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ABSTRACT. We study the composition operators on an algebra of Dirichlet se-
ries, the analogue of the Wiener algebra of absolutely convergent Taylor series,
which we call the Wiener-Dirichlet algebra. The central issue is to understand
the connection between the properties of the operator and of its symbol, with
special emphasis on the compact, automorphic, or isometric character of this
operator. We are led to the intermediate study of algebras of functions of sev-
eral, or countably many, complex variables.
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1. INTRODUCTION

Let A+ = A+(T) be the Wiener algebra of absolutely convergent Taylor
series in one variable : f ∈ A+ if and only if

f (z) =
∞

∑
n=0

anzn, with ‖ f ‖A+ =
∞

∑
n=0
|an| < +∞.

It is well-known that A+ is a commutative, unital Banach algebra with spectrum
D, the closed unit disk. If φ : D → D is analytic, the composition operator Cφ

with symbol φ is formally defined by Cφ( f ) = f ◦ φ.
Newman [20] studied those symbols φ generating bounded composition

operators Cφ : A+ → A+, and proved in particular the following:

(a) Cφ maps A+ into itself if and only if φ ∈ A+ and ‖φn‖A+ = O (1) as n→ ∞
(e.g. φ(z) = 5−1/2(1 + z− z2)): this happens if and only if all maximum points θ0
of |φ(eiθ)| are ordinary points, i.e. if and only if we have, as t→ 0

log φ(ei(θ0+t)) = α0 + α1t + αktk + · · · ,

where k > 1 and αk 6= 0 is not purely imaginary;
(b) if moreover |φ(eit)| = 1, one must have φ(z) = azd, with |a| = 1 and d ∈ N;
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(c) Cφ : A+ → A+ is an automorphism if and only if φ(z) = az, with |a| = 1.

Harzallah (see [14]) also proved that:

(d) Cφ : A+ → A+ is an isometry if and only if φ(z) = azd, with |a| = 1 and
d ∈ N.

The aim of this paper is to perform a similar study for the Wiener-Dirichlet
algebra A+ of absolutely convergent Dirichlet series: f ∈ A+ if and only if

f (s) =
∞

∑
n=1

ann−s, with ‖ f ‖A+ =
∞

∑
n=1
|an| < +∞.

A+ is a commutative, unital Banach algebra, with the following multiplication
(quite different from the one for Taylor series):( ∞

∑
n=1

ann−s
)( ∞

∑
n=1

bnn−s
)

=
∞

∑
n=1

cnn−s, with cn = ∑
ij=n

aibj.

A+ can also be interpreted as a space of analytic functions on C0 (where in gen-
eral we denote by Cθ the vertical half-plane Re s > θ). The study of function
spaces formed by Dirichlet series has gained some recent interest (see the pa-
pers of Hedenmalm-Lindqvist-Seip [10], Gordon-Hedenmalm [8], Bayart [1], [2],
Finet-Queffélec-Volberg [7], Finet-Queffélec [6], Finet-Li-Queffélec [5], Mc Carthy
[18]). Now, a method due to Bohr (see for example [21]) identifies the algebra
A+ with the algebra A+(T∞) formed by the absolutely convergent Taylor se-
ries in countably many variables (this point of view, which allows to identify
the spectrum of A+ as D∞

, the spectrum of A+(T∞), has been used by Hewitt
and Williamson [11], among others, to prove the following Wiener type taube-
rian Theorem : If f ∈ A+ and | f (s)| > δ > 0 for s ∈ C0, then 1

f ∈ A
+).

Let us recall the way this identification is carried out. Let (pj)j>1 be the
increasing sequence of prime numbers (p1 = 2, p2 = 3, p3 = 5, . . . ). If

f (z) = ∑
α∈N(∞)

0

aαzα with ‖ f ‖A+(T∞) = ∑
α

|aα| < +∞,

where, as usual, we set α = (α1, . . . , αr, 0, 0, . . .) and zα = zα1
1 · · · z

αr
r for z =

(zj)j>1, then ∆ : A+ → A+(T∞) is defined by

∆
( ∞

∑
n=1

ann−s
)

=
∞

∑
n=1

anzα1
1 · · · z

αr
r ,

if n = pα1
1 · · · p

αr
r is the decomposition of n in prime factors. ∆ is an isometric

isomorphism. Moreover, we shall need two more facts about ∆. For s ∈ C0, we
set z[s] = (p−s

j )j. We then have

∆ f (z[s]) = f (s) for any f ∈ A+ and any s ∈ C0,(1.1)

‖∆ f ‖∞ = ‖ f ‖∞ for each f ∈ A+,(1.2)
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where we set ‖ f ‖∞ = sup
s∈C0

| f (s)| and ‖∆ f ‖∞ = sup
z∈B
|∆ f (z)|, with B =

{
z =

(zj)j>1 ∈ D∞ : zj −→
j→+∞

0
}

. Indeed, if f (s) =
∞
∑
1

ann−s, we have

∆ f (z[s]) =
∞

∑
n=1

an(p−s
1 )α1 · · · (p−s

r )αr =
∞

∑
n=1

an(pα1
1 · · · p

αr
r )−s = f (s).

On the other hand, let z = (zj)j>1 ∈ B. Fix an integer N, let k = π(N) be

the number of primes not exceeding N, and SN(z) =
N
∑

n=1
anzα1

1 · · · z
αk
k , with n =

pα1
1 · · · p

αk
k . Pick σ > 0 such that |zj| 6 p−σ

j , 1 6 j 6 k. Due to the rational
independence of log p1, . . . , log pk and to the Kronecker Approximation Theorem
([12], Corollary 4, page 23), the points (p−it

j )16j6k, t ∈ R, are dense in the torus

Tk, so that the maximum modulus principle for the polydisk Dk gives

|SN(z)| 6 sup
|wj |=p−σ

j

∣∣∣ N

∑
n=1

anwα1
1 · · ·w

αk
k

∣∣∣ = sup
Re s=σ

∣∣∣ N

∑
n=1

an(p−s
1 )α1 · · · (p−s

k )αk
∣∣∣

= sup
Re s=σ

∣∣∣ N

∑
n=1

ann−s
∣∣∣ 6 ∥∥∥ N

∑
n=1

ann−s
∥∥∥

∞
.

Hence ‖SN‖∞ 6
∥∥∥ N

∑
1

ann−s
∥∥∥

∞
. Letting N tend to infinity gives ‖∆ f ‖∞ 6 ‖ f ‖∞,

which proves (1.2), since we trivially have ‖∆ f ‖∞ > ‖ f ‖∞.
In this paper, we use the identification proposed above to obtain results

similar to (a), (b), (c) and (d) for A+. This leads to an intermediate study of
composition operators on the algebras A+(T∞) and A+(Tk) (the k-dimensional
analog of A+(T∞)). Accordingly, the paper is organized as follows:

In Section 2, we give necessary as well as sufficient conditions for bound-
edness and compactness of Cφ : A+ → A+, and study in detail some specific
examples. In Section 3, we study the automorphisms of the algebras A+(Tk),
A+(T∞), A+. In Section 4, we study the isometries of those algebras, and we
point out some specific differences between the finite and infinite-dimensional
cases. Section 5 is devoted to some concluding remarks and questions.

A word on the definitions and notations: we will say that integers 2 6 q1 <
q2 < · · · are multiplicatively independent if their logarithms are rationally inde-
pendent in the real numbers; equivalently, if any integer n > 2 can be expressed
as n = qα1

1 · · · q
αr
r , αj ∈ N0, in at most one way (e.g. q1 = 2, q2 = 6, q3 = 30).

We shall denote by D the space of functions ϕ : C0 → C which are analytic, and

moreover representable as a convergent Dirichlet series
∞
∑
1

cnn−s for Re s large

enough. D is also called the space of convergent Dirichlet series. For example,
if ψ(s) = (1 − 21−s)ζ(s), and ϕ(s) = ψ(s − a), ϕ is entire, and representable
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as
∞
∑
1
(−1)n−1nan−s for Re s > a. T denotes the unit circle, and plays no role in

the definition of A+(Tk) and A+(T∞), although Tk (respectively T∞) might be
viewed as the Šhilov boundary of A+(Tk) (respectively A+(T∞)). As usual, we
set N = {1, 2, . . .} and N0 = {0, 1, 2, . . .} = N ∪ {0}. Recall that Cθ is the vertical
half-plane Re s > θ.

