SEMICIRCULARITY, GAUSSIANITY AND MONOTONICITY OF ENTROPY

HANNE SCHULTZ

Para el Grupo

Communicated by Şerban Strătilă

ABSTRACT. S. Artstein, K. Ball, F. Barthe, and A. Naor have shown (cf. [1]) that if $(X_j)_{j=1}^{\infty}$ are i.i.d. random variables, then the entropy of $\frac{X_1+\dots+X_n}{\sqrt{n}}$, $H\left(\frac{X_1+\dots+X_n}{\sqrt{n}}\right)$, increases as *n* increases. The free analogue was recently proven by D. Shlyakhtenko in [2]. That is, if $(x_j)_{j=1}^{\infty}$ are freely independent, identically distributed, self-adjoint elements in a noncommutative probability space, then the free entropy of $\frac{x_1+\dots+x_n}{\sqrt{n}}$, $\chi\left(\frac{x_1+\dots+x_n}{\sqrt{n}}\right)$, increases as *n* increases. In this paper we prove that if $H(X_1) > -\infty$ ($\chi(x_1) > -\infty$, respectively), and if the entropy (the free entropy, respectively) is *not* a strictly increasing function of *n*, then X_1 (x_1 , respectively) must be Gaussian (semicircular, respectively).

KEYWORDS: Shannon entropy, free entropy.

MSC (2000): 46L54, 94A17.

INTRODUCTION

Shannon's entropy of a (classical) random variable *X* with Lebesgue absolutely continuous distribution $d\mu_X(x) = \rho(x)dx$, is given by

(0.1)
$$H(X) = -\int_{\mathbb{R}} \rho(x) \log \rho(x) dx,$$

whenever the integral exists. If the integral does not exist, or if the distribution of *X* is not Lebesgue absolutely continuous, then $H(X) = -\infty$.

The entropy can also be written in terms of score functions and of Fisher information. Take a standard Gaussian random variable *G* such that *X* and *G* are independent. Let

$$X^{(t)} = X + \sqrt{t}G, \quad t \ge 0,$$

HANNE SCHULTZ

and let $j(X^{(t)}) = \left(\frac{\partial}{\partial x}\right)^* (1) \in L^2(\mu_{X^{(t)}})$ denote the score function of $X^{(t)}$ (cf. Section 3 of [2]). Then

(0.2)
$$H(X) = \frac{1}{2} \int_{0}^{\infty} \left[\frac{1}{1+t} - \|j(X^{(t)})\|_{2}^{2} \right] dt + \frac{1}{2} \log(2\pi e) dt$$

The quantity $||j(X^{(t)})||_2^2$ is called the Fisher information of $X^{(t)}$ and is denoted by $F(X^{(t)})$. Among all random variables with a given variance, the Gaussians are the (unique) ones with the smallest Fisher information and the largest entropy.

A.J. Stam (cf. [3]) was the first to rigorously show that if X_1 and X_2 are independent random variables of the same variance, with $H(X_1), H(X_2) > -\infty$, then for all $t \in [0, 1]$,

$$H(\sqrt{t}X_1 + \sqrt{1 - t}X_2) \ge tH(X_1) + (1 - t)H(X_2),$$

with equality if and only if X_1 and X_2 are Gaussian. It follows that if $(X_j)_{j=1}^{\infty}$ is a sequence of i.i.d. random variables with finite entropy, then

$$n \mapsto H\left(\frac{X_1 + \dots + X_{2^n}}{2^{n/2}}\right)$$

is an increasing function of n, and if it is not *strictly* increasing, then X_1 is necessarily Gaussian.

Knowing about Stam's result, it seems natural to ask whether the map

$$n \mapsto H\left(\frac{X_1 + \dots + X_n}{\sqrt{n}}\right)$$

is monotonically increasing as well, or even simpler: Is $H\left(\frac{X_1+X_2+X_3}{\sqrt{3}}\right) \ge H\left(\frac{X_1+X_2}{\sqrt{2}}\right)$? Surprisingly enough, it took more than 40 years for someone to answer these questions. Both questions were answered in the affirmative in [1] in 2004.

In this paper we extend Stam's result by showing that if $H(X_1) > -\infty$ and if for some $n \in \mathbb{N}$,

$$H\left(\frac{X_1+\dots+X_{n+1}}{\sqrt{n+1}}\right) = H\left(\frac{X_1+\dots+X_n}{\sqrt{n}}\right),$$

then X_1 is necessarily Gaussian (Theorem 2.1).

