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ABSTRACT. In this paper, we study some algebras that can be generated, as
algebras, by their idempotents and discuss local derivations and local auto-
morphisms on these algebras. We prove that if L is a commutative subspace
lattice and M is a unital Banach algL-bimodule, then every bounded local
derivation from algL into M is a derivation and that if A is a nest subalgebra
in a factor von Neumann algebra M, then every local derivation from A into
M is a derivation.
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1. INTRODUCTION

Let A be a complex Banach algebra and M be a bimodule A-module, that is
a Banach space which is anA-bimodule with ‖ax‖ 6 ‖a‖ ‖x‖ and ‖xa‖ 6 ‖x‖ ‖a‖
(x ∈ M, a ∈ A). A derivation δ of A into M is a linear mapping satisfying δ(ab) =
aδ(b) + δ(a)b, for a, b ∈ A. A linear mapping δ : A →M is called a local derivation
if for every a ∈ A there exists a derivation δa : A → M (depending on a) such
that δ(a) = δa(a).

Let X and Y be complex Hausdorff topological linear spaces and let B(X, Y)
be the set of continuous linear mappings from X into Y. When X = Y, we write
B(X) rather than B(X, X). If S is a subset of B(X, Y), we said that S is reflexive if
T belongs to S whenever T ∈ B(X, Y) and Tx ∈ [Sx] for any x in X, where [·] is
the topological closure.

Several authors have considered the relationship between local derivations
and derivations on selfadjoint algebras or nonselfadjoint algebras. In [16], Kadi-
son shows that norm-continuous local derivations from a von Neumann into any
dual bimodule are derivations. In [15], Johnson extends Kadison’s result and
proves every local derivation from a C∗-algebra A into any Banach A-bimodule
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is a derivation. He also shows that every local derivation from a C∗-algebra A
into any Banach A-bimodule is bounded.

In [19], Larson and Sourour study local derivations and automorphisms on
B(X) for a Banach space X. For a commutative subspace lattice L on a finite
dimensional Hilbert space H, in [3], [4] Crist considers local derivations and local
automorphisms on algL. In [10], for any separable complex Hilbert space H, we
investigate local derivations on some reflexive algebras which contain completely
distributive commutative subspace lattice algebras, J -subspace lattice algebras
and weakly closed unital algebras of B(H) of infinite multiplicity, and we also
consider local automorphisms on completely distributive commutative subspace
lattice algebras.

In the following we assume that all topological spaces are Hausdorff spaces.
An algebra A is called a topological algebra if A satisfies:

(i) A is a topological vector space and
(ii) with the product topology of A×A, the map f : (a, b)→ ab is continuous.

Let M be an A-bimodule. If M is a topological vector space and A is a
topological algebra such that the module multiplications are separately continu-
ous, i.e.,

(i) if av → a, then for any m ∈ M, avm → am, mav → ma, and
(ii) if mt → m, then for any a ∈ A, amt → am and mta → ma,

then we say that M is a topological A-bimodule.
IfM is a topologicalA-bimodule, we denote der(A,M) the set of all contin-

uous derivations from A into M and der(A) the set of all continuous derivations
from A into itself. If A is a topological algebra, we say that A is topologically gen-
erated by its idempotents if the subalgebra of A generated by its idempotents is
dense in A.

By a subspace lattice on X, we mean a collection L of closed subspaces of X
with (0) and X in L and such that for every family {Mr} of elements of L, both⋂

Mr and
∨

Mr belong to L, where
∨

denotes the closed linear span of {Mr}. For
a subspace lattice, we denote 0+ =

⋂
{L ∈ L : 0 ( L} and X− =

∨
{L ∈ L : L (

X}. If L is a subspace lattice, we let algL denote the algebra of all operators on X
that leave invariant each element of L.

Throughout the paper, H denotes a separable complex Hilbert space, K(H)
denotes the ideal of compact operators, and F(H) denotes the set of finite rank
operators in B(H). For convenience we disregard the distinction between a closed
subspace and the orthogonal projection onto it.

