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ABSTRACT. A functional model for nondissipative unbounded perturbations
of an unbounded self-adjoint operator on a Hilbert space X is constructed.
This model is analogous to the Nagy–Foiaş model of dissipative operators, but
it is linearly similar and not unitarily equivalent to the operator. It is attached
to a domain of parabolic type, instead of a half-plane. The transformation map
from X to the model space and the analogue of the characteristic function are
given explicitly.

All usual consequences of the Nagy–Foiaş construction (the H∞ calculus,
the commutant lifting, etc.) hold true in our context.
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INTRODUCTION

The paper is devoted to the construction of a functional model of non-
dissipative linear operators of the form

(0.1) A = A0 + iψ(A0)Fψ(A0),

where A0 is a self-adjoint unbounded linear operator on a Hilbert space X, F is
bounded on X (not necessarily self-adjoint) and 1 6 ψ(x) 6 K(

√
|x| + 1) for

x ∈ D(ψ). We assume that either ψ is defined on R and is even or it is defined
on [0, +∞). The spectrum of A is contained in an unbounded parabolic domain,
which is symmetric with respect to the real axis. A precise definition of the un-
bounded operator A and precise conditions on ψ will be given later. We remark
that this definition is a particular case of that of [20].

All Hilbert spaces in this paper are assumed to be complex and separable. If
X1, X2 are Banach spaces, B(X1, X2) will denote the set of all bounded operators
from X1 to X2.
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It is widely recognized that for understanding the spectral structure of an
operator, the method of functional models is one of the most useful tools. The
original Nagy–Foiaş functional model exists for contractions and dissipative op-
erators, and is attached, correspondingly, to the unit disc or to the upper half-
plane.

This work can be considered as a continuation of author’s paper [33], where
a linearly similar variant of the Sz.-Nagy–Foiaş model was suggested and stud-
ied. A general scheme for constructing such kind of models was presented and
several concrete examples were given. This model has many points in common
with the original Sz.-Nagy–Foiaş model, but also has important differences. In
particular, depending on the operator, it is constructed in a rather general domain
in the complex plane (bounded or unbounded) and not only in a disc or a half-
plane. We will comment on other differences later on. A related functional model
was constructed by A. Tikhonov in [29]; see also his subsequent works [30], [31].
Tikhonov’s model, in fact, is closer to the model by Naboko [21], which, in par-
ticular, made it possible to develop a stationary scattering theory in the context
of non-dissipative operators. We remark that, in general, the function theory that
appears in the Nagy–Foiaş model is studied much better than analytic questions
that arise from the model by Naboko.

Operators of the form (0.1) frequently appear in applications. Namely, sup-
pose that A0 is a selfadjoint elliptic operator with regular boundary conditions
in L2(G), where G is a bounded domain in Rn with smooth boundary. Take

ψ(x) = 1 + |x|α, where 0 < α 6 1/2. Then L def= A − A0 has the desired form
L = iψ(A0)Fψ(A0), with a bounded F, if and only if (I + |A0|)−αL is bounded
from D((I + |A0|)α) to L2(G). Note that D((I + |A0|)α) is a kind of Sobolev class
in G. Typically, L can be a differential operator of order at most 4αm, where 2m is
the order of A0. The same is true for elliptic operators on closed manifolds. We
refer to [1], [32] and others for details.

The completeness of eigenvectors of operators of a related class was estab-
lished by Keldysh, see [13].

As is known, the spectrum of A lies in a suitable parabolic domain, see
[19] and others; the boundary of this domain is called sometimes the “Carleman
parabola”. In this work, we apply the general scheme of [33] and construct a
Sz.-Nagy–Foiaş type functional model of operator A in a parabolic domain of
this type.

In fact, two closely related models were considered in [33], and we will write
down both these models of A explicitly. They were called in [33] the quotient model
and the resolvent model. It turns out that these constructions have some points in
common with the control theory, in particular, with the theory of L2 well-posed
systems, which was developed in works by Salamon, Curtain, G. Weiss, Staffans
and others. In particular, our models are not unique, and their choice depends on
the inclusion of our operator in a triple (A, B, C), which is an abstract analogue of
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linear control system. Here we adopt the systems theory terminology and slightly
change the terminology of [33]. We will call here the quotient model the control
model and the resolvent model the observation model. In Section 1 and Section 5,
these terms will be explained.

Let us describe briefly the control model (whose connection with the origi-
nal setting by Nagy and Foiaş is more transparent). Recall first the definition of
the Smirnov class E2(Ωint). It consists of all functions f analytic in Ωint such that
sup

n

∫
∂Ωn

| f |2 |dz| < ∞ for a sequence of domains Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωn ⊂ · · ·

with rectifiable boundary and with
⋃
n

Ωn = Ωint. We refer to [11] for the prop-

erties of the Smirnov classes Ep(Ωint) and their relationship with Hardy classes
Hp(Ωint). The functions in E2(Ωint) have nontangential boundary values a.e. on
Γ. Equipped with the norm

‖ f ‖2
E2(Ωint)

def=
1

2π

∫
Γ

| f (z)|2 |dz|,

the class E2(Ωint) is a Hilbert space.
For an auxiliary Hilbert space U, the elements of the Hilbert functional

space E2(Ωint, U) def= E2(Ωint)⊗U are U-valued functions analytic in Ωint. These
functions also have nontangential boundary values almost everywhere [28]. The
norm in E2(Ωint, U) is given by

‖ f ‖2
E2(Ωint,U)

def=
1

2π

∫
Γ

‖ f (z)‖2
U |dz|.

The space E2(Ωint, U) can be interpreted either as a closed subspace of L2(|dz|, U)
or as a space of U-valued analytic functions in Ωint. We will use both interpreta-
tions.

We need some more definitions. Let U, Y be two auxiliary Hilbert spaces
and Ωint a domain in C with piecewise smooth boundary Γ. Let δ be a function in
H∞(Ωint,B(Y, U)). We call δ admissible in Ωint if there is a constant ε > 0 such that
‖δ(z)y‖ > ε‖y‖, y ∈ Y for a.e. z ∈ Γ. This function is two-sided admissible in Ωint
if δ(z)−1 exists for a.e. z ∈ Γ and ‖δ−1‖ 6 C a.e. on Γ. Note that the functions in
H∞(Ωint,B(Y, U)) have nontangential limits in the strong operator topology a.e.
on Γ (see Section V.2 of [28]). If δ is admissible, then the space δE2(Ωint, Y) is a
closed subspace of E2(Ωint, U).

For a holomorphic function f in some domain in C, we set

Mz f (z) def= z f (z),

so that Mz is the operator of multiplication by the independent variable. In gen-
eral, for any function η, we denote by Mη the multiplication operator by η.

Put
ϕ(x) = ψ2(x).
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For 0 < µ < ∞, consider a parabolic-type domain

(0.2) Ωint
µ = {z = x + iy ∈ C : x ∈ intD(ϕ), |y| < µϕ(x)}.

Let 0 < R < ∞. We set

(0.3) Ωint
µ,R = Ωint

µ ∪ BR(0), Ωext
µ,R = C \ clos Ωint

µ,R,

where BR(λ) stands for the open disc in the complex plane of radius R centered
at λ. It is known that for certain µ and R, Ωint

µ,R contains the spectrum of A. The
control model of A is given by Theorem 5.6. It asserts that for suitable µ and R, the
operator A is similar to the (unbounded) operator of multiplication by the independent
variable on the quotient space

E2(Ωint, X)/δ · E2(Ωint, X),

where Ωint = Ωint
µ,R and δ is a two-sided admissible H∞ function on Ωint with values in

B(X). The function δ plays the role of the Nagy–Foiaş characteristic function. It
will be given below by an explicit formula.