Free entropy, which is the proper free analogue of Shannon's entropy, was defined by Voiculescu in [5]. If *x* is a self-adjoint element in a finite von Neumann algebra \mathcal{M} with faithful normal tracial state τ and if $\mu_x \in \operatorname{Prob}(\mathbb{R})$ denotes the distribution of *x* with respect to τ , then the free entropy of *x*, $\chi(x) \in [-\infty, \infty[$, is given by

$$\chi(x) = \int \int \log |s - t| d\mu_x(s) d\mu_x(t) + \frac{3}{4} + \frac{1}{2} \log(2\pi).$$

Exactly as in the classical case, $\chi(x)$ may be written in terms of the free analogue of the score function (the conjugate variable) and the free Fisher information. That is, if *s* is a (0,1)-semicircular element which is freely independent of *x* and if we let

$$x^{(t)} = x + \sqrt{t}s, \quad t \ge 0,$$

then

(0.3)
$$\chi(x) = \frac{1}{2} \int_{0}^{\infty} \left[\frac{1}{1+t} - \Phi(x^{(t)}) \right] dt + \frac{1}{2} \log(2\pi e),$$

where $\Phi(x^{(t)})$ is the free Fisher information of $x^{(t)}$. In [6] Voiculescu defines for a (non-scalar) self-adjoint variable y in (\mathcal{M}, τ) a derivation $\partial_y : \mathbb{C}[y] \to \mathbb{C}[y] \otimes \mathbb{C}[y]$ by

$$\partial_y(\mathbf{1}) = 0$$
 and $\partial_y(y) = \mathbf{1} \otimes \mathbf{1}$.

Then the conjugate variable of y, if it exists, is the unique vector $\mathcal{J}(y) \in L^2(W^*(y))$ satisfying that for all $k \in \mathbb{N}$,

(0.4)
$$\langle \mathcal{J}(y), y^k \rangle = \langle \mathbf{1} \otimes \mathbf{1}, \partial_y(y^k) \rangle.$$

 \sim

That is, $\mathcal{J}(y) = (\partial_y)^* (\mathbf{1} \otimes \mathbf{1})$. The conjugate variable is the free analogue of the score function, and the free Fisher information of *y* is exactly $\|\mathcal{J}(y)\|_2^2$, so that

(0.5)
$$\chi(x) = \frac{1}{2} \int_{0}^{\infty} \left[\frac{1}{1+t} - \|\mathcal{J}(x^{(t)})\|_{2}^{2} \right] dt + \frac{1}{2} \log(2\pi e).$$

Note that if $\mathcal{J}(y) = y$, then the moments of *y* are determined by (0.4), and it is not hard to see that *y* is necessarily (0,1)-semicircular.

In [2] D. Shlyakhtenko showed that if $(x_j)_{j=1}^{\infty}$ are freely independent, identically distributed self-adjoint elements in (\mathcal{M}, τ) , then the map

$$n \mapsto \chi\left(\frac{x_1 + \dots + x_n}{\sqrt{n}}\right)$$

is monotonically increasing in *n*. In fact, the method used in [2] applies to the classical case as well. In this paper we will dig into the proof of the inequality

(0.6)
$$\chi\left(\frac{x_1+\cdots+x_{n+1}}{\sqrt{n+1}}\right) \ge \chi\left(\frac{x_1+\cdots+x_n}{\sqrt{n}}\right)$$

and find out what it means for all of the estimates obtained in the course of the proof to be equalities. We conclude that if $\chi(x_1) > -\infty$ and if (0.6) is an equality for some *n*, then x_1 is necessarily semicircular. With a few modifications, our method applies to the classical case as well.

1. THE FREE CASE

Recall that the (0, 1)-*semicircle law* is the Lebesgue absolutely continuous probability measure on \mathbb{R} with density

$$\mathrm{d}\sigma_{0,1}(t) = \frac{1}{2\pi}\sqrt{4-t^2}\,\mathbf{1}_{[-2,2]}(t)\,\mathrm{d}t.$$

More generally, for $\mu, \gamma \in \mathbb{R}$ with $\gamma > 0$, the (μ, γ) -semicircle law is the Lebesgue absolutely continuous probability measure on \mathbb{R} with density

$$\mathrm{d}\sigma_{\mu,\gamma}(t) = \frac{1}{2\pi\gamma} \sqrt{4\gamma - (t-\mu)^2} \,\mathbf{1}_{\left[\mu - 2\sqrt{\gamma}, \mu + 2\sqrt{\gamma}\right]}(t) \,\mathrm{d}t$$

The parameters μ and γ refer to the first moment and the variance of $\sigma_{\mu,\gamma}$, respectively.

Throughout this section, M denotes a finite von Neumann algebra with faithful, normal, tracial state τ . We are going to prove:

THEOREM 1.1. Let $n \in \mathbb{N}$ and let x_1, \ldots, x_{n+1} be freely independent, identically distributed self-adjoint elements in (\mathcal{M}, τ) . Then

(1.1)
$$\chi\left(\frac{x_1+\cdots+x_{n+1}}{\sqrt{n+1}}\right) \ge \chi\left(\frac{x_1+\cdots+x_n}{\sqrt{n}}\right)$$

Moreover, if $\chi(x_1) > -\infty$ *, then equality holds in* (1.1) *if and only if* x_1 *is semicircular.*

Monotonicity of free entropy was already proven in [2]. Likewise, most of the results stated in this section consist of two parts: An inequality which was proven in [2] or in [1] and a second part which was proven by us.