In this paper, we study algebras that can be generated, as an algebra, by
their idempotents. We prove that the class of algebras generated by their idem-
potents contains many interesting algebras. We obtain that if an algebra A is
generated by its idempotents, then every local derivation from A into any A-
bimodule is a derivation and every surjective 2-local automorphism on A is an
automorphism. In particular, for a unital algebra A, and any n > 2, we have that
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every local derivation from Mn(A) into any Mn(A)-bimodule is a derivation. If
M is a topological A-bimodule and A is topologically generated by its idempo-
tents, we prove that der(A,M) is reflexive. We study the local derivations on a
nest algebra in a factor von Neumann algebra. We show that ifN is a nest in a fac-
tor von Neumann algebra M, then every local derivation δ from M∩ algN into
M is a derivation. In particular, δ is bounded. If L is a commutative subspace
lattice on H, we prove that every bounded local derivation from algL into a unital
Banach algL-bimodule is a derivation. For a completely distributive commuta-
tive subspace lattice L, we also show that every surjective 2-local automorphism
is an automorphism.

When we finished the paper (except Lemma 2.21 and Theorem 2.22), we
found that Samei [25] independently proved Theorem 2.12 by a different method.

This paper is a continuation of [8]. Some definitions and notation can be
found in [8].

2. LOCAL DERIVATIONS ON UNITAL BIMODULES

In this section, we assume that all algebras are unital algebras and all bi-
modules are unital. Now we study the class of algebras that can be generated
by their idempotents. As several applications of the results, we consider local
derivations on these algebras.

Let M be an A-bimodule and let J be an ideal of A. We say that J is a
separating set of M if for any n, m in M, mJ = {0} implies m = 0 and J n = {0}
implies n = 0.

We can easily prove the following result.

PROPOSITION 2.1. Let V be the class of unital algebras generated by the idempo-
tents. Then:

(i) If A1 and A2 belong to V , then A1 ⊕A2 and A1 ⊗A2 belong to V .
(ii) A ∈ V and J is an ideal of A, then A/J belongs to V .

(iii) V is closed under algebraic direct limits.

The technique for the proof of part (i) of the following proposition is taken
from Theorem 1 of [17].

PROPOSITION 2.2. Let W be the class of all unital algebras B such that for every
unital algebra A, A⊗ B is generated by its idempotents. The following are true:

(i) For any 2 6 n, Mn ∈ W , where Mn is the set of all n× n complex matrices.
(ii) If B1, B2 ∈ W , then B1 ⊕ B2 ∈ W .

(iii) If B ∈ W and J is an ideal of B, then B/J ∈ W .
(iv) W is closed under algebraic direct limits.
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Proof. (i) Let M be the algebra generated by the idempotents of Mn(A).

Suppose that A = (aij)n×n ∈ Mn(A). If trace(A) =
n
∑

i=1
aii = 0, by Lemma 2 of

[11], A is a linear combination of some idempotents of Mn(A); so A ∈ M. For
ai ∈ A, i = 1, 2, . . . , n, we abbreviate the matrix

0 0 . . . 0
...

...
. . . 0

0 0 . . . 0
a1 a2 . . . an


by {a1, . . . , an}. Let In = diag(I, . . . , I) and

P =


I I

0 0
I I

0 0
. . . . . .


n×n

, Q =


0 0

I I
0 0

I I
. . . . . .


n×n

in Mn(A). Since P and Q are idempotents, P, Q ∈ M. Let T = P + Q − In.
We have that for any a ∈ A, {a, 0, . . . , 0}Tn−1 = {0, . . . , 0, a} ∈ M. Since T and
{a, 0, . . . , 0} belong to M, it follows that for any a ∈ A, {0, . . . , 0, a} ∈ M. Since
the shift matrix {I, 0, . . . , 0} + T and all matrices {0, . . . , 0, a} generate Mn(A), it
follows M = Mn(A).

(ii) This is obvious.
(iii) Since A⊗ B/(A⊗ J ) is isomorphic to A⊗ (B/J ), we have that (iii) is

true.
(iv) This is the same as saying if {Bi : i ∈ I} is an increasingly directed

family in W with the same identity then
⋃
i∈I

Bi ∈ W . Since A⊗
( ⋃

i∈I
Bi

)
=

⋃
i∈I

(A⊗

B), it follows that (iv) is true.

PROPOSITION 2.3. Suppose that N is a nest in a von Neumann algebra M and
A = M∩ algN . Then span{A : A2 = A, A ∈ A} is weak∗ dense in A.

Proof. Let φu = span{Nm(I − N) : m ∈ M, N ∈ N} and DN = (algN ) ∩
(algN )∗. By Proposition 2.1 of [8], we have that M∩DN + φu is weak∗ dense in
A. For m ∈ M, N ∈ N , let T = Nm(I − N). Since N is a nest, we have that T
belongs to A and T = N − (N − Nm(I − N)), a difference of two idempotents.

Since M∩DN is a von Neumann algebra, it is topologically generated by
its idempotents in the weak∗ topology. So A is topologically generated by its
idempotents in the weak∗ topology.

