ON THE COMMUTATOR IDEAL OF THE TOEPLITZ ALGEBRA ON THE BERGMAN SPACE OF THE UNIT BALL IN \mathbb{C}^{n}

TRIEU LE

Communicated by Kenneth R. Davidson

Abstract

Let L_{a}^{2} denote the Bergman space of the open unit ball B_{n} in \mathbb{C}^{n}, for $n \geqslant 1$. The Toeplitz algebra \mathfrak{T} is the C^{*}-algebra generated by all Toeplitz operators T_{f} with $f \in L^{\infty}$. It was proved by D. Suárez that for $n=1$, the closed bilateral commutator ideal generated by operators of the form $T_{f} T_{g}-T_{g} T_{f}$, where $f, g \in L^{\infty}$, coincides with \mathfrak{T}. With a different approach, we can show that for $n \geqslant 1$, the closed bilateral ideal generated by operators of the above form, where f, g can be required to be continuous on the open unit ball or supported in a nowhere dense set, is also all of \mathfrak{T}.

Keywords: Commutator ideals, Toeplitz operators, Bergman spaces.
MSC (2000): Primary 47B35; Secondary 47B47.

1. INTRODUCTION

For $n \geqslant 1$, let \mathbb{C}^{n} denote the cartesian product of n copies of \mathbb{C}. For any two points $z=\left(z_{1}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, \ldots, w_{n}\right)$ in \mathbb{C}^{n}, we use the notations $\langle z, w\rangle=z_{1} \bar{w}_{1}+\cdots+z_{n} \bar{w}_{n}$ and $|z|=\sqrt{\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}}$ for the inner product and the associated Euclidean norm. Let B_{n} denote the open unit ball which consists of points $z \in \mathbb{C}^{n}$ with $|z|<1$. Let $\mathrm{d} v$ denote the Lebesgue measure on B_{n} so normalized that $v\left(B_{n}\right)=1$. Let $\mathrm{d} \mu(z)=\left(1-|z|^{2}\right)^{-n-1} \mathrm{~d} v(z)$. Then $\mathrm{d} \mu$ is invariant under the action of the group of automorphisms $\operatorname{Aut}\left(B_{n}\right)$ of B_{n}. Even though $\mathrm{d} \mu$ is an infinite measure on B_{n}, it will be very useful for us later.

Let $L^{2}=L^{2}\left(B_{n}, \mathrm{~d} v\right)$ and $L^{\infty}=L^{\infty}\left(B_{n}, \mathrm{~d} v\right)$. The Bergman space L_{a}^{2} is the subspace of L^{2} which consists of all holomorphic functions. The orthogonal projection from L^{2} onto L_{a}^{2} is given by

$$
\operatorname{Pf}(z)=\int_{B_{n}} \frac{f(w)}{(1-\langle z, w\rangle)^{n+1}} \mathrm{~d} v(w), \quad f \in L^{2}, z \in B_{n} .
$$

The normalized reproducing kernels for L_{a}^{2} are of the form

$$
k_{z}(w)=\left(1-|z|^{2}\right)^{(n+1) / 2}(1-\langle w, z\rangle)^{-n-1}, \quad|z|,|w|<1 .
$$

We have $\left\|k_{z}\right\|=1$ and $\left\langle g, k_{z}\right\rangle=\left(1-|z|^{2}\right)^{(n+1) / 2} g(z)$ for all $g \in L_{a}^{2}$.
Let $\mathfrak{B}\left(L_{a}^{2}\right)$ be the C^{*}-algebra of all bounded linear operators on L_{a}^{2}. Let \mathcal{K} denote the ideal of compact operators on L_{a}^{2}.

For any $\eta \in L^{\infty}$ let $M_{\eta}: L^{2} \longrightarrow L^{2}$ be the operator of multiplication by η and $P_{\eta}=P M_{\eta}$. Then $\left\|P_{\eta}\right\| \leqslant\|\eta\|_{\infty}$. The Toeplitz operator $T_{\eta}: L_{a}^{2} \longrightarrow L_{a}^{2}$ is the restriction of P_{η} to L_{a}^{2}. For any subset G of L^{∞}, let $\mathfrak{T}(G)$ denote the C^{*}-subalgebra of $\mathfrak{B}\left(L_{a}^{2}\right)$ generated by $\left\{T_{\eta}: \eta \in G\right\}$. The commutator ideal of this algebra is denoted by $\mathfrak{C T}(G)$. It is well-know that $\mathfrak{C T}\left(C\left(\bar{B}_{n}\right)\right)$ is the same as \mathcal{K}, see [1]. The algebra $\mathfrak{T}\left(L^{\infty}\right)$ which is generated by all Toeplitz operators with bounded symbols is called the full Toeplitz algebra. Its commutator ideal is $\mathfrak{C T}\left(L^{\infty}\right)$.

There have been many results on commutator ideals and abelianizations of Toeplitz algebras acting on Hardy spaces. In contrast with this, there are only few results for Toeplitz algebras on Bergman spaces. Recently, Suárez showed in [5] that the Toeplitz algebra $\mathfrak{T}\left(L^{\infty}\right)$ on the Bergman space of the unit disk coincides with its commutator ideal $\mathfrak{C T}\left(L^{\infty}\right)$. In his paper, Suárez used some explicit computations and identities which are readily available on the unit disk to construct a function $\eta \in L^{\infty}$ with the property that $\eta>c>0$ on the disk and T_{η} is in the commutator ideal $\mathfrak{C T}\left(L^{\infty}\right)$. In higher dimensions, the computations become more complicated and some of the identities which were used by Suárez are not available. We could not find a way to get around these difficulties to construct a function similar to that of Suárez so we tried a different approach. It turns out that our new approach gives more general results about commutator ideals of the Toeplitz algebras. Indeed, we do not need G to be all the functions in L^{∞} to get $\mathfrak{C T}(G)=\mathfrak{T}(G)$. We can take G to be $L^{\infty} \cap C\left(B_{n}\right)$, the set of all bounded continuous functions on the open unit ball, or we can take G to be all the functions in L^{∞} which are supported in a set E where E can be a nowhere dense set with $v(E)$ as small as we please.