PROPOSITION 1.2. Let $n \in \mathbb{N}$ and let x_1, \ldots, x_{n+1} be freely independent selfadjoint elements in (\mathcal{M}, τ) with $\tau(x_j) = 0$ and $||x_j||_2 = ||x_1||_2, 1 \leq j \leq n+1$. Let $a_1, \ldots, a_{n+1} \in \mathbb{R}$ with $\sum_j a_j^2 = 1$, and let $b_1, \ldots, b_{n+1} \in \mathbb{R}$ such that $\sum_j b_j \sqrt{1 - a_j^2} = 1$. Then

(1.2)
$$\Phi\Big(\sum_{j=1}^{n+1}a_jx_j\Big) \leqslant n\sum_{j=1}^{n+1}b_j^2\Phi\Big(\frac{1}{\sqrt{1-a_j^2}}\sum_{i\neq j}a_ix_i\Big).$$

Moreover, if $\Phi\left(\sum_{i \neq j} a_i x_i\right)$ *is finite for all j, then equality in* (1.2) *implies that*

(1.3)
$$\mathcal{J}\left(\frac{1}{\|x_1\|_2}\sum_{j=1}^{n+1}a_jx_j\right) = \frac{1}{\|x_1\|_2}\sum_{j=1}^{n+1}a_jx_j,$$

so that $\sum_{j=1}^{n+1} a_j x_j$ is $(0, ||x_1||_2^2)$ -semicircular.

LEMMA 1.3. Let P_1, \ldots, P_m be commuting projections on a Hilbert space \mathcal{H} . If $\xi_1, \ldots, \xi_m \in \mathcal{H}$ satisfy that for all $1 \leq i \leq m$,

$$P_1P_2\cdots P_m\xi_i=0,$$

then

(1.4)
$$||P_1\xi_1 + \dots + P_m\xi_m||^2 \leq (m-1)\sum_{i=1}^m ||\xi_i||^2$$

Moreover, if equality holds in (1.4)*, then* $\xi_i \in \bigoplus_{j \neq i} \mathcal{H}_j$ *, where*

$$\mathcal{H}_j := \{\xi \in \mathcal{H} : P_k \xi = \xi, \ k \neq j, \ P_j \xi = 0\} = \Big(\bigcap_{k \neq j} P_k(\mathcal{H})\Big) \cap P_j^{\perp}(\mathcal{H}).$$

Proof. The inequality (1.4) is the content of Lemma 5 in [1]. The starting point of their proof is to write each ξ_i as an orthogonal sum,

$$\xi_i = \sum_{arepsilon \in \{0,1\}^m \setminus (1,1,...,1)} \xi^i_{arepsilon},$$

where for $\varepsilon \in \{0, 1\}^{m} \setminus (1, 1, ..., 1)$,

$$\xi^i_{\varepsilon} \in \mathcal{H}_{\varepsilon} := \{\xi \in \mathcal{H} : P_j \xi = \varepsilon_j \xi, \ 1 \leqslant j \leqslant m\}$$

Then

$$P_1\xi_1 + \cdots + P_m\xi_m = \sum_{\varepsilon \in \{0,1\}^m \setminus (1,1,\dots,1)} \sum_{\varepsilon_i=1} P_i\xi_{\varepsilon}^i,$$

and

$$\|P_1\xi_1+\cdots+P_m\xi_m\|^2=\sum_{\varepsilon\in\{0,1\}^m\setminus(1,1,\ldots,1)}\left\|\sum_{\varepsilon_i=1}P_i\xi_\varepsilon^i\right\|^2.$$

For fixed $\varepsilon \neq (1, 1, ..., 1)$ there can be at most m - 1 *i*'s for which $\varepsilon_i = 1$. Thus, by the Cauchy-Schwarz inequality,

(1.5)
$$\left\|\sum_{\varepsilon_i=1} P_i \xi_{\varepsilon}^i\right\|^2 \leq \left(\sum_{\varepsilon_i=1} \|P_i \xi_{\varepsilon}^i\|\right)^2 \leq (m-1)\sum_{\varepsilon_i=1} \|P_i \xi_{\varepsilon}^i\|^2,$$

with the second inequality being an equality if and only if the vector $(||P_i\xi_{\varepsilon}^i||)_{\varepsilon_i=1}$ $(=(||\xi_{\varepsilon}^i|)_{\varepsilon_i=1})$ has m-1 coordinates and is parallel to the vector v = (1, 1, ..., 1) $\in \mathbb{R}^{m-1}$. In particular, if the second inequality in (1.5) is an equality for some $\varepsilon \in \{0,1\}^m$ with more than one coordinate which is zero, then $(||P_i\xi_{\varepsilon}^i||)_{i=1}^m$ must consist of zeros only. It follows now that