The model we get is, in fact, an analogue of a C00 type model in the domain
Ωint, which has no absolutely continuous part corresponding to the boundary
curve.

We will derive a few corollaries from our results. In particular, one can
assert that there exists an unbounded normal dilation of A (up to similarity),
whose spectrum lies on ∂Ωint. See Corollary 5.8 of Theorem 5.6.

Before formulating the control model, we prove Theorem 1.6, which gives
the observation model of A. These two models of A are equivalent. All necessary
definitions will be given below.

It is very interesting to compare our result with results by Putinar and Sand-
berg [25] and Badea, Crouzeix, Delyon [4] (see also [8], [7]). The results of [25]
imply that for any bounded operator A on a Hilbert space and a convex domain
Ωint such that the numerical range of A is contained in its closure, one can find a
dilation of A to an operator similar to a normal one, whose spectrum is contained
in the boundary of Ωint. The same holds true for the case of an unbounded A, if
Ωint is a sector, see [17]. If an analogous result were true for a general unbounded
operator and a general convex domain Ωint, it would give a better domain Ωint
than our results for the case when A0 is bounded from below and ‖F‖ = ‖F‖ess.
On the other side, if the spectrum of A0 is unbounded from above and from be-
low, the numerical range of A can be the whole complex plane, and the approach
of these papers does not apply. We also remark that in these works, no expres-
sion for a characteristic function was given, and that our methods are completely
different.

We can also mention the work [3] and others by Arlinsky, where character-
istic functions of sectorial operators have been investigated.

Our approach is based on the duality between (Nagy–Foiaş type) observa-
tion models of A and A∗ with respect to a two-sided admissible function δ. This
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notion was introduced and studied in [33]. Once dual observation systems (A, C)
and (A∗, B∗) are found, they give rise immediately to dual observation models of
A and A∗. In order to prove this duality with respect to δ, one has to find auxil-
iary operators B and C such that δ and the transfer function of system (A, B, C)
are related by a certain algebraic identity. In our case, we are able to give such B
and C explicitly.

A serious disadvantage of our results resides in the fact that the values of the
generalized characteristic function δ are infinite-dimensional operators and not
matrices. In our setting it is inevitable (because the dimensions of eigen-spaces
of A need not be uniformly bounded). It can be shown that in some important
cases, the characteristic function δ has a scalar multiple. This will be discussed
elsewhere. It seems that if more conditions on A0 are imposed, then one can
obtain a finite-dimensional model of the same type.

The plan of the exposition is as follows. In Section 1, the observation models
of A and A∗ and a duality result will be formulated. In Section 2, we prove the
boundedness of the similarity transformation OA,C, which goes from X to the
observation model space. In Section 3, we give more background on the duality
and formulate the abstract result from [33] that will be used. In Section 4, we
finish the proofs of our results on observation models. In Section 5, the control
model of A will be introduced, and it will be explained how to pass to it from the
observation model. In the end of this section, one can encounter some corollaries
and a discussion. Finally, in Section 6 we prove some auxiliary geometric lemmas
that have been used earlier.

1. AN OBSERVATION MODEL AND A DUALITY RESULT

1.1. ABSTRACT OBSERVATION SYSTEMS AND ALMOST DIAGONALIZING TRANS-
FORM. We will have to reproduce some notions and results from [33], which will
be used here.

In what follows, we will consider linear systems (A, B, C) of possibly un-
bounded operators, where A acts on a space X (called a state space), B acts from
an input space U to X (or to a larger Hilbert space) and C goes from X (or its dense
linear subset) to an output space Y. Spaces X, U, Y are Hilbert. A pair (A, C) of
operators as above will be called an observation system and a pair (A, B) will be
called a control system. Despite the parallelism with the infinite dimensional lin-
ear systems theory, in this abstract setting we do not need the assumption that
the set Re σ(A) is bounded from above.

We will use bold letters when discussing the abstract constructions of func-
tional models and usual ones when referring to our concrete operator A, given
by (0.1), and corresponding auxiliary operators B and C, which will be defined
below.
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DEFINITION 1.1. A pair of operators (A, C) (possibly, unbounded) will be
called an abstract observation system if

(i) A is a closed densely defined operator on a Hilbert space X with nonempty
field of regularity ρ(A) = C \ σ(A);

(ii) C : D(C) → Y, where D(C) = D(A) ⊂ X and C is bounded in the graph

norm ‖x‖G
def= (‖x‖2 + ‖Ax‖2)1/2 in D(A).

With every abstract observation system (A, C) we associate the transform
OA, C, defined by

OA, Cx(z) = C(zI −A)−1x, x ∈ X, z ∈ ρ(A).

This map acts from X to the space of Y-valued functions analytic on ρ(A).
Now let Ωint and Ωext be a pair of open subsets in C that have a common

boundary Γ. In this abstract setting, our requirements are:
(i) Ωint ∩Ωext = ∅; C = Ωint ∪Ωext ∪ Γ;

(ii) Γ is a finite union of piecewise smooth contours, each of them homeomor-
phic to the unit circle or a real line. In the latter case, both ends of the contour
have to go to infinity;

(iii) 1/(|z|+ 1) ∈ L2(Γ, |dz|). If these conditions hold, we will call the open set
Ωint admissible.

DEFINITION 1.2. We call an abstract observation system (A, C) admissible
with respect to Ωint if σ(A) ⊂ clos Ωint and operator OA, C is bounded from X to
E2(Ωext, Y).

We call an abstract observation system (A, C) exact with respect to Ωint if it is
admissible with respect to Ωint and, moreover, there is a two-sided estimate

‖OA, Cx‖E2(Ωext,Y) � ‖x‖, x ∈ X.

The relation with the theory of well-posed control systems is as follows.
Suppose now that A is a generator of a bounded C0 semigroup. Let

Π− = {z : Re z < 0}, Π+ = {z : Re z > 0}

be, respectively, the left and the right half-planes. Consider the linear continuous
time observation system

ẋ(t) = Ax(t), x(0) = x0, y(t) = Cx(t).

For any initial value x0 ∈ D(A), the output y = y(t) is a well-defined continuous
function on [0, +∞). Denote y = ÔA, Cx0, so that ÔA, C is the space-output map.
Then

OA, Cx0(z) = (LÔA, Cx0)(z), x0 ∈ D(A)

for all z ∈ Π+, where Ly(z) =
∞∫
0

e−zty(t) dt is the Laplace transform. It follows

that in this case, abstract observation system (A, C) is admissible with respect to
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Ωint := Π− if and only if the inequality
∞∫

0

‖y(t)‖2 dt 6 K‖x0‖2

holds for some constant K > 0 and for all initial data x0 ∈ D(A). The system
(A, C) is exact with respect to Π− if and only if the two sides of this inequality are
comparable. There is a close connection between this setting and the definition of
a well-posed output map, see Theorem 4.4.2 of [27].

Now let us return to the general situation of an abstract observation system
and arbitrary admissible domain Ωint.

DEFINITION 1.3 ([33]). Let δ ∈ H∞(Ωint,L(Y, U)) be a two-sided admissible
function. We introduce the observation model space H(δ) as the following closed
subspace of E2(Ωext, Y):

(1.1) H(δ) = { f ∈ E2(Ωext, Y) : f̃ def= δ · f |Γ ∈ E2(Ωint, U)}.