We next describe a metric on the unit ball which we will mainly use in this paper. For any $z \in B_{n}$, let φ_{z} denote the Mobius automorphism of B_{n} that interchanges 0 and z. For any $z, w \in B_{n}$, let $\rho(z, w)=\left|\varphi_{z}(w)\right|$. Then ρ is a metric which is invariant under the action of the group of automorphisms $\operatorname{Aut}\left(B_{n}\right)$ of B_{n}. These properties of ρ can be proved by using identities in Theorem 2.2.2 in [4]. Further discussion of this metric will appear later in Section 2.

A collection $\mathcal{W}=\left\{w_{j}: j \in J\right\}$ of points in B_{n} is said to be separated if $r=\inf \left\{\rho\left(w_{j}, w_{k}\right): j \neq k\right\}>0$. It is a consequence of Lemma 2.1 that in this case the index set J is necessarily at most countable. The number r is called the degree of separation of \mathcal{W}.

For $z \in B_{n}$ and $0<r<1$, let

$$
E(z, r)=\left\{w \in B_{n}: \rho(w, z) \leqslant r\right\}
$$

denote the closed r-ball centered at z in the ρ metric.
THEOREM 1.1. Let $\left\{w_{j}: j \in \mathbb{N}\right\}$ be a separated sequence of points in B_{n} so that $B_{n}=\bigcup_{j \in \mathbb{N}} E\left(w_{j}, R\right)$ for some $0<R<1$. Let η be a measurable function defined on $[0, \infty)$ with $\eta \geqslant 0, \eta(t)=0$ if $t \geqslant 1$ and $\|\eta\|_{\infty}=1$. For each $0<\varepsilon<1$ put $\eta_{\varepsilon}(z)=z_{1} \eta(|z| / \varepsilon)$. Let G_{ε} be the set of all functions of the form $\sum_{j \in F} \eta_{\varepsilon} \circ \varphi_{w_{j}}$ or $\sum_{j \in F} \bar{\eta}_{\varepsilon} \circ \varphi_{w_{j}}$ where F is a subset of \mathbb{N}. Then the operator

$$
A_{\varepsilon}=\sum_{j \in \mathbb{N}}\left[T_{\eta_{\varepsilon} \circ \varphi_{w_{j}}}, T_{\bar{\eta}_{\varepsilon} \circ \varphi_{w_{j}}}\right]^{2}
$$

belongs to the commutator ideal $\mathfrak{C T}\left(G_{\varepsilon}\right)$. Furthermore, for all but countably many ε, the operator A_{ε} is invertible.

Put $E_{\varepsilon}=\bigcup_{j \in \mathbb{N}} \varphi_{w_{j}}\left(\operatorname{supp}\left(\eta_{\varepsilon}\right)\right)$. Then G_{ε} is contained in the subspace $\left\{\zeta \in L^{\infty}:\right.$ ζ is supported on $\left.E_{\varepsilon}\right\}$. If η is supported in a nowhere dense subset of $[0,1]$ then η_{ε} is supported in a nowhere dense subset of B_{n}, hence E_{ε}, being the union of a locally finite collection of nowhere dense sets, is a nowhere dense subset of B_{n}, too. Furthermore, we will show that for $\varepsilon>0$, the Lebesgue measure of E_{ε} is $O\left(\varepsilon^{2 n}\right)$. We will also show that if η is a continuous function then G_{ε} is a subspace of $C\left(B_{n}\right)$ for all $0<\varepsilon<1$.

The fact that A_{ε} belongs to the ideal $\mathfrak{C T}\left(G_{\varepsilon}\right)$ is proved exactly as in Suárez's paper. The reason is that all the properties of the metric ρ and the kernel functions which were crucial for Suárez's proof hold true in higher dimensions.

The invertibility of A_{ε} follows from a general fact about operators which are diagonalizable with respect to the standard orthonormal basis of L_{a}^{2}. In fact, sums of a "large enough" number of operators which are unitarily equivalent to operators of the above type are invertible. This is the content of Theorem 1.2 which follows.

For any $z \in B_{n}$, the formula

$$
U_{z}(f)=\left(f \circ \varphi_{z}\right) k_{z}, \quad f \in L^{2}
$$

defines a bounded operator on L^{2}. It is well-known that U_{z} is a unitary self-adjoint operator and $U_{z} T_{\eta} U_{z}^{*}=T_{\eta \circ \varphi_{z}}$ for all $z \in B_{n}$ and all $\eta \in L^{\infty}$, see, for example, Lemma 7 and 8 in [3].

Also a simple computation reveals that for all $z, w \in B_{n}$,

$$
U_{z}\left(k_{w}\right)=\left(\frac{|1-\langle z, w\rangle|}{1-\langle z, w\rangle}\right)^{n+1} k_{\varphi_{z}(w)}
$$

This implies

$$
U_{z}\left(k_{w} \otimes k_{w}\right) U_{z}^{*}=k_{\varphi_{z}(w)} \otimes k_{\varphi_{z}(w)}
$$

Now for any multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, let $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}, \alpha!=$ $\alpha_{1}!\cdots \alpha_{n}!$ and $z^{\alpha}=z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}$. Put

$$
e_{\alpha}=\left(\frac{(n+|\alpha|)!}{n!\alpha!}\right)^{1 / 2} z^{\alpha}
$$

Then $\left\{e_{\alpha}: \alpha \in \mathbb{N}^{n}\right\}$ is the standard orthonormal basis for L_{a}^{2}, see Proposition 1.4.9 in [4].

Recall that for any two nonzero elements f and g in $L_{a}^{2}, f \otimes g$ denotes the rank one operator $(f \otimes g) u=\langle u, g\rangle f$, for all $u \in L_{a}^{2}$.

