

w(s) ds,(2.13)

∞∫
t

w(1/s)
sq+2 ds =

1/t∫
0

sqw(s) ds.(2.14)

Altogether, (2.7) holds if and only if

sup
0<t<∞

( 1
tq

∞∫
1/t

w(s) ds +

1/t∫
0

sqw(s) ds
)1/q

σp(1/t) < ∞,

which is clearly equivalent to (2.8). The best-constant relation follows from the
argument.
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(ii) Again, (2.7) is equivalent to (2.11). By Theorem 4.4 of [12], (2.11) holds if
and only if

( ∞∫
0

( ∞∫
t

w(1/s)
sq+2 ds

)r/p
σp(1/t)r w(1/t)

tq+2 dt
)1/r

< ∞,(2.15)

( ∞∫
0

( t∫
0

w(1/s)
s2 ds

)r/p
ess sup
t6s<∞

s−qσp(1/s)r w(1/t)
t2 dt

)1/r
< ∞.(2.16)

Using (2.13)–(2.14) and changing variables, we get (2.15) and (2.16) equivalent
to (2.9) and (2.10), respectively.

We are now in a position to characterize (1.1).

THEOREM 2.3. Let 0 < p 6 ∞, 1 6 q 6 ∞. When 0 < p < q < ∞, we
set r = pq

p−q . Let v, w be weights on (0, ∞). Then (1.1) holds if and only if one of the
following conditions holds:

(i) 1 < p 6 q < ∞ and sup
0<t<∞

( ∞∫
t

w(s)
sq ds

)1/q( t∫
0

sp′ v(s)
V(s)p′ ds + tp′

V(t)p′−1

)1/p′
< ∞;

(ii) 1 < p < ∞, q = ∞ and sup
0<t<∞

( t∫
0

sp′ v(s)
V(s)p′ ds + tp′

V(t)p′−1

)1/p′
ess sup
t6s<∞

w(s)
s < ∞;

(iii) p=q=∞ and sup
0<t<∞

(
t

ess sup0<s6t v(s) +
t∫

0
sd
(

−1
ess sup0<y6s v(y)

))
ess sup
t6s<∞

w(s)
s <∞;

(iv) 1 < q < p < ∞,

( ∞∫
0

(
sup

0<s6t
sq

∞∫
s

w(y)
yq dy

)r/q v(t)
V(t)r/q dt

)1/r
<∞,

sup0<t<∞ t
( ∫ ∞

t
w(s)

sq ds
)1/q

V(∞)1/p <∞,

and
( ∞∫

0

( t∫
0

sp′v(s)
V(s)p′ ds

)r/p′ tp′v(t)
V(t)p′

( ∞∫
t

w(s)
sq ds

)r/q
dt
)1/r

< ∞;

(v) p = ∞, 1 < q < ∞,

∞∫
0

( t∫
0

s d
( −1

ess sup0<y6s v(y)

))q
t
( ∞∫

t

w(s)
sq ds

)1/q
d
( −1

ess sup0<s6t v(s)

)
< ∞,

ess sup0<s<∞ w(s)
ess sup0<s<∞ v(s)

< ∞, and

∞∫
0

( ∞∫
t

d
( −1

ess sup0<y6s v(y)

))q−1
sup

0<s6t
s
( ∞∫

s

w(y)
yq dy

)1/q
d
( −1

ess sup0<s6t v(s)

)
<∞;
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(vi) 0 < p 6 1 < q < ∞ and sup
0<t<∞

t
V(t)1/p

( ∞∫
t

w(s)
sq ds

)1/q
< ∞;

(vii) 0 < p 6 1, q = ∞ and sup
0<t<∞

(
sup

0<s6t

s
V(s)1/p

)
ess sup
t6s<∞

w(s)
s < ∞;

(viii) q = 1 < p < ∞,

( ∞∫
0

(
sup

0<s6t
s

∞∫
s

w(y)
y

dy
)p′ v(t)