2. BOUNDEDNESS AND COMPACTNESS OF COMPOSITION OPERATORS Cφ : A+ → A+

2.1. GENERAL RESULTS. We begin by sharpening Newman’s result ((a) of the
Introduction), under the form of the following (where it is assumed that φ is non-
constant):

PROPOSITION 2.1. The composition operator Cφ : A+ → A+ is compact if and
only if ‖φ‖∞ = sup

z∈D
|φ(z)| < 1.

Proof. As will be apparent from the proof of the next proposition, Cφ : A+ →
A+ is compact if and only if ‖φn‖A+ → 0 as n → ∞. On the other hand, by the
spectral radius formula, we have ‖φ‖∞ = lim

n→∞
‖φn‖1/n

A+ = inf
n>1
‖φn‖1/n

A+ . That

finishes the proof.
Alternatively, we could have applied to fn(z) = zn a general criterion of

Shapiro [24]: Cφ is compact if and only if ‖Cφ( fn)‖A+ → 0 for each sequence ( fn)n
in A+ which is bounded in norm and converges uniformly to zero on compact subsets of
D.

We now turn to the study of composition operators Cφ : A+ → A+ associ-
ated with an analytic function φ : C0 → C0.

We first recall the following:

THEOREM 2.2 ([8], Theorem 4). Let φ : C0 → C be an analytic function such
that k−φ ∈ D for k = 1, 2, . . . . Then we have necessarily:

(2.1) φ(s) = c0s + ϕ(s), with c0 ∈ N0 and ϕ ∈ D.

We will therefore restrict ourselves, in the sequel, to symbols φ of the form
given by (2.1). To avoid trivialities, we will also assume once and for all that φ is
non-constant.

THEOREM 2.3. Let φ : C0 → C be an analytic function of the form (2.1). Then:
(a) (i) If Cφ mapsA+ into itself then n−φ ∈ A+ and ‖n−φ‖A+ 6 C, n = 1, 2, . . .,

for a positive constant C independent of n.
(ii) Conversely, if (n−φ)∞

n=1 is a bounded sequence inA+, then φ maps C0 into
C0 and Cφ is a bounded composition operator on A+.
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(b) (i) Cφ : A+ → A+ is compact if and only if ‖n−φ‖A+ −→
n→∞

0. Then

φ(C0) ⊆ Cδ for some δ > 0.

(ii) Assume that φ(s) = c0s +
∞
∑
1

cnn−s, with
∞
∑
1
|cn| < +∞. Then Cφ is

compact if and only if φ(C0) ⊆ Cδ for some δ > 0.

Proof. (a) (i) Suppose that Cφ maps A+ into itself. Cφ is an algebra homo-
morphism and A+ is semi-simple, therefore (see p. 263 of [22]) Cφ is continuous.
Thus

‖n−φ‖A+ = ‖Cφ(n−s)‖A+ 6 ‖Cφ‖ ‖n−s‖A+ = ‖Cφ‖ =: C.

(ii) Conversely, suppose that n−φ ∈ A+ and ‖n−φ‖A+ 6 C, n = 1, 2, . . .. We
first see that, for s ∈ C0, we have: n−Re φ(s) = |n−φ(s)| 6 ‖n−φ‖∞ 6 ‖n−φ‖A+ 6

C, whence Re φ(s) > − log C
log n · Letting n tend to infinity gives Re φ(s) > 0, and

the open mapping theorem gives Re φ(s) > 0, since φ is not constant. If now

f (s) =
∞
∑
1

ann−s ∈ A+, the series
∞
∑
1

ann−φ(s) is absolutely convergent in A+, so

that f ◦ φ ∈ A+, with ‖ f ◦ φ‖A+ 6
∞
∑
1
|an|‖n−φ‖A+ 6 C

∞
∑
1
|an| = C‖ f ‖A+ .

(b) (i) Suppose that Cφ : A+ → A+ is compact. Let f ∈ A+ be a cluster point
of n−φ(s) = Cφ(n−s), and let (nk)k be a sequence of integers such that ‖n−φ

k −
f ‖A+ → 0. For fixed s ∈ C0, we have |n−φ(s)

k − f (s)| 6 ‖n−φ
k − f ‖A+ . But

n−φ(s)
k → 0 (since Re φ(s) > 0, by part (a)), so that f (s) = 0. Hence f = 0. This

implies ‖n−φ‖A+ → 0.
Now, since ‖n−φ‖∞ 6 ‖n−φ‖A+ , we get n− inf Re φ(s) = ‖n−φ‖∞ → 0, and so

inf
s∈C0

Re φ(s) > 0.

Conversely, suppose that εn = ‖n−φ‖A+ → 0 and set δn = sup
k>n

εk. Let

Tn : A+ → A+ be the finite-rank operator defined by (Tn f )(s) =
n
∑

k=1
akk−φ(s) if

f (s) =
∞
∑

k=1
akk−s. We have

‖Cφ f − Tn f ‖A+ 6 ∑
k>n
|ak|‖k−φ‖A+ 6 δn ∑

k>n
|ak| 6 δn‖ f ‖A+ ,

showing that ‖Cφ − Tn‖ 6 δn, and therefore that Cφ is compact.
(ii) For any υ ∈ A+, and for any real number r > 1, we have

(2.2) ‖r−υ‖A+ 6 r‖υ‖A+ .

Indeed

r−υ = exp(−υ log r) =
∞

∑
k=0

(− log r)k

k!
υk ∈ A+
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since υ belongs to the algebra A+. Moreover

‖r−υ‖A+ 6
∞

∑
k=0

(log r)k

k!
‖υ‖k

A+ = r‖υ‖A+

(we may remark that when υ(s) = cj j−s is a monomial, we have equality; in

particular: ‖n−cj j−s
‖A+ = n|cj | for every positive integer n).

We shall use the following:

PROPOSITION 2.4 (see [8]). Let θ and τ be real numbers and suppose that φ maps
Cθ into Cτ . Then, if φ(s) = c0s + ϕ(s), and ϕ is not constant, c0 must be a non-negative
integer and ϕ maps Cθ into Cτ−c0θ .

Now, assume that ϕ is non-constant (since otherwise the result is trivial),
and that ε = inf

s∈C0
Re φ(s) > 0. By Proposition 2.4, ϕ maps C0 into Cε. The

spectral radius formula and Bohr’s theory (as seen in the Introduction) give, with
ψ = 2−ϕ:

lim
j→+∞

‖ψ j‖1/j
A+ = sup

h∈spA+
|h(ψ)| = sup

s∈C0

|ψ(s)| = 2−ε;

and, in particular, ‖2−jϕ‖A+ −→
j→+∞

0. Now, if n is any positive integer, let j = j(n)

be the integer such that 2j 6 n < 2j+1, and set r = n 2−j, so that 1 6 r < 2. By
using (2.2), we get

‖n−φ‖A+ = ‖n−ϕ‖A+ = ‖2−jϕr−ϕ‖A+ 6 ‖2−jϕ‖A+ ‖r−ϕ‖A+

6 ‖2−jϕ‖A+ r‖ϕ‖A+ 6 ‖2−jϕ‖A+ 2‖ϕ‖A+ .

This shows that ‖n−φ‖A+ −→
n→∞

0 (more precisely, we have ‖n−φ‖A+ = O (n−δ) for
some δ > 0), and so Cφ is compact, by part (b) (i) of the theorem.

REMARK 2.5. Using the notation of Theorem 2.2, we have

‖n−φ‖A+ = ‖n−ϕ‖A+ ,

and, in particular, the integer c0 plays no role for the continuity or the compact-
ness of the composition operator Cφ on A+. This is quite amazing, since c0 inter-
venes decisively in the study of composition operators on the Hilbert spaceH2 of
the square-summable Dirichlet series (so much so that Gordon and Hedenmalm
[8] called it characteristic).

COROLLARY 2.6. Let φ(s) = c0s +
∞
∑

n=1
cnn−s. Then Cφ is bounded if Re c1 >

∞
∑

n=2
|cn|, and is compact if Re c1 >

∞
∑

n=2
|cn|.

Proof. Let ϕ0 ∈ A+ be defined by ϕ0(s) =
∞
∑

n=2
cnn−s. For each positive

integer N, we have: N−φ(s) = (Nc0)−sN−c1 N−ϕ0(s), and so the inequality (2.2)
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with r = N gives

‖N−φ‖A+ = N−Re c1‖N−ϕ0‖A+ 6 N−Re c1 N‖ϕ0‖A+ = N−Re c1+∑∞
n=2 |cn |;

thus ‖N−φ‖A+ is less than 1 in the first case, and tends to 0 in the second case.
Theorem 2.3 ends the proof.