THEOREM 1.2. Let $\left\{s_{\alpha}: \alpha \in \mathbb{N}^{n}\right\}$ be a bounded set of strictly positive real numbers. Let

$$
S=\sum_{\alpha \in \mathbb{N}^{n}} s_{\alpha} e_{\alpha} \otimes e_{\alpha}
$$

Let $\left\{w_{j}: j \in \mathbb{N}\right\}$ be a separated sequence of points in B_{n} so that $B_{n}=\bigcup_{j \in \mathbb{N}} E\left(w_{j}, R\right)$ for some $0<R<1$. Then there is a positive constant c so that

$$
\sum_{j \in \mathbb{N}} U_{w_{j}} S U_{w_{j}}^{*} \geqslant c>0
$$

In the rest of the paper, we will state and prove some lemmas and propositions before giving the proof for Theorem 1.2 in Section 3 and then Theorem 1.1 in Section 4. Some remarks about Theorem 1.1 will be presented in Section 5.

2. BASIC RESULTS

The following inequalities illustrate the fact that the metric ρ in higher dimensions also possesses all the properties used in Suárez's paper. These results are well-known but since we are not aware of an appropriate reference, we sketch here a proof.

Lemma 2.1. For any z, w in B_{n}, the followings hold:

$$
\left|\frac{|z|-|w|}{1-|z||w|}\right| \leqslant \rho(z, w) \leqslant \frac{|z-w|}{|1-\langle z, w\rangle|}
$$

Proof. Using $|\langle z, w\rangle| \leqslant|z||w|$, we get the inequalities

$$
1-\frac{|z-w|^{2}}{|1-\langle z, w\rangle|^{2}} \leqslant \frac{\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)}{|1-\langle z, w\rangle|^{2}} \leqslant \frac{\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)}{(1-|z||w|)^{2}}
$$

Combining the above inequalities with the identity

$$
1-\left|\varphi_{z}(w)\right|^{2}=\frac{\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)}{|1-\langle z, w\rangle|^{2}} \quad \text { (see Theorem 2.2.2 in [4]) }
$$

we obtain

$$
1-\frac{|z-w|^{2}}{|1-\langle z, w\rangle|^{2}} \leqslant 1-\left|\varphi_{z}(w)\right|^{2} \leqslant 1-\frac{(|z|-|w|)^{2}}{(1-|z||w|)^{2}}
$$

from which the stated inequalities follow.
From Lemma 2.1 and the invariance of ρ under the action of $\operatorname{Aut}\left(B_{n}\right)$, we have for any $z, w, u \in B_{n}$,

$$
\begin{equation*}
\rho(z, w)=\rho\left(\varphi_{u}(z), \varphi_{u}(w)\right) \geqslant\left|\frac{\left|\varphi_{u}(z)\right|-\left|\varphi_{u}(w)\right|}{1-\left|\varphi_{u}(z)\right|\left|\varphi_{u}(w)\right|}\right|=\frac{|\rho(z, u)-\rho(u, w)|}{1-\rho(z, u) \rho(u, w)} \tag{2.1}
\end{equation*}
$$

From the second inequality in Lemma 2.1, we see that if $|z|,|w| \leqslant R<1$ then

$$
\begin{equation*}
\rho(z, w) \leqslant \frac{|z-w|}{|1-\langle z, w\rangle|} \leqslant \frac{|z-w|}{1-R^{2}} \tag{2.2}
\end{equation*}
$$

For all $0<r<1$ and all $0<R<1$, from the compactness of $E(0, R)$ in the Euclidean metric, there is an M which depends only on n, r and R so that if $\left\{w_{1}, \ldots, w_{m}\right\}$ is a subset of $E(0, R)$ and $\left|w_{j}-w_{k}\right| \geqslant\left(1-R^{2}\right) r$ for all $j \neq k$ then $m \leqslant M$. Then (2.2) implies that if $\left\{w_{1}, \ldots, w_{m}\right\}$ is a subset of $E(0, R)$ so that $\rho\left(w_{j}, w_{k}\right) \geqslant r$ for all $j \neq k$ then $m \leqslant M$.

The above properties of ρ allow us to prove the following characteristic of a separated collection of points in B_{n}.

LEMMA 2.2. Let $\left\{w_{j}: j \in J\right\}$ be a collection of points in B_{n} so that $\rho\left(w_{j}, w_{k}\right)>r$ for all $j \neq k$, where $0<r<1$. Let $0<R_{1}, R_{2}<1$ be given. Then there is an N depending only on n, r, R_{1} and R_{2} so that for any $u \in B_{n}$ the set $\left\{j \in J: E\left(u, R_{1}\right) \cap\right.$ $\left.E\left(w_{j}, R_{2}\right) \neq \varnothing\right\}$ has at most N elements.

Proof. By applying the Möbius automorphism that interchanges 0 and u if necessary, we can assume without loss of generality that $u=0$. Let $\widetilde{R}=$ $\left(R_{1}+R_{2}\right) /\left(1+R_{1} R_{2}\right)$. Suppose $z, w \in B_{n}$ with $|w| \leqslant R_{1}$ and $|z|>\widetilde{R}$. Then from Lemma 2.1,

$$
\rho(z, w) \geqslant \frac{|z|-|w|}{1-|w||z|}>\frac{\widetilde{R}-R_{1}}{1-\widetilde{R} R_{1}}=R_{2}
$$

So $E\left(0, R_{1}\right) \cap E\left(z, R_{2}\right) \neq \varnothing$ implies that $|z| \leqslant \widetilde{R}$. Hence, $\left\{j \in J: E\left(0, R_{1}\right) \cap\right.$ $\left.E\left(z_{j}, R_{2}\right) \neq \varnothing\right\}$ is a subset of the set $\left\{j \in J:\left|w_{j}\right| \leqslant \widetilde{R}\right\}$. From the remark preceding the lemma, the second set has at most N elements, where N depends only on n, r, R_{1} and R_{2}. The conclusion of the lemma follows from here.