(1.6)
$$||P_1\xi_1 + \dots + P_m\xi_m||^2 \leq (m-1) \sum_{\varepsilon \in \{0,1\}^m \setminus (1,1,\dots,1)} \sum_{\varepsilon_i=1} ||P_i\xi_{\varepsilon}^i||^2$$

(1.7)
$$= (m-1) \sum_{\varepsilon \in \{0,1\}^m \setminus (1,1,\dots,1)} \sum_{i=1}^m \|P_i \xi_{\varepsilon}^i\|^2$$

(1.8)
$$\leq (m-1) \sum_{i=1}^{m} \sum_{\varepsilon \in \{0,1\}^m \setminus (1,1,\dots,1)} \|\xi_{\varepsilon}^i\|^2$$

(1.9)
$$= (m-1)\sum_{i=1}^{m} \|\xi_i\|^2$$

Moreover, equality in (1.4) implies that all the inequalities (1.5), (1.6) and (1.9) are equalities. Hence,

(i) $\xi_{\varepsilon}^{i} = P_{i}\xi_{\varepsilon}^{i}$ for all $\varepsilon \neq (1, 1, ..., 1)$ and all $1 \leq i \leq m$ (cf. (1.7) and (1.8)), and

(ii) by the Cauchy-Schwarz argument, for all $\varepsilon \in \{0,1\}^m$ with more than one coordinate which is zero, $\|\xi_{\varepsilon}^{i}\| \stackrel{(i)}{=} \|P_{i}\xi_{\varepsilon}^{i}\| = 0$ for all *i*. Thus, if equality holds in (1.4), then $\xi_{i} \in P_{i}(\mathcal{H})$ and $\xi_{i} \in \bigoplus_{i \neq i} \mathcal{H}_{j}$, as claimed.

Proof of Proposition 1.2. (1.2) is the content of Lemma 2 in [2]. Now, assume that equality holds in (1.2) and that $\Phi\left(\sum_{i \neq j} a_i x_i\right)$ is finite for all *j*. We are going to "backtrack" the proof of Lemma 2 in [2] to show that (1.3) holds. We will assume that $||x_i||_2 = 1$ for all *j*. With

$$\xi_j = b_j \mathcal{J}\Big(rac{1}{\sqrt{1-a_j^2}}\sum_{i
eq j}a_ix_i\Big), \quad 1\leqslant j\leqslant n+1,$$

equality in (1.2) implies (cf. the proof of Lemma 2 in [2]) that

(1.10)
$$\Phi\left(\sum_{j=1}^{n+1} a_j x_j\right) = \left\|\sum_{j=1}^{n+1} \xi_j\right\|_2^2 = n \sum_{j=1}^{n+1} \|\xi_j\|_2^2$$

Let $M = W^*(x_1, \ldots, x_{n+1})$. We now apply Lemma 1.3 to the projections E_1, \ldots, E_n $E_{n+1} \in B(L^2(M))$ introduced in proof of Lemma 2 in [2]. That is, E_i is the projection onto $L^2(W^*(x_1,...,\hat{x}_i,...,x_{n+1}))$. Note that the subspace \mathcal{H}_i defined in Lemma 1.3, $\mathcal{H}_i = \{\xi \in L^2(M) : E_k \xi = \xi, k \neq j, E_i \xi = 0\}$, is in this case exactly $L^2(W^*(x_i))$. Thus, the second identity in (1.10) and the fact that $\xi_i \perp \mathbb{C}\mathbf{1}$, implies that

(1.11)
$$\xi_j \in \bigoplus_{i \neq j} (L^2(W^*(x_i)) \ominus \mathbb{C}\mathbf{1}).$$

With $E : L^2(M) \to L^2(M)$ the projection onto $L^2\left(W^*\left(\sum_j a_j x_j\right)\right)$ we have (cf. proof of Lemma 2 in [2]):

(1.12)
$$\mathcal{J}\Big(\sum_{j=1}^{n+1} a_j x_j\Big) = E\Big(\sum_{j=1}^{n+1} \xi_j\Big).$$

The first identity in (1.10) then implies that $E\left(\sum_{j=1}^{n+1} \xi_j\right) = \sum_{j=1}^{n+1} \xi_j$, and so

$$\mathcal{J}\Big(\sum_{j=1}^{n+1}a_jx_j\Big)=\sum_{j=1}^{n+1}\xi_j\in\bigoplus_{i=1}^{n+1}(L^2(W^*(x_i))\oplus\mathbb{C}\mathbf{1}).$$

Now choose elements $\eta_j \in L^2(W^*(x_j)) \ominus \mathbb{C}\mathbf{1}, 1 \leq j \leq n+1$, such that

(1.13)
$$\mathcal{J}\Big(\sum_{j=1}^{n+1} a_j x_j\Big) = \sum_{j=1}^{n+1} \eta_j.$$