Note that under the assumption of Corollary 2.6, Cφ : A+ → A+ is actually
a contraction: ‖Cφ‖ 6 1.

2.2. SOME SPECIFIC EXAMPLES. One of the main differences between the study
of composition operators on A+ and those on A+(T) is the fact that the function
z 7→ z does not belong to A+. Therefore, it is not clear that if Cφ is a composition
operator on A+, we must have ∑

n
|cn| < +∞. In some cases, it is however true.

The next proposition contains a partial result of this type.
Recall (see [14]) that (λj)j>1 is a Sidon set if

N

∑
j=1
|aj| 6 C0 sup

t∈R

∣∣∣ N

∑
j=1

aje
iλjt
∣∣∣

for some finite positive constant C0.

PROPOSITION 2.7. (i) If 2 6 q1 < q2 < · · · are multiplicatively independent

integers and φ(s) = c0s + c1 +
∞
∑

j=1
djq−s

j , then the boundedness of Cφ : A+ → A+

implies that Re c1 >
∞
∑

j=2
|dj|, and its compactness implies Re c1 >

∞
∑

j=2
|dj|.

(ii) Let (λj)j>1 be a Sidon set of positive integers, r an integer > 2, and φ(s) = c0s +

ϕ(s), where ϕ ∈ D and ϕ(s) = c1 +
∞
∑

j=1
djr
−λjs for Re s large. Then the boundedness of

Cφ : A+ → A+ requires that
∞
∑

j=1
|dj| < +∞.

Proof. (i) Write ϕ0(s) =
∞
∑

j=1
djq−s

j , as in the proof of Corollary 2.6. For every

integer n > 2, we have, for Re s large enough:

n−φ(s) = (nc0)−sn−c1 exp(−ϕ0(s) log n) = (nc0)−sn−c1
∞

∑
k=0

(− log n)k

k!
ϕ0(s)k.

Since Cφ is assumed to be bounded on A+, we know that n−φ ∈ A+, and so

n−φ(s) =
∞

∑
j=1

an,j j−s, with
∞

∑
j=1
|an,j| < +∞.

But the supports (spectra) of the ϕk
0’s do not intersect: in fact, the spectrum of ϕk

0
only involves finite products ∏

j
q

αj
j , where ∑ αj = k, and these products are all
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distinct. In particular, for k = 1, (− log n)ϕ0(s) is part of the expansion of n−φ(s),
which means that (−dj log n)j is a subsequence of (an,j)j. Therefore, ∑

j
|dj| < +∞

(and so ϕ0 ∈ A+), and the series expansion of ϕ0(s) holds for every s ∈ C0.
Finally, since the log qj’s are rationally independent, Kronecker’s Approximation
Theorem implies that, for each σ > 0, we have

inf
t∈R

Re φ(σ + it) = c0σ + Re c1 −
∞

∑
j=1
|dj|q−σ

j .

Since the left-hand side is > 0 by the first part of Theorem 2.3, we get Re c1 >
∞
∑

j=1
|dj|, by letting σ go to zero. The compact case is similar.

(ii) We have (see [17])

(2.3) inf
τ∈R

N

∑
j=1

ρj cos(λjτ + ξ j) 6 −δ
N

∑
j=1

ρj

for some other constant δ > 0, where the ρj’s (non-negative) and the (real) ξ j’s are
arbitrary. Without loss of generality, we can assume that r = 2. Fix an integer J >
1, and let B : R → R+ (see [15], p. 165) be a non-negative Dirichlet polynomial
(of the form ∑ αkeiβkt, βk ∈ R, αk ∈ C) such that

(2.4) B̂(0) = B̂(λj log 2) = 1, 1 6 j 6 J

(recall that B̂(λ) = lim
T→∞

1
2T

T∫
−T

B(t)e−iλt dt).

For large σ > 0, we have an absolutely convergent expansion

ϕ(σ + i(t + τ)) = c1 +
∞

∑
j=1

dj2
−λjσ2−λjite−iλjτ log 2,

so that, for Re s large enough (say Re s > σ0 > 0)

(2.5) lim
T→∞

1
2T

T∫
−T

ϕ(s + iτ)B(τ) dτ = c1 +
∞

∑
j=1

dj2
−λjs B̂(λj log 2).

Actually, (2.5) holds for every s with positive real part σ. To see this, set

fT(s) =
1

2T

T∫
−T

ϕ(s + iτ)B(τ) dτ.

Proposition 2.4 shows that Re ϕ(s + iτ) > 0 for s ∈ C0, and thus that Re fT(s) > 0
for s ∈ C0. Moreover, fT as well as the right-hand side of (2.5), since B is a
Dirichlet polynomial, are holomorphic in C0; hence a normal family argument
gives the above statement.
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Therefore, if we take the real part of both sides of (2.5), we get, for every
σ > 0 and t ∈ R:

Re c1 + ∑
j>1

2−λjσRe (dj2
−λjit B̂(λj log 2)) = lim

T→+∞
Re fT(σ + it) > 0.

Letting σ tend to zero gives Re c1 + ∑
j>1

Re (dj2
−λjit B̂(λj log 2)) > 0, for any t ∈ R.

Taking the infimum with respect to t and using (2.3), we get Re c1− δ
∞
∑

j=1
|dj|

|B̂(λj log 2)| > 0 and therefore, using (2.4)

Re c1 − δ
J

∑
j=1
|dj| > 0.

It follows that
∞
∑

j=1
|dj| 6 1

δ Re c1, and this ends the proof of Proposi-

tion 2.7.

REMARK 2.8. The above proof gives the following information about Dirich-
let series, which is actually not connected to composition operators: let ϕ be a
Dirichlet series which can be written as ϕ(s) = c1 + ∑

j>1
djr
−λjs, where (λj)j is a Sidon

sequence; if there is a β ∈ R such that ϕ(C0) ⊆ Cβ, then ∑
j>1
|dj| < +∞.

However, in general, conditions like ∑
n>2
|cn| 6 Re c1 (respectively < Re c1)

are not necessary to have boundedness or compactness of the composition oper-
ator Cφ : A+ → A+ (with φ(s) = c0s + c1 + ∑

n>2
cnn−s), as shown by the following

examples.

PROPOSITION 2.9. Let φ(s) = c0s + c1 + crr−s + cr2 r−2s, where r > 2 and cr,
cr2 are > 0. Then:

(i) If we have the following, then Cφ : A+ → A+ is bounded and even compact:

(2.6) Re c1 >
(cr)2

8cr2
+ cr2 .

(ii) Conversely, if Cφ : A+ → A+ is bounded, and moreover cr 6 4cr2 , we must have

(2.7) Re c1 >
(cr)2

8cr2
+ cr2 .

In fact, we must have (2.6) whenever Cφ is compact.
(iii) In the following case, Cφ : A+ → A+ is bounded if and only if cr 6= 4cr2 :

(2.8) Re c1 =
(cr)2

8cr2
+ cr2 .
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Proof. (i) and (ii) follow immediately from Theorem 2.3, since (2.6) implies

Re φ(s) > c0Re s + δ > δ for every s ∈ C0, with δ = Re c1 −
[ (cr)2

8cr2
+ cr2

]
, and,

under the assumption that cr 6 4cr2 , the converse is true.

However, we shall give another proof, because we think that it sheds addi-
tional light.

Second proof. (i) Without loss of generality, we may and shall assume that
r = 2. We will make use (see p. 60 of [16]) of the Hermite polynomials H0, H1, . . .
defined by

(2.9) Hk(λ) = (−1)keλ2 dk

dλk (e−λ2
) = (2λ)k + terms of lower degree.

The exponential generating function of the Hk’s is

(2.10)
∞

∑
k=0

Hk(λ)
k!

xk = exp(2λx− x2).

Following Indritz [13], we have the sharp estimate

(2.11) |Hk(λ)| 6 (2kk!)1/2eλ2/2,

for each k ∈ N0 and each λ ∈ R. The estimate (2.11) implies the following:

LEMMA 2.10. Let λ be a real number, and x be a non-negative real number. Then
we have the following, where C is a positive constant:

(2.12)
∞

∑
k=0

|Hk(λ)|
k!

xk 6 C(1 + x)1/2 exp
(

x2 +
λ2

2

)
.

Proof. (2.11) implies that
∞

∑
k=0

|Hk(λ)|
k!

xk 6
∞

∑
k=0

(x
√

2)k

(k!)1/2 eλ2/2.

We now make use of the classical estimate (see e.g. Dieudonné p. 195 of [3]):

(2.13)
∞

∑
k=0

yk

(k!)p ∼
1
√

p
(2π)(1−p)/2y(1−p)/2p exp(py1/p) as y→ ∞ (p > 0 fixed).