We introduce (possibly, unbounded) operators MT
z , j on H(δ) as follows.

Put
D(j) = D(MT

z ) = { f ∈ H(δ) : ∃c ∈ Y : z f − c ∈ H(δ)}.

For f ∈ D(MT
z ), the constant c is unique. Therefore, the operators

j : D(MT
z ) → Y, MT

z : D(MT
z ) → H(δ),

j f def= c, (MT
z f )(z) def= z f − c, f ∈ D(MT

z )

are well defined. We shall call MT
z the operator of truncated multiplication on H(δ).

Let δ ∈ H∞(Ωint,B(Y, U)) be a two-sided admissible function. By definition
(see [22]), the spectrum of δ is the set of points λ ∈ clos Ωint such that δ−1 /∈
H∞(Ωint ∩ W ,B(Y, U)) for any neighbourhood W of λ. It will be denoted by
spec δ. It is a closed subset of clos Ωint. Its intersection with Ωint consists of
points λ in Ωint such that δ(λ) is not invertible.

Any function f ∈ H(δ) can be viewed as an analytic function on Ωext ∪
Ωint \ spec δ. On Ωint \ spec δ, we define it by means of the formula

(1.2) f (z) def= δ(z)−1 f̃ (z),

where f̃ (z) is determined from (1.1).
For completeness, we give here the formula for the resolvent of MT

z .

PROPOSITION 1.4 ([33], Propositions 1.1 and 2.3). (i) The operator (MT
z −

λI)−1 exists and is bounded if and only if λ ∈ C \ spec δ.
(ii) Each function f ∈ H(δ) extends analytically to C \ spec δ according to the rule

f (λ) def= j(λI − MT
z )−1 f . For λ ∈ Ωint \ spec δ, this extension coincides with that

defined in (1.2).
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(iii) For λ in C \ spec δ,

(MT
z − λI)−1 f (z) =

f (z)− f (λ)
z− λ

, f ∈ H(δ).

Now this scheme will be concretized in order to give a precise observation
model of operator (0.1).

1.2. CONDITIONS ON THE PERTURBATION. Remind that the essential norm of F
is defined as

‖F‖ess
def= inf{‖F + R‖ : R ∈ B(X) is compact}.

Assume that ψ : D(ψ) → R and A satisfy the following:

(1) Either ψ is defined on R and is even or it is defined on [0, +∞).
(2) ψ is a continuous function; moreover, ψ is of class C1 on D(ψ) \ {0}.
(3) ψ > 1 on D(ψ) and ψ(x) → +∞ as x → +∞.
(4) ψ2 is concave on [0, ∞).
(5) One has

(1.3) ‖F‖ess · k0(ψ) < 1, where k0(ψ) def= lim
t→+∞

ψ2(t)
t

(it follows from (4) that this limit exists).
(6) If D(ψ) = [0, ∞), then σ(A0) ⊂ [ε0, ∞) for some ε0 > 0.

Notice that condition (5) is automatically fulfilled whenever either F is com-
pact or k0(ψ) = 0.

We put

ϕ(t) def= ψ2(t).

1.3. PRECISE DEFINITION OF A. Put A00 = I + |A0|; then D(A0) = D(A00). We
rewrite A in the form

(1.4) A = A00[A−1
00 A0 + i(A−1

00 ψ(A0))Fψ(A0)]

and take it for the precise definition of A. We set

D(A) def= {x ∈ D(ψ(A0)) : [A−1
00 A0 + i(A−1

00 ψ(A0))Fψ(A0)]x ∈ D(A0)}.(1.5)

Notice that operators A−1
00 A0 and A−1

00 ψ(A0) are bounded.
Consider the control system (A, B, C), where

C = iψ(A0), B = ψ(A0).

We put Y = U = X. Notice that formally, A = A0 + L, where the perturbation L
factorizes as

(1.6) L = BFC.

According to (1.3), the pair (A, C) is an abstract observation system.



NAGY–FOIAŞ TYPE FUNCTIONAL MODELS IN PARABOLIC DOMAINS 11

DEFINITION 1.5. Let A be a closed densely defined operator on X with
σ(A) 6= C. Take any point λ ∈ ρ(A). We define the Hilbert space Xλ(A) as the vec-
tor space of formal expressions (A − λI)x, where x ranges over the whole space

X. Introduce a Hilbert norm on Xλ(A) by setting ‖(A − λI)x‖Xλ(A)
def= ‖x‖X for

all x ∈ X. For x ∈ D(A) ⊂ X, we identify the element (A − λI)x of X(A) with
the element of X, given by the same expression.

It is clear that by this construction, X becomes a dense subset of Xλ(A). This
construction does not depend on the choice of λ in the sense that for different
λ’s in ρ(A), the corresponding spaces Xλ(A) are naturally isomorphic (and have
equivalent norms). If the exact form of the norm in Xλ(A) is not important, then
we write X(A) instead of Xλ(A). Observe that A is a bounded operator from X
to X(A).

1.4. OBSERVATION MODEL OF A. Put

(1.7) µ0 =
‖F‖ess√

1− ‖F‖2
essk0(ψ)2

.

For κ ∈ R, we consider the normal (possibly unbounded) operator

Aκ = A0 + iκϕ(A0).

Now we can formulate the “observation form” of our functional model.

THEOREM 1.6 (An observation model of A). Take any µ > µ0. For κ ∈ R,
define

δκ(z) = [Aκ − zI + iϕ(A0)F]−1[A0 − zI + iϕ(A0)F].

Then there exist R > 0 and κ ∈ R such that for the corresponding function δ
def= δκ and

for the domains

(1.8) Ωint
def= Ωint

µ,R, Ωext
def= Ωext

µ,R

(see (0.3)) the following statements hold:
(i) A is a closed densely defined operator, and σ(A) ⊂ Ωint. The pair (A, C) is an

exact observation system.
(ii) The function δ is in H∞(Ωint,B(X)) and is two-sided admissible;

(iii) The operator
OA,C : X → H(δ)

is an isomorphism that transforms the operator A into the truncated multiplication op-
erator MT

z on the observation model space H(δ). This means that for any x ∈ D(A),
OA,C x is in D(MT

z ),

(1.9) OA,C Ax = MT
z OA,C x

and that, moreover,

(1.10) OA,CD(A) = D(MT
z ).
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In fact, we will show that there is κ0 > 0 such that one can take any κ,
|κ| > κ0 in the above theorem. The value of κ0 is given below in (4.1).

The above definition of δ can be understood as follows. It is clear that
A0 − zI + iϕ(A0)F is a bounded operator from X to X(A0). It will be proved
in Lemma 4.5 that for z ∈ Ωint (and for κ > κ0), the operator Aκ − zI + iϕ(A0)F
from X to X(A0) is invertible. Hence δκ is a well-defined bounded operator on X
for z ∈ Ωint.

The splitting property (1.9) is in fact a matter of algebra and holds true in
much more general context, see Proposition 1.2 of [33].

This theorem models the operator A by the operator MT
z on the model func-

tional space H(δ). As it will be seen in Section 5, this model is closely related to
the Nagy and Foiaş model.

