SEMICIRCULARITY, GAUSSIANITY AND MONOTONICITY OF ENTROPY

HANNE SCHULTZ

Para el Grupo

Communicated by Şerban Strătilă

Abstract. S. Artstein, K. Ball, F. Barthe, and A. Naor have shown (cf. [1]) that if $\left(X_{j}\right)_{j=1}^{\infty}$ are i.i.d. random variables, then the entropy of $\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}}$, $H\left(\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}}\right)$, increases as n increases. The free analogue was recently proven by D. Shlyakhtenko in [2]. That is, if $\left(x_{j}\right)_{j=1}^{\infty}$ are freely independent, identically distributed, self-adjoint elements in a noncommutative probability space, then the free entropy of $\frac{x_{1}+\cdots+x_{n}}{\sqrt{n}}, \chi\left(\frac{x_{1}+\cdots+x_{n}}{\sqrt{n}}\right)$,increases as n increases. In this paper we prove that if $H\left(X_{1}\right)>-\infty\left(\chi\left(x_{1}\right)>-\infty\right.$, respectively), and if the entropy (the free entropy, respectively) is not a strictly increasing function of n, then X_{1} (x_{1}, respectively) must be Gaussian (semicircular, respectively).

Keywords: Shannon entropy, free entropy.
MSC (2000): 46L54, 94A17.

INTRODUCTION

Shannon's entropy of a (classical) random variable X with Lebesgue absolutely continuous distribution $\mathrm{d} \mu_{X}(x)=\rho(x) \mathrm{d} x$, is given by

$$
\begin{equation*}
H(X)=-\int_{\mathbb{R}} \rho(x) \log \rho(x) \mathrm{d} x \tag{0.1}
\end{equation*}
$$

whenever the integral exists. If the integral does not exist, or if the distribution of X is not Lebesgue absolutely continuous, then $H(X)=-\infty$.

The entropy can also be written in terms of score functions and of Fisher information. Take a standard Gaussian random variable G such that X and G are independent. Let

$$
X^{(t)}=X+\sqrt{t} G, \quad t \geqslant 0,
$$

and let $j\left(X^{(t)}\right)=\left(\frac{\partial}{\partial x}\right)^{*}(\mathbf{1}) \in L^{2}\left(\mu_{X^{(t)}}\right)$ denote the score function of $X^{(t)}$ (cf. Section 3 of [2]). Then

$$
\begin{equation*}
H(X)=\frac{1}{2} \int_{0}^{\infty}\left[\frac{1}{1+t}-\left\|j\left(X^{(t)}\right)\right\|_{2}^{2}\right] \mathrm{d} t+\frac{1}{2} \log (2 \pi e) \tag{0.2}
\end{equation*}
$$

The quantity $\left\|j\left(X^{(t)}\right)\right\|_{2}^{2}$ is called the Fisher information of $X^{(t)}$ and is denoted by $F\left(X^{(t)}\right)$. Among all random variables with a given variance, the Gaussians are the (unique) ones with the smallest Fisher information and the largest entropy.
A.J. Stam (cf. [3]) was the first to rigorously show that if X_{1} and X_{2} are independent random variables of the same variance, with $H\left(X_{1}\right), H\left(X_{2}\right)>-\infty$, then for all $t \in[0,1]$,

$$
H\left(\sqrt{t} X_{1}+\sqrt{1-t} X_{2}\right) \geqslant t H\left(X_{1}\right)+(1-t) H\left(X_{2}\right)
$$

with equality if and only if X_{1} and X_{2} are Gaussian. It follows that if $\left(X_{j}\right)_{j=1}^{\infty}$ is a sequence of i.i.d. random variables with finite entropy, then

$$
n \mapsto H\left(\frac{X_{1}+\cdots+X_{2^{n}}}{2^{n / 2}}\right)
$$

is an increasing function of n, and if it is not strictly increasing, then X_{1} is necessarily Gaussian.

Knowing about Stam's result, it seems natural to ask whether the map

$$
n \mapsto H\left(\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}}\right)
$$

is monotonically increasing as well, or even simpler: Is $H\left(\frac{X_{1}+X_{2}+X_{3}}{\sqrt{3}}\right) \geqslant H\left(\frac{X_{1}+X_{2}}{\sqrt{2}}\right)$? Surprisingly enough, it took more than 40 years for someone to answer these questions. Both questions were answered in the affirmative in [1] in 2004.

In this paper we extend Stam's result by showing that if $H\left(X_{1}\right)>-\infty$ and if for some $n \in \mathbb{N}$,

$$
H\left(\frac{X_{1}+\cdots+X_{n+1}}{\sqrt{n+1}}\right)=H\left(\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}}\right),
$$

then X_{1} is necessarily Gaussian (Theorem 2.1).
Free entropy, which is the proper free analogue of Shannon's entropy, was defined by Voiculescu in [5]. If x is a self-adjoint element in a finite von Neumann algebra \mathcal{M} with faithful normal tracial state τ and if $\mu_{x} \in \operatorname{Prob}(\mathbb{R})$ denotes the distribution of x with respect to τ, then the free entropy of $x, \chi(x) \in[-\infty, \infty[$, is given by

$$
\chi(x)=\iint \log |s-t| \mathrm{d} \mu_{x}(s) \mathrm{d} \mu_{x}(t)+\frac{3}{4}+\frac{1}{2} \log (2 \pi) .
$$