Suppose that {Hi : i ∈ N} is a family of Hilbert spaces and ui is a unit

vector in Hi for each i in N. Let H =
∞⊗

i=1
(Hi, ui) be an infinite tensor product
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Hilbert space associated with Hi and ui; define A = A1 ⊗σ
(u1) A2 ⊗σ

(u2) · · · to be
the weak∗ closed operator algebra on H generated by the elementary operator
∞⊗

i=1
Ai, where Ai ∈ Ai and Ai = I for all i in a cofinite set. We call A the tensor

product algebra associated with Ai and the unit vectors ui.

PROPOSITION 2.4. Suppose that Ai = algLi with Li a completely distributive
commutative subspace lattice on Hi and ui is a unit vector in Hi for i = 1, 2, . . . . Then
the tensor product algebra A associated with Ai and ui is generated by idempotents in
the weak∗ topology.

Proof. By Lemma 2.3 of [10], it follows that every rank one operator of Ai is
a linear combination of some idempotents of Ai. For j 6= i, let Aj = I and Ai be

a rank one operator in B(Hi); define Ti =
∞⊗

j=1
Aj. By Theorem 1 of [15], it follows

that span{A : A is a rank one operator in Ai} is weak∗ dense in Ai. Since Ti is a
linear combination of some idempotents of A, by the definition of A, it follows
that A is generated by its idempotents in the weak∗ topology.

To show our main results, we need several lemmas.

LEMMA 2.5 ([10]). Let δ be a linear mapping from an algebra A into an A-
bimodule M. Then the following are equivalent:

(i) The mapping (I − P)δ(PaQ)(I −Q) = 0, for every a ∈ A and any idempotents
P, Q ∈ A.

(ii) δ satisfies δ(PaQ) = δ(Pa)Q + Pδ(aQ) − Pδ(a)Q, for every a ∈ A and any
idempotents P, Q ∈ A.

Let δ be a linear mapping from an algebra A into an A-bimodule M. We
say that δ satisfies the Condition (∗) if

δ(PaQ) = δ(Pa)Q + Pδ(aQ)− Pδ(a)Q and δ(I) = 0

hold for each a and any idempotents P, Q in A.

LEMMA 2.6. Suppose that δ is a linear mapping from an algebra A into an A-
bimodule M satisfying the Condition (∗). Then for any idempotents P1, . . . , Pn, Q1, . . . ,
Qm in A and every a ∈ A

δ(P1 · · · PnaQ1 · · ·Qm) = δ(P1 · · · Pna)Q1 · · ·Qm + P1 · · · Pnδ(aQ1 · · ·Qm)(2.1)

− P1 · · · Pnδ(a)Q1 · · ·Qm.

Proof. We first show that for any positive integer

(2.2) δ(P1 · · · PnaQ) = δ(P1 · · · Pna)Q + P1 · · · Pnδ(aQ)− P1 · · · Pnδ(a)Q.

If n = 1, by the condition (∗), (2.2) is obvious.
Suppose if n = k, (2.2) is true.
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For n = k + 1, by the Condition (∗), it follows

δ(P1 · · · Pk+1aQ) = δ(P1P2 · · · Pk+1a)Q + P1δ(P2 · · · Pk+1aQ)− P1δ(P2 · · · Pk+1a)Q

= δ(P1 · · · Pk+1a)Q + P1[δ(P2 · · · Pk+1a)Q + P2 · · · Pk+1δ(aQ)

− P2 · · · Pk+1δ(a)Q]− P1δ(P2 · · · Pk+1a)Q

= δ(P1 · · · Pk+1a)Q + P1 · · · Pk+1δ(aQ)− P1 · · · Pk+1δ(a)Q.

Now we show that (2.1) is true. For m = 1, by (2.2) we have that (2.1) is true.
Suppose that if m = k, (2.1) is true.
For m = k + 1, by the induction assumption, the Condition (∗) and (2.2), we

have

δ(P1 · · · PnaQ1 · · ·QkQk+1)

=δ(P1· · ·PnaQ1· · ·Qk)Qk+1+P1· · ·Pnδ(aQ1· · ·QkQk+1)−P1· · ·Pnδ(aQ1· · ·Qk)Qk+1

=[δ(P1 · · · Pna)Q1 · · ·Qk+P1 · · · Pnδ(aQ1 · · ·Qk)−P1 · · · Pnδ(a)Q1 · · ·Qk)]Qk+1

+ P1 · · · Pnδ(aQ1 · · ·QkQk+1)− P1 · · · Pnδ(aQ1 · · ·Qk)Qk+1

=δ(P1· · ·Pna)Q1· · ·Qk+1+P1· · ·Pnδ(aQ1· · ·Qk+1)−P1 · · · Pnδ(a)Q1· · ·Qk+1.