V(t)p′ dt
)1/p′

<∞ and
sup0<t<∞ t

∫ ∞
t

w(s)
s ds

V(∞)1/p <∞;

(ix) 0 < p 6 1 = q and sup
0<t<∞

t
V(t)1/p

∞∫
t

w(s)
s ds < ∞;

(x) p = ∞, q = 1,
∞∫

0

sup
0<s6t

s

∞∫
s

w(s)
s

d
( −1

ess sup0<s6t v(s)

)
< ∞ and

sup0<t<∞ t
∫ ∞

t
w(s)

s ds
ess sup0<s<∞ v(s)

< ∞;

(xi) p = 1, 0 < q < 1 and

( ∞∫
0

( ∞∫
t

w(s)
sq

)q/(1−q)[
ess sup

0<s6t

1
(Pv)(s)

]q/(1−q) w(t)
tq dt

)q/(1−q)
< ∞.

Proof. By the standard duality argument, when 1 < q < ∞, we have for A
from (2.1)

A = sup
h>0

sup
g>0

∫ ∞
0 (Ph)(t)g(t) dt

‖g‖Lq′ (w1−q′ )‖Qh‖Lp(v)
= sup

g>0

1
‖g‖Lq′ (w1−q′ )

sup
h>0

∫ ∞
0 h(t)(Qg)(t) dt
‖Qh‖Lp(v)

.

Similarly, when q = 1,

A = sup
h>0

∫ ∞
0 (Ph)(t)w(t) dt
‖Qh‖Lp(v)

= sup
h>0

∫ ∞
0 h(t)(Qw)(t) dt
‖Qh‖Lp(v)

and when q = ∞,

A = sup
h>0

sup
g>0

∫ ∞
0 (Ph)(t)g(t) dt∥∥ g
w

∥∥
L1‖Qh‖Lp(v)

= sup
g>0

1∥∥ g
w

∥∥
L1

sup
h>0

∫ ∞
0 h(t)(Qg)(t) dt
‖Qh‖Lp(v)

.

Using Theorem 2.1 and (2.2), we get the following characterization of the quan-
tity A: if 1 < p, q < ∞, then

A ≈ sup
g>0

1
‖g‖Lq′ (w1−q′ )

( ∞∫
0

[
sup

0<s<t
s(Qg)(s)

]p′ v(t)
V(t)p′ dt

)1/p′
(2.17)

+ sup
g>0

sup0<t<∞ t(Qg)(t)
‖g‖Lq′ (w1−q′ )V(∞)1/p ;
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if 1 < p < q = ∞, then

A≈sup
g>0

1∥∥ g
w

∥∥
L1

( ∞∫
0

[
sup

0<s<t
s(Qg)(s)

]p′ v(t)
V(t)p′ dt

)
1/p′+sup

g>0

sup0<t<∞t(Qg)(t)∥∥ g
w

∥∥
L1 V(∞)1/p ;(2.18)

if p = q = ∞, then

A ≈ sup
g>0

1∥∥ g
w

∥∥
L1

∞∫
0

[
sup

0<s<t
s(Qg)(s)

]
d
( −1

ess sup0<s6t v(s)

)
(2.19)

+ sup
g>0

sup0<t<∞ t(Qg)(t)∥∥ g
w

∥∥
L1 ess sup0<s<∞ v(s)

;

if p = ∞ and 1 < q < ∞, then

A ≈ sup
g>0

1
‖g‖Lq′ (w1−q′ )

∞∫
0

[
sup

0<s<t
s(Qg)(s)

]
d
( −1

ess sup0<s6t v(s)

)
(2.20)

+ sup
g>0

sup0<t<∞ t(Qg)(t)
‖g‖Lq′ (w1−q′ ) ess sup0<s<∞ v(s)