Exactly as in the classical case, $\chi(x)$ may be written in terms of the free analogue of the score function (the conjugate variable) and the free Fisher information. That is, if s is a $(0,1)$-semicircular element which is freely independent of x and if we let

$$
x^{(t)}=x+\sqrt{t} s, \quad t \geqslant 0,
$$

then

$$
\begin{equation*}
\chi(x)=\frac{1}{2} \int_{0}^{\infty}\left[\frac{1}{1+t}-\Phi\left(x^{(t)}\right)\right] \mathrm{d} t+\frac{1}{2} \log (2 \pi e) \tag{0.3}
\end{equation*}
$$

where $\Phi\left(x^{(t)}\right)$ is the free Fisher information of $x^{(t)}$. In [6] Voiculescu defines for a (non-scalar) self-adjoint variable y in (\mathcal{M}, τ) a derivation $\partial_{y}: \mathbb{C}[y] \rightarrow \mathbb{C}[y] \otimes \mathbb{C}[y]$ by

$$
\partial_{y}(\mathbf{1})=0 \quad \text { and } \quad \partial_{y}(y)=\mathbf{1} \otimes \mathbf{1}
$$

Then the conjugate variable of y, if it exists, is the unique vector $\mathcal{J}(y) \in L^{2}\left(W^{*}(y)\right)$ satisfying that for all $k \in \mathbb{N}$,

$$
\begin{equation*}
\left\langle\mathcal{J}(y), y^{k}\right\rangle=\left\langle\mathbf{1} \otimes \mathbf{1}, \partial_{y}\left(y^{k}\right)\right\rangle \tag{0.4}
\end{equation*}
$$

That is, $\mathcal{J}(y)=\left(\partial_{y}\right)^{*}(\mathbf{1} \otimes \mathbf{1})$. The conjugate variable is the free analogue of the score function, and the free Fisher information of y is exactly $\|\mathcal{J}(y)\|_{2}^{2}$, so that

$$
\begin{equation*}
\chi(x)=\frac{1}{2} \int_{0}^{\infty}\left[\frac{1}{1+t}-\left\|\mathcal{J}\left(x^{(t)}\right)\right\|_{2}^{2}\right] \mathrm{d} t+\frac{1}{2} \log (2 \pi e) \tag{0.5}
\end{equation*}
$$

Note that if $\mathcal{J}(y)=y$, then the moments of y are determined by (0.4), and it is not hard to see that y is necessarily $(0,1)$-semicircular.

In [2] D. Shlyakhtenko showed that if $\left(x_{j}\right)_{j=1}^{\infty}$ are freely independent, identically distributed self-adjoint elements in (\mathcal{M}, τ), then the map

$$
n \mapsto \chi\left(\frac{x_{1}+\cdots+x_{n}}{\sqrt{n}}\right)
$$

is monotonically increasing in n. In fact, the method used in [2] applies to the classical case as well. In this paper we will dig into the proof of the inequality

$$
\begin{equation*}
\chi\left(\frac{x_{1}+\cdots+x_{n+1}}{\sqrt{n+1}}\right) \geqslant \chi\left(\frac{x_{1}+\cdots+x_{n}}{\sqrt{n}}\right) \tag{0.6}
\end{equation*}
$$

and find out what it means for all of the estimates obtained in the course of the proof to be equalities. We conclude that if $\chi\left(x_{1}\right)>-\infty$ and if (0.6) is an equality for some n, then x_{1} is necessarily semicircular. With a few modifications, our method applies to the classical case as well.

1. THE FREE CASE

Recall that the $(0,1)$-semicircle law is the Lebesgue absolutely continuous probability measure on \mathbb{R} with density

$$
\mathrm{d} \sigma_{0,1}(t)=\frac{1}{2 \pi} \sqrt{4-t^{2}} 1_{[-2,2]}(t) \mathrm{d} t
$$

More generally, for $\mu, \gamma \in \mathbb{R}$ with $\gamma>0$, the (μ, γ)-semicircle law is the Lebesgue absolutely continuous probability measure on \mathbb{R} with density

$$
\mathrm{d} \sigma_{\mu, \gamma}(t)=\frac{1}{2 \pi \gamma} \sqrt{4 \gamma-(t-\mu)^{2}} 1_{[\mu-2 \sqrt{\gamma}, \mu+2 \sqrt{\gamma}]}(t) \mathrm{d} t .
$$

The parameters μ and γ refer to the first moment and the variance of $\sigma_{\mu, \gamma}$, respectively.

Throughout this section, \mathcal{M} denotes a finite von Neumann algebra with faithful, normal, tracial state τ. We are going to prove:

THEOREM 1.1. Let $n \in \mathbb{N}$ and let x_{1}, \ldots, x_{n+1} be freely independent, identically distributed self-adjoint elements in (\mathcal{M}, τ). Then

$$
\begin{equation*}
\chi\left(\frac{x_{1}+\cdots+x_{n+1}}{\sqrt{n+1}}\right) \geqslant \chi\left(\frac{x_{1}+\cdots+x_{n}}{\sqrt{n}}\right) . \tag{1.1}
\end{equation*}
$$

Moreover, if $\chi\left(x_{1}\right)>-\infty$, then equality holds in (1.1) if and only if x_{1} is semicircular.
Monotonicity of free entropy was already proven in [2]. Likewise, most of the results stated in this section consist of two parts: An inequality which was proven in [2] or in [1] and a second part which was proven by us.