The following theorem generalizes Theorem 2.2 of [10]. The proof uses
Lemma 2.6 and arguments similar to those in the proof of Theorem 2.2 of [10],
and is left to the reader.

THEOREM 2.7. Let J be a separating set of M. Suppose that J is contained in
the algebra generated by all idempotents in A. If δ is a linear mapping from A into M
satisfying the Condition (∗) (in particular, if δ is a local derivation), then δ is a derivation.

COROLLARY 2.8. If A is any algebra and B ∈ W , then every local derivation
from A ⊗ B into itself is a derivation. In particular, for 2 6 n, every local derivation
from Mn(A) into an Mn(A)-bimodule M is a derivation.

An algebra B is called a local matrix algebra if any finite subset of B can be
embedded in a subalgebra which is a matrix algebra Mn(A) for some 2 6 n.

COROLLARY 2.9. If for any a, b ∈ A, there exists a unital subalgebra B of A con-
taining a and b such that B is isomorphic to a matrix algebra, then every local derivation
from A into an A-bimodule M is a derivation.

COROLLARY 2.10. Suppose that L is a subspace lattice and 2 6 n. If δ is a local
derivation from A = algL(n) into an A-bimodule M, then δ is a derivation.

THEOREM 2.11. Suppose that {Jλ : λ ∈ Λ} is a collection of two-sided ideals in
A such that:

(i) A/Jλ is generated by its idempotents and
(ii)

⋂
λ∈Λ

Jλ = 0.

If δ is a linear mapping from A into itself satisfying Condition (∗) and δ(Jλ) ⊆
Jλ, then δ is a derivation.



LOCAL DERIVATIONS AND LOCAL AUTOMORPHISMS ON SOME ALGEBRAS 35

Proof. For each λ in Λ, δ induces a linear mapping δλ onA/Jλ satisfying the
Condition (∗). By Theorem 2.7 and assumptions, it follows that δλ is a derivation.
Hence for any a, b in A, we have that δ(ab)− aδ(b)− δ(a)b ∈ Jλ, for any λ ∈ Λ.
It follows that from (ii), δ(ab) = δ(a)b + aδ(b).

THEOREM 2.12. Suppose that M is a topological A-bimodule and A is topologi-
cally generated by its idempotents. If δ is a continuous linear mapping from A into M
satisfying the Condition (∗) (in particular, if δ is a local derivation), then δ is a derivation.

Proof. If a =
m
∑

i=1
αi

ti
∏
j=1

P(i)
j , b =

n
∑

s=1
βs

vs
∏
l=1

Q(s)
l , where P(i)

j , Q(s)
l are idempo-

tents of A, αi, βs ∈ C, by Lemma 2.6, it follows δ(ab) = δ(a)b + aδ(b). Since δ is
continuous and A is topologically generated by its idempotents, we have that for
any a, b in A, δ(ab) = δ(a)b + aδ(b).

By Proposition 2.3 and Theorem 2.12, we have

COROLLARY 2.13. Let A and M be as in Proposition 2.3. If δ is a weak∗ contin-
uous local derivation from A into M, then δ is a derivation.

COROLLARY 2.14. Let A and M be as in Theorem 2.7. Then der(A,M) is re-
flexive.

Proof. Suppose that δ is a continuous linear mapping from A into M satis-
fying for any x ∈ A,

(2.3) δ(x) ∈ [der(A,M)x].

By (2.3), there exists a sequence δn(depending on x) in der(A,M) such that

(2.4) lim
n→∞

δn(x) = δ(x).

Let P, Q be idempotents of A. By (2.4), for any a ∈ A, take x = PaQ, it follows
that (I − P)δ(PaQ)(I −Q) = 0. By Lemma 2.4 and Theorem 2.7, it follows that δ
is a derivation. Hence der(A,M) is reflexive.

REMARK 2.15. Let M2 be the algebra of 2 × 2 matrices over L∞[0, 1]. By
[7], we know that M2 is not the linear span of its projections. By Theorem 3.6
of [21], we have that every idempotent in M2 is a linear combination of at most
5 projections in M2. Hence M2 is not the linear span of its idempotents. By
Theorem 2.7, M2 is generated by its idempotents. Thus Theorem 2.7 improves
Theorem 2.2 of [10].