Using the above, with p = 1
2 and y = x

√
2, we obtain for some constant C the

following, proving the lemma:
∞

∑
k=0

|Hk(λ)|
k!

xk 6 Ceλ2/2(1 + x)1/2ex2
.

Note that, if we wish to avoid the use of (2.13), we can easily obtain the
slightly weaker estimate:

(2.14)
∞

∑
k=0

|Hk(λ)|
k!

xk 6 Ca exp
(

ax2 +
λ2

2

)
, for each a > 1.
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Indeed, we have by the Cauchy-Schwarz inequality and by (2.11) :

∞

∑
k=0

|Hk(λ)|
k!

xk =
∞

∑
k=0

|Hk(λ)|
(k!)1/2(2a)k/2

(2a)k/2xk

(k!)1/2 6
( ∞

∑
k=0

|Hk(λ)|2
k!(2a)k

)1/2( ∞

∑
k=0

(2a)kx2k

k!

)1/2

6eλ2/2
( ∞

∑
k=0

a−k
)1/2

exp(ax2) = (1− a−1)−1/2 exp
(

ax2 +
λ2

2

)
.

We now finish the proof of Proposition 2.9. First, we notice that n−φ(s) =
(nc0)−sn−c1 exp(−c22−s log n− c44−s log n). We then set

(2.15) xn =
√

c4 log n, λn =
−c2

2
√

c4

√
log n, x = 2−sxn,

which allows us to write n−φ(s) under the form

n−φ(s) = (nc0)−sn−c1 exp(2λnx− x2) = (nc0)−sn−c1
∞

∑
k=0

Hk(λn)
k!

xk
n(2k)−s.

This implies that we have the equality

(2.16) ‖n−φ‖A+ = n−Re c1
∞

∑
k=0

|Hk(λn)|
k!

xk
n.

If we now use Lemma 2.10 and change C (if necessary), we get for n > 2,

‖n−φ‖A+ 6Cn−Re c1(log n)1/4exp
(

x2
n+

λ2
n

2

)
=C(log n)1/4n−Re c1 nc2

2/8c4+c4 =: εn.

By (2.6), we have εn → 0, implying that Cφ : A+ → A+ is compact as a conse-
quence of Theorem 2.3.

(ii) The identities (2.16) and (2.10) imply that we have, for each real θ,

nRe c1‖n−φ‖A+ >
∣∣∣ ∞

∑
k=0

Hk(λn)
k!

xk
neikθ

∣∣∣ = | exp(2λnxneiθ − x2
ne2iθ)|

= exp(2λnxn cos θ − x2
n cos 2θ).

Setting t = cos θ, we see that 2λnxn cos θ − x2
n cos 2θ = 2λnxnt − x2

n(2t2 − 1) is
maximum for t = λn

2xn
= −c2

4c4
, and this t will be admissible if

∣∣−c2
4c4

∣∣ 6 1, i.e. if
c2 6 4c4 (recall that c2, c4 are positive). For this value of t, we get

(2.17) ‖n−φ‖A+ > n−Re c1+c2
2/8c4+c4 , n = 1, 2, . . . , c2 6 4c4.

Now, if Cφ is bounded, ‖n−φ‖A+ is bounded from above, and (2.17) implies that

Re c1 > (c2)2

8c4
+ c4. If Cφ is compact, ‖n−φ‖A+ → 0 and (2.17) implies that Re c1 >

(c2)2

8c4
+ c4.
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REMARK 2.11. Condition (2.6) is a more general sufficient condition for the
boundedness of Cφ than the trivial sufficient condition Re c1 > |c2|+ |c4| of Corol-
lary 2.6 if and only if cr < 8cr2 . This might be due to the highly oscillatory char-
acter of the Hermite polynomials Hk(λ), involving a term cos

(√
2k + 1λ− k π

2
)

(see p. 67 of [16]), which we ignore when we majorize |Hk(λ)| as in (2.11).

End of proof of Proposition 2.9. (iii) We still assume that r = 2. First, if c2 >
4c4, then (2.8) implies that φ(C0) ⊆ Cδ for some δ > 0, and we are done. So, we
assume that c2 6 4c4. We have

‖(2j)−φ‖A+ = ‖2−jφ‖A+ = ‖(2−c1−c22−s−c44−s
)j‖A+

= ‖(exp[(−c1 − c22−s − c44−s) log 2])j‖A+ = ‖ψj‖A+(T),

with ψ(z)=exp(−(c1+c2z+c4z2) log 2). We then apply Newman’s result (quoted
as (a) in the Introduction: see [20]) to check whether the sequence (‖ψj‖A+(T))j is
bounded. Let θ0 ∈ [0, 2π[ be such that |ψ(eiθ0)| = 1. We look for the coefficient of
t2 in the Taylor expansion of

log ψ(eiθ0+it) = −(c1 + c2eiθ0eit + c4e2iθ0e2it) log 2.

This term is
( c2

2 eiθ0 + 2c4e2iθ0
)

log 2, and its real part is

(2.18)
( c2

2
cos θ0 + 2c4(2 cos2 θ0 − 1)

)
log 2.

Now, remark that the condition |ψ(eiθ0)| = 1 means that

Re c1 = −c2 cos θ0 − c4(2 cos2 θ0 − 1),

which gives, using (2.8), (4c4 cos θ0 + c2)2 = 0, that is cos θ0 = − c2
4c4
· Hence (2.18)

is equal to 0 if and only if c2 = 4c4.
But in this case, θ0 = π, and Taylor’s expansion becomes

log ψ(ei(θ0+t)) = d1 + d2t + 0 · t2 + i log 2
2c4

3
t3 + · · · .

Hence, in Newman’s terminology (see [20], and see (a) in the Introduction), the
point eiθ0 is not an ordinary point, and hence the sequence (‖ψj‖A+(T))j is not
bounded. It follows that the sequence (‖2−jφ‖A+)j is not bounded either.

In the case c2 < 4c4, the point eiθ0 is ordinary, and therefore (‖2−jφ‖A+)j is
bounded. Since ∑

n
|cn| = |c1|+ |c2|+ |c4| < +∞, the argument used in the proof

in Theorem 2.3, (b) (ii) gives the boundedness of Cφ.

REMARK 2.12. Part (iii) of Proposition 2.9 shows that, if Re c1 = (cr)2

8cr2
+ cr2

and cr = 4cr2 (so Re c1 = 3c4, and ψ(s) = ia + c(3 + 4 · 2−s + 4−s), with a ∈ R and
c > 0), then Cφ is not bounded on A+, though φ(C0) ⊆ C0 (and ∑

n
|cn| < +∞).
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3. AUTOMORPHISMS OF A+(T k), A+(T ∞),A+

In this section, we will make repeated use of the following lemma (see (b)
of the Introduction):

LEMMA 3.1. Let φ(z) =
J

∏
j=1

ε j
z−aj

1−ajz
, where |ε j| = 1 and aj ∈ D. Suppose that

‖φn‖A+ remains bounded (n = 1, 2, . . .). Then, aj = 0 for each j.

Proof. This lemma is well-known (see page 38, assertion (3) of [20] or page
77 of [14] ). For example, if aj 6= 0 for some j, we have φ(eit) = eig(t), where g is
a C2, real, non affine function; and the Van der Corput inequalities show that we
even have: ‖φn‖A+ > δ

√
n.

Since |φ(eit)| = 1, Lemma 3.1 can be viewed as a special case of the fol-
lowing lemma (which will be needed only in Section 4, but which we state here
because it is the natural extension of Lemma 3.1), due to Beurling and Helson,
and this lemma is itself a special case of Cohen’s Theorem (see page 93, corollary
of Theorem 4.7.3 in [22] ). We shall use the following definition:

Let G be a discrete abelian group, and Γ be its (compact) dual group; the
Wiener algebra A(Γ) is the set of functions f : Γ → C which can be written as an

absolutely convergent series f (γ) =
∞
∑
1

an(xn, γ), with the norm ‖ f ‖A(Γ) =
∞
∑
1
|an|,

and where (xn, γ) denotes the action of γ ∈ Γ on the element xn of G. We are now
ready to state:

LEMMA 3.2 (Beurling-Helson). Let G be a discrete abelian group, with connected
dual group Γ. Let φ ∈ A(Γ), which does not vanish on Γ, and such that ‖φn‖A(Γ) 6 C
for some constant C (n = 0,±1,±2, . . .). Then φ is affine, i.e. there exist a complex
number a with |a| = 1 and an element x of G such that φ(γ) = a(x, γ) for any γ ∈ Γ.