Proposition 1.2. Let $n \in \mathbb{N}$ and let x_{1}, \ldots, x_{n+1} be freely independent selfadjoint elements in (\mathcal{M}, τ) with $\tau\left(x_{j}\right)=0$ and $\left\|x_{j}\right\|_{2}=\left\|x_{1}\right\|_{2}, 1 \leqslant j \leqslant n+1$. Let $a_{1}, \ldots, a_{n+1} \in \mathbb{R}$ with $\sum_{j} a_{j}^{2}=1$, and let $b_{1}, \ldots, b_{n+1} \in \mathbb{R}$ such that $\sum_{j} b_{j} \sqrt{1-a_{j}^{2}}=1$. Then

$$
\begin{equation*}
\Phi\left(\sum_{j=1}^{n+1} a_{j} x_{j}\right) \leqslant n \sum_{j=1}^{n+1} b_{j}^{2} \Phi\left(\frac{1}{\sqrt{1-a_{j}^{2}}} \sum_{i \neq j} a_{i} x_{i}\right) \tag{1.2}
\end{equation*}
$$

Moreover, if $\Phi\left(\sum_{i \neq j} a_{i} x_{i}\right)$ is finite for all j, then equality in (1.2) implies that

$$
\begin{equation*}
\mathcal{J}\left(\frac{1}{\left\|x_{1}\right\|_{2}} \sum_{j=1}^{n+1} a_{j} x_{j}\right)=\frac{1}{\left\|x_{1}\right\|_{2}} \sum_{j=1}^{n+1} a_{j} x_{j} \tag{1.3}
\end{equation*}
$$

so that $\sum_{j=1}^{n+1} a_{j} x_{j}$ is $\left(0,\left\|x_{1}\right\|_{2}^{2}\right)$-semicircular.
Lemma 1.3. Let P_{1}, \ldots, P_{m} be commuting projections on a Hilbert space \mathcal{H}. If $\xi_{1}, \ldots, \xi_{m} \in \mathcal{H}$ satisfy that for all $1 \leqslant i \leqslant m$,

$$
P_{1} P_{2} \cdots P_{m} \xi_{i}=0
$$

then

$$
\begin{equation*}
\left\|P_{1} \xi_{1}+\cdots+P_{m} \xi_{m}\right\|^{2} \leqslant(m-1) \sum_{i=1}^{m}\left\|\xi_{i}\right\|^{2} \tag{1.4}
\end{equation*}
$$

Moreover, if equality holds in (1.4), then $\xi_{i} \in \underset{j \neq i}{ } \mathcal{H}_{j}$, where

$$
\mathcal{H}_{j}:=\left\{\xi \in \mathcal{H}: P_{k} \xi=\xi, k \neq j, P_{j} \xi=0\right\}=\left(\bigcap_{k \neq j} P_{k}(\mathcal{H})\right) \cap P_{j}^{\perp}(\mathcal{H}) .
$$

Proof. The inequality (1.4) is the content of Lemma 5 in [1]. The starting point of their proof is to write each ξ_{i} as an orthogonal sum,

$$
\xi_{i}=\sum_{\varepsilon \in\{0,1\}^{m} \backslash(1,1, \ldots, 1)} \xi_{\mathcal{E} \prime}^{i}
$$

where for $\varepsilon \in\{0,1\}^{m} \backslash(1,1, \ldots, 1)$,

$$
\xi_{\varepsilon}^{i} \in \mathcal{H}_{\varepsilon}:=\left\{\xi \in \mathcal{H}: P_{j} \xi=\varepsilon_{j} \xi, 1 \leqslant j \leqslant m\right\} .
$$

Then

$$
P_{1} \xi_{1}+\cdots+P_{m} \xi_{m}=\sum_{\varepsilon \in\{0,1\}^{m} \backslash(1,1, \ldots, 1)} \sum_{\varepsilon_{i}=1} P_{i} \xi_{\varepsilon}^{i}
$$

and

$$
\left\|P_{1} \xi_{1}+\cdots+P_{m} \xi_{m}\right\|^{2}=\sum_{\varepsilon \in\{0,1\}^{m} \backslash(1,1, \ldots, 1)}\left\|\sum_{\varepsilon_{i}=1} P_{i} \tilde{\zeta}_{\varepsilon}^{i}\right\|^{2}
$$

For fixed $\varepsilon \neq(1,1, \ldots, 1)$ there can be at most $m-1 i^{\prime}$ s for which $\varepsilon_{i}=1$. Thus, by the Cauchy-Schwarz inequality,

$$
\begin{equation*}
\left\|\sum_{\varepsilon_{i}=1} P_{i} \zeta_{\mathcal{\varepsilon}}^{i}\right\|^{2} \leqslant\left(\sum_{\varepsilon_{i}=1}\left\|P_{i} \xi_{\mathcal{E}}^{i}\right\|\right)^{2} \leqslant(m-1) \sum_{\varepsilon_{i}=1}\left\|P_{i} \xi_{\mathcal{E}}^{i}\right\|^{2} \tag{1.5}
\end{equation*}
$$

with the second inequality being an equality if and only if the vector $\left(\left\|P_{i} \xi_{\varepsilon}^{i}\right\|\right)_{\varepsilon_{i}=1}$ $\left(=\left(\left\|\tilde{\zeta}_{\varepsilon}^{i}\right\|\right)_{\varepsilon_{i}=1}\right)$ has $m-1$ coordinates and is parallel to the vector $v=(1,1, \ldots, 1)$ $\in \mathbb{R}^{m-1}$. In particular, if the second inequality in (1.5) is an equality for some $\varepsilon \in\{0,1\}^{m}$ with more than one coordinate which is zero, then $\left(\left\|P_{i} \xi_{\mathcal{E}}^{i}\right\|\right)_{i=1}^{m}$ must consist of zeros only. It follows now that