;

if 0 < p 6 1 < q < ∞, then

(2.21) A ≈ sup
g>0

1
‖g‖Lq′ (w1−q′ )

sup
0<s<∞

s(Qg)(s)
V(s)1/p ;

if 0 < p 6 1 and q = ∞, then

(2.22) A ≈ sup
g>0

1∥∥ g
w

∥∥
L1

sup
0<s<∞

s(Qg)(s)
V(s)1/p ;

if q = 1 < p < ∞, then

(2.23) A ≈
( ∞∫

0

[
sup

0<s<t
s(Qw)(s)

]p′ v(t)
V(t)p′ dt

)1/p′
+

sup0<t<∞ t(Qw)(t)
V(∞)1/p ;

if 0 < p 6 q = 1, then

(2.24) A ≈ sup
0<s<∞

s(Qw)(s)
V(s)1/p ;

if p = ∞ and q = 1, then

(2.25) A ≈
∞∫

0

sup
0<s6t

s(Qw)(s) d
( −1

ess sup0<s6t v(s)

)
+

sup0<t<∞ t(Qw)(t)
ess sup0<s<∞ v(s)

and if p = 1 and 0 < q 6 1, then

(2.26) A = sup
h>0

‖Ph‖Lq(w)

‖h‖L1(Pv)
.
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Let us note that by a standard duality argument, we have for 1 < q < ∞

(2.27) sup
g>0

sup0<t<∞ t(Qg)(t)
‖g‖Lq′ (w1−q′ )

= sup
0<t<∞

t
( ∞∫

t

w(s)
sq ds

)1/q

and, by the inequality due to Sinnamon and Stepanov [27], we have

(2.28) sup
g>0

sup0<t<∞ t(Qg)(t)∥∥ g
w

∥∥
L1

= ess sup
0<s<∞

w(s).

Now, taking into account (2.27) and (2.28), we can establish all the statements
of the theorem. Precisely, the assertions (i), (ii) and (iii) follow from Proposi-
tion 2.2 (i) combined with (2.17), (2.18) and (2.19), respectively. The assertions
(iv) and (v) follow from Proposition 2.2 (ii) combined with (2.17) and (2.20), re-
spectively. The assertions (vi) and (vii) follow from the classical Hardy inequality
(cf. e.g. [22]) applied to (2.21) and (2.22), respectively. The assertions (viii), (ix) and
(x) are immediate consequences of (2.23), (2.24) and (2.25), respectively. Finally,
(xi) follows from (2.26) and the characterization of the appropriate weighted
Hardy inequality due to Sinnamon and Stepanov ([27], Theorem 3.3).

REMARK 2.4. The case (xi) is added to the theorem despite its different na-
ture. Indeed, it is the only case in which we allow q < 1. In this particular case
(i.e. when p = 1), the characterization is very easy. All the other cases (0 < q < 1
and p 6= 1) will be treated in our forthcoming paper.

3. THE EMBEDDING Λp(v) ↪→ Γq(w) WHEN 0 < q < p 6 1

Here we will find necessary and sufficient conditions for the “missing case”
of embedding between classical Lorentz spaces.

THEOREM 3.1. Let 0 < q < p 6 1 and let r = pq
p−q . Let v, w be weights on

(0, ∞). Then the inequality

(3.1)
( ∞∫

0

f ∗∗(t)qw(t) dt
)1/q

.
( ∞∫

0

f ∗(t)pv(t) dt
)1/p

holds if and only if

A(3.2) :=
( ∞∫

0

[W(t)
V(t)

]r/p
w(t) dt

)1/r
< ∞,(3.2)

A(3.3) :=
( ∞∫

0

sup
0<s6t

sr

V(s)r/p

( ∞∫
t

w(s)
sq ds

)r/p w(t)
tq dt

)1/r
< ∞,(3.3)

and the best constant in (3.1) is comparable to A(3.2) + A(3.3).
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Proof. First assume that (3.1) is true. Then, since sup
0<s6t

s f ∗(s)6
t∫

0
f ∗(s) ds, t ∈

(0, ∞), we obtain

(3.4)
( ∞∫

0

[
sup

0<s6t
s f ∗(s)

]q w(t)
tq dt

)1/q
.
( ∞∫

0

f ∗(t)pv(t) dt
)1/p

.