Let us now consider the Wiener algebra A+(Tk) in k variables, i.e. the alge-

bra of functions f : Dk → C which can be written as

f (z) = ∑
n1,...,nk>0

a(n1, . . . , nk)zn1
1 · · · z

nk
k , z = (z1, . . . , zk),

with the norm ‖ f ‖A+(Tk) = ∑
n1,...,nk>0

|a(n1, . . . , nk)| < +∞.

If φ = (φ1, . . . , φk) : Dk → Ck is an analytic function, the composition oper-
ator Cφ will be bounded on A+(Tk) if and only if

(3.1) ‖φn
j ‖A+(Tk) 6 C, j = 1, . . . , k, and n = 0, 1, 2, . . .

(the proof is the same as in Newman’s case k = 1).
Then, since ‖φj‖∞ = lim

n→∞
‖φn

j ‖
1/n
A+(Tk), we see that φ necessarily maps Dk

into Dk
. We can now state:
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THEOREM 3.3. Assume that the map φ : Dk → Dk
induces a bounded composition

operator Cφ : A+(Tk)→ A+(Tk). Then Cφ is an automorphism of A+(Tk) if and only
if φ(z) = (ε1zσ(1), . . . , εkzσ(k)) for some permutation σ of {1, . . . , k} and some complex
signs ε1, . . . , εk.

Proof. The sufficient condition is trivial. For the necessary one, we first ob-
serve that, for j = 1, . . . , k, φj ∈ A+(Tk), since φj = Cφ(zj); hence φ can be

continuously extended to a continuous map, still denoted by φ, from Dk
to Dk

.
We are going to show that this map is bijective.

Assume first that a, b ∈ Dk
and that φ(a) = φ(b). Let f ∈ A+(Tk); since

Cφ is bijective we can find g ∈ A+(Tk) such that f = g ◦ φ, so that f (a) = f (b).

Since A+(Tk) obviously separates the points of Dk
, we have a = b. In particular,

φ is injective on Dk and by Osgood’s Theorem (see Theorem 5, page 86 of [19])
det(φ′(z)) 6= 0 for each z ∈ Dk, implying that φ is an open mapping on Dk.
Therefore, φ(Dk) ⊆ Dk.

Now, let u ∈ Dk
. Define an element L of the spectrum of A+(Tk) by L( f ) =

g(u) if f = g ◦ φ. Since the spectrum of A+(Tk) is clearly Dk
, we can find a ∈ Dk

such that L( f ) = f (a), so that g(φ(a)) = g(u) for any g ∈ A+(Tk), implying

u = φ(a). φ is therefore a homeomorphism : Dk → Dk
.

Since φ(Dk) = Dk
and φ(Dk) ⊆ Dk, we get φ(Dk) = Dk. In particular,

φ ∈ Aut Dk, the group of analytic automorphisms of Dk.
Recall that ([19], Proposition 3, page 68):

LEMMA 3.4. The analytic map φ : Dk → Dk belongs to Aut Dk if and only if

φ(z) =
(

ε1
zσ(1) − a1

1− a1zσ(1)
, . . . , εk

zσ(k) − ak

1− akzσ(k)

)
,

for some permutation σ of {1, . . . , k}, for some (a1, . . . , ak) ∈ Dk and some complex
signs ε1, . . . , εk.

We therefore see that φj(z) = ε j
zσ(j)−aj

1−ajzσ(j)
, so that for each n ∈ N, we have in

view of (3.1): ∥∥∥(ε j
z− aj

1− ajz

)n∥∥∥
A+

=
∥∥∥(ε j

zσ(j) − aj

1− ajzσ(j)

)n∥∥∥
A+(Tk)

6 C.

Lemma 3.1 now implies that aj = 0, j = 1, . . . , k, so that φj(z) = ε jzσ(j), and
this ends the proof of Theorem 3.3.

We now consider the Wiener algebra A+(T∞) in countably many variables.
It will be convenient to consider holomorphic functions on the open unit ball
B = D∞ ∩ c0 of the Banach space c0 of sequences z = (zn)n>1 tending to zero
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at infinity, with its natural norm ‖z‖ = sup
n>1
|zn|. We then have the following

extension of Cartan’s Lemma 3.4 to the case of B, which is due to Harris [9]:

LEMMA 3.5 (Analytic Banach-Stone Theorem). The analytic automorphisms
φ : B → B are exactly the maps of the form φ = (φj)j>1, with φj(z) = ε j

zσ(j)−aj
1−ajzσ(j)

, for

some permutation σ of N, some point a = (aj)j>1 ∈ B, and some sequence (ε j)j>1 of
complex signs.

Recall that the linear Banach-Stone Theorem states: if L : c0 → c0 is a surjec-
tive isometry fixing the origin, then L has the form

L(z1, . . . , zn, . . .) = (ε1zσ(1), . . . , εnzσ(n), . . .).

If we want to exploit Lemma 3.5 for describing the composition automor-
phisms of A+(T∞), we have to make an extra assumption, the reason for which is
the following: if Cφ is an automorphism of A+(T∞), then φ is an automorphism
of D∞

, but there is no reason, a priori, why φ should be an automorphism of B.

THEOREM 3.6. Let φ = (φj)j : B → B be an analytic map such that Cφ maps
A+(T∞) into itself. Then:

(i) If φ(z) = (ε jzσ(j))j>1 for some permutation σ of N and some sequence (ε j)j>1 of
complex signs, then Cφ is an automorphism of A+(T∞), and it is isometric.

(ii) If Cφ is an automorphism of A+(T∞) and if we moreover assume that φk(z) =
zdk

k uk(z), with dk > 1 and uk(0) 6= 0, for each k ∈ N and each z ∈ B, then φ(z) =
(ε jzj)j>1 for some sequence (ε j)j>1 of complex signs.

Proof. (i) is trivial. For (ii), consider the compact set K = D∞
, endowed with

the product topology (K is nothing but the spectrum of A+(T∞)); clearly, B is
dense in K, and since φj = Cφ(zj) ∈ A+(T∞), φj : B → D extends continuously
to K, and φ = (φj)j extends continuously to a map, still denoted by φ, from K

to K, and we still can write, for every k ∈ N, φk(z) = zdk
k uk(z) for each z ∈ K.

Exactly as in the proof of Theorem 3.3, we can show that φ is bijective, since K is
the spectrum of A+(T∞). Let now ψ : K → K be the inverse map of φ. Since K is
compact, ψ is continuous on K, and so on B; it is then easy to see, as usual, that ψ

is holomorphic in B (alternatively, ψk = (Cφ)−1(zk) ∈ A+(T∞), and so is analytic
in D∞, and it is clear that ψ = (ψk)k).

Now, it suffices to show that ψ maps B into B; indeed, it will follow that φ
maps B onto B, and so the map φ will appear as an analytic automorphism of B
(since we already know that ψ = φ−1 is analytic in B), and Lemma 3.5 shows that
φj(z) has the form ε j

zσ(j)−aj
1−ajzσ(j)

· Now, ‖φn
j ‖A+(T∞) = ‖Cφ(zn

j )‖A+(T∞) 6 ‖Cφ‖, and

as in the proof of Theorem 3.3, we shall conclude that aj = 0 for each j. Finally,

the assumption φk(z) = zdk
k uk(z) for each k will imply that σ is the identity map.
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So we have to show that ψ(B) ⊆ B. If it were not the case, there would exist
an element w = (wj)j ∈ B such that ψ(w) /∈ B. Hence there would exist δ > 0
and an infinite subset J ⊆ N such that

(3.2) |ψj(w)| > δ for every j ∈ J.

Let δ′ = δ
‖Cψ‖ .

Since w ∈ B, we should find an integer N > 1 such that

n > N ⇒ |wn| 6 δ′.

Let κ = max
16n6N

|wn|. Since κ < 1, there would exist p > 1 such that κp < δ′.

Consider the finite set

F = {α = (m1, . . . , mN , 0, . . .) : m1 + · · ·+ mN 6 p}.

We assert that

(3.3) F intersects the spectrum of ψj for every j ∈ J.

Indeed, writing ψj(z) = ∑ aj(n1, . . . , nk, 0, . . .)zn1
1 · · · z

nk
k , we have:

• if α = (n1, . . . , nl , . . .) with l > N and nl 6= 0, then |wl | 6 δ′, and so

|wα| 6 |wn1
1 · · ·w

nl
l | 6 |w

nl
l | 6 |wl | 6 δ′;

• if n1 + · · ·+ nN > p, then

|wn1
1 · · ·w

nN
N | 6 κn1+···+nN 6 κp < δ′.