$$
\begin{align*}
\left\|P_{1} \xi_{1}+\cdots+P_{m} \xi_{m}\right\|^{2} & \leqslant(m-1) \sum_{\varepsilon \in\{0,1\}^{m} \backslash(1,1, \ldots, 1)} \sum_{\varepsilon_{i}=1}\left\|P_{i} \xi_{\varepsilon}^{i}\right\|^{2} \tag{1.6}\\
& =(m-1) \sum_{\varepsilon \in\{0,1\}^{m} \backslash(1,1, \ldots, 1)} \sum_{i=1}^{m}\left\|P_{i} \xi_{\mathcal{\varepsilon}}^{i}\right\|^{2} \tag{1.7}\\
& \leqslant(m-1) \sum_{i=1}^{m} \sum_{\varepsilon \in\{0,1\}^{m} \backslash(1,1, \ldots, 1)}\left\|\xi_{\varepsilon}^{i}\right\|^{2} \tag{1.8}\\
& =(m-1) \sum_{i=1}^{m}\left\|\xi_{i}\right\|^{2} \tag{1.9}
\end{align*}
$$

Moreover, equality in (1.4) implies that all the inequalities (1.5), (1.6) and (1.9) are equalities. Hence,
(i) $\xi_{\varepsilon}^{i}=P_{i} \xi_{\varepsilon}^{i}$ for all $\varepsilon \neq(1,1, \ldots, 1)$ and all $1 \leqslant i \leqslant m$ (cf. (1.7) and (1.8)), and
(ii) by the Cauchy-Schwarz argument, for all $\varepsilon \in\{0,1\}^{m}$ with more than one coordinate which is zero, $\left\|\zeta_{\varepsilon}^{i}\right\| \stackrel{(\mathrm{i})}{=}\left\|P_{i} \zeta_{\varepsilon}^{i}\right\|=0$ for all i.

Thus, if equality holds in (1.4), then $\xi_{i} \in P_{i}(\mathcal{H})$ and $\xi_{i} \in \underset{j \neq i}{\bigoplus} \mathcal{H}_{j}$, as claimed.
Proof of Proposition 1.2. (1.2) is the content of Lemma 2 in [2]. Now, assume that equality holds in (1.2) and that $\Phi\left(\sum_{i \neq j} a_{i} x_{i}\right)$ is finite for all j. We are going to "backtrack" the proof of Lemma 2 in [2] to show that (1.3) holds. We will assume that $\left\|x_{j}\right\|_{2}=1$ for all j. With

$$
\xi_{j}=b_{j} \mathcal{J}\left(\frac{1}{\sqrt{1-a_{j}^{2}}} \sum_{i \neq j} a_{i} x_{i}\right), \quad 1 \leqslant j \leqslant n+1,
$$

equality in (1.2) implies (cf. the proof of Lemma 2 in [2]) that

$$
\begin{equation*}
\Phi\left(\sum_{j=1}^{n+1} a_{j} x_{j}\right)=\left\|\sum_{j=1}^{n+1} \xi_{j}\right\|_{2}^{2}=n \sum_{j=1}^{n+1}\left\|\xi_{j}\right\|_{2}^{2} \tag{1.10}
\end{equation*}
$$

Let $M=W^{*}\left(x_{1}, \ldots, x_{n+1}\right)$. We now apply Lemma 1.3 to the projections E_{1}, \ldots, $E_{n+1} \in B\left(L^{2}(M)\right)$ introduced in proof of Lemma 2 in [2]. That is, E_{j} is the projection onto $L^{2}\left(W^{*}\left(x_{1}, \ldots, \widehat{x}_{j}, \ldots, x_{n+1}\right)\right)$. Note that the subspace \mathcal{H}_{j} defined in Lemma 1.3, $\mathcal{H}_{j}=\left\{\xi \in L^{2}(M): E_{k} \xi=\xi, k \neq j, E_{j} \xi=0\right\}$, is in this case exactly $L^{2}\left(W^{*}\left(x_{j}\right)\right)$. Thus, the second identity in (1.10) and the fact that $\xi_{j} \perp \mathbb{C} 1$, implies that

$$
\begin{equation*}
\xi_{j} \in \bigoplus_{i \neq j}\left(L^{2}\left(W^{*}\left(x_{i}\right)\right) \ominus \mathbb{C} \mathbf{1}\right) \tag{1.11}
\end{equation*}
$$

With $E: L^{2}(M) \rightarrow L^{2}(M)$ the projection onto $L^{2}\left(W^{*}\left(\sum_{j} a_{j} x_{j}\right)\right)$ we have (cf. proof of Lemma 2 in [2]):

$$
\begin{equation*}
\mathcal{J}\left(\sum_{j=1}^{n+1} a_{j} x_{j}\right)=E\left(\sum_{j=1}^{n+1} \xi_{j}\right) . \tag{1.12}
\end{equation*}
$$

The first identity in (1.10) then implies that $E\left(\sum_{j=1}^{n+1} \xi_{j}\right)=\sum_{j=1}^{n+1} \xi_{j}$, and so

$$
\mathcal{J}\left(\sum_{j=1}^{n+1} a_{j} x_{j}\right)=\sum_{j=1}^{n+1} \xi_{j} \in \bigoplus_{i=1}^{n+1}\left(L^{2}\left(W^{*}\left(x_{i}\right)\right) \ominus \mathbb{C} \mathbf{1}\right) .
$$

Now choose elements $\eta_{j} \in L^{2}\left(W^{*}\left(x_{j}\right)\right) \ominus \mathbb{C} 1,1 \leqslant j \leqslant n+1$, such that

$$
\begin{equation*}
\mathcal{J}\left(\sum_{j=1}^{n+1} a_{j} x_{j}\right)=\sum_{j=1}^{n+1} \eta_{j} \tag{1.13}
\end{equation*}
$$