Assume that f ∗(t)p =
∞∫
t

h(s) ds for some h ∈ M+(0, ∞). Then, sup
0<s6t

s f ∗(s) =[
sup

0<s6t
sp

∞∫
t

h(y) dy
]1/p

, hence, by the Fubini theorem, (3.4) yields

(3.5)
( ∞∫

0

[
sup

0<s6t
sp

∞∫
s

h(y) dy
]q/p w(t)

tq dt
)1/q

.
( ∞∫

0

h(t)V(t) dt
)1/p

for all h ∈ M+(0, ∞). Substituting h(t) → g(t)
t , we get

(3.6)
( ∞∫

0

[
sup

0<s6t
sp(Qg)(s)

]q/p w(t)
tq dt

)p/q
.

∞∫
0

g(t)
V(t)

t
dt

for all g ∈ M+(0, ∞). By Proposition 2.2 (ii), applied to the choice of parameters
q = q

p , p = 1, α = p, w(t) = w(t)t−q and v(t) = V(t)
t , (3.6) holds if and only if

both (3.2) and (3.3) are satisfied.
Conversely, assume that (3.2) and (3.3) hold. We will be done if we can show

( ∞∫
0

(1
t

t∫
0

f ∗(s)1/p ds
)q

w(t) dt
)p/q

.

∞∫
0

f ∗(t)v(t) dt, f ∈ M(0, ∞).

By (2.2), this will follow if we prove, for all f ∈ M(0, ∞),

(3.7)
( ∞∫

0

( 1
tp

t∫
0

f ∗(s)sp−1 ds
)q/p

w(t) dt
)p/q

.

∞∫
0

f ∗(t)v(t) dt.

Given f ∈ A, there is a sequence {hn} of positive functions such that

Fn(t) :=

∞∫
t

hn(s) ds ↗ f , t ∈ (0, ∞).

Moreover, we have 1
tp

t∫
0

F∗n (s)sp−1 ds ≈
∞∫
t

hn(s) ds + 1
tp

t∫
0

hn(s)sp ds and, by the

Fubini theorem,
∞∫
0

F∗n (t)v(t)dt=
∞∫
0

hn(t)V(t)dt. Summarizing, by the Fatou lemma,
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we see that (3.7) holds if and only if both the inequalities( ∞∫
0

( ∞∫
t

h(s) ds
)q/p

w(t) dt
)p/q

.

∞∫
0

h(t)V(t) dt,(3.8)

( ∞∫
0

( 1
tp

t∫
0

h(s)sp ds
)q/p

w(t) dt
)p/q

.

∞∫
0

h(t)V(t) dt,(3.9)

are satisfied for all h ∈ M(0, ∞). Now, by Theorem 3.3 of [27] and by its analogue

for integral
∞∫
t

in place of
t∫

0
, necessary and sufficient conditions for (3.8) and (3.9)

are (3.2) and (3.3), respectively.

4. GENERAL RELATIONS BETWEEN THE SPACES OF TYPE S, Λ, Γ.
THE SINGLE-WEIGHT CASE

We start with a simple but important relation.

PROPOSITION 4.1. Let 0 < p < ∞ and let v be a weight on (0, ∞). Then

(4.1) Γp(v) = Λp(v) ∩ Sp(v).

Proof. Since both the quantities f ∗ and f ∗∗ − f ∗ are majorized by f ∗∗, we
clearly have

Γp(v) ⊂ Λp(v) ∩ Sp(v).