Hence, in both cases, α /∈ F implies |wα| < δ′. Therefore, if F does not intersect
the spectrum of ψj, we get

|ψj(w)| 6 ∑
α/∈F
|aj(α)| |wα| 6 δ′‖ψj‖A+(T∞) 6 δ′‖Cψ‖ = δ

(since ‖ψj‖A+(T∞) = ‖Cψ(zj)‖A+(T∞) 6 ‖Cψ‖ ‖zj‖A+(T∞) = ‖Cψ‖), which contra-

dicts (3.2). To end the proof, remark now that the assumption φk(z) = zdk
k uk(z)

for every k ∈ N implies that

zk = φk[ψ(z)] = [ψk(z)]dk uk[ψ(z)].

But this is impossible, since J is infinite and, for k ∈ J, ψk(z) depends
on (z1, . . . , zN), and hence φk[ψ(z)] = [ψk(z)]dk uk[ψ(z)] also (since dk > 1 and
uk(0) 6= 0).

That ends the proof of Theorem 3.6.

REMARK 3.7. We shall see later, in Section 4, Theorem 4.5, that the converse
of (i) in Theorem 3.6 is true.

Although Theorem 3.6 is not completely satisfactory, it will be sufficient for
characterizing the composition automorphisms of the Wiener-Dirichlet algebra
A+. In fact, we have:
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THEOREM 3.8. Let Cφ : A+ → A+ be a composition operator. Then Cφ is an
automorphism of A+ if and only if φ is a vertical translation: φ(s) = s + iτ, where τ is
a real number.

Note that a similar result was obtained by F. Bayart [1] for the Hilbert space

H2 of square-summable Dirichlet series f (s) =
∞
∑
1

ann−s such that
∞
∑
1
|an|2 < +∞,

but his proof does not seem to extend to our setting, and our strategy for proving
Theorem 3.8 will be to deduce it from Theorem 3.6, with the help of the transfer
operator ∆ mentioned in the Introduction. The following lemma (with the nota-
tion used in the Introduction) allows the transfer from composition operators on
A+ to composition operators on A+(T∞).

LEMMA 3.9. Suppose that Cφ : A+ → A+ is a composition operator, with φ(s) =
c0s + ϕ(s), c0 ∈ N0, ϕ ∈ D. Let T = ∆Cφ∆−1 : A+(T∞)→ A+(T∞). Then:

(i) T = Cφ̃, where φ̃ : B → D∞ is an analytic map such that φ̃(z[s]) = z[φ(s)], for
any s ∈ C0.

(ii) If moreover c0 > 1 (which is the case if Cφ is surjective), φ̃ maps B into B.

Proof. (i) Define fk(s) = p−φ(s)
k ∈ A+, φk = ∆ fk and

(3.4) φ̃ = (φ1, φ2, . . .).

We have
φ̃(z[s]) = (∆ fk(z[s]))k>1 = ( fk(s))k>1 = z[φ(s)]

by (1.1), and ‖φk‖∞ = ‖ fk‖∞ 6 1 by (1.2). Moreover, no φk is constant, so the
open mapping theorem implies that |φk(z)| < 1 for z ∈ B, i.e. φ̃(z) ∈ D∞. Finally,

if f (z) =
∞
∑

n=1
anzα1

1 · · · z
αr
r ∈ A+(T∞) (where n = pα1

1 · · · p
αr
r is the decomposition

in prime factors), we have the following “diagram”:

f ∆−1
7−→

∞

∑
n=1

ann−s Cφ7−→
∞

∑
n=1

an f α1
1 · · · f αr

r
∆7−→

∞

∑
n=1

anφα1
1 · · · φ

αr
r = f ◦ φ̃,

i.e. T( f ) = Cφ̃( f ).
(ii) First observe that Cϕ also mapsA+ intoA+ (see the remark before Corol-

lary 2.6). Secondly, we have fk(s) = p−c0s
k p−ϕ(s)

k = p−c0s
k gk(s), with gk ∈ A+ and

‖gk‖A+ = ‖Cϕ(p−s
k )‖A+ 6 C. It follows that, for z ∈ B : ∆ fk(z) = zc0

k ∆gk(z), and
via (1.2) that

|∆ fk(z)| 6 |zk|c0‖∆gk‖∞ = |zk|c0‖gk‖∞ 6 |zk|c0‖gk‖A+ 6 C|zk|c0 .

Since c0 > 1, we see that ∆ fk(z) → 0 as k → ∞, i.e. φ̃(z) ∈ B. Finally,
whenever Cφ is surjective, φ : C0 → C0 is injective: indeed, A+ separates the

points of C0 (2−a = 2−b and 3−a = 3−b imply a = b, since log 2
log 3 is irrational), and

we can argue as in Theorem 3.3.
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To end the proof of Lemma 3.9, it remains to remark that if c0 = 0, φ is
never injective on C0, according to well-known results on the theory of analytic,
almost-periodic functions (see e.g. p. 13 of [4]). Therefore, we have c0 > 1 if Cφ is
surjective.

Proof of Theorem 3.8. The sufficiency of the condition is trivial. Conversely,
if Cφ is an automorphism of A+, let Cφ̃ = ∆Cφ∆−1, as in Lemma 3.9. Since Cφ

is surjective, we know from Lemma 3.9 that φ̃ maps B into B; we can apply The-
orem 3.6, because Cφ̃ is an automorphism of A+(T∞) onto itself and moreover

φ̃k(z) = ∆ fk(z) = zc0
k ∆gk(z), with c0 > 1 (by Lemma 3.9 again) and

∆gk(0) = lim
Re s→+∞

gk(s) = lim
Re s→+∞

p−ϕ(s)
k = p−c1

k 6= 0.

We conclude that

(3.5) φ̃(z) = (ε1z1, . . . , εnzn, . . .),

for some sequence of signs (εn)n, where z = (z1, . . . , zn, . . .).
If we now test this equality at the points z[s] = (p−s

j )j, s ∈ C0, and use (1.1),
we see that

(3.6) p−φ(s)
j = ε j p−s

j , s ∈ C0, j ∈ N.

Taking the moduli in (3.6), we get Re φ(s) = Re s. Since φ(s) − s is analytic on
the domain C0, this implies φ(s)− s = iτ, with τ ∈ R, thus ending the proof of
Theorem 3.8.

4. ISOMETRIES OF A+(T k), A+(T ∞),A+

In this section, we shall characterize the composition operators which are
isometric on A+(Tk) and then those which are isometric on A+(T∞) (under an
additional assumption) and on A+. If f (z) = ∑ aαzα ∈ A+(Tk), it will be con-
venient to note aα = f̂ (α). The spectrum of f (denoted by Sp f ) is the set of α’s

such that f̂ (α) 6= 0. e will denote the point (1, . . . , 1) of Dk
. An elaboration of the

method of Harzallah [14] allows us to show:

THEOREM 4.1. Assume that φ = (φj)j : Dk → Dk
, induces a composition oper-

ator Cφ : A+(Tk) → A+(Tk). Then Cφ : A+(Tk) → A+(Tk) is an isometry if and
only if there exists a square matrix A = (aij)16i,j6k, with aij ∈ N0 and det A 6= 0, and
complex signs ε1, . . . , εk such that

(4.1) φi(z) = εiz
ai1
1 · · · z

aik
k , 1 6 i 6 k, z = (z1, . . . , zk) ∈ Dk.

To prove this theorem, it will be convenient to use the next two lemmas.
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LEMMA 4.2. Cφ is an isometry if and only if:
(i) φi = εiFi, 1 6 i 6 k, where εi is a complex sign, F̂i > 0, and Fi(e) = ‖Fi‖∞ = 1;

(ii) if α, α′ ∈ Nk
0 are distinct, the spectra of φα and φα′ are disjoint.

Proof. Suppose that (i) and (ii) hold, and let f (z) = ∑ f̂ (α)zα ∈ A+(Tk). We
have by (ii)

‖Cφ f ‖A+(Tk) = ∑ | f̂ (α)| ‖φα‖A+(Tk) = ∑ | f̂ (α)| ‖Fα‖A+(Tk),

since, with the obvious notation, φα = εαFα. Since F̂α > 0, we have, using (i),
‖Fα‖A+(Tk) = Fα(e) = 1, so that

‖Cφ f ‖A+(Tk) = ∑ | f̂ (α)| = ‖ f ‖A+(Tk).