1.5. THE DUALITY RESULT. Let δ ∈ H∞(Ωint,B(Y, U)) be a two-sided admissible
operator function in an admissible domain Ωint. As before, we put Ωext = C \
(Ωint ∪ Γ). We orient the curves that constitute Γ = ∂Ωint in such a way that,
under the movement along them, the domain Ωint remain on the left. Put

Ωint
def= {z : z ∈ Ωint}; δT(z) = δ(z)∗, z ∈ Ωint.

Then δT is a two-sided admissible function in Ωint. We will need the model space

H(δT) def= { f ∈ E2(Ωext, Y) : δT · f |∂Ωint ∈ E2(Ωint, U)},

which is associated to the function δT and the domain Ωint.
We start with the following fact.

PROPOSITION 1.7 ([33], Proposition 4.2). For any two-sided admissible function
δ ∈ H∞(Ωint,B(Y, U)), the model spaces H(δ) and H(δT) are dual to each other with
respect to the Hermitian pairing

〈 f , g〉δ
def=

1
2πi

∫
Γ

〈δ(z) f (z), g(z)〉 dz.

In fact, in our case, Ωint is symmetric with respect to the real line, that is
Ωint = Ωint.

DEFINITION 1.8. Suppose we are given a triple of (possibly unbounded)
operators (A, B, C) and Hilbert spaces X, U, Y, which have the meaning of the
state space, the input space and the output space, respectively. We say that the
triple (A, B, C) is a full abstract system if the following condition hold:

(i) (A, C) is an abstract observation system, whose state space is X and output
space is Y;

(ii) B : U → X(A) is a bounded operator.

Each linear continuous functional in X(A)∗ can be considered in the same
time as a linear continuous functional on X, that is, an element of X∗. In this sense,
X(A)∗ coincides with D(A∗), see, for example, [27]. It follows that whenever
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(A, B, C) is a full abstract system, (A∗, C∗, B∗) is also a full abstract system, with
input and output space interchanged.

DEFINITION 1.9. Suppose Ωint is fixed and (A, B, C) is a full abstract sys-
tem. Let δ ∈ H∞(Ωint,B(Y, U)) be two-sided admissible. We say that the observa-
tion systems (A, C) and (A∗, B∗) are in duality with respect to δ if

(i) the following operators are isomorphisms

OA,C : X → H(δ), OA∗ ,B∗ : X → H(δT);

(ii) for all x1, x2 in X,

(1.11) 〈x1, x2〉X = 〈OA,Cx1,OA∗ ,B∗x2〉δ.

In addition to Theorem 1.6, we will prove the following result.

THEOREM 1.10. Take any µ > µ0. Then there exist R > 0 and κ ∈ R such that
all statements of Theorem 1.6 hold and, moreover, systems (A,−κC) and (A∗, B∗) are
in duality with respect to the function δ = δκ . It is assumed here that Ωint is defined
by (1.8).

This result implies that the transform OA∗ ,B∗ is an isomorphism that con-
verts the action of A∗ into the action of MT

z on the model space H(δT).
Observation models and control models are closely related. One of these

relations is given below in Lemma 5.3. Another one is Proposition 4.1 of [33].

REMARKS. (i) If δ is a two-sided admissible function and OA, C is an iso-
morphism of X onto H(δ), then we called δ a generalized characteristic function of
an observation system (A, C) in [33]. Its determination is far from unique, to the
opposite to the classical notion of the Nagy–Foiaş characteristic function, which
is essentially unique. In fact, it is easy to see that H(δ) = H(β · δ) for any func-
tion β, which is invertible in the algebra H∞(Ωint,B(X)). Therefore for any β of
this kind, β · δ is a generalized characteristic function of system (A, C) together
with δ.

We would obtain formally a closer analogue of the classical Nagy–Foiaş con-
struction if we required δ to be two-sided inner. However, it is this freedom of
the choice of δ that permits us to give an explicit formula for the generalized
characteristic function of the operator A in study.

In [33], in fact, we discussed functional models for a more general class of
∗-admissible functions.

(ii) Full systems (A, B, C) such that the observation systems (A, C) and (A∗, B∗)
are in duality are very special ones. Their consideration is motivated by our
scheme of constructing functional models rather than by the control theory. If
a generalized characteristic function δ of system (A, C) is fixed, then, by Proposi-
tion 9.3 of [33], there is a unique operator B such that (A, C) and (A∗, B∗) are in
duality with respect to δ.
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2. ADMISSIBILITY OF THE OBSERVATION SYSTEM (A, C)

We fix some µ > µ0. From now on, let us also fix a number r′ > ‖F‖ess, close
to ‖F‖ess, and a number k > k0(ψ), close to k0(ψ), so that

(2.1) r′k < 1,
r′√

1− r′2k2
< µ

(see (1.3) and (1.7)). Take any decomposition F = F′ + F′′ such that F′′ is a finite
rank operator and

(2.2) ‖F′‖ < r′.

It is possible, because any compact operator in X can be approximated in norm
by finite rank operators.

First let us formulate two technical lemmas, whose proofs will be given in
the last section.

LEMMA 2.1. There exists R0 > 0 such that for all t ∈ D(ϕ),

(2.3) B(t, r′ϕ(t)) ⊂ Ωint
µ,R0

.

LEMMA 2.2. Let Ωint = Ωint
µ, R for some positive R, and let Γ = ∂Ωint. Then there

is a positive constant K such that the following inequality holds for all x ∈ σ(A0):

ϕ(x)
∫
Γ

|dλ|
|x − λ|2

6 K.

LEMMA 2.3. The system (A0, C) is admissible with respect to the domain Ωint.

Proof. By the Spectral Theorem, A0 is unitarily equivalent to the operator
Ã0 f (t) = t f (t), acting on a direct integral

X̃ def=
∫ ⊕

X (t) dν(t),

where ν is a positive Borel measure on σ(A0) (a scalar spectral measure of A0) and
{X̃ (t)} is a ν-measurable family of Hilbert spaces [6]. The same unitary isomor-
phism converts C = iψ(A0) into C̃ = Miψ. We prove our statement by passing to
this model of the pair (A0, C). For f = f (t) ∈ X̃ ,

‖(OÃ0,C̃ f )‖2
E2(Ωext,Y) =

∫
Γ

∫
R

∥∥∥ψ(t) f (t)
t− z

∥∥∥2
dν(t)|dz|=

∫
R

dν(t)‖ f (t)‖2|ψ(t)|2
∫
Γ

|dz|
|t− z|2

6 K
∫
R

‖ f (t)‖2|dν(t) = K‖ f ‖2
X̃ .

The inequality is due to Lemma 2.2.
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LEMMA 2.4. (i) lim sup
z∈Ωext

µ , z→∞
‖FC(A0 − zI)−1B‖ 6

‖F′‖
r′

< 1;

(ii) lim sup
z∈Ωext

µ , z→∞
‖C(A0 − zI)−1BF‖ 6

‖F′‖
r′

< 1.

Proof. By Lemma 2.1, if |z − t| < r′ϕ(t) for some t ∈ D(ϕ), then z ∈ Ωint
µ,R0

.
It follows that for z ∈ clos Ωext

µ,R0
,

(2.4)
ϕ(t)
|z− t|

6
1
r′

, ∀t ∈ D(ϕ).

Hence

(2.5) ‖ϕ(A0)(A0 − zI)−1‖ 6
1
r′

for z ∈ clos Ωext
µ,R0

. Moreover, if we put Ã(z) = ϕ(A0)(A0 − zI)−1, then it is easy
to check that

(2.6) Ã(z)∗ → 0 as z → ∞, z ∈ clos Ωext
µ,R0

in the strong operator topology. (One can apply here the Spectral Theorem in the
same way as in the proof of Lemma 2.3, the Lebesgue dominated convergence
theorem and (2.4).) We have

‖FC(A0 − zI)−1B‖ 6 ‖F′ϕ(A0)(A0 − zI)−1‖+ ‖F′′ϕ(A0)(A0 − zI)−1‖.