The converse inclusion follows at once from

‖ f ‖Γp(v) =‖ f ∗∗− f ∗+ f ∗‖Lp(v) 6‖ f ∗∗− f ∗‖Lp(v)+‖ f ∗‖Lp(v) =‖ f ‖Sp(v)+‖ f ‖Λp(v).

Following [1], we say that a weight v on (0, ∞) belongs to the class Bp if

∞∫
t

v(s)
sp ds .

1
tp

t∫
0

v(s) ds, t ∈ (0, ∞).

We say that a weight v on (0, ∞) belongs to the reverse class Bp, written w ∈ RBp
(cf. [1], [7]), if

1
tp

t∫
0

v(s) ds .

∞∫
t

v(s)
sp ds, t ∈ (0, ∞).

From Proposition 4.1 we immediately have

COROLLARY 4.2. Let 0 < p < ∞ and let v be a weight on (0, ∞). Then, the
following statements are equivalent:

(i) Λp(v) ↪→ Sp(v);
(ii) Λp(v) = Γp(v);
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(iii) v ∈ Bp.

Proof. The equivalence (i)⇔(ii) follows at once from (4.1). The equivalence
(ii)⇔(iii) was proved in [1] for 1 6 p < ∞ and in [28] for 0 < p < 1.

COROLLARY 4.3. Let 1 6 p < ∞ and let v be a weight on (0, ∞). Then, the
following statements are equivalent:

(i) Sp(v) ↪→ Λp(v);
(ii) Sp(v) = Γp(v);

(iii) v ∈ RBp.

Proof. Again, the equivalence (i)⇔(ii) follows from (4.1). A similar argu-
ment to that in the proof of (3.7) now yields (ii) equivalent to

(4.2)

∞∫
0

( ∞∫
t

h(s) ds
)p

v(t) dt .

∞∫
0

(1
t

t∫
0

sh(s) ds
)p

v(t) dt

for all h ∈ M+(0, ∞). However, (4.2) was shown in Theorem 4.1 of [21] to be
equivalent to v ∈ RBp.

REMARK 4.4. The equivalence in the preceding corollary holds in fact when
p ∈ (0, ∞).

5. EMBEDDINGS OF TYPE S ↪→ S

Our aim in this section is to characterize pairs of weights v, w such that the
following embedding holds:

(5.1) Sp(v) ↪→ Sq(w).

REMARK 5.1. We note that every f ∈ M+(0, ∞) can be written in the form
f = g + c, where g ∈ A and c > 0.

THEOREM 5.2. Let 0 < p, q < ∞ and let v, w be weights on (0, ∞). Then, (5.1)
is equivalent to the following, with ṽp and w̃q from (1.8):

(5.2) Λp(ṽp) ↪→ Λq(w̃q).

Proof. Assume first that (5.2) holds, and let f ∈ A. Then, by (5.2) and a dou-
ble use of (1.7),

‖ f ‖Sq(w) = ‖T f ∗‖Λq(w̃q) 6 C‖T f ∗‖Λp(ṽp) = ‖ f ‖Sp(v),

proving (5.1) for f ∈ A. Since (5.1) is trivial for constant functions, it follows from
Remark 5.1 that (5.1) holds for every f ∈ M+(0, ∞).
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Conversely, assume that (5.1) is satisfied. For every f ∈ A, there exists a
g ∈ A such that f ∗ = Tg∗. Thus, using (1.7) again,

‖ f ‖Λq(w̃q) =‖Tg∗‖Λq(w̃q) =‖g∗‖Sq(w) 6C‖g∗‖Sp(v) =C‖Tg∗‖Λp(ṽp) =C‖ f ‖Λp(ṽp),

proving (5.2) for f ∈ A.
In view of Remark 5.1, it only remains to show that (5.2) holds for constant

functions, that is, we have to prove the inequality

( ∞∫
0

w̃q(t) dt
)1/q

6 C
( ∞∫

0

ṽp(t) dt
)1/p

.