Then

$$0 = \left[\sum_{i=1}^{n+1} a_i x_i, \sum_{j=1}^{n+1} \eta_j\right] = \sum_{i \neq j} \left(a_i x_i \eta_j - \eta_i a_j x_j\right).$$

A standard application of freeness shows that for $(i, j) \neq (k, l)$, the terms $a_i x_i \eta_j - \eta_i a_j x_j$ and $a_k x_k \eta_l - \eta_k a_l x_l$ are perpendicular elements of $L^2(M)$. Thus, the above identity implies that for all $i \neq j$,

With $L^2(W^*(x_j))^0 = L^2(W^*(x_j)) \oplus \mathbb{C}\mathbf{1}$, $1 \leq j \leq n + 1$, consider the free product of Hilbert spaces

$$\mathbb{C}\mathbf{1} \oplus \left(\bigoplus_{p \ge 1} \left(\bigoplus_{1 \le i_1, \dots, i_p \le n+1, i_1 \ne i_2 \ne \dots \ne i_p} L^2(W^*(x_{i_1}))^0 \otimes L^2(W^*(x_{i_2}))^0 \otimes \dots \otimes L^2(W^*(x_{i_p}))^0 \right) \right),$$

and notice that $x_i \in L^2(W^*(x_i))^0$ and $\eta_j \in L^2(W^*(x_j))^0$. It follows from unique decomposition within the free product that there is only one way that (1.14) can be fulfilled, namely when η_j is proportional to x_j . That is, there exist $c_1, \ldots, c_{n+1} \in \mathbb{R}$ such that $\eta_j = c_j x_j$ and hence,

(1.15)
$$\mathcal{J}\left(\sum_{j=1}^{n+1} a_j x_j\right) = \sum_{j=1}^{n+1} c_j x_j.$$

We can assume that $a_1, \ldots, a_{n+1} > 0$, and then by (1.14), $c_j = \frac{c_1 a_j}{a_1}$, $1 \le j \le n+1$. In particular, all the c_j 's have the same sign. Taking inner product with $\sum_{j=1}^{n+1} a_j x_j$ in (1.15), we find that

(1.16)
$$\sum_{j=1}^{n+1} a_j c_j = 1,$$

so that the c_j 's must be positive. Also, since $\sum_j a_j^2 = 1$, we have that $\sum_j c_j^2 \ge 1$. But

$$\sum_{j=1}^{n+1} c_j^2 = \frac{c_1^2}{a_1^2},$$

and so $c_1 \ge a_1$, and in general, $c_j \ge a_j$. Then by (1.16), $c_j = a_j$, and (1.3) holds. As mentioned in the introduction, this implies that $\sum_{j=1}^{n+1} a_j x_j$ is (0,1)-semicircular (when $||x_1||_2 = 1$).

HANNE SCHULTZ

COROLLARY 1.4. Let x_1, \ldots, x_{n+1} be as in Proposition 1.2 and let $a_1, \ldots, a_{n+1} \in \mathbb{R}$ with $\sum_i a_j^2 = 1$. Then

(1.17)
$$\chi\Big(\sum_{j=1}^{n+1} a_j x_j\Big) \geqslant \sum_{j=1}^{n+1} \frac{1-a_j^2}{n} \chi\Big(\frac{1}{\sqrt{1-a_j^2}} \sum_{i \neq j} a_i x_i\Big).$$

Moreover, if $\chi\left(\sum_{i\neq j} a_i x_i\right) > -\infty$ *for all j, then equality in* (1.17) *implies that* $\sum_j a_j x_j$ *is semicircular.*

Proof. The inequality (1.17) was proven by D. Shlyakhtenko in Theorem 2 of [2]. Now, assume that $\chi(\sum_{i \neq j} a_i x_i) > -\infty$ for all *j* and that

$$\chi\Big(\sum_{j=1}^{n+1} a_j x_j\Big) = \sum_{j=1}^{n+1} \frac{1-a_j^2}{n} \chi\Big(\frac{1}{\sqrt{1-a_j^2}} \sum_{i \neq j} a_i x_i\Big).$$

Take (0,1)-semicirculars s_1, \ldots, s_{n+1} such that $x_1, \ldots, x_{n+1}, s_1, \ldots, s_{n+1}$ are free, and put $x_j^{(t)} = x_j + \sqrt{t} s_j$. Then by assumption,

(1.18)
$$\int_{0}^{\infty} \left[\sum_{j=1}^{n+1} \frac{1-a_{j}^{2}}{n} \Phi\left(\frac{1}{\sqrt{1-a_{j}^{2}}} \sum_{i \neq j} a_{i} x_{i}^{(t)} \right) - \Phi\left(\sum_{j=1}^{n+1} a_{j} x_{j}^{(t)} \right) \right] \mathrm{d}t = 0.$$

Applying Proposition 1.2 with $b_j = \frac{1}{n}\sqrt{1-a_j^2}$, we see that the integrand in (1.18) is positive. Thus, (1.18) can only be fulfilled if for a.e. t > 0,

(1.19)
$$\sum_{j=1}^{n+1} \frac{1-a_j^2}{n} \Phi\Big(\frac{1}{\sqrt{1-a_j^2}} \sum_{i \neq j} a_i x_i^{(t)}\Big) = \Phi\Big(\sum_{j=1}^{n+1} a_j x_j^{(t)}\Big).$$

In fact, since both sides of (1.19) are right continuous functions of *t* (cf. [6]), we have equality for all t > 0. Then by Proposition 1.2, $\sum_{j=1}^{n+1} a_j x_j^{(t)}$ is semicircular. By additivity of the \mathcal{R} -transform, this can only happen if $\sum_{j=1}^{n+1} a_j x_j$ is semicircular.