Now we consider the local derivations on a reflexive subalgebra in a factor
von Neumann algebra.

LEMMA 2.16 ([7]). A von Neumann algebra M is generated by its projections if
and only if M has no infinite dimensional abelian summand.
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THEOREM 2.17. Let L be a subspace lattice in a factor von Neumann algebra M
with 0+ 6= 0 and H− 6= H. If δ is a linear mapping (not necessarily bounded) from
M∩ algL into M such that (∗) holds (in particular, if δ is a local derivation), then δ is
a derivation.

Proof. Let E be the projection on 0+ and let F be the projection on H−.
Define J = span{Em1, m2(I − F) : m1, m2 ∈ M}. Since Em1 = Em1E +

Em1(I − E), m2(I − F) = Fm2(I − F) + (I − F)m2(I − F) and M is a factor, we
have that J ⊆ A and by Lemma 2.15, J is in the algebra generated by its idem-
potents of M∩ algL. It is easy to show that J is an ideal of M∩ algL. We claim
that J is a separating set of M.

For any m ∈ M, suppose that mJ = 0. We have mM(I − F) = 0. Since M
is a factor, it follows that m = 0. If m ∈ M and Jm = 0, similarly we can show
that m = 0. By Theorem 2.7, we have that δ is a derivation.

If M is a factor von Neumann algebra, we can improve Corollary 2.5.

THEOREM 2.18. Suppose that N is a nest in a factor von Neumann algebra M
on H and A = M∩ algN . Let δ be a linear mapping from A into M satisfying the
Condition (∗). Then δ is a derivation. In particular, δ is bounded.

Proof. Let E = 0+ and F = H−.
We divide the proof into four cases.
Case 1. Suppose that E 6= 0 and F 6= H. By Theorem 2.16, we have the

theorem is true.
Case 2. Suppose that E = 0 and F = H. Define J = span{Nm(I − N) : m ∈

M, N ∈ N}. J is an ideal of M∩ algN and by Nm(I − N) = N − (N − Nm(I −
N)), J is contained in the linear span of the idempotents of M∩ algN . In the
following we show that J is a separating set of M.

For any m ∈ M, suppose that mJ = 0. Hence

(2.5) mNM(I − N) = 0, for any N ∈ N .

Since F = H, we can choose a sequence {Ni} with Ni ⊆ Ni+1 ( I satisfying
Ni → I in the strong operator topology. By (2.5) and M is a factor, it follows that
mNi = 0 for any i. Hence m = 0. If m ∈ M and Jm = 0, by E = 0, similarly we
can show that m = 0. Hence J is a separating set of M.

Case 3. Suppose that F = H and E 6= 0. Define

J = span{Em1, Nm2(I − N) : m1, m2 ∈ M, N ∈ N}.

Then J is an ideal of M∩ algN and J is contained in the linear span of the
idempotents of M∩ algN . We claim that J is a separating set of M.

For m ∈ M, suppose that Jm = 0. Since EM ⊆ J , from the proof of Case 1,
we know that m = 0.

For any m ∈ M, suppose that mJ = 0. Since F = H, from the proof of
Case 2, we know that m = 0.
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Case 4. Suppose that F 6= H and E = 0. Define

J = span{m1(I − F), Nm2(I − N) : m1, m2 ∈ M, N ∈ N}.

The proof is similar to that in Case 3.
By the above proof, δ is a derivation and by Proposition II1 of [22], we have

δ is bounded.

REMARK 2.19. (i) From the proofs of Theorems 2.16 and 2.17, we know that
if B is a subalgebra of M, B is an A-bimodule, J is a separating set of B, and δ is
a linear mapping fromA∩M into B satisfying Condition (∗), then the inclusions
of Theorems 2.16 and 2.17 are true.

(ii) In [13], Jing Wu shows that if L is a subspace lattice with 0+ 6= 0 and
X− 6= X for a Banach space X, then every local derivation from algL into itself is
a derivation.

THEOREM 2.20. Let L be a commutative subspace lattice and let A = algL. Sup-
pose that M is a unital Banach right (respectively left) algL-module. If T is a bounded
linear mapping from A into M satisfying

(2.6) T(aP) = naPP (respectively T(Pa) = PnPa)

for any a in A and any idempotent P in A, where naP (respectively nPa) depends on aP
(respectively Pa) and belongs to M, then Tx = T(I)x (respectively Tx = xT(I)), for
any x in A.