Then

$$
0=\left[\sum_{i=1}^{n+1} a_{i} x_{i}, \sum_{j=1}^{n+1} \eta_{j}\right]=\sum_{i \neq j}\left(a_{i} x_{i} \eta_{j}-\eta_{i} a_{j} x_{j}\right)
$$

A standard application of freeness shows that for $(i, j) \neq(k, l)$, the terms $a_{i} x_{i} \eta_{j}-$ $\eta_{i} a_{j} x_{j}$ and $a_{k} x_{k} \eta_{l}-\eta_{k} a_{l} x_{l}$ are perpendicular elements of $L^{2}(M)$. Thus, the above identity implies that for all $i \neq j$,

$$
\begin{equation*}
a_{i} x_{i} \eta_{j}=a_{j} \eta_{i} x_{j} . \tag{1.14}
\end{equation*}
$$

With $L^{2}\left(W^{*}\left(x_{j}\right)\right)^{0}=L^{2}\left(W^{*}\left(x_{j}\right)\right) \ominus \mathbb{C} 1,1 \leqslant j \leqslant n+1$, consider the free product of Hilbert spaces

$$
\mathbb{C} \mathbf{1} \oplus\left(\bigoplus_{p \geqslant 1}\left(\bigoplus_{1 \leqslant i_{1}, \ldots, i_{p} \leqslant n+1, i_{1} \neq i_{2} \neq \cdots \neq i_{p}} L^{2}\left(W^{*}\left(x_{i_{1}}\right)\right)^{0} \otimes L^{2}\left(W^{*}\left(x_{i_{2}}\right)\right)^{0} \otimes \cdots \otimes L^{2}\left(W^{*}\left(x_{i_{p}}\right)\right)^{0}\right)\right),
$$

and notice that $x_{i} \in L^{2}\left(W^{*}\left(x_{i}\right)\right)^{0}$ and $\eta_{j} \in L^{2}\left(W^{*}\left(x_{j}\right)\right)^{0}$. It follows from unique decomposition within the free product that there is only one way that (1.14) can be fulfilled, namely when η_{j} is proportional to x_{j}. That is, there exist $c_{1}, \ldots, c_{n+1} \in$ \mathbb{R} such that $\eta_{j}=c_{j} x_{j}$ and hence,

$$
\begin{equation*}
\mathcal{J}\left(\sum_{j=1}^{n+1} a_{j} x_{j}\right)=\sum_{j=1}^{n+1} c_{j} x_{j} . \tag{1.15}
\end{equation*}
$$

We can assume that $a_{1}, \ldots, a_{n+1}>0$, and then by (1.14), $c_{j}=\frac{c_{1} a_{j}}{a_{1}}, 1 \leqslant j \leqslant n+1$. In particular, all the c_{j} 's have the same sign. Taking inner product with $\sum_{j=1}^{n+1} a_{j} x_{j}$ in (1.15), we find that

$$
\begin{equation*}
\sum_{j=1}^{n+1} a_{j} c_{j}=1 \tag{1.16}
\end{equation*}
$$

so that the c_{j} 's must be positive. Also, since $\sum_{j} a_{j}^{2}=1$, we have that $\sum_{j} c_{j}^{2} \geqslant 1$. But

$$
\sum_{j=1}^{n+1} c_{j}^{2}=\frac{c_{1}^{2}}{a_{1}^{2}}
$$

and so $c_{1} \geqslant a_{1}$, and in general, $c_{j} \geqslant a_{j}$. Then by (1.16), $c_{j}=a_{j}$, and (1.3) holds. As mentioned in the introduction, this implies that $\sum_{j=1}^{n+1} a_{j} x_{j}$ is (0,1)-semicircular (when $\left\|x_{1}\right\|_{2}=1$).

Corollary 1.4. Let x_{1}, \ldots, x_{n+1} be as in Proposition 1.2 and let $a_{1}, \ldots, a_{n+1} \in$ \mathbb{R} with $\sum_{j} a_{j}^{2}=1$. Then

$$
\begin{equation*}
\chi\left(\sum_{j=1}^{n+1} a_{j} x_{j}\right) \geqslant \sum_{j=1}^{n+1} \frac{1-a_{j}^{2}}{n} \chi\left(\frac{1}{\sqrt{1-a_{j}^{2}}} \sum_{i \neq j} a_{i} x_{i}\right) . \tag{1.17}
\end{equation*}
$$

Moreover, if $\chi\left(\sum_{i \neq j} a_{i} x_{i}\right)>-\infty$ for all j, then equality in (1.17) implies that $\sum_{j} a_{j} x_{j}$ is semicircular.

Proof. The inequality (1.17) was proven by D. Shlyakhtenko in Theorem 2 of [2]. Now, assume that $\chi\left(\sum_{i \neq j} a_{i} x_{i}\right)>-\infty$ for all j and that

$$
\chi\left(\sum_{j=1}^{n+1} a_{j} x_{j}\right)=\sum_{j=1}^{n+1} \frac{1-a_{j}^{2}}{n} \chi\left(\frac{1}{\sqrt{1-a_{j}^{2}}} \sum_{i \neq j} a_{i} x_{i}\right) .
$$

Take (0,1)-semicirculars s_{1}, \ldots, s_{n+1} such that $x_{1}, \ldots, x_{n+1}, s_{1}, \ldots, s_{n+1}$ are free, and put $x_{j}^{(t)}=x_{j}+\sqrt{t} s_{j}$. Then by assumption,

$$
\begin{equation*}
\int_{0}^{\infty}\left[\sum_{j=1}^{n+1} \frac{1-a_{j}^{2}}{n} \Phi\left(\frac{1}{\sqrt{1-a_{j}^{2}}} \sum_{i \neq j} a_{i} x_{i}^{(t)}\right)-\Phi\left(\sum_{j=1}^{n+1} a_{j} x_{j}^{(t)}\right)\right] \mathrm{d} t=0 . \tag{1.18}
\end{equation*}
$$