The following lemma is similar to Lemma 2.1 in [5] but somewhat stronger even though the proof is almost identical. We state here the lemma and give the proof, too.

Lemma 2.3. Let $\mathcal{W}=\left\{w_{j}: j \in J\right\}$ be a separated collection of points in B_{n} and $0<\sigma<1$. Then there is a finite decomposition $\mathcal{W}=\mathcal{W}_{1} \cup \cdots \cup \mathcal{W}_{N}$ such that for every $1 \leqslant i \leqslant N, E(z, \sigma) \cap E(w, \sigma)=\varnothing$ for all $z \neq w$ in \mathcal{W}_{i}.

Proof. Let $\mathcal{W}_{1} \subset \mathcal{W}$ be a maximal subset so that $E(z, \sigma) \cap E(w, \sigma)=\varnothing$ for all $z \neq w$ in \mathcal{W}_{1}. If $\mathcal{W}_{1}=\mathcal{W}$ we are done. Otherwise suppose that $m \geqslant 2$ and $\mathcal{W}_{1}, \ldots, \mathcal{W}_{m-1}$ are chosen so that $E(z, \sigma) \cap E(w, \sigma)=\varnothing$ for all $z \neq w$ in \mathcal{W}_{i}, all $1 \leqslant i \leqslant m-1$ and $\mathcal{W} \backslash\left(\mathcal{W}_{1} \cup \cdots \cup \mathcal{W}_{m-1}\right) \neq \varnothing$. Let $\mathcal{W}_{m} \subset \mathcal{W} \backslash\left(\mathcal{W}_{1} \cup \cdots \cup \mathcal{W}_{m-1}\right)$ be a maximal subset so that $E(z, \sigma) \cap E(w, \sigma)=\varnothing$ for all $z \neq w$ in \mathcal{W}_{m}. By the maximality at each of the previous steps, if $u \in \mathcal{W}_{m}$ then for every $1 \leqslant i \leqslant m-1$, there is a $u_{i} \in \mathcal{W}_{i}$ so that $E\left(u_{i}, \sigma\right) \cap E(u, \sigma) \neq \varnothing$. Therefore $\left\{u, u_{1}, \ldots, u_{m-1}\right\} \subset$ $\left\{j \in J: E(u, \sigma) \cap E\left(w_{j}, \sigma\right) \neq \varnothing\right\}$. From Lemma 2.2, there is an N depending on n, σ and the degree of separation of \mathcal{W} so that $m \leqslant N$.

From now to the end of this section, fix an $r \in(0,1)$ and a sequence of points $\mathcal{W}=\left\{w_{j}: j \in \mathbb{N}\right\}$ in B_{n} so that $E\left(w_{j}, r\right) \cap E\left(w_{k}, r\right)=\varnothing$ for all $j \neq k$ in \mathbb{N}.

Now we state some lemmas which are in Suárez's paper for the case $n=1$ and for L_{a}^{p} with $1<p<\infty$, see Lemma 2.4-2.6 in [5]. Here we are interested in the case $n \geqslant 2$ and $p=2$. The conclusions of those lemmas in our case still hold true with no major changes in the proofs.

Lemma 2.4. Let $0<\beta<1$ and $r<R<1$ and let

$$
\Phi(z, w)=\sum_{j \in \mathbb{N}} \chi_{E\left(w_{j}, r\right)}(z) \chi_{B_{n} \backslash E\left(w_{j}, R\right)}(w)|1-\langle z, w\rangle|^{-n-1}
$$

Then we have the following, where $c_{1}(\beta)>0$:

$$
\int_{B_{n}} \Phi(z, w)\left(1-|z|^{2}\right)^{-\beta} \mathrm{d} v(z) \leqslant c_{1}(\beta)\left(1-|w|^{2}\right)^{-\beta}
$$

Lemma 2.5. Let $0<\beta<1$ and $r<R<1$ and $\Phi(z, w)$ as in Lemma 2.4. Then

$$
\int_{B_{n}} \Phi(z, w)\left(1-|w|^{2}\right)^{-\beta} \mathrm{d} v(w) \leqslant c_{2}(\beta, R)\left(1-|z|^{2}\right)^{-\beta}
$$

where $c_{2}(\beta, R) \rightarrow 0$ when $R \rightarrow 1$.
LEMMA 2.6. Suppose that $R \in(r, 1)$ and $a_{j}, A_{j} \in L^{\infty}$ are functions of norm $\leqslant 1$ such that
$\operatorname{supp} a_{j} \subset E\left(w_{j}, r\right)$ and $\operatorname{supp} A_{j} \subset B_{n} \backslash E\left(w_{j}, R\right)$.
Then the operator $\sum_{j \in \mathbb{N}} M_{a_{j}} P M_{A_{j}}$ is bounded on L^{2}, with norm bounded by some constant $k(R) \rightarrow 0$ when $R \rightarrow 1$.

The following proposition is the case $n \geqslant 1$ and $p=2$ of Proposition 2.9 in [5]. Since we have all the needed properties of the metric ρ and all the necessary lemmas, the proof is identical to that of Suárez.

Proposition 2.7. For each $j \in \mathbb{N}$, let $c_{j}^{1}, \ldots, c_{j}^{l}, a_{j}, b_{j}, d_{j}^{1}, \ldots, d_{j}^{m} \in L^{\infty}$ be functions of norm $\leqslant 1$ supported on $E\left(w_{j}, r\right)$. Then the following belongs to the commutator ideal $\mathfrak{C T}\left(L^{\infty}\right)$ of the full Toeplitz algebra:

$$
\sum_{j \in \mathbb{N}} T_{c_{j}^{1}} \cdots T_{c_{j}^{l}}\left(T_{a_{j}} T_{b_{j}}-T_{b_{j}} T_{a_{j}}\right) T_{d_{j}^{1}} \cdots T_{d_{j}^{m}}
$$

In the proof of Proposition 2.7, we are dealing only with Toeplitz operators with symbols in the subset G of L^{∞} which consists of functions of the form $\sum_{j \in F} f_{j}$, where F is a subset of \mathbb{N} and f is one of the symbols $c^{1}, \ldots, c^{l}, a, b, d^{1}, \ldots, d^{m}$. So in the above conclusion, we can replace $\mathfrak{C T}\left(L^{\infty}\right)$ by the smaller ideal $\mathfrak{C T}(G)$.