Proof. Suppose that M is a unital Banach right algL-module. Let J =
span{PaP⊥ : a ∈ A, P ∈ L}. We have that J is an ideal of A. Since PmP⊥ =
P− (P− PmP⊥) is a difference of two idempotents, we have that every element
in J is a linear combination of some idempotents in J .

Let Q be the projection onto the subspace J H. It is easy to show that Q
belongs to L.

For any a ∈ A and for any P ∈ L, since Q⊥PaP⊥ = 0 = PQ⊥aP⊥, it follows
that P⊥a∗Q⊥P ∈ algL. Hence Q⊥a ∈ algL⊥ and Q⊥a ∈ (algL) ∩ (algL)∗ = L′.
By (2.6), we have that for any a ∈ algL and any idempotent P ∈ algL

(2.7) T(a)P = [T(aP) + T(a− aP)]P = [T(aP) + T(aP⊥)]P = T(aP).

Since every element in J is a linear combination of some idempotents in J ,
by (2.7), it follows that for any t ∈ J and any a ∈ A,

(2.8) T(at) = T(a)t.

By (2.8), it follows that for a, b in A,

T(abPmP⊥) = T(aPbPmP⊥) = T(a)bPmP⊥ and T(abPmP⊥) = T(ab)PmP⊥.

Hence for any a, b in A,

(2.9) [T(ab)− T(a)b]PmP⊥ = 0, [T(ab)− T(a)b]Q = 0.
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Since Q⊥bQ⊥ belongs to L′ and L′ is a von Neumann algebra, it follows that there
is a sequence {xn} such that lim

n→∞
xn = Q⊥bQ⊥ in the operator norm, where xn is

a linear combination of some projections in L′. Since T is bounded, by (2.8), we
have T(aQ⊥bQ⊥) = T(a)Q⊥bQ⊥, for any a, b ∈ algL.

Hence

T(ab)Q⊥ = T(abQ⊥) = T(aQ⊥bQ⊥) + T(aQbQ⊥)

= T(a)Q⊥bQ⊥ + T(a)QbQ⊥ = T(a)bQ⊥.(2.10)

By (2.9) and (2.10), we have that T(a) = T(I)a.
Suppose that M is a unital Banach left algL-module. Similarly, we can

prove that T(a) = aT(I).

COROLLARY 2.21. Let L be a commutative subspace lattice and let A = algL. If
T is a bounded linear mapping from A into itself satisfying

T(a) = naa (respectively T(a) = ana)

for every a in A, where na depends on a and belongs to A, then T(x) = T(I)x (respec-
tively T(x) = xT(I)), for every x in A.

DEFINITION 2.22. Let B be a Banach algebra with identity and let M be a
unital Banach right B-module. Suppose that T is a bounded linear transformation
from B into M. T is said to be a left (respectively right) multiplier, if T(a) = T(I)a
(respectively T(a) = aT(I)). T is called an approximately local left (respectively
right) multiplier if for each a ∈ B, there exists a sequence of left (respectively right)
multipliers {Tn,a} from B into M such that lim

n→∞
Tn,a(a) = T(a).

LEMMA 2.23. Let L be a commutative subspace lattice and M be a unital Banach
left algL-module. If T is an approximately local right multiplier from algL into B, then
T(a) = aT(I) for any a ∈ algL.

Proof. By the assumption, for any a ∈ algL and any idempotent P in algL,
there exists a sequence of right multipliers {Tn,Pa} such that

T(Pa)= lim
n→∞

Tn,Pa(Pa)= lim
n→∞

Tn,Pa(PPa)= P lim
n→∞

Tn,Pa(Pa)= P( lim
n→∞

Tn,Pa(Pa)).

By Theorem 2.18, it follows that T(a) = aT(I), for any a ∈ L.

The proof technique of the following theorem is almost the same as the
proof of Theorem 3.2 in [25]. For completeness, we give its proof.

THEOREM 2.24. Let L be a commutative subspace lattice and let M be a unital
Banach algL-bimodule. If δ is a bounded local derivation from algL into M, then δ is a
derivation.

Proof. For a in algL, let Y be the norm closure of aM. Then Y is a unital
Banach right algL-module and M/Y is a unital Banach right algL-module.
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Define
δ̃ : algL →M/Y

by δ̃(b) = δ(ab) + Y , for any b in algL. It is easy to show that δ̃ is bounded.
Since δ is a local derivation, there is derivation δab such that δ(ab) = δab(ab) =
δab(a)b + aδab(b).

So
δ̃(b) = δab(a)b + Y = (δab(a) + Y)b.