Proof of Theorem 1.1. The inequality (1.1) was proven by D. Shlyakhtenko in [2]. Now, assume that $\chi(x_1) > -\infty$ and that

$$\chi\Big(\frac{x_1+\cdots+x_{n+1}}{\sqrt{n+1}}\Big)=\chi\Big(\frac{x_1+\cdots+x_n}{\sqrt{n}}\Big).$$

If we replace x_j by $\frac{x_j - \tau(x_j)}{\|x_j - \tau(x_j)\|_2}$, we will still have equality. Hence, we will assume that $\tau(x_j) = 0$ and that $\|x_j\|_2 = 1$. Now,

$$\chi\Big(\frac{x_1+\cdots+x_{n+1}}{\sqrt{n+1}}\Big)=\frac{1}{n+1}\sum_{j=1}^{n+1}\chi\Big(\frac{1}{\sqrt{n}}\sum_{i\neq j}x_i\Big),$$

and by application of Corollary 1.4 with $a_j = \frac{1}{\sqrt{n+1}}$, $\frac{x_1 + \dots + x_{n+1}}{\sqrt{n+1}}$ must be semicircular. Additivity of the \mathcal{R} -transform tells us that this can only happen if x_1 is semicircular.

We would like to thank Serban Belinschi for pointing out to us the following consequence of Theorem 1.1:

COROLLARY 1.5. Among the freely stable compactly supported probability measures on \mathbb{R} , the semicirle laws are the only ones with finite free entropy.

Proof. By definition, a compactly supported probability measure μ on \mathbb{R} is freely stable if for all $n \in \mathbb{N}$, there exist $a_n > 0$, $b_n \in \mathbb{R}$, such that if x_1, \ldots, x_n are freely independent self-adjoint elements which are distributed according to μ , then

$$\frac{1}{a_n}(x_1+\cdots+x_n)+b_n$$

has distribution μ . Note that the set of freely stable laws is invariant under transformations by the affine maps $(\phi_{s,r})_{s \in \mathbb{R}, r > 0}$, where

$$\phi_{s,r}(t)=rac{t-s}{r},\quad t\in\mathbb{R}.$$

Also, by p. 27 in [4], the semicirle laws are freely stable.

Suppose now that μ is a freely stable compactly supported probability measure on \mathbb{R} . By the above remarks, we can assume that μ has first moment 0 and variance 1.

Let x_1 , x_2 be freely independent self-adjoint elements in distributed according to μ . Since μ is freely stable, $\frac{x_1+x_2}{\sqrt{2}}$ has distribution μ as well (by the assumptions on μ , $a_2 = \sqrt{2}$ and $b_2 = 0$). But then

$$\chi\Big(\frac{x_1+x_2}{\sqrt{2}}\Big)=\chi(x_1),$$

and by Theorem 1.1, either $\chi(x_1) = -\infty$, or x_1 is semicircular.

2. THE CLASSICAL CASE

In this section we are going to prove the classical analogue of Theorem 1.1:

THEOREM 2.1. Let $n \in \mathbb{N}$, and let X_1, \ldots, X_{n+1} be i.i.d. random variables. Then

(2.1)
$$H\left(\frac{X_1 + \dots + X_{n+1}}{\sqrt{n+1}}\right) \ge H\left(\frac{X_1 + \dots + X_n}{\sqrt{n}}\right).$$

Moreover, if $H(X_1) > -\infty$ *and if* (2.1) *is an equality, then* X_1 *is Gaussian.*

LEMMA 2.2. Let $n \in \mathbb{N}$. Then for every $m \in \mathbb{N}$, the m'th Hermite polynomial, H_m , satisfies:

(2.2)
$$n^{m/2}H\left(\frac{x_1+\cdots+x_n}{\sqrt{n}}\right) = \sum_{k_1,\dots,k_n \ge 0, \sum_j k_j=m} \frac{m!}{k_1!k_2!\cdots k_n!} H_{k_1}(x_1)H_{k_2}(x_2)\cdots H_{k_n}(x_n).$$

Sketch of proof. (2.2) holds for m = 0 ($H_0 = 1$) and for m = 1 ($H_1(x) = 2x$). Now, for general $m \in \mathbb{N}$,

$$H_{m+1}(x) = 2xH_m(x) - 2mH_{m-1}(x).$$

(2.2) then follows by induction over *m*.