Assuming that the right-hand side is finite (otherwise there is nothing to prove)
and given T ∈ (0, ∞), we apply the result just established to the function f =
χ(0,T), which obviously belongs to A. We get

( T∫
0

w̃q(t) dt
)1/q

6 C
( T∫

0

ṽp(t) dt
)1/p

with C independent of T. The result now follows by letting T → ∞.

COROLLARY 5.3. (i) If 0<p6q<∞, then the embedding (5.1) holds if and only if

(5.3) A(5.3) := sup
t∈(0,∞)

( ∫ ∞
t s−qw(s) ds

)1/q( ∫ ∞
t s−pv(s) ds

)1/p < ∞,

and the optimal constant C of the embedding (5.1) satisfies C ≈ A(5.3).
(ii) If 0 < q < p < ∞, then (5.1) holds if and only if

(5.4) A(5.4) :=
( ∞∫

0

[ ∫ ∞
t s−qw(s) ds∫ ∞
t s−pv(s) ds

]r/p w(t)
tq dt

)1/r
< ∞,

and the optimal constant C of the embedding (5.1) satisfies C ≈ A(5.4).

Proof. The claim follows from Theorem 5.2, the known characterization of
(5.2) (cf. [23], [28], or the survey in [11]), and, again, a change of variables in the
integrals.

6. EMBEDDINGS OF TYPE Γ ↪→ S AND S ↪→ Γ

In this section we will characterize embeddings between spaces of type Γ
and S (in both directions). We will once again employ the operator T defined
in (1.4).
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THEOREM 6.1. Let 0 < p, q < ∞ and let v, w be weights on (0, ∞). Then the
embedding

(6.1) Sp(v) ↪→ Γq(w), f ∈ A,

is equivalent to

(6.2) Λp(ṽp) ↪→ Γq(w̃q).

Similarly, the embedding

(6.3) Γp(v) ↪→ Sq(w), f ∈ A,

is equivalent to

(6.4) Γp(ṽp) ↪→ Λq(w̃q).

Proof. The proof is analogous to that of Theorem 5.2. We use (1.7) and

(6.5) ‖ f ‖Γp(w) = ‖T f ‖Γp(w̃p),

the latter being easily verified for every f ∈ A by a change of variables.

THEOREM 6.2. Let 0 < p, q < ∞ and let v, w be weights on (0, ∞).
(i) If 1 < p 6 q < ∞, then the embedding (6.1) holds if and only if

A(5.3) < ∞,(6.6)

A(6.7) := sup
t∈(0,∞)

W(t)1/q
( ∞∫

t

v(s)(
sp
∫ ∞

1/s v(y)y−p dy
)p′ ds

)1/p′
< ∞,(6.7)

and the optimal constant C of the embedding (6.1) satisfies C ≈ A(5.3) + A(6.7).
(ii) If 0 < p < 1 and 0 < p 6 q < ∞, then (6.1) holds if and only if A(5.3) < ∞ and

(6.8) A(6.8) := sup
t∈(0,∞)

W(t)1/q

t
( ∫ ∞

t v(s)s−p ds
)1/p ,

and the optimal constant C of the embedding (6.1) satisfies C ≈ A(5.3) + A(6.8).
(iii) If 1 < p < ∞, 0 < q < p < ∞ and q 6= 1, then (6.1) holds if and only if

A(5.4) < ∞,(6.9)

A(6.10) :=

(∫ ∞

0

W(t)r/q
( ∫ ∞

t
v(s)(

sp ∫ ∞
s

v(y)
yp dy

)p′ ds
)r(q−1)/q

(
tp
∫ ∞

s
v(y)
yp dy

)p′ v(t)dt

)1/r

<∞,(6.10)

and the optimal constant C of the embedding (6.1) satisfies C ≈ A(5.4) + A(6.10).
(iv) If 1 = q < p < ∞, then (6.1) holds if and only if A(5.4) < ∞ and