Applying Proposition 1.2 with $b_{j}=\frac{1}{n} \sqrt{1-a_{j}^{2}}$, we see that the integrand in (1.18) is positive. Thus, (1.18) can only be fulfilled if for a.e. $t>0$,

$$
\begin{equation*}
\sum_{j=1}^{n+1} \frac{1-a_{j}^{2}}{n} \Phi\left(\frac{1}{\sqrt{1-a_{j}^{2}}} \sum_{i \neq j} a_{i} x_{i}^{(t)}\right)=\Phi\left(\sum_{j=1}^{n+1} a_{j} x_{j}^{(t)}\right) \tag{1.19}
\end{equation*}
$$

In fact, since both sides of (1.19) are right continuous functions of t (cf. [6]), we have equality for all $t>0$. Then by Proposition $1.2, \sum_{j=1}^{n+1} a_{j} x_{j}^{(t)}$ is semicircular. By additivity of the \mathcal{R}-transform, this can only happen if $\sum_{j=1}^{n+1} a_{j} x_{j}$ is semicircular.

Proof of Theorem 1.1. The inequality (1.1) was proven by D. Shlyakhtenko in [2]. Now, assume that $\chi\left(x_{1}\right)>-\infty$ and that

$$
\chi\left(\frac{x_{1}+\cdots+x_{n+1}}{\sqrt{n+1}}\right)=\chi\left(\frac{x_{1}+\cdots+x_{n}}{\sqrt{n}}\right)
$$

If we replace x_{j} by $\frac{x_{j}-\tau\left(x_{j}\right)}{\left\|x_{j}-\tau\left(x_{j}\right)\right\|_{2}}$, we will still have equality. Hence, we will assume that $\tau\left(x_{j}\right)=0$ and that $\left\|x_{j}\right\|_{2}=1$. Now,

$$
\chi\left(\frac{x_{1}+\cdots+x_{n+1}}{\sqrt{n+1}}\right)=\frac{1}{n+1} \sum_{j=1}^{n+1} \chi\left(\frac{1}{\sqrt{n}} \sum_{i \neq j} x_{i}\right)
$$

and by application of Corollary 1.4 with $a_{j}=\frac{1}{\sqrt{n+1}}, \frac{x_{1}+\cdots+x_{n+1}}{\sqrt{n+1}}$ must be semicircular. Additivity of the \mathcal{R}-transform tells us that this can only happen if x_{1} is semicircular.

We would like to thank Serban Belinschi for pointing out to us the following consequence of Theorem 1.1:

COROLLARY 1.5. Among the freely stable compactly supported probability measures on \mathbb{R}, the semicirle laws are the only ones with finite free entropy.

Proof. By definition, a compactly supported probability measure μ on \mathbb{R} is freely stable if for all $n \in \mathbb{N}$, there exist $a_{n}>0, b_{n} \in \mathbb{R}$, such that if x_{1}, \ldots, x_{n} are freely independent self-adjoint elements which are distributed according to μ, then

$$
\frac{1}{a_{n}}\left(x_{1}+\cdots+x_{n}\right)+b_{n}
$$

has distribution μ. Note that the set of freely stable laws is invariant under transformations by the affine maps $\left(\phi_{s, r}\right)_{s \in \mathbb{R}, r>0}$, where

$$
\phi_{s, r}(t)=\frac{t-s}{r}, \quad t \in \mathbb{R}
$$

Also, by p. 27 in [4], the semicirle laws are freely stable.
Suppose now that μ is a freely stable compactly supported probability measure on \mathbb{R}. By the above remarks, we can assume that μ has first moment 0 and variance 1 .

Let x_{1}, x_{2} be freely independent self-adjoint elements in distributed according to μ. Since μ is freely stable, $\frac{x_{1}+x_{2}}{\sqrt{2}}$ has distribution μ as well (by the assumptions on $\mu, a_{2}=\sqrt{2}$ and $b_{2}=0$). But then

$$
\chi\left(\frac{x_{1}+x_{2}}{\sqrt{2}}\right)=\chi\left(x_{1}\right)
$$

and by Theorem 1.1, either $\chi\left(x_{1}\right)=-\infty$, or x_{1} is semicircular.

2. THE CLASSICAL CASE

In this section we are going to prove the classical analogue of Theorem 1.1:
Theorem 2.1. Let $n \in \mathbb{N}$, and let X_{1}, \ldots, X_{n+1} be i.i.d. random variables. Then

$$
\begin{equation*}
H\left(\frac{X_{1}+\cdots+X_{n+1}}{\sqrt{n+1}}\right) \geqslant H\left(\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}}\right) \tag{2.1}
\end{equation*}
$$

Moreover, if $H\left(X_{1}\right)>-\infty$ and if (2.1) is an equality, then X_{1} is Gaussian.

Lemma 2.2. Let $n \in \mathbb{N}$. Then for every $m \in \mathbb{N}$, the m'th Hermite polynomial, H_{m}, satisfies:
(2.2) $n^{m / 2} H\left(\frac{x_{1}+\cdots+x_{n}}{\sqrt{n}}\right)=\sum_{k_{1}, \ldots, k_{n} \geqslant 0, \sum_{j}=m} \frac{m!}{k_{j}!k_{2}!\cdots k_{n}!} H_{k_{1}}\left(x_{1}\right) H_{k_{2}}\left(x_{2}\right) \cdots H_{k_{n}}\left(x_{n}\right)$.