3. INVERTIBILITY OF SUMS OF RANK ONE PROJECTIONS

From now to the end of this section, fix a bounded set $\left\{s_{\alpha}: \alpha \in \mathbb{N}^{n}\right\}$ of strictly positive real numbers.

Lemma 3.1. Fix $0<R<1$ and $\varepsilon>0$ so that $(1+\varepsilon) R<1$. Let $\delta>0$ be given. Then there is a constant $C(\delta)>0$ so that for all $|z| \leqslant R$,

$$
\begin{equation*}
k_{z} \otimes k_{z} \leqslant C(\delta) \sum_{\alpha \in \mathbb{N}^{n}} s_{\alpha} e_{\alpha} \otimes e_{\alpha}+\delta \int_{|w|<(1+\varepsilon) R} k_{w} \otimes k_{w} \mathrm{~d} \mu(w) . \tag{3.1}
\end{equation*}
$$

Proof. Let f be in L_{a}^{2} and $|z| \leqslant R$. Let J be a finite subset of \mathbb{N}^{n}. Put

$$
g_{J}=\sum_{\alpha \in J}\left\langle f, e_{\alpha}\right\rangle e_{\alpha} \quad \text { and } \quad h_{J}=\sum_{\alpha \in \mathbb{N}^{n} \backslash J}\left\langle f, e_{\alpha}\right\rangle e_{\alpha} .
$$

Then

$$
\begin{equation*}
\left\langle\left(k_{z} \otimes k_{z}\right) f, f\right\rangle=\left|\left\langle f, k_{z}\right\rangle\right|^{2}=\left|\left\langle g_{J}, k_{z}\right\rangle+\left\langle h_{J}, k_{z}\right\rangle\right|^{2} \leqslant 2\left(\left|\left\langle g_{J}, k_{z}\right\rangle\right|^{2}+\left|\left\langle h_{J}, k_{z}\right\rangle\right|^{2}\right) \tag{3.2}
\end{equation*}
$$

Now,

$$
\left|\left\langle h_{J}, k_{z}\right\rangle\right|^{2}=\left|\sum_{\alpha \in \mathbb{N}^{n} \backslash J}\left\langle f, e_{\alpha}\right\rangle\left\langle e_{\alpha}, k_{z}\right\rangle\right|^{2}=\left(1-|z|^{2}\right)^{n+1}\left|\sum_{\alpha \in \mathbb{N}^{n} \backslash J}\left\langle f, e_{\alpha}\right\rangle e_{\alpha}(z)\right|^{2}
$$

$$
\begin{align*}
& \leqslant\left|\sum_{\alpha \in \mathbb{N}^{n} \backslash J}\left\langle f, e_{\alpha}\right\rangle e_{\alpha}(z)\right|^{2} \leqslant\left(\sum_{\alpha \in \mathbb{N}^{n} \backslash J}\left|\left\langle f, e_{\alpha}\right\rangle\right|\left(\frac{(n+|\alpha|)!}{n!\alpha!}\right)^{1 / 2}\left|z^{\alpha}\right|\right)^{2} \tag{3.3}\\
& \leqslant\left(\sum_{\alpha \in \mathbb{N}^{n} \backslash J}\left|\left\langle f, e_{\alpha}\right\rangle\right|^{2}((1+\varepsilon) R)^{2|\alpha|}\right) \times\left(\sum_{\alpha \in \mathbb{N}^{n} \backslash J} \frac{(n+|\alpha|)!}{n!\alpha!}\left|z^{\alpha}\right|^{2}((1+\varepsilon) R)^{-2|\alpha|}\right) .
\end{align*}
$$

On the other hand, the homogeneity of the e_{α} 's shows that

$$
f((1+\varepsilon) R \zeta)=\sum_{\alpha \in \mathbb{N}^{n}}\left\langle f, e_{\alpha}\right\rangle((1+\varepsilon) R)^{|\alpha|} e_{\alpha}(\zeta)
$$

so that the change-of-variable $w=(1+\varepsilon) R \zeta$ gives

$$
\begin{aligned}
\int_{|w|<(1+\varepsilon) R}\left\langle\left(k_{w} \otimes k_{w}\right) f, f\right\rangle \mathrm{d} \mu(w) & =\int_{|w|<(1+\varepsilon) R}|f(w)|^{2} \mathrm{~d} v(w) \\
& =((1+\varepsilon) R)^{2 n} \int_{B_{n}}|f(1+\varepsilon) R \zeta|^{2} \mathrm{~d} v(\zeta) \\
& =((1+\varepsilon) R)^{2 n} \sum_{\alpha \in \mathbb{N}^{n}}\left|\left\langle f, e_{\alpha}\right\rangle\right|^{2}((1+\varepsilon) R)^{2|\alpha|} \\
& \geqslant((1+\varepsilon) R)^{2 n} \sum_{\alpha \in \mathbb{N}^{n} \backslash J}\left|\left\langle f, e_{\alpha}\right\rangle\right|^{2}((1+\varepsilon) R)^{2|\alpha|} .
\end{aligned}
$$

This implies

$$
\begin{equation*}
\sum_{\alpha \in \mathbb{N}^{n} \backslash J}\left|\left\langle f, e_{\alpha}\right\rangle\right|^{2}((1+\varepsilon) R)^{2|\alpha|} \leqslant((1+\varepsilon) R)^{-2 n} \int_{|w|<(1+\varepsilon) R}\left\langle\left(k_{w} \otimes k_{w}\right) f, f\right\rangle \mathrm{d} \mu(w) . \tag{3.5}
\end{equation*}
$$