Conversely, suppose that Cφ is an isometry. For each i ∈ [1, k] and each n ∈
N, we have ‖φn

i ‖A+(Tk) = ‖zn
i ‖A+(Tk) = 1, whence ‖φi‖∞ = lim

n→∞
‖φn

i ‖
1/n
A+(Tk) = 1,

by the spectral radius formula. Since ‖φi‖∞ 6 ‖φi‖A+(Tk) = 1, the only possibility

is that φi = εiFi, with |εi| = 1, F̂i > 0, and ‖φi‖A+(Tk) = 1 = ‖Fi‖A+(Tk) = Fi(e).

Therefore, (i) holds. Now suppose that we can find α 6= α′ such that Sp φα ∩ Sp φα′

contains an element β0 ∈ Nk
0, and set ρ = φ̂α(β0), ρ′ = φ̂α′(β0). Without loss of

generality, we may assume that |ρ| > |ρ′|. Let θ be a complex sign such that
|ρ + θρ′| = |ρ| − |ρ′|. Then, we have ‖zα + θzα′‖A+(Tk) = 2, whereas

‖Cφ(zα + θzα′)‖A+(Tk) = ‖φα + θφα′‖A+(Tk) = ∑
β 6=β0

|φ̂α(β) + θφ̂α′(β)|+ |ρ + θρ′|

6 ∑
β 6=β0

|φ̂α(β)|+ ∑
β 6=β0

|φ̂α′(β)|+ |ρ| − |ρ′|

= 1− |ρ|+ 1− |ρ′|+ |ρ| − |ρ′| = 2(1− |ρ′|) < 2,

contradicting the isometric character of Cφ.

LEMMA 4.3. If φ = (φi)i and if one of the φi’s is not a monomial, then we can find
a pair of distinct elements α, α′ ∈ Nk

0 such that the spectra of φα and φα′ intersect.

Proof. To avoid awkward notation, we will assume that k = 3, but it will be
clear that the reasoning works for any value of k. Since only the spectra of the φi’s
are involved, we can assume without loss of generality that we have

φ1(z) = zs1
1 zs2

2 zs3
3 + zt1

1 zt2
2 zt3

3 ,

with (s1, s2, s3) 6= (t1, t2, t3), φ2(z) = zu1
1 zu2

2 zu3
3 , φ3(z) = zv1

1 zv2
2 zv3

3

(in short, φ1(z) = zs + zt; φ2(z) = zu; φ3(z) = zv).
If α = (a, b, c), the spectrum of φα = (zs + zt)azbuzcv consists of the triples

ρsj + (a− ρ)tj + buj + cvj = ρ(sj − tj) + atj + buj + cvj,
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with j = 1, 2, 3 and 0 6 ρ 6 a. Therefore, if α′ = (a′, b′, c′), the spectra of φα and
φα′ will intersect if and only if we can find 0 6 ρ 6 a and 0 6 ρ′ 6 a′ such that

ρ(sj − tj) + atj + buj + cvj = ρ′(sj − tj) + a′tj + b′uj + c′vj, j = 1, 2, 3,

or equivalently

(4.2) (ρ− ρ′)(sj − tj) + (a− a′)tj + (b− b′)uj = (c′ − c)vj, j = 1, 2, 3.

In (4.2), we can drop the conditions ρ 6 a, ρ′ 6 a′, since we can always replace
a and a′ by a + N and a′ + N, where N is a large integer, without affecting the
result. Now, let M be the matrix

M =

 s1 − t1 t1 u1
s2 − t2 t2 u2
s3 − t3 t3 u3

 .

To solve equation (4.2), we distinguish two cases.
Case 1. det M = 0.
We decide then to take c′ = c. Since the field Q of rational numbers is the

quotient field of Z, we can find λ, µ, ν ∈ Z, not all zero, such that

λ(sj − tj) + µtj + νuj = 0, j = 1, 2, 3.

If µ and ν are both zero, then λ = 0, since sj − tj 6= 0 for some j. Therefore, we
may assume for example that µ 6= 0, and write λ = ρ− ρ′, µ = a− a′, ν = b− b′,
with α = (a, b, c) ∈ N3

0, α′ = (a′, b′, c′) ∈ N3
0, and α 6= α′ since a 6= a′. By

construction, we have (4.2), so that the spectra of φα and φα′ are not disjoint.
Case 2. det M 6= 0.
We can then find rational numbers q, r, s such that

q(sj − tj) + rtj + suj = vj, j = 1, 2, 3,

and we can write q = λ
N , r = µ

N , s = ν
N , where λ, µ, ν ∈ Z and where N is a

positive integer. Therefore, we have

λ(sj − tj) + µtj + νuj = Nvj, 1 6 j 6 3,

and writing λ = ρ− ρ′, µ = a− a′, ν = b− b′, c = 0, c′ = N, we get (4.2) with
distinct triples α = (a, b, c) and α′ = (a′, b′, c′) of non-negative integers. Once
again, the spectra of φα and φα′ are not disjoint.

Proof of Theorem 4.1. If the condition holds, Cφ is an isometry by Lemma 4.2.
Conversely, suppose that Cφ is an isometry. Then, by Lemma 4.2, the spectra

of φα and φα′ are disjoint if α 6= α′, and by Lemma 4.3 each φi is a monomial,
necessarily of the form (4.1) by (i) of Lemma 4.2. Finally, if we denote by A the
square matrix (aij), by A∗ = (aji) its adjoint matrix, and if we let A, A∗ act on Zk

by the formulas

(4.3) A(α) = β, A∗(α) = γ,
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with βi =
k
∑

j=1
aijαj and γj =

k
∑

i=1
aijαi, we see that

(4.4) Cφ(zα) = φα = εαzA∗(α).

In fact,

Cφ(zα) = ∏
i

φ
αi
i = ∏

i
ε

αi
i

(
∏

j
z

aij
j

)αi
= εα ∏

j
z

γj
j .

Now, by Lemma 4.2, the φα’s have disjoint spectra, so that the A∗(α)’s are distinct,
implying det A 6= 0.

If we now turn to the case of A+(T∞), Lemma 4.2 clearly still holds, but
Lemma 4.3 no longer holds : for example, if I1, . . . , In, . . . are disjoint subsets of N,
cij positive numbers such that ∑

j∈Ii

cij=1, i=1, 2, . . . and if the map φ̃ is defined by

(4.5) φ̃ = (φi)i, where φi(z) = ∑
j∈Ii

cijzj,

then Cφ̃ is an isometry by Lemma 4.2 and yet no φi is a monomial if each Ii has
more than one element. We have however a weaker result:

THEOREM 4.4. Let φ : D∞ → D∞
be a map inducing an operator Cφ : A+(T∞)→

A+(T∞), and such that moreover φ(T∞) ⊆ T∞. Then
(i) There exists a matrix A = (aij)i,j>1, with aij ∈ N0 and ∑

j
aij < ∞ for each i, and

complex signs εi such that φ = (φi)i and

(4.6) φi(z) = εi

∞

∏
j=1

z
aij
j , i = 1, 2, . . . .

(ii) Cφ is an isometry if and only if A∗ = (aji), acting on Z(∞) as in (4.3), is injective.

Proof. (i) If we apply Lemma 3.2 to the (connected) group Γ = T∞ and its
dual G = Z(∞), we see that for each i ∈ N there exists Li = (ai1, ai2, . . .) ∈ Z(∞),
necessarily in N(∞)

0 , and a complex sign εi such that, for each z ∈ T∞, we have:

φi(z) = εi〈Li, z〉 = εi ∏
j

z
aij
j

(note that, for n ∈ N, setting C = ‖Cφ‖, we have ‖φn
i ‖A+(T∞) = ‖Cφ(zn

i )‖A+(T∞) 6

C, and also, since |φi(eit)| = 1 : ‖φ−n
i ‖A+(T∞) = ‖φn

i ‖A+(T∞) = ‖φn
i ‖A+(T∞) 6 C).

This proves (4.6).
(ii) We know from (4.4) (which clearly still holds for k = ∞) that φα =

εαzA∗(α), and we know from Lemma 4.2 that Cφ is an isometry if and only if the
spectra of the φα’s are disjoint. This gives the result.

We shall prove here the announced converse of part (i) of Theorem 3.6.
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THEOREM 4.5. Let φ = (φj)j : B → B be an analytic function which induces a
composition operator Cφ on A+(T∞). If Cφ is an isometric automorphism of A+(T∞),
then φ(z) = (ε jzσ(j))j, for some permutation σ of N and some some sequence (ε j)j>1 of
complex signs.