The relation (2.6) and the fact that F′′ has a finite rank imply that ‖F′′(A0 −
zI)−1 ϕ(A0)‖ → 0 as z → ∞, z ∈ clos Ωout

µ,R0
. By applying the estimate ‖F′‖ < r′

and (2.5), we obtain (i). Assertion (ii) is obtained similarly.

From now on, we fix some ε > 0 and a radius R > R0 such that

(2.7) ‖FC(A0 − zI)−1B‖ 6 1− ε, ‖C(A0 − zI)−1BF‖ 6 1− ε

for all z ∈ Ωext
µ,R. It is possible due to Lemma 2.4. According to (0.3), we put

Ωint = Ωint
µ,R, Ωext = C \ clos Ωint.

DEFINITION 2.5. Let η be a real Borel function on D(ψ) such that η(t) 6= 0
for all t ∈ D(ψ). We define the Hilbert space Xη as the set of formal expressions
η(A0)x, x ∈ X. Recall that the self-adjoint operator η(A0) is bounded if and
only if η is essentially bounded with respect to the spectral measure of A0. We

introduce a Hilbert norm on Xη by setting ‖η(A0)x‖Xη

def= ‖x‖X for all x ∈ X.
For x ∈ D(η(A0)) ⊂ X, we identify the element η(A0)x of Xη with the element
of X, given by the same expression. Notice that if η is essentially bounded, then
Xη = D(η−1(A0)) ⊂ X.

This definition is very close to the definition of spaces Xλ(A), given earlier.
In fact, if η > ε > 0, then Xη = X0(η(A0)).
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Consider, in particular, the Hilbert space Xψ ⊃ X. Since B is an isometric
isomorphism of X onto Xψ, for any T ∈ B(Xψ),

(2.8) ‖T‖B(Xψ) = ‖B−1TB‖B(X).

Recalling the notation from (1.6), by the first inequality in (2.7) we obtain

(2.9) ‖L(A0 − zI)−1‖B(Xψ) 6 1− ε, z ∈ clos Ωext.

LEMMA 2.6. (i) σ(A) ⊂ Ωint.
(ii) For z ∈ clos Ωext, (A− zI)−1 is an isomorphism of Xψ onto Xψ(t)/(|t|+1).

(iii) The identity

(2.10) OA0,Cx(z) = H(z)OA,Cx(z), x ∈ X, z ∈ Ωext

holds, where

(2.11) H(z) = I + C(A0 − zI)−1BF.

(iv) One has H, H−1 ∈ H∞(Ωext,B(X)).
(v) The observation system (A, C) is admissible with respect to the domain Ωint.

Notice that ψ2(t) 6 K(|t|+ 1) implies that Xψ(t)/(|t|+1) ↪→ X1/ψ.

Proof of Lemma 2.6. The definition (1.3) of D(A) can be rewritten as

D(A) def= {x ∈ X1/ψ : [A0 + iψ(A0)Fψ(A0)]x ∈ X},

where [A0 + iψ(A0)Fψ(A0)]x is understood a priori as an element of X|t|+1. Recall
that X1/ψ = D(ψ(A0)). Hence for all y ∈ Xψ(t)/(|t|+1), the equality

(A− zI)y = (I + L(A0 − zI)−1)(A0 − zI)y

between elements of Xψ holds for all z /∈ σ(A0). By (2.9), I + L(A0 − zI)−1 is
invertible in Xψ for z ∈ clos Ωext. Hence for these z, A− zI has a bounded inverse
in X, given by

(2.12) (A− zI)−1 = (A0 − zI)−1(I + L(A0 − zI)−1)−1

(notice that the immersion X ↪→ Xψ is bounded). This proves (i). Formula (2.12)
also gives (ii).

Similarly, we have

(A− zI)y = (A0 − zI)(I + (A0 − zI)−1BFC)y, y ∈ D(ψ(A0)),

which implies that

(A0 − zI)−1 = (I + (A0 − zI)−1BFC)(A− zI)−1,

where I + (A0 − zI)−1BFC is a bounded operator from D(ψ(A0)) to X. By multi-
plying this equality by C from the left, we obtain (iii).

Assertion (iv) follows from the second inequality in (2.7). At last, (2.10), (iv)
and Lemma 2.3 imply (v).
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Assertion (ii) of lemma implies that A is closed and densely defined.
Notice that inequality (2.9) implies that

(2.13) ‖(I + L(A0 − zI)−1)−1‖B(Xψ) 6 ε−1 < ∞, z ∈ Ωext.

3. OUTLINE OF THE PROOF OF THEOREM 1.10

Let (A, B, C) be a full abstract system with the state space X, input space U
and output space Y. Let Φ be a holomorphic operator-valued function on ρ(A)
with values in B(U, Y).

DEFINITION 3.1. We call Φ a transfer function of system (A, B, C) if the fol-
lowing identity holds for all z, w ∈ ρ(A):

Φ(z)−Φ(w) = C[(zI −A)−1 − (wI −A)−1]B.

This definition is standard in the theory of well-posed systems, see [27]. The
point is that the difference of the resolvents of A in points z and w is a bounded
map from X(A) to D(A), which implies that the right hand part is always in
B(X). The transfer function of a system is determined uniquely up to adding an
arbitrary operator constant.

We need the following definition from [33].

DEFINITION 3.2. We say that a function Φ ∈ H∞(Ωext,B(U, Y)) corresponds
to a two-sided admissible function δ ∈ H∞(Ωint,B(Y, U)) if there is a function
τ ∈ H∞(Ωint,B(U, Y)) such that the following two conditions hold:

1) Φ|Ωext ∈ H∞(Ωext,B(U, Y));
2) Φe = (δ−1 + τ)i a.e. on Γ.

Our main tool in proving Theorem 1.10 will be the following result from
[33].

THEOREM A. (see Theorem 9.5 of [33]). Let (A, B, C) be a full abstract sys-
tem and Φ its transfer function. Suppose that Ωint is an admissible domain, σ(A) ⊂
clos Ωint, and let δ be a two-sided admissible function in H∞(Ωint,B(Y, U)). Suppose
that the following conditions hold:

(i) OA,C : X → E2(Ωext, Y) and OA∗ ,B∗ : X → E2(Ωext, U) are bounded injective
operators;

(ii) Φ corresponds to δ.
Then the observation systems (A, C) and (A∗, B∗) are dual with respect to δ.

REMARK. In [33], we gave a wider definition of the correspondence be-
tween Φ and δ. It was required there that τ and Φ belong to wider functional
classes than classes H∞. Theorem 9.5 from [33] gives a necessary and sufficient con-
dition for the duality of observation systems (A, C) and (A∗, B∗), and in this sense
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the definition in [33] is the adequate one. For our purpose, the above formulation
in Theorem A will suffice.

The proof of Theorem 1.10 will consist in checking conditions (1) and (2) of
Theorem A for the triple (A, B,−κC). The transfer function of this system can be
simply expressed as

Φ(z) = κC(A− zI)−1B.

Indeed, for z ∈ ρ(A), (A − zI)−1B is bounded from X to Xψ(t)/(|t|+1) (see Lem-
ma 2.6, (ii)), and C is bounded from Xψ(t)/(|t|+1) to X.