Inequalities (3.3) and (3.5) imply

$$
\begin{aligned}
\left|\left\langle h_{J}, k_{z}\right\rangle\right|^{2} \leqslant(& \left.\sum_{\alpha \in \mathbb{N}^{n} \backslash J} \frac{(n+|\alpha|)!}{n!\alpha!}\left|z^{\alpha}\right|^{2}((1+\varepsilon) R)^{-2|\alpha|}\right)((1+\varepsilon) R)^{-2 n} \\
& \times \int_{|z|<(1+\varepsilon) R}\left\langle\left(k_{w} \otimes k_{w}\right) f, f\right\rangle \mathrm{d} \mu(w)
\end{aligned}
$$

Now from the identity

$$
K_{w}(\zeta)=\sum_{\alpha \in \mathbb{N}^{n}} \overline{e_{\alpha}(w)} e_{\alpha}(\zeta)
$$

for $w, \zeta \in B_{n}$, where $K_{w}(\zeta)$ is the Bergman reproducing kernel, we have

$$
\sum_{\alpha \in \mathbb{N}^{n}}\left|e_{\alpha}(w)\right|^{2}=K_{w}(w)=\frac{1}{\left(1-|w|^{2}\right)^{n+1}}
$$

If we take $w=z /(1+\varepsilon) R$, where $|z| \leqslant R$, we obtain

$$
\begin{align*}
\sum_{\alpha \in \mathbb{N}^{n}} \frac{(n+|\alpha|)!}{n!\alpha!}\left|z^{\alpha}\right|^{2}((1+\varepsilon) R)^{-2|\alpha|} & =\sum_{\alpha \in \mathbb{N}^{n}}\left|e_{\alpha}\left(\frac{z}{(1+\varepsilon) R}\right)\right|^{2} \\
& \leqslant \frac{1}{\left(1-1 /(1+\varepsilon)^{2}\right)^{n+1}} \tag{3.6}
\end{align*}
$$

So there is a finite subset J of \mathbb{N}^{n} which is independent of z so that

$$
\sum_{\alpha \in \mathbb{N}^{n} \backslash J} \frac{(n+|\alpha|)!}{n!\alpha!}\left|z^{\alpha}\right|^{2}((1+\varepsilon) R)^{-2|\alpha|} \leqslant \frac{\delta}{2}((1+\varepsilon) R)^{2 n}
$$

Hence for this J,

$$
\begin{equation*}
\left|\left\langle h_{J}, k_{z}\right\rangle\right|^{2} \leqslant \frac{\delta}{2} \int_{|w|<(1+\varepsilon) R}\left\langle\left(k_{w} \otimes k_{w}\right) f, f\right\rangle \mathrm{d} \mu(w) . \tag{3.7}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\left|\left\langle g_{J}, k_{z}\right\rangle\right|^{2} \leqslant\left\|g_{J}\right\|^{2}=\sum_{\alpha \in J}\left|\left\langle f, e_{\alpha}\right\rangle\right|^{2} \tag{3.8}
\end{equation*}
$$

From inequalities (3.2), (3.7) and (3.8), we conclude that

$$
\left\langle\left(k_{z} \otimes k_{z}\right) f, f\right\rangle \leqslant 2 \sum_{\alpha \in J}\left\langle\left(e_{\alpha} \otimes e_{\alpha}\right) f, f\right\rangle+\delta \int_{|w|<(1+\varepsilon) R}\left\langle\left(k_{w} \otimes k_{w}\right) f, f\right\rangle \mathrm{d} \mu(w) .
$$

Since $s_{\alpha}>0$ for all $\alpha \in J$ and J is finite, there is a constant $C(\delta)>0$ so that $C(\delta) s_{\alpha} \geqslant 2$ for all $\alpha \in J$. Then for any $f \in L_{a}^{2}$, and any $|z| \leqslant R$,

$$
\begin{aligned}
\left\langle\left(k_{z} \otimes k_{z}\right) f, f\right\rangle & \leqslant C(\delta) \sum_{\alpha \in J} s_{\alpha}\left\langle\left(e_{\alpha} \otimes e_{\alpha}\right) f, f\right\rangle+\delta \int_{|w|<(1+\varepsilon) R}\left\langle\left(k_{w} \otimes k_{w}\right) f, f\right\rangle \mathrm{d} \mu(w) \\
& \leqslant C(\delta) \sum_{\alpha \in \mathbb{N}^{n}} s_{\alpha}\left\langle\left(e_{\alpha} \otimes e_{\alpha}\right) f, f\right\rangle+\delta \int_{|w|<(1+\varepsilon) R}\left\langle\left(k_{w} \otimes k_{w}\right) f, f\right\rangle \mathrm{d} \mu(w) .
\end{aligned}
$$

In other words, for any $|z| \leqslant R$,

$$
k_{z} \otimes k_{z} \leqslant C(\delta) \sum_{\alpha \in \mathbb{N}^{n}} s_{\alpha} e_{\alpha} \otimes e_{\alpha}+\delta \int_{|w|<(1+\varepsilon) R} k_{w} \otimes k_{w} \mathrm{~d} \mu(w)
$$

Proof of Theorem 1.2. Let $S=\sum_{\alpha \in \mathbb{N}^{n}} s_{\alpha} e_{\alpha} \otimes e_{\alpha}$ and $\mathcal{W}=\left\{w_{j}: j \in \mathbb{N}\right\}$ be as in the hypothesis of Theorem 1.2. Choose an $\varepsilon>0$ so that $(1+\varepsilon) R<1$.