Sketch of proof. (2.2) holds for $m=0\left(H_{0}=1\right)$ and for $m=1\left(H_{1}(x)=2 x\right)$. Now, for general $m \in \mathbb{N}$,

$$
H_{m+1}(x)=2 x H_{m}(x)-2 m H_{m-1}(x)
$$

(2.2) then follows by induction over m.

Lemma 2.3. Let $\mu \in \operatorname{Prob}(\mathbb{R})$ be absolutely continuous with respect to Lebesgue measure, and let $\sigma_{t} \in \operatorname{Prob}(\mathbb{R})$ denote the Gaussian distribution with mean 0 and variance t. Then if $\mu((-\infty, 0]) \neq 0$ and $\mu([0, \infty)) \neq 0$, the following inclusion holds:

$$
\begin{equation*}
L^{2}\left(\mathbb{R}, \mu * \sigma_{t}\right) \subseteq L^{2}\left(\mathbb{R}, \sigma_{t}\right) \tag{2.3}
\end{equation*}
$$

Proof. Let $f \in L^{1}(\mathbb{R})$ denote the density of μ with respect to Lebesgue measure. Then the density of $\mu * \sigma_{t}$ is given by

$$
\frac{\mathrm{d}\left(\mu * \sigma_{t}\right)}{\mathrm{d} s}(s)=\frac{1}{\sqrt{2 \pi t}}\left(\int_{-\infty}^{\infty} f(u) \cdot \mathrm{e}^{-u^{2} / 2 t} \cdot \mathrm{e}^{s u / t} \mathrm{~d} u\right) \cdot \mathrm{e}^{-s^{2} / 2 t}=\phi(s) \cdot \frac{\mathrm{d} \sigma_{t}}{\mathrm{~d} s}(s)
$$

where

$$
\begin{equation*}
\phi(s)=\int_{-\infty}^{\infty} f(u) \cdot \mathrm{e}^{-u^{2} / 2 t} \cdot \mathrm{e}^{s u / t} \mathrm{~d} u \tag{2.4}
\end{equation*}
$$

It follows that if ϕ is bounded away from 0 , then (2.3) holds. For $s \geqslant 0$ we have that $\phi(s) \geqslant \int_{0}^{\infty} f(u) \cdot \mathrm{e}^{-u^{2} / 2 t} \cdot \mathrm{e}^{s u / t} \mathrm{~d} u \geqslant \int_{0}^{\infty} f(u) \cdot \mathrm{e}^{-u^{2} / 2 t} \mathrm{~d} u$, and similarly for $s \leqslant 0: \phi(s) \geqslant \int_{-\infty}^{0} f(u) \cdot \mathrm{e}^{-u^{2} / 2 t} \mathrm{~d} u$. Since $\int_{-\infty}^{0} f(u) \mathrm{d} u>0$ and $\int_{0}^{\infty} f(u) \mathrm{d} u>0$, both of the integrals $\int_{0}^{\infty} f(u) \cdot \mathrm{e}^{-u^{2} / 2 t} \mathrm{~d} u$ and $\int_{-\infty}^{0} f(u) \cdot \mathrm{e}^{-u^{2} / 2 t} \mathrm{~d} u$ are strictly positive. This completes the proof.

Proof of Theorem 2.1. The inequality (2.1) was proven in [1]. Now, suppose $H\left(X_{1}\right)>-\infty$ and that (2.1) is an equality. We can assume that X_{1} has first moment 0 and second moment 1. Take Gaussian random variables G_{1}, \ldots, G_{n+1} of mean 0 and variance 1 such that $X_{1}, \ldots, X_{n+1}, G_{1}, \ldots, G_{n}, G_{n+1}$ are independent.

Then with $X_{j}^{(t)}=X_{j}+\sqrt{t} G_{j}$, we have

$$
\begin{equation*}
H\left(\frac{X_{1}+\cdots+X_{n+1}}{\sqrt{n+1}}\right)=\frac{1}{2} \int_{0}^{\infty}\left[\frac{1}{1+t}-\left\|j\left(\frac{X_{1}^{(t)}+\cdots+X_{n+1}^{(t)}}{\sqrt{n+1}}\right)\right\|_{2}^{2}\right] \mathrm{d} t+\frac{1}{2} \log (2 \pi e), \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
j\left(\frac{X_{1}^{(t)}+\cdots+X_{n+1}^{(t)}}{\sqrt{n+1}}\right)=\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{*}(\mathbf{1}) \in L^{2}\left(\mathbb{R}, \mu_{\frac{\mathrm{x}_{1}^{(t)}+\cdots+X_{n+1}^{(t)}}{\sqrt{n+1}}}\right) \tag{2.6}
\end{equation*}
$$

is the score function. Since X_{1} has mean 0 and finite entropy, $\mu_{X_{1}}$ and $\mu_{\frac{X_{1}+\cdots+X_{n+1}}{\sqrt{n+1}}}$ satisfy the conditions of Lemma 2.3.

$$
f^{(t)}\left(x_{1}, \ldots, x_{n+1}\right)=j\left(\frac{x_{1}^{(t)}+\cdots+x_{n+1}^{(t)}}{\sqrt{n+1}}\right)\left(\frac{x_{1}+\cdots+x_{n+1}}{\sqrt{n+1}}\right) .
$$