Thus δ̃ is a local left multiplier. By Theorem 2.18, δ̃(b) = δ̃(I)b, for any b ∈ algL.
Therefore δ(ab)− δ(a)b ∈ Y .

Hence for any b ∈ algL, there exists a sequence {xn} in Y such that

(2.11) δ(ab)− δ(a)b = lim
n→∞

axn.

Fix b, define
δ : A →M

by δ(a) = δ(ab) − δ(a)b for any a ∈ algL. It is easy to prove that δ is bounded.
By (2.11), it follows that δ is a bounded approximately local right multiplier. By
Lemma 2.21, it follows that δ(a) = aδ(I). Thus δ(ab) − δ(a)b = a(δ(b) − δ(I)b).
Since δ is a local derivation, we have δ(I) = 0. So δ(ab) = δ(a)b + aδ(b).

3. LOCAL DERIVATIONS ON ANY BIMODULES

In this section, we assume that A is a unital algebra and M is any A-
bimodule (not necessary a unital bimodule).

THEOREM 3.1. Let M be any A-bimodule and J be a left ideal of A that is con-
tained in the algebra generated by its idempotents such that for every x ∈ M, xJ = 0
implies x = 0. Then for every linear mapping T : A →M such that

(3.1) T(bP) = nbPP

for any idempotents P in A, where nbP depends on bP, we have T(x) = T(1)x for every
x ∈ A.

Proof. Suppose a ∈ A and P is an idempotent. By (3.1), it follows that

T(a)P = [T(aP) + T(a− aP)]P = T(aP).

A simple induction shows that if P1, . . . , Pn are idempotents in A, then

(3.2) T(aP1 · · · Pn) = T(a)P1 · · · Pn.

By (3.2), we see that T(ax) = T(a)x for every x in the algebra generated by the
idempotents of A, and thus for every element of J .

Hence if a ∈ A and x ∈ J , we have (since ax ∈ J ),

(3.3) T(a)x = T(ax) = T(I(ax)) = T(I)ax.
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(3.3) implies [T(a) − T(I)a]J = 0. By the assumption, T(a) = T(I)a for any
a ∈ A.

With a proof similar to the proof of Theorem 3.1, we can show that

THEOREM 3.2. Let M be any A-bimodule and J be a right ideal of A that is
contained in the algebra generated by its idempotents such that for every x ∈ M, J x = 0
implies x = 0. Then for every linear mapping T : A →M such that

T(Pb) = PnPb

for any idempotents P in A, where nPb depends on Pb, we have T(x) = xT(1) for every
x ∈ A.

THEOREM 3.3. Let A be a unital algebra and M be an A-bimodule. If J is a
separating set of M, J is contained in the algebra generated by all idempotents in A and
δ is a local derivation from A into M, then δ is a derivation.

Proof. Define L : A → M by L(a) = Ia and R : A → M by R(a) = aI. Let
M0 = IMI. Then M0 is a unital A-bimodule.

Since δ is a local derivation, it follows that δ(I) = δI(I · I) = δI(I)I + IδI(I).
Hence Iδ(I)I = 0.

Similar to the proof of Lemma 3 of [16], we can show that RLδ is a local
derivation from A into the unital A-bimodule M0. By Theorem 2.7, we have that
RLδ is a derivation.

Let T = (i − L)Rδ, where i is the identity mapping from M into itself. For
any a ∈ A, let δa be a local derivation such that δ(a) = δa(a). We have that

T(a) = δ(a)I − Iδ(a)I = δa(Ia)I − Iδa(a)I

= δa(I)aI + Iδa(a)I − Iδa(a)I = δa(a)a.(3.4)

By Theorem 3.1, we have that T(a) = T(I)a. By (3.4), it follows that T(I) =
δI(I)I = δ(I)I. So we have that T(a) = δ(I)a.

Since aδ(I)b = aIδ(I)Ib = 0, we have that

T(ab) = δ(I)ab = δ(I)ab + aδ(I)b = T(a)b + aT(b).

Thus T is a derivation. Let K = L(i − R). Similarly, we can show that K(a) =
aδ(I), by Theorem 3.2, from which, we have K is a derivation.

By

(i− L)(i− R)δ(a) = δ(Ia)− δ(Ia)− Iδ(a)− Iδ(a)I

− δa(I)a + Iδa(a)− [δa(I)a− Iδa(a)I]− Iδ(a) = 0

and δ = LRδ + K + T + (i− L)(i− R)δ, we have that δ is a derivation.