LEMMA 2.3. Let $\mu \in \operatorname{Prob}(\mathbb{R})$ be absolutely continuous with respect to Lebesgue measure, and let $\sigma_t \in \operatorname{Prob}(\mathbb{R})$ denote the Gaussian distribution with mean 0 and variance t. Then if $\mu((-\infty, 0]) \neq 0$ and $\mu([0, \infty)) \neq 0$, the following inclusion holds:

(2.3)
$$L^{2}(\mathbb{R}, \mu * \sigma_{t}) \subseteq L^{2}(\mathbb{R}, \sigma_{t}).$$

Proof. Let $f \in L^1(\mathbb{R})$ denote the density of μ with respect to Lebesgue measure. Then the density of $\mu * \sigma_t$ is given by

$$\frac{\mathrm{d}(\mu * \sigma_t)}{\mathrm{d}s}(s) = \frac{1}{\sqrt{2\pi t}} \Big(\int_{-\infty}^{\infty} f(u) \cdot \mathrm{e}^{-u^2/2t} \cdot \mathrm{e}^{su/t} \mathrm{d}u\Big) \cdot \mathrm{e}^{-s^2/2t} = \phi(s) \cdot \frac{\mathrm{d}\sigma_t}{\mathrm{d}s}(s),$$

where

(2.4)
$$\phi(s) = \int_{-\infty}^{\infty} f(u) \cdot e^{-u^2/2t} \cdot e^{su/t} du$$

It follows that if ϕ is bounded away from 0, then (2.3) holds. For $s \ge 0$ we have that $\phi(s) \ge \int_{0}^{\infty} f(u) \cdot e^{-u^2/2t} \cdot e^{su/t} du \ge \int_{0}^{\infty} f(u) \cdot e^{-u^2/2t} du$, and similarly for $s \le 0$: $\phi(s) \ge \int_{-\infty}^{0} f(u) \cdot e^{-u^2/2t} du$. Since $\int_{-\infty}^{0} f(u) du > 0$ and $\int_{0}^{\infty} f(u) du > 0$, both of the integrals $\int_{0}^{\infty} f(u) \cdot e^{-u^2/2t} du$ and $\int_{-\infty}^{0} f(u) \cdot e^{-u^2/2t} du$ are strictly positive. This completes the proof.

Proof of Theorem 2.1. The inequality (2.1) was proven in [1]. Now, suppose $H(X_1) > -\infty$ and that (2.1) is an equality. We can assume that X_1 has first moment 0 and second moment 1. Take Gaussian random variables G_1, \ldots, G_{n+1} of mean 0 and variance 1 such that $X_1, \ldots, X_{n+1}, G_1, \ldots, G_n, G_{n+1}$ are independent.

Then with $X_j^{(t)} = X_j + \sqrt{t} G_j$, we have

(2.5)
$$H\left(\frac{X_1+\dots+X_{n+1}}{\sqrt{n+1}}\right) = \frac{1}{2} \int_0^\infty \left[\frac{1}{1+t} - \left\|j\left(\frac{X_1^{(t)}+\dots+X_{n+1}^{(t)}}{\sqrt{n+1}}\right)\right\|_2^2\right] dt + \frac{1}{2}\log(2\pi e),$$

where

(2.6)
$$j\left(\frac{X_1^{(t)} + \dots + X_{n+1}^{(t)}}{\sqrt{n+1}}\right) = \left(\frac{d}{dx}\right)^* (\mathbf{1}) \in L^2\left(\mathbb{R}, \mu_{\frac{X_1^{(t)} + \dots + X_{n+1}^{(t)}}{\sqrt{n+1}}}\right)$$

is the score function. Since X_1 has mean 0 and finite entropy, μ_{X_1} and $\mu_{\frac{X_1+\dots+X_{n+1}}{\sqrt{n+1}}}$ satisfy the conditions of Lemma 2.3.

For
$$t > 0$$
, define $f^{(t)} \in L^2\left(\mathbb{R}^{n+1}, \bigotimes_{j=1}^{n+1} \mu_{X_j^{(t)}}\right)$ by
 $f^{(t)}(x_1, \dots, x_{n+1}) = j\left(\frac{X_1^{(t)} + \dots + X_{n+1}^{(t)}}{\sqrt{n+1}}\right)\left(\frac{x_1 + \dots + x_{n+1}}{\sqrt{n+1}}\right).$

As in the free case (cf. (1.13)) equality in (2.1) implies that for each t > 0 there exists a function $g^{(t)} \in L^2(\mu_{\chi^{(t)}})$ such that $\int g^{(t)} d\mu_{\chi^{(t)}} = 0$ and