For each $a \in B_{n}$, apply U_{a} to the left and U_{a}^{*} to the right of both sides of inequality (3.1) in Lemma 3.1, we get, for $|z| \leqslant R$:

$$
\begin{aligned}
U_{a}\left(k_{z} \otimes k_{z}\right) U_{a}^{*} \leqslant & \leqslant(\delta) U_{a} S U_{a}^{*}+\delta \int_{|w|<(1+\varepsilon) R} U_{a}\left(k_{w} \otimes k_{w}\right) U_{a}^{*} \mathrm{~d} \mu(w) \\
= & C(\delta) U_{a} S U_{a}^{*}+\delta \int_{|w|<(1+\varepsilon) R} k_{\varphi_{a}(w)} \otimes k_{\varphi_{a}(w)} \mathrm{d} \mu(w) \\
& =C(\delta) U_{a} S U_{a}^{*}+\delta \int_{\left|\varphi_{a}(\zeta)\right|<(1+\varepsilon) R} k_{\zeta} \otimes k_{\zeta} \mathrm{d} \mu(\zeta)
\end{aligned}
$$

$$
\text { (by the change-of-variable } w=\varphi_{a}(\zeta) \text {) }
$$

$$
=C(\delta) U_{a} S U_{a}^{*}+\delta \int_{E(a,(1+\varepsilon) R)} k_{\zeta} \otimes k_{\zeta} \mathrm{d} \mu(\zeta)
$$

Since $U_{a}\left(k_{z} \otimes k_{z}\right) U_{a}^{*}=k_{\varphi_{a}(z)} \otimes k_{\varphi_{a}(z)}$, the above implies

$$
\begin{equation*}
k_{\varphi_{a}(z)} \otimes k_{\varphi_{a}(z)} \leqslant C(\delta) U_{a} S U_{a}^{*}+\delta \int_{E(a,(1+\varepsilon) R)} k_{\zeta} \otimes k_{\zeta} \mathrm{d} \mu(\zeta) \tag{3.9}
\end{equation*}
$$

For each $|z| \leqslant R$, let

$$
T(z)=\sum_{j \in \mathbb{N}} k_{\varphi_{w_{j}}(z)} \otimes k_{\varphi_{w_{j}}(z)}
$$

Then (3.9) gives, for $|z| \leqslant R$:

Decompose $\mathcal{W}=\mathcal{W}_{1} \cup \cdots \cup \mathcal{W}_{N}$ as in Lemma 2.3, where N depends only on $n,(1+\varepsilon) R$ and the degree of separation of \mathcal{W}. Then

$$
\begin{aligned}
& \sum_{j \in \mathbb{N}_{E\left(w_{j},(1+\varepsilon) R\right)} \int_{\zeta} k_{\zeta} \otimes k_{\zeta} \mathrm{d} \mu(\zeta)} \leqslant \sum_{i=1}^{N} \sum_{w \in \mathcal{W}_{i}} \int_{E(w,(1+\varepsilon) R)} k_{\zeta} \otimes k_{\zeta} \mathrm{d} \mu(\zeta) \\
& \leqslant \sum_{i=1}^{N} \int_{B_{n}} k_{\zeta} \otimes k_{\zeta} \mathrm{d} \mu(\zeta)=N
\end{aligned}
$$

Hence, for $|z| \leqslant R$,

$$
\begin{equation*}
T(z) \leqslant C(\delta) \sum_{j \in \mathbb{N}} U_{w_{j}} S U_{w_{j}}^{*}+\delta N \tag{3.11}
\end{equation*}
$$

By integrating $T(z)$ with respect to $\mathrm{d} v(z)$ over the ball $|z|<R$, we get

$$
\begin{aligned}
\int_{|z|<R} T(z) \mathrm{d} v(z) & \geqslant\left(1-R^{2}\right)^{n+1} \int_{|z|<R} T(z)\left(1-|z|^{2}\right)^{-(n+1)} \mathrm{d} v(z) \\
& =\left(1-R^{2}\right)^{n+1} \int_{|z|<R} T(z) \mathrm{d} \mu(z) \\
& =\left(1-R^{2}\right)^{n+1} \sum_{j \in \mathbb{N}} \int_{|z|<R} k_{\varphi_{w_{j}}(z)} \otimes k_{\varphi_{w_{j}}(z)} \mathrm{d} \mu(z) \\
& =\left(1-R^{2}\right)^{n+1} \sum_{j \in \mathbb{N}_{E\left(w_{j}, R\right)}} \int_{\zeta} \otimes k_{\zeta} \mathrm{d} \mu(\zeta) \\
& \geqslant\left(1-R^{2}\right)^{n+1} \int_{B_{n}} k_{\zeta} \otimes k_{\zeta} \mathrm{d} \mu(\zeta) \quad\left(\text { since } B_{n}=\bigcup_{j \in \mathbb{N}} E\left(w_{j}, R\right)\right) \\
& =\left(1-R^{2}\right)^{n+1} .
\end{aligned}
$$

Inequalities (3.11) and (3.12) together imply

$$
C(\delta) \sum_{j \in \mathbb{N}} U_{w_{j}} S U_{w_{j}}^{*}+\delta N \geqslant\left(1-R^{2}\right)^{n+1} R^{-2 n}
$$

Now choose δ so small that

$$
\delta N \leqslant 2^{-1}\left(1-R^{2}\right)^{n+1} R^{-2 n} .
$$

Then we have

$$
\begin{equation*}
C(\delta) \sum_{j \in \mathbb{N}} U_{w_{j}} S U_{w_{j}}^{*} \geqslant 2^{-1}\left(1-R^{2}\right)^{n+1} R^{-2 n}>0 \tag{3.13}
\end{equation*}
$$

4. PROOF OF THE MAIN THEOREM

Suppose $\eta_{\varepsilon}(z)=z_{1} \eta(|z| / \varepsilon)$ for all $z=\left(z_{1}, \ldots, z_{n}\right) \in B_{n}$ as in the hypothesis of Theorem 1.1. We will compute directly $\left[T_{\eta_{\varepsilon}}, T_{\bar{\eta}_{\varepsilon}}\right]$ to see that it is a diagonal operator with respect to the standard orthonormal basis.