REMARK 3.4. Suppose that A is an algebra without identity and M is a
topological A-bimodule. If Ã is the algebra obtained by adjointing an identity I
to A, then M becomes a unital Ã-bimodule by defining Ix = xI = x for all x in
M. If M is a topological A-bimodule, then we can make M a unital topological
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A-bimodule. By this way, we may generalize several results in Section 2 and
Theorems 3.1, 3.2 and 3.3. We omit it.

4. LOCAL AUTOMORPHISMS

DEFINITION 4.1. Suppose that A and B are unital algebras. Let α be a lin-
ear mapping from A into B. We say that α is a zero-product preserving mapping if
α(a)α(b) = 0 in B whenever ab = 0 in A.

PROPOSITION 4.2. Suppose that L is a completely distributive commutative sub-
space lattice and α is a zero product preserving mapping from algL into itself. If α(I) = I
and α is weak∗ continuous, then α is a homomorphism.

Proof. By Lemma 2.3 of [10] and Theorem 1 of [20], it follows that algL is
generated by idempotents in the weak∗ topology. By Lemma 2.1 of [2] and α(I) =
I, we have that α is a homomorphism.

Let A be a unital algebra. A linear mapping θ from A into itself is called a
2-local automorphism if for any a, b ∈ A, there is an automorphism θa,b : A → A
such that θ(a) = θa,b(a), θ(b) = θa,b(b).

COROLLARY 4.3. Suppose that L is a completely distributive subspace lattice on
a finite dimensional Hilbert space H. Then every 2-local automorphism α on algL is an
automorphism.

Proof. By Corollaries 7.1 and 8.1 of [12], we have that L is similar to a com-
mutative subspace lattice on a finite dimensional Hilbert space. Without loss of
generality, we can assume that L is a commutative subspace lattice. Since α is
a 2-local automorphism, it follows that α is a zero product preserving mapping,
α(I) = I and α is injective. By Proposition 4.2, we have that α is an automor-
phism.

THEOREM 4.4. If L = N1 ⊗ · · · ⊗ Nn, where Ni is a nest on Hi, and α is a
surjective 2-local automorphism of algL, then α is an automorphism.

Proof. By Theorem 6.5 of [6], we know that every automorphism of algL is
spatially implemented. Since α is a surjective 2-local automorphism, it follows

(4.1) α((algL) ∩ F(H)) = (algL) ∩ F(H).

By the assumption, we have that:

(i) α is a Jordan homomorphism,
(ii) α(I) = I,

(iii) α is zero-product preserving.

By Lemma 3.4 of [10], we have that for any idempotent p and any m in A,
α(pm) = α(p)α(m). Hence by Lemma 2.3 of [10] for any rank one operator n in
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algL

(4.2) α(nm) = α(n)α(m).

For any u, q and any rank one operator n in algL, by (4.2) we have

α(nuq) = α(n)α(uq) = α(nu)α(q) = α(n)α(u)α(q).

Hence

(4.3) α(n)(α(uq)− α(u)α(q)) = 0.

By Theorem 1 of [20], (4.1) and (4.3), we have that α(uq) = α(u)α(q).

THEOREM 4.5. Suppose that L is a completely distributive commutative subspace
lattice. If α is a bounded surjective 2-local automorphism of algL, then α is an automor-
phism.

Proof. With a proof similar to the proof of Theorem 4.4, we have

(4.4) α(n)(α(uq)− α(u)α(q)) = 0

for any rank one operator n in algL and any u, q in algL. Since α is continuous,
by Theorem 23.16 of [5] and Theorem 6.5 of [6], we have that α((algL) ∩ F(H)) is
dense in (algL) ∩ K(H) in the norm. By (4.4), we have α(uq) = α(u)α(q) for any
u, q in algL.

PROPOSITION 4.6. Suppose that A is a unital algebra. For 2 6 n, let φ be a
zero-product preserving mapping from Mn(A) into itself with φ(I) = I. Then φ is a
homomorphism.

Proof. Since Mn(A) can be generated by its idempotents, by Theorem 2.6
(iii) of [2] and φ(I) = I, we have that φ is a homomorphism.

COROLLARY 4.7. Let A and Mn(A) be as in Proposition 4.6. If φ is a surjective
2-local automorphism of Mn(A) for 2 6 n, then φ is an automorphism.

Proof. Since φ is a 2-local automorphism, we have that φ is a zero-product
preserving mapping. By Proposition 4.6, we have that φ is a homomorphism.
Since φ is a 2-local automorphism, it follows that φ is injective. Hence φ is an
automorphism.
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