4. THEOREM 1.10: DETAILS OF PROOF

LEMMA 4.1. The transfer function Φ of the system (A, B,−κC) belongs to
H∞(Ωext,B(X)).

Proof. Since A− zI is bounded from Xψ−1 to Xψ, (A− zI)−1 is bounded from
Xψ to Xψ−1 for z ∈ ρ(A). It follows from (2.12) that

Φ(z) = κCB(A0 − zI)−1 · B−1[I + L(A0 − zI)−1]−1B.

By (2.13), B−1[I + L(A0 − zI)−1]−1B is an H∞(Ωext,B(X)) function and by (2.5),
CB(A0 − zI)−1 is an H∞(Ωext,B(X)) function.

We will need a domain

Ω′
int

def= Ωint
µ−σ,R−σ ⊂ Ωint

µ,R ,

where a small parameter σ > 0 is chosen in such a way that (2.7) and (2.9)
still hold true for z ∈ C \ clos Ω′

int for some ε > 0. Then Φ belongs to H∞(C \
clos Ω′

int,B(X)).
Put ϕ∗ : R → R to be the even continuation of ϕ if ϕ is defined on [0, ∞),

and ϕ∗ = ϕ, if ϕ is already defined on R.

LEMMA 4.2. (i) For all s > 1 and t ∈ R+, ϕ(st) 6 sϕ(t).
(ii) ϕ∗(s) 6 (|s|+ 1)ϕ∗(1) for s ∈ R.

(iii) ϕ(s + t) 6 ϕ(s) + ϕ(t) for s, t > 0.

Proof. (i) and (iii) follow from the concavity of ϕ on [0, ∞) and the fact that
ϕ(0) > 0. Conditions on ψ imply that ψ grows on [0, ∞). Therefore (ii) is obtained
by putting t = 1 in (i).

It is clear that there is µ1 > µ such that

Ωint
∗, µ1

⊃ clos Ωint
µ,R,

where
Ωint
∗, µ1

def= {z = x + iy ∈ C : x ∈ R, |y| < µ1 ϕ∗(x)}.
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For the rest of this section, we fix a real number ` > ‖F‖ and put

(4.1) κ0 = ` + µ1(α + ϕ(α)), where α = 1 + `ϕ(1).

We also fix any κ > κ0. Our aim is to prove that for any such κ, the conclusions
of Theorems 1.6 and 1.10 hold.

LEMMA 4.3. For any x, t ∈ R,

(4.2) |t + iκϕ∗(t)− (x + iµ1 ϕ∗(x))| > `ϕ∗(t).

Proof. Note that κ > µ1. Take any x, t ∈ R. We distinguish two cases.
(i) Suppose that |x| < α(|t|+ 1). Then, by the previous lemma,

ϕ∗(x) 6 αϕ∗(t) + ϕ∗(α),

which gives that

|κϕ∗(t)− µ1 ϕ∗(x)| > κϕ∗(t)− µ1 ϕ∗(x) > (κ − µ1α)ϕ∗(t)− µ1 ϕ∗(α) > `ϕ∗(t).

The last inequality is due to the facts that κ > κ0 and ϕ∗(t) > 1. Now (4.2)
follows.

(ii) Suppose that |x| > α(|t|+ 1). Since α− 1 = `ϕ(1), we get

|t− x| > |x| − |t| > (α− 1)|t|+ α > `ϕ(1)|t|+ `ϕ(1) > `ϕ∗(t),

and this again gives (4.2).

LEMMA 4.4. For any z ∈ Ωint
∗, µ1

and any t ∈ D(ϕ),

(4.3) |t + iκϕ(t)− z| > `ϕ(t).

Proof. Since κ > µ1, t + iκϕ(t) is outside clos Ωint
∗, µ1

. Hence the straight line
interval with endpoints in t + iκϕ(t) and z contains a boundary point of Ωint

∗, µ1
,

which has a form x + iµ1 ϕ∗(x) for some x. Therefore (4.3) follows from (4.2).

LEMMA 4.5. (i) Aκ − zI + iϕ(A0)F is an isomorphism from X onto X|t|+1 for all
z ∈ Ωint

µ1
.

(ii) δ ∈ H∞(Ωint
µ1

,B(X)).
(iii) For any z ∈ Ωint

∗, µ1
\Ω′

int, δ(z) is invertible, and

δ−1(z) = I + Φ(z).

For these values of z, the norms of δ−1(z) are uniformly bounded. In particular, the
norms ‖δ−1(·)‖ are uniformly bounded on ∂Ωint.

Proof. (i) Since Aκ − zI is an isomorphism from X to X|t|+1 for z ∈ Ωint
∗, µ1

,
one has to check that I + iϕ(A0)(Aκ − zI)−1F is an invertible operator on X. By
(4.3),

‖ϕ(A0)(Aκ − zI)−1F‖ 6 ‖F‖ sup
t∈D(ϕ)

ϕ(t)
t + iκϕ(t)− z

6
‖F‖
`

< 1
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for z ∈ Ωint
∗, µ1

. We obtain that for z ∈ Ωint
∗, µ1

,

(4.4) ‖[I + iϕ(A0)(Aκ − zI)−1F]−1‖ 6
1

1− ‖F‖/`
< ∞,

and our assertion follows.
(ii) It is easy to check that

(4.5) δ(z) = I − iκ[I + iϕ(A0)(Aκ − zI)−1F]−1(Aκ − zI)−1 ϕ(A0).

Since sup
z∈Ωint

∗, µ1

‖(Aκ − zI)−1 ϕ(A0)‖ < ∞, the assertion follows from (4.4).

(iii) By (2.11),

δ(z) = [Aκ − zI + iϕ(A0)F]−1(A0 − zI)H(z).

For z ∈ Ωint
∗, µ1

\ Ω′
int, (A0 − zI)H(z) is an isomorphism from X to X(A0) (see

Lemma 2.6, (iv)), and [Aκ − zI + iϕ(A0)F]−1 is an isomorphism from X(A0) to X.
Hence for these z, δ(z) is invertible, and

(4.6)

δ(z)−1 = [A0 − zI + iϕ(A0)F]−1[Aκ − zI + iϕ(A0)F]

= I + iκ[A0 − zI + iϕ(A0)F]−1 ϕ(A0)

= I + iκψ(A0)[A− zI]−1ψ(A0) = I + Φ(z).

The definition of Ω′
int implies that Φ is an operator-valued H∞ function in C \

clos Ω′
int. Hence ‖δ−1(z)‖ 6 K < ∞ in Ωint

µ1
\Ω′

int.

Proofs of Theorems 1.10 and 1.6. Let R, κ0 be chosen as above, and take any
κ > κ0. Put δ = δκ . We check the hypotheses of Theorem A for the system
(A, B,−κC). By Lemma 2.6, (v), OA,C is bounded. Since C = iψ(A0) and ψ 6= 0
on σ(A0), OA0,C is injective. Statements (iii) and (iv) of Lemma 2.6 imply that
OA,C is injective. By symmetry, the same can be said about OA∗ ,B∗ .

By Lemma 4.5, (ii) and (iii), δ is two-sided admissible. By (4.6), Φ corre-
sponds to δ, with τ(z) ≡ I. Hence all the hypotheses of Theorem A are fulfilled.
Therefore the observation systems (A,−κC) and (A∗, B∗) are dual to each other
with respect to δ. In particular, OA,C is an isomorphism.