As in the free case (cf. (1.13)) equality in (2.1) implies that for each $t>0$ there exists a function $g^{(t)} \in L^{2}\left(\mu_{X_{1}^{(t)}}\right)$ such that $\int g^{(t)} \mathbf{d} \mu_{X_{1}^{(t)}}=0$ and

$$
\begin{equation*}
f^{(t)}\left(x_{1}, \ldots, x_{n+1}\right)=\sum_{j=1}^{n+1} g^{(t)}\left(x_{j}\right) . \tag{2.7}
\end{equation*}
$$

Because of Lemma 2.3 we can now write things in terms of the Hermite polynomials $\left(H_{m}\right)_{m=0}^{\infty}$. That is, there exist scalars $\left(\alpha_{m}\right)_{m=1}^{\infty}$ and $\left(\beta_{m}\right)_{m=1}^{\infty}$ such that

$$
f^{(1)}\left(x_{1}, \ldots, x_{n+1}\right)=\sum_{m=1}^{\infty} \alpha_{m} H_{m}\left(\frac{x_{1}+\cdots+x_{n+1}}{\sqrt{n+1}}\right), \quad \text { and } \quad g^{(1)}(x)=\sum_{m=1}^{\infty} \beta_{m} H_{m}(x) .
$$

By Lemma 2.2, this implies that

$$
\begin{align*}
& \sum_{j=1}^{n+1} \sum_{m=1}^{\infty} \beta_{m} H_{m}\left(x_{j}\right)= \tag{2.8}\\
& \sum_{m=1}^{\infty} \frac{\alpha_{m}}{(n+1)^{m / 2}} \sum_{\substack{k_{1}, \ldots, k_{n+1} \geqslant 0 \\
\sum_{j} k_{j}=m}} \frac{m!}{k_{1}!k_{2}!\cdots k_{n+1}!} H_{k_{1}}\left(x_{1}\right) H_{k_{2}}\left(x_{2}\right) \cdots H_{k_{n+1}}\left(x_{n+1}\right)
\end{align*}
$$

The functions $\left(H_{k_{1}}\left(x_{1}\right) H_{k_{2}}\left(x_{2}\right) \cdots H_{k_{n+1}}\left(x_{n+1}\right)\right)_{k_{1}, \ldots, k_{n+1} \geqslant 0}$ are mutually perpendicular in $L^{2}\left(R^{n+1}, \stackrel{\otimes_{j=1}^{\otimes+1}}{\otimes} \sigma_{1}\right)$. Fix $m \geqslant 2$, and take k_{1}, \ldots, k_{n+1} with $\sum_{j} k_{j}=m$ and $k_{j} \geqslant 1$ for at least two j 's. Then take inner product with $H_{k_{1}}\left(x_{1}\right) H_{k_{2}}\left(x_{2}\right) \ldots$ $H_{k_{n+1}}\left(x_{n+1}\right)$ on both sides of (2.8) to see that α_{m} must be zero. That is,

$$
j\left(\frac{X_{1}^{(1)}+\cdots+X_{n+1}^{(1)}}{\sqrt{n+1}}\right)\left(\frac{x_{1}+\cdots+x_{n+1}}{\sqrt{n+1}}\right)=\alpha_{1} H_{1}\left(\frac{x_{1}+\cdots+x_{n+1}}{\sqrt{n+1}}\right)=2 \alpha_{1} \frac{x_{1}+\cdots+x_{n+1}}{\sqrt{n+1}} .
$$

Since the score function of a random variable $X, j(X)$, satisfies $\langle j(X), X\rangle_{L^{2}\left(\mu_{X}\right)}=$ 1 , we have that $\alpha_{1}=\frac{1}{2}$, and so

$$
j\left(\frac{X_{1}^{(1)}+\cdots+X_{n+1}^{(1)}}{\sqrt{n+1}}\right)\left(\frac{x_{1}+\cdots+x_{n+1}}{\sqrt{n+1}}\right)=\frac{x_{1}+\cdots+x_{n+1}}{\sqrt{n+1}}
$$

Then $\frac{X_{1}^{(1)}+\cdots+X_{n+1}^{(1)}}{\sqrt{n+1}}$ has Fisher information 1, implying that it is standard Gaussian. As in the free case, using additivity of the logarithm of the Fourier transform, this can only happen if X_{1} is Gaussian.

Acknowledgements. I would like to thank Dimitri Shlyakhtenko for introducing me to the problem on monotonicity of entropy and for fruitful discussions about the subject. In addition, I would like to thank the UCLA Math Department, especially the functional analysis group, for their kind hospitality during my stay at UCLA.

REFERENCES

[1] S. Artstein, K. Ball, F. Barthe, A. Naor, Solution of Shannon's problem on monotonicity of entropy, J. Amer. Math. Soc. 17(2004), 975-982.
[2] D. ShLyakhtenko, A free analogue of Shannon's problem on monotonicity of entropy, preprint at http:/ /xxx.lanl.gov/abs/math.OA/0510103.
[3] A.J. Stam, Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. and Control 2(1959), 101-112.
[4] D.V. Voiculescu, K. Dykema, A. Nica, Free Random Variables. A Noncommutative Probability Approach to free Products with Applications to Random Matrices, Operator Algebras and Harmonic Analysis on free Groups, CMR Monograph Ser., vol. 1, Amer. Math. Soc., Providence, RI 1992.
[5] D.V. Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory. I, Comm. Math. Phys. 155(1993), 71-92.
[6] D.V. Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory. V, Invent. Math. 132(1998), 189-227.
[7] D.V. Voiculescu, Free entropy, Bull. London Math. Soc. 34(2002), 257-278.

[^0]
[^0]: HANNE SCHULTZ, Department of Mathematics and Computer Science, University of Sourthern Denmark, Denmark

 E-mail address: schultz@imada.sdu.dk