(6.11) A(6.11) :=

∫ ∞
0

w(s)
s ds( ∫ ∞

0
v(s)
sp ds

)1/p +
( ∞∫

0

[ W(t)
t +

∫ ∞
t

w(s)
s ds∫ ∞

t
v(s)
sp ds

]p′ v(t)
tp dt

)1/p′
< ∞,

and the optimal constant C of the embedding (6.1) satisfies C ≈ A(5.4) + A(6.11).
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(v) If 0 < q < p 6 1, then (6.1) holds if and only if

A(6.12) :=
( ∞∫

0

( ∫ ∞
t

w(s)
sq ds

)r/p( ∫ ∞
t

v(s)
sp ds

)r/p
w(t)

tq dt
)1/r

< ∞,(6.12)

A(6.13) :=
( ∞∫

0

W(t)r/p ess sup
t6s<∞

1

sr
( ∫ ∞

s
v(y)
yp dy

)r/p
w(t)

tq dt
)1/r

< ∞,(6.13)

and the optimal constant C of the embedding (6.1) satisfies C ≈ A(6.12) + A(6.13).

Proof. By Theorem 6.1, (6.1) is equivalent to (6.2). In cases (i)–(iv), necessary
and sufficient conditions for (6.2) are known (cf. Theorem 2 of [23] in the case
(i), Proposition 2.6 b of [9] or Theorem 2 of [28] in the case (ii), Theorem 2 of [23]
and Theorem 3a of [28] in the case (iii) and Theorem 4.1 (ii) of [11] in the case (iv)).
In the case (v), necessary and sufficient conditions are given by Theorem 3.1. The
assertion then follows by a change of variables.

THEOREM 6.3. Let 0 < p, q < ∞ and let v, w be weights on (0, ∞).
(i) If 0 < p 6 q < ∞ and 1 6 q < ∞, then the embedding (6.3) holds if and only if

(6.14) A(6.14) := sup
t∈(0,∞)

( ∫ ∞
t

w(s)
sq ds

)1/q(V(t)
tp +

∫ ∞
t

v(s)
sp ds

)1/p < ∞,

and the optimal constant C of the embedding (6.3) satisfies C ≈ A(6.14).
(ii) If 1 6 q < p < ∞, then (6.3) holds if and only if

(6.15) A(6.15) :=
( ∞∫

0

sups∈(0,t) sr( ∫ ∞
s

w(y)
yq dy

)r/q

tr+p+1
(V(t)

tp +
∫ ∞

t
v(s)
sp ds

)r/p+2 V(t)

∞∫
t

v(s)
sp ds dt

)1/r
<∞,

and the optimal constant C of the embedding (6.3) satisfies C ≈ A(6.15).
(iii) If 0 < p 6 q < 1, then (6.3) holds if and only if

(6.16) A(6.16) := sup
t∈(0,∞)

(∫ ∞
t

w(s)
sq ds

)1/q+1
t
(∫ t

0
[
s
∫ ∞

s
w(y)

yq dy
]q/(1−q) w(s)

sq ds
)(1−q)/q(V(t)

tp +
∫ ∞

t
v(s)
sp ds

)1/p <∞,

and the optimal constant C of the embedding (6.3) satisfies C ≈ A(6.16).
(iv) If 0 < q < 1 and 0 < q < p, then (6.3) holds if and only if

A(6.17) :=

([( ∫ ∞
t

w(s)
sq ds

)1/(1−q)+ 1
tq/(1−q)

∫ t
0
(
s
∫ ∞

s
w(y)

yq dy
)q/(1−q) w(s)

sq ds
]r(1−q)/q−1(V(t)

tp +
∫ ∞

t
v(s)
sp ds

)1/p

×
( ∞∫

t

w(s)
sq ds

)q/(1−q) w(t)
tq dt

)1/r

,(6.17)

and the optimal constant C of the embedding (6.3) satisfies C ≈ A(6.17).
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Proof. The proof follows the pattern of that of Theorem 6.2. Necessary and
sufficient conditions for (6.4) can be found in p. 473 of [29] in the case (i) and
in [13] in other cases.