Statements (i) and (ii) of Theorem 1.6 have been already verified. Now state-
ment (iii) of this theorem follows immediately from Theorem 3.1 and Proposi-
tion 5.1 in [33].

It is easy to see that the same results hold for κ < −κ0.

5. THE CONTROL MODEL

In this section, we give a dual formulation of our result in terms of what we
call the control model. Let us give first a control theory motivation.
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Suppose we are given an abstract control system (A, B) such that A is a
generator of a bounded C0 semigroup. Associate with the pair (A, B) the linear
system

ẋ(t) = Ax(t) + Bu(t).

Consider the mapping CA, B, which sends an input u ∈ L2(R−, U) to x(0). We
define it first for smooth functions u with compact support, assuming that x(t) =
0 for large negative times. For these functions, CA, B is always well-defined. Next
we make the assumption that CA, B extends continuously to L2(R−, U). In the
control theory, a system with this property is called infinite time admissible [27].
Denote the extended map by the same symbol CA, B. For an admissible system,
define the controllability map

WA, B : E2(Ωint, U) → X

by taking the composition map in the diagram

E2(Ωint, U) −→
L−1

L2(R−, U) −→
CA, B

X

where L−1 is the inverse Laplace transform and Ωint = Π−. By the usual con-
vention, E2(Π−) = H2(Π−). We put Ωext = Π+. It is easy to see that

WA, B(z− λ)−1u = (A− λI)−1Bu, λ ∈ Ωext, u ∈ U.

Let us return to the general case when (A, B) is an arbitrary abstract control
system and Ωint an arbitrary admissible domain such that σ(A) ⊂ clos Ωint. We
take the last formula as a starting point of the general definition of the transform
WA, B.

Consider the linear set H of rational holomorphic functions from Ωint to U
that are representable as finite sums

f (z) = ∑
j
(z− λj)

−1 uj

with uj ∈ U and λj ∈ Ωext. For each such f ∈ H, we put

o
WA, B f def= ∑

j
(A− λj I)−1Buj.

It is easy to prove that H is a dense subset of E2(Ωint, U).

DEFINITIONS 5.1. (i) The abstract control system (A, B) is called admissible

with respect to Ωint if
o

WA, B extends to a continuous operator

WA, B : E2(Ωint, U) → X.

(ii) The abstract control system (A, B) is called exact with respect to Ωint if it is
admissible with respect to this domain and the image of the extended map WA, B
is the whole space X.
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It is easy to see that WA, B splits the multiplication operator by z on
E2(Ωint, U) with the operator A; more exactly,

(5.1) WA, B[q(z) f (z)] = q(A)(WA, B f ), f ∈ E2(Ωint, U)

for any rational scalar function q ∈ H∞(Ωint). For these functions, q(A) is
bounded. It follows from this equation that ker WA, B is invariant under the mul-
tiplication by rational functions in H∞(Ωint).

For any admissible abstract control system (A, B), we define the quotient
operator ŴA, B by factoring WA, B by its kernel:

ŴA, B : E2(Ωint, U)/ ker WA, B → X,

ŴA, B( f + ker WA, B) def= WA, B f .

By the Beurling–Lax–Halmos theorem, ker WA, B has the form

(5.2) ker WA, B = δE2(Ωint, Y)

for a Hilbert space Y and an admissible function δ ∈ H∞(Ωint,B(Y, U)).

DEFINITION 5.2. Any admissible function δ satisfying (5.2) will be called a
generalized characteristic function of abstract control system (A, B).

Put (as before) Ωint = {z : z ∈ Ωint} and Ωext = {z : z ∈ Ωext}. Notice that
the pairing

(5.3) 〈 f , g〉 def=
1

2πi

∫
Γ

〈 f (z), g(z)〉dz, f ∈ E2(Ωint, U), g ∈ E2(Ωext, U)

defines a duality between Hilbert spaces E2(Ωint, U) and E2(Ωext, U), see [33].

LEMMA 5.3. (i) The abstract control system (A, B) is admissible with respect to
Ωint if and only if abstract observation system (A∗, B∗) is admissible with respect to
Ωint.

(ii) If any of the above two assertions holds, then

OA∗ , B∗ = W∗
A, B

with respect to the pairing (5.3).

Proof. The Cauchy pairing (5.3) extends to rational functions f ∈ H and all
holomorphic functions g : Ωext → U by putting

〈(z− λ)−1u, g〉 def= 〈u, g(λ)〉

and extending this formula by linearity. For functions g ∈ E2(Ωext, U), it is the

same pairing. It is plain to check the identity 〈 f ,OA∗ , B∗x〉 = 〈
o

WA, B f , x〉 for f ∈ H
and x ∈ X. Both statements of lemma are easy consequences of this formula.
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LEMMA 5.4. Suppose we are given an abstract control system (A, B), which is
admissible with respect to an admissible domain Ωint and a two-sided admissible function
δ ∈ H∞(Ωint,B(Y, U)).

Then the following are equivalent:
(i) OA∗ , B∗ : X → H(δT) is an isomorphism;

(ii) (A, B) is an exact abstract control system and ker WA, B = δE2(Ωint, Y);
(iii) ker WA, B = δE2(Ωint, Y) and ŴA, B is an isomorphism.

Proof. If follows from Lemma 5.3 that the closure of the range of OA∗ , B∗

in E2(Ωext, U) equals to the annihilator of ker WA, B with respect to the Cauchy
pairing (5.3). By the Banach theorem, the range of OA∗ , B∗ is closed if and only if
WA, B = O∗

A∗ , B∗ is onto. Finally,

H(δT) = (δE2(Ωint, Y))⊥

(see Proposition 2.5 of [33]). These remarks imply the equivalence of statements
(i)–(iii).

DEFINITION 5.5. For a domain Ωint, Hilbert spaces U, Y and a fixed two-
sided admissible function δ ∈ H∞(Ωint,B(Y, U)), we consider the control model
space, which is the quotient space

(5.4) E2(Ωint, U)/δE2(Ωint, Y).

For a function f in E2(Ωint, Y), we put [ f ] = f + δE2(Ωint, Y) to be its coset in this
quotient space.

The model operator M̂z on this space is simply the quotient operator of multi-
plication by the independent variable z. It is given by

D(M̂z) = {[ f ] : f , Mz f ∈ E2(Ωint, Y)},

M̂z[ f ] def= [z f ], if [ f ] ∈ D(M̂z) and f , z f ∈ E2(Ωint, Y).

THEOREM 5.6. Let A be an operator given by (0.1), (1.4), where ψ is a function
satisfying (i)–(vi). Put B = ψ(A), and define δκ as in Theorem 1.6. Then there exist
R > 0 and κ ∈ R such that for the corresponding function δ = δκ and for the domains
Ωint, Ωext, given by (1.8), the following are true:

(i) (A, B) is an exact control system in Ωint and δ is its generalized characteristic
function (that is, ker WA,B = δE2(Ωint, X)).

(ii) The operator

ŴA,B : E2(Ωint, X)/δE2(Ωint, X) → X

is an isomorphism that transforms the operator A into the quotient multiplication opera-
tor M̂z on the control model space. In particular, ŴA,B D(M̂z) = D(A), and

(5.5) A ŴA,B[ f ] = ŴA,B M̂z[ f ], ∀ f ∈ D(M̂z).
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Proof. Take µ, R and κ0 as in Sections 1–4, and put Ωint = Ωint
µ,R. Take any

κ > κ0, and put δ = δκ . By Theorem 1.10, the observation system (A∗, B∗) is
exact andOA∗ , B∗ is an isomorphism from X ontoH(δT). Hence, by Lemma 5.4, (i)
holds, and ŴA,B is an isomorphism. The splitting properties of this isomorphism,
stated in (ii), follow easily from (5.1).