Proof. It suffices to look at the proof of Theorem 3.6, (ii): as in that proof,
and with the same notation, it suffices to show that ψ(B) ⊆ B; but if it is not the
case, it follows from (3.3), since the set J is infinite, that there exist at least two
distinct integers j1, j2 ∈ J such that the spectra of φj1 and φj2 are not disjoint. By
Lemma 4.2, this contradicts the isometric nature of Cφ.

REMARK 4.6. It is easy to see that the composition operator Cφ̃ on A+(T∞)
given by (4.5) does not correspond in general to a Cφ : A+ → A+.

For example, if

(4.7) φi(z) =
z2i−1 + z2i

2
i = 1, 2, . . . ,

the equation φ̃(z[s]) = z[φ(s)] would give

p−s
2i−1 + p−s

2i
2

= p−φ(s)
i i = 1, 2, . . . ;

taking equivalents of both members as s→ ∞ would give that

φ(s)
s
−→

s→+∞

log p2i−1

log pi
,

and it is impossible to have that, even for one i, since φ(s)
s → c0 ∈ N0 !

On the other hand, the additional assumption made in Theorem 4.4 does
not allow to use the Bohr’s transfer operator ∆ to characterize the isometric com-
position operators on A+. Nevertheless, we have:

THEOREM 4.7. Let φ : C0 → C0 inducing a composition operator Cφ : A+ →
A+. Then Cφ is an isometry if and only if φ(s) = c0s + iτ, with c0 ∈ N and τ ∈ R.

Proof. One direction is trivial. For the other, let us introduce the following

notation: if f (s) =
∞
∑

k=1
akk−s ∈ A+, denote by Sp f (the spectrum of f ) the set of

indices k such that ak 6= 0. Now, the technique of the proof of Lemma 4.2 clearly
works to show that:

(4.8) If m and n are distinct integers, the spectra of m−φ and n−φ are disjoint.

This automatically implies c0 6= 0, since, otherwise, the integer 1 would belong
to the spectra of all the n−φ’s. Suppose now that φ is not of the form c0s + c1, and
write:

φ(s) = c0s + c1 + ω(s), with ω(s) = crr−s + cr+1(r + 1)−s + · · · , r > 2, cr 6= 0.



COMPOSITION OPERATORS ON THE WIENER-DIRICHLET ALGEBRA 67

Then

n−φ(s) = (nc0)−sn−c1 exp(−ω(s) log n) = (nc0)−sn−c1
[
1 +

∞

∑
k=1

(− log n)k

k!
(ω(s))k

]
= (nc0)−sn−c1

[
1 + · · ·+

∞

∑
k=1

(− log n)k

k!
(crr−s + · · · )k

]
.

For Re s large enough, all the series involved will be absolutely convergent; there-
fore the Dirichlet series of n−φ will be obtained by expanding (crr−s + · · · )k

and grouping terms. In particular, the coefficient λn of nc0 rc0 in n−φ can be ob-
tained only by expanding (crr−s + · · · )k for k = 1, . . . , c0, so that λn = P(log n),
where P is a non-zero polynomial. This implies that, for large n, λn 6= 0, and
(nr)c0 ∈ Sp n−φ. Moreover, it is clear that lc0 ∈ Sp l−φ for every positive integer l.
Hence (nr)c0 ∈ Sp n−φ ∩ Sp (nr)−φ for large n, which contradicts (4.8).

Therefore φ(s) = c0s + c1, and c1 clearly has to be purely imaginary if Cφ is
an isometry.

5. CONCLUDING REMARKS AND QUESTIONS

Corollary 2.6 does not answer, in general, the natural question: if Cφ maps

A+ into A+, is it true that φ(s) = c0s +
∞
∑
1

cnn−s, with
∞
∑
1
|cn| < ∞ ?

Proposition 2.9 does not apply to the case of complex coefficients cr, cr2 .
Here, recent estimates due to Rusev [23] might help.

The estimate ‖φn‖A+ > δ
√

n of Lemma 3.1 is best possible. In fact (see p. 76
of [14]) it is fairly easy to see that ‖φn‖A+ 6 C

√
n if φ = eig and g is C∞ (say), and

a similar computation in dimension k (i.e. if we work with A+(Tk)) easily gives
the estimate ‖φn‖A+(Tk) 6 Cknk/2 if φ = eig and g is C∞. It would be interesting
to know whether the converse holds, i.e. if we have the following quantitative
version of Lemma 3.1: if φ = eig, where g is a C∞, non-affine, real function, then
‖φn‖A+ > δn1/2 ?

In the proof of Theorem 3.8, we used the fact that an analytic function de-
fined on a vertical half-plane which is almost-periodic is never injective to show
that c0 > 0, and therefore that the assumption (ii) in Theorem 3.6 naturally holds.
This raises two questions:

(a) Can an almost-periodic function defined only on a vertical line be injective,
i.e. can an almost-periodic function f : R → C be injective? (of course, if f is
real-valued, this is impossible: if f is injective, it is monotonic and therefore non
almost-periodic).

(b) Can one, at the price of using a different Banach-Stone type Theorem, dis-
pense with the condition φk(z) = zdk

k uk(z), with dk > 1 and uk(0) 6= 0 of (ii) in
Theorem 3.6, i.e. is the converse of (i) in this theorem always true?
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In view of the examples (4.5) in Section 4, a complete description of the
isometric composition operators Cφ : A+(T∞)→ A+(T∞) seems out of reach.

We gave a proof of Theorem 4.7 which does not use Theorem 4.1. Using this
theorem, we can give a variant of Theorem 4.7: fix an integer k > 1, and denote by
A+

k the subalgebra of A+ consisting of the functions f (s) = ∑
P+(n)6k

ann−s, where

P+(n) denotes the largest prime factor of n. Equivalently, f ∈ A+
k if the Dirichlet

expansion of f only involves the primes p1, . . . , pk. Define similarly the subspace
Dk of D. With those definitions, we can state:

THEOREM 5.1. Let φ(s) = c0s + ϕ(s), ϕ ∈ Dk, inducing a composition operator
Cφ : A+

k → A
+
k . Then Cφ : A+

k → A
+
k is an isometry if and only if φ(s) = c0s + iτ,

with c0 ∈ N and τ ∈ R.

Proof. The sufficiency is trivial. For the necessity, define an isometry ∆ : A+
k

→ A+(Tk) by

∆
( ∞

∑
n=1

ann−s
)

=
∞

∑
n=1

anzα1
1 · · · z

αk
k ,

where n = pα1
1 · · · p

αk
k is the decomposition of n in prime factors. Setting z[s] =

(p−s
1 , . . . , p−s

k ) ∈ Dk, we easily check that ∆Cφ∆−1 = T is a composition operator
Cφ̃ : A+(Tk)→ A+(Tk), which is isometric if Cφ is isometric, and such that

(5.1) φ̃(z[s]) = z[φ(s)].

We now use Theorem 4.1 to conclude that φ̃ = (φ1, . . . , φk), with φ1(z) =
ε1za11

1 · · · z
a1k
k , and where a11, . . . , a1k are non-negative integers. Exactly as in the

proof of Theorem 3.3, we then conclude that φ(s) = c0s + iτ.

In the next theorem, we shall see that there are few composition operators
whose symbols preserve the boundary iR.

THEOREM 5.2. Let φ : C0 → C0 inducing a composition operator Cφ : A+ →
A+, and such that moreover φ has a continuous extension to C0, preserving the boundary
of C0, i.e. φ(iR) ⊆ iR. Then φ(s) = c0s + iτ, where c0 ∈ N0 and τ ∈ R.

Proof. Let φ̃ be associated with φ as in Theorem 3.3. By continuity, the equa-
tion φ̃(z[s]) = z[φ(s)], s ∈ C0, still holds for s = it, t ∈ R, to give φ̃((p−it

j )j) =

(p−φ(it)
j )j, and so φ̃(T∞) ⊆ T∞ since, by the Kronecker Approximation Theorem

and the definition of the product topology on T∞, the points (p−it
j )j, t ∈ R, are

dense in T∞. Now, by Theorem 4.4, we have in particular φ̃ = (φi)i, with

φ1(z) = ε1za11
1 · · · z

a1k
k ,
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for some complex sign ε1 and some integer k. In particular, the equation φ̃(z[s]) =
z[φ(s)] implies that

ε1(p−s
1 )a11 · · · (p−s

k )a1k = p−φ(s)
1 , s ∈ C0.

Passing to the moduli gives Re φ(s) = c Re s, with c =
k
∑

j=1
a1j

log pj
log p1

·

Therefore, φ(s)− cs = iτ, τ ∈ R, and we know that c = c0 is necessarily an
integer.
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