7. EMBEDDINGS OF TYPE Λ ↪→ S AND S ↪→ Λ

We start with a simple observation that the embeddings Sp(v) ↪→Λq(w) and
Λp(v) ↪→ Sq(w) (restricted to f ∈ A) are interchangeable (with an appropriate
change of weights) and therefore it is enough to investigate only one of them.

PROPOSITION 7.1. Let 0 < p, q < ∞ and let v, w be weights on (0, ∞). Then the
embedding

(7.1) Sp(v) ↪→ Λq(w), f ∈ A,

is equivalent to the embedding

(7.2) Λp(ṽp) ↪→ Sq(w̃q), f ∈ A,

where ṽp and w̃q are from (1.8).

Proof. Using the operator T defined in (1.4), we see that (7.1) reads

( ∞∫
0

f ∗(t)qw(t) dt
)1/q

.
( ∞∫

0

[1
t
(T f ∗)(1/t)

]p
v(t) dt

)1/p
.

As already noted above, for every f ∈ A, there exists a g ∈ A such that f ∗ = Tg∗.
Therefore, (7.1) is equivalent to

( ∞∫
0

(Tg∗)(t)qw(t) dt
)1/q

.
( ∞∫

0

[1
t

g∗(1/t)
]p

v(t) dt
)1/p

.

Changing the variables, we get the following which is (7.2), as desired:

( ∞∫
0

[g∗∗(t)− g∗(t)]qw̃q(t) dt
)1/q

.
( ∞∫

0

g∗(t)pṽp(t) dt
)1/p

.

We next reduce (7.1) to (1.1).

PROPOSITION 7.2. Let 0 < p, q < ∞ and let v, w be weights on (0, ∞). Then the
embedding

(7.3) Λp(v) ↪→ Sq(w), f ∈ A,

holds if and only if the inequality (1.1) is satisfied for every non-negative function h.
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Proof. We shall proceed as in the proof of (3.7). Given f ∈ A, there is a se-
quence {hn} of positive functions such that

Fn(t) :=

∞∫
t

hn(s) ds ↗ f , t ∈ (0, ∞).

Moreover, f ∗∗(t)− f ∗(t)= lim
n→∞

(F∗∗n (t)−F∗n(t)), t∈(0, ∞). Thus, by the Fatou lemma,

‖ f ‖Sq(w) 6 lim inf
n→∞

‖Fn‖Sq(w) . lim inf
n→∞

‖Fn‖Λp(v) = ‖ f ‖Λp(v).

On the other hand, we have

F∗∗n (t)− F∗n (t) =
1
t

t∫
0

∞∫
s

hn(y) dy ds−
∞∫

t

hn(s) ds =
1
t

t∫
0

shn(s) ds.

Altogether, (7.3) is equivalent to

( ∞∫
0

[1
t

t∫
0

sh(s) ds
]q

w(t) dt
)1/q

.
( ∞∫

0

[ ∞∫
t

h(s) ds
]p

v(t) dt
)1/p

,

which is, after the substitution sh(s) → h(s), exactly the inequality (1.1).

COROLLARY 7.3. Let 0 < p < ∞, 1 6 q < ∞, and let v, w be weights on (0, ∞).
Then, the embedding

Λp(v) ↪→ Sq(w), f ∈ A,

holds if and only if one of the conditions (i)–(xi) of Theorem 2.3 holds.

REMARK 7.4. Combining Corollary 7.3 and Proposition 7.1 we can get nec-
essary and sufficient conditions for the embedding

Sp(v) ↪→ Λq(w), f ∈ A,

where 0< p6∞, 16q6∞, and let v, w be weights on (0, ∞). We omit the details.
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