The calculus q 7→ q(A) ∈ B(X) is defined for any rational function q in
H∞(Ωint).

COROLLARY 5.7. The above functional calculus q 7→ q(A) extends by continuity
to an H∞(Ωint) functional calculus for A. In particular,

(5.6) ‖ f (A)‖ 6 K sup
z∈Ωint

| f (z)|

for f ∈ H∞(Ωint), where K = ‖ŴA,B‖ ‖Ŵ−1
A,B‖.

COROLLARY 5.8. Operator A admits a skew normal dilation on ∂Ωint in the fol-
lowing sense. There exists a Hilbert space K and an unbounded operator N, acting on K,
that has the following properties:

(i) N is similar to an unbounded normal operator;
(ii) σ(N) is contained in ∂Ωint and is absolutely continuous with respect to the arc

length measure;
(iii) q(A) = PXq(A)|X for any rational function q in H∞(Ωint).

REMARKS. (i) The quotient operator M̂z of multiplication by z can also be
defined for the case of two-sided admissible function δ on a bounded domain Ωint;
in this case M̂z is bounded. For the case of a simply connected Ωint, one can sub-
stitute δ by its inner part δi, which comes from a canonical factorization δ = δiδe
in this model. In particular, in the case when Ωint is the unit disc D, the model
operator of Theorem 5.6 becomes exactly the Nagy–Foiaş model operator. In the
general case of bounded or unbounded (simply connected) admissible domain
Ωint, one can identify M̂z with γ(T), where γ : D → Ωint is a conformal mapping
and T is the Nagy–Foiaş model operator, whose Nagy–Foiaş characteristic func-
tion is δi ◦ γ (more precisely, the pure part of this function). We understand γ(T)
in the sense of the Nagy–Foiaş theory. See Section 5 of [33] for more details.

(ii) Inequality (5.6) implies that clos Ωint is a so-called K-spectral set of A. As
Pisier proved in 1997 (see [24]), the fact that a set T is K-spectral of an operator
does not imply the existence of a skew dilation of this operator to a normal op-
erator whose spectrum is contained in ∂T. We refer to [26], [12], [16], [18], [23]
and others for more information on K-spectral sets of operators and positive and
negative results on similarity.

The existence of invariant subspaces for Banach space operators such that
the unit disc is their K-spectral set (with a certain additional condition) has been
proved in [2]. In our situation, by applying the results by Nagy and Foiaş ([28],
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Chapter VII), we can describe all invariant subspaces of operator A under con-
sideration in terms of regular factorizations of δ. By an invariant subspace of A
we mean here an invariant subspace of (A− λI)−1 for all λ ∈ Ωext.

The results by Nagy and Foiaş are also applicable to the lifting of the com-
mutant of A.

It would be interesting to use the results of [14] to give a necessary and
sufficient condition for similarity of A to a normal operator. We refer to [5] and
[15] for additional information.

(iii) Suppose we have an unbounded operator A = A0 + L, where L has been
represented as L = iψ(A0)Fψ(A0), so that conditions (i)–(vi) on ψ and A0 are
fulfilled. Take any function ψ1 that satisfies (i)–(iv) and such that ψ1 > ψ on D(ψ).
Then L = iψ1(A0)F1ψ1(A0), where ‖F1‖ess 6 ‖F‖ess, so that conditions (i)–(vi) are
also fulfilled for ψ1 and A0. Hence, whenever our construction yields a model in
some parabolic domain, it also gives a model in larger parabolic domains, with
other auxiliary operators B and C.

6. PROOFS OF AUXILIARY LEMMAS

Proof of Lemma 2.1. Remind that r′ and k were chosen so as to satisfy (2.1).
There exists t0 > 0 such that

(6.1)
ϕ(t)

t
< k for t > t0.

Let us prove that for these t, the disc B(t, r′ϕ(t)) is contained in

Ωint
+

def= Ωint
µ ∩ {z : Re z > 0}.

The vertical line Re z = t divides the disc B(t, r′ϕ(t)) into two halves. First notice
that the right half-disc is contained in Ωint

+ . Indeed, if z = x + iy ∈ B(t, r′ϕ(t))
and x > t, then |y| 6 r′ϕ(t) 6 µϕ(x). It remains to prove that the left half-
disc is contained in Ωint

+ . Consider the triangle T with vertices at points 0 and
τ± = t± iµϕ(t). Since Ωint

+ is convex, int T ⊂ Ωint
+ . It is easy to check, using (1.7),

(6.1) and the second inequality in (2.1) that the distances from the point t to the
sides [0, τ±] of the triangle T are equal to

tµϕ(t)√
t2 + µ2 ϕ2(t)

,

which is greater than r′ϕ(t). This proves that the left half of the disc is contained
in Ωint

+ . We conclude that (2.3) holds for |t| > t0. The union of discs B(t, r′ϕ(t)),
|t| < t0 is bounded, and the statement of lemma follows.

Proof of Lemma 2.2. Fix some t0 > 0 such that (6.1) holds. Put ρ = 1/(2k).
For a fixed x, divide D(ϕ) \ (−2R, 2R) into a countable union of sets In = In(x),
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n > 0, where

I0 = {t ∈ D(ϕ) : |t| > 2R, |t− x| 6 ρϕ(x)},

In = {t ∈ D(ϕ) : |t| > 2R, 2n−1ρϕ(x) 6 |t− x| 6 2nρϕ(x)}, n > 1.

Then |In| 6 2nρϕ(x) for n > 1.
Put

Γ′n = {x + iy ∈ Γ : x ∈ In}, n > 0,

and Γ′′ = {x + iy ∈ Γ : |x| 6 2R}. Then Γ =
( ⋃

n>0
Γ′n

)
∪ Γ′′. We parametrize Γ′n

by z(t) = t± iµϕ(t), t ∈ In. We have |dz(t)|/dt 6 C1 on all curves Γ′n. For n > 1,∫
Γ′n

|dz|
|x−z|2

62C1

∫
In

dt
|x−z(t)|2

62C1

∫
In

dt
|x−t|2

6
2C1|In|

22n−2ρ2 ϕ(x)2 6
23−nC1

ρϕ(x)
.(6.2)

Next, for all x > 0 sufficiently large, ϕ increases on the interval [x/2, 2x], which
contains I0(x) (we use (6.1)). Hence for t ∈ I0(x), ϕ(t) > ϕ(x/2) > ϕ(x)/2.
Similar estimates hold for x < 0 with large |x|, and we obtain that

(6.3)
∫
Γ′0

|dz|
|x − z|2

6 2C1

∫
I0

dt
|x − z(t)|2

6
8C1|I0|

µ2ρ2 ϕ(x)2 6
16C1

µ2ρϕ(x)
.

By (6.2) and (6.3), ∫
Γ′

|dz|
|x − z|2

6
16C1

µ2ρϕ(x)
+

∞

∑
1

23−nC1

ρϕ(x)
def=

C2

ϕ(x)
.

Since
∫

Γ′′
|dz|/|x − z|2 ∼ C3/|x|2 6 1/ϕ(x) for large |x|, we obtain the statement

of lemma.
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