(2.7)
$$f^{(t)}(x_1,\ldots,x_{n+1}) = \sum_{j=1}^{n+1} g^{(t)}(x_j).$$

Because of Lemma 2.3 we can now write things in terms of the Hermite polynomials $(H_m)_{m=0}^{\infty}$. That is, there exist scalars $(\alpha_m)_{m=1}^{\infty}$ and $(\beta_m)_{m=1}^{\infty}$ such that

$$f^{(1)}(x_1,\ldots,x_{n+1}) = \sum_{m=1}^{\infty} \alpha_m H_m\left(\frac{x_1+\cdots+x_{n+1}}{\sqrt{n+1}}\right), \text{ and } g^{(1)}(x) = \sum_{m=1}^{\infty} \beta_m H_m(x).$$

By Lemma 2.2, this implies that

(2.8)
$$\sum_{j=1}^{n+1} \sum_{m=1}^{\infty} \beta_m H_m(x_j) = \sum_{m=1}^{\infty} \frac{\alpha_m}{(n+1)^{m/2}} \sum_{\substack{k_1, \dots, k_{n+1} \ge 0, \\ \sum_j k_j = m}} \frac{m!}{k_1! k_2! \cdots k_{n+1}!} H_{k_1}(x_1) H_{k_2}(x_2) \cdots H_{k_{n+1}}(x_{n+1}).$$

The functions $(H_{k_1}(x_1)H_{k_2}(x_2)\cdots H_{k_{n+1}}(x_{n+1}))_{k_1,\ldots,k_{n+1}\geq 0}$ are mutually perpendicular in $L^2(\mathbb{R}^{n+1},\bigotimes_{j=1}^{n+1}\sigma_1)$. Fix $m \geq 2$, and take k_1,\ldots,k_{n+1} with $\sum_j k_j = m$ and $k_j \geq 1$ for at least two *j*'s. Then take inner product with $H_{k_1}(x_1)H_{k_2}(x_2)\cdots H_{k_{n+1}}(x_{n+1})$ on both sides of (2.8) to see that α_m must be zero. That is,

$$j\left(\frac{X_1^{(1)} + \dots + X_{n+1}^{(1)}}{\sqrt{n+1}}\right) \left(\frac{x_1 + \dots + x_{n+1}}{\sqrt{n+1}}\right) = \alpha_1 H_1\left(\frac{x_1 + \dots + x_{n+1}}{\sqrt{n+1}}\right) = 2\alpha_1 \frac{x_1 + \dots + x_{n+1}}{\sqrt{n+1}}$$

Since the score function of a random variable *X*, j(X), satisfies $\langle j(X), X \rangle_{L^2(\mu_X)} = 1$, we have that $\alpha_1 = \frac{1}{2}$, and so

$$j\left(\frac{X_1^{(1)} + \dots + X_{n+1}^{(1)}}{\sqrt{n+1}}\right)\left(\frac{x_1 + \dots + x_{n+1}}{\sqrt{n+1}}\right) = \frac{x_1 + \dots + x_{n+1}}{\sqrt{n+1}}.$$

Then $\frac{X_1^{(1)} + \dots + X_{n+1}^{(1)}}{\sqrt{n+1}}$ has Fisher information 1, implying that it is standard Gaussian. As in the free case, using additivity of the logarithm of the Fourier transform, this can only happen if X_1 is Gaussian.

Acknowledgements. I would like to thank Dimitri Shlyakhtenko for introducing me to the problem on monotonicity of entropy and for fruitful discussions about the subject. In addition, I would like to thank the UCLA Math Department, especially the functional analysis group, for their kind hospitality during my stay at UCLA.

REFERENCES

- S. ARTSTEIN, K. BALL, F. BARTHE, A. NAOR, Solution of Shannon's problem on monotonicity of entropy, J. Amer. Math. Soc. 17(2004), 975–982.
- [2] D. SHLYAKHTENKO, A free analogue of Shannon's problem on monotonicity of entropy, preprint at http://xxx.lanl.gov/abs/math.OA/0510103.
- [3] A.J. STAM, Some inequalities satisfied by the quantities of information of Fisher and Shannon, *Inform. and Control* 2(1959), 101–112.
- [4] D.V. VOICULESCU, K. DYKEMA, A. NICA, Free Random Variables. A Noncommutative Probability Approach to free Products with Applications to Random Matrices, Operator Algebras and Harmonic Analysis on free Groups, CMR Monograph Ser., vol. 1, Amer. Math. Soc., Providence, RI 1992.
- [5] D.V. VOICULESCU, The analogues of entropy and of Fisher's information measure in free probability theory. I, *Comm. Math. Phys.* 155(1993), 71–92.
- [6] D.V. VOICULESCU, The analogues of entropy and of Fisher's information measure in free probability theory. V, *Invent. Math.* 132(1998), 189–227.
- [7] D.V. VOICULESCU, Free entropy, Bull. London Math. Soc. 34(2002), 257–278.

HANNE SCHULTZ, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF SOURTHERN DENMARK, DENMARK *E-mail address*: schultz@imada.sdu.dk

Received March 10, 2006.