For any multi-indices α and β in \mathbb{N}^{n}, we have

$$
\left\langle T_{\eta_{\varepsilon}} e_{\alpha}, e_{\beta}\right\rangle=\int_{B_{n}} \eta_{\varepsilon}(z) e_{\alpha}(z) \bar{e}_{\beta}(z) \mathrm{d} v(z)=\int_{|z|<\varepsilon} \eta(|z| / \varepsilon) z_{1} e_{\alpha}(z) \bar{e}_{\beta}(z) \mathrm{d} v(z)
$$

Now,

$$
\begin{aligned}
z_{1} e_{\alpha}(z) & =\left(\frac{(n+|\alpha|)!}{n!\alpha!}\right)^{1 / 2} z_{1} z^{\alpha}=\left(\frac{(n+|\alpha|)!}{n!\alpha!} \frac{n!(\alpha+(1,0, \ldots, 0))!}{(n+|\alpha|+1)!}\right)^{1 / 2} e_{\alpha+(1,0, \ldots, 0)}(z) \\
& =\left(\frac{\alpha_{1}+1}{n+|\alpha|+1}\right)^{1 / 2} e_{\alpha+(1,0, \ldots, 0)}(z) .
\end{aligned}
$$

So

$$
\begin{aligned}
\left\langle T_{\eta_{\varepsilon}} e_{\alpha}, e_{\beta}\right\rangle= & \left(\frac{\alpha_{1}+1}{n+|\alpha|+1}\right)^{1 / 2} \int_{|z|<\varepsilon} \eta(|z| / \varepsilon) e_{\alpha+(1,0, \ldots, 0)}(z) \bar{e}_{\beta}(z) \mathrm{d} v(z) \\
= & \left(\frac{\alpha_{1}+1}{n+|\alpha|+1}\right)^{1 / 2} \int_{0}^{\varepsilon}(2 n) r^{2 n-1} \eta(r / \varepsilon) \int_{S^{n}} e_{\alpha+(1,0, \ldots, 0))}(r \zeta) \bar{e}_{\beta}(r \zeta) \mathrm{d} \sigma(\zeta) \mathrm{d} r \\
= & \left(\frac{\alpha_{1}+1}{n+|\alpha|+1}\right)^{1 / 2} \\
& \times \begin{cases}0 & \text { if } \beta \neq \alpha+(1,0, \ldots, 0), \\
\int_{0}^{\varepsilon}(2 n) r^{2 n-1} \eta(r / \varepsilon)\left(\frac{n+|\alpha|+1}{n}\right) r^{2|\alpha|+2} \mathrm{~d} r & \text { if } \beta=\alpha+(1,0, \ldots, 0),\end{cases}
\end{aligned}
$$

(see Proposition 1.4.9 in [4]).
We have
$\int_{0}^{\varepsilon}(2 n) r^{2 n-1} \eta(r / \varepsilon)\left(\frac{n+|\alpha|+1}{n}\right) r^{2|\alpha|+2} \mathrm{~d} r=\int_{0}^{\varepsilon} 2(n+|\alpha|+1) r^{2 n+2|\alpha|+1} \eta(r / \varepsilon) \mathrm{d} r$ $=\varepsilon^{2 n+2|\alpha|+2} \int_{0}^{1}(n+|\alpha|+1) t^{n+|\alpha|} \eta\left(t^{1 / 2}\right) \mathrm{d} t$ (by the change-of-variable $r=\varepsilon t^{1 / 2}$).

For $m \geqslant 0$, put $\gamma_{m}=\int_{0}^{1}(m+1) t^{m} \eta\left(t^{1 / 2}\right) \mathrm{d} t>0$. Note that γ_{m} depends only on m and the function η. We then have

$$
T_{\eta_{\varepsilon}} e_{\alpha}=\left(\frac{\alpha_{1}+1}{n+|\alpha|+1}\right)^{1 / 2} \varepsilon^{2 n+2|\alpha|+2} \gamma_{n+|\alpha|} e_{\alpha+(1,0, \ldots, 0)}
$$

From this we see that for any multi-index α,

$$
T_{\bar{\eta}_{\varepsilon}} e_{\alpha}=\left(\frac{\alpha_{1}}{n+|\alpha|}\right)^{1 / 2} \varepsilon^{2 n+2|\alpha|} \gamma_{n+|\alpha|-1} e_{\alpha-(1,0, \ldots, 0)}
$$

if $\alpha_{1} \geqslant 1$ and $T_{\bar{\eta}_{\varepsilon}} e_{\alpha}=0$ if $\alpha_{1}=0$.
Now for multi-indices α with $\alpha_{1} \geqslant 1$,

$$
\begin{aligned}
T_{\eta_{\varepsilon}} T_{\bar{\eta}_{\varepsilon}} e_{\alpha} & =T_{\eta_{\varepsilon}}\left(\left(\frac{\alpha_{1}}{n+|\alpha|}\right)^{1 / 2} \varepsilon^{2 n+2|\alpha|} \gamma_{n+|\alpha|-1} e_{\alpha-(1,0 \ldots, 0)}\right) \\
& =\left(\frac{\alpha_{1}}{n+|\alpha|}\right)^{1 / 2} \varepsilon^{2 n+2|\alpha|} \gamma_{n+|\alpha|-1}\left(\frac{\alpha_{1}}{n+|\alpha|}\right)^{1 / 2} \varepsilon^{2 n+2|\alpha|} \gamma_{n+|\alpha|-1} e_{\alpha} \\
& =\frac{\alpha_{1}}{n+|\alpha|} \varepsilon^{4(n+|\alpha|)} \gamma_{n+|\alpha|-1}^{2} e_{\alpha}
\end{aligned}
$$

and

$$
\begin{aligned}
T_{\bar{\eta}_{\varepsilon}} T_{\eta_{\varepsilon}} e_{\alpha} & =T_{\bar{\eta}_{\varepsilon}}\left(\left(\frac{\alpha_{1}+1}{n+|\alpha|+1}\right)^{1 / 2} \varepsilon^{2 n+2|\alpha|+2} \gamma_{n+|\alpha|} e_{\alpha+(1,0, \ldots, 0)}\right) \\
& =\left(\frac{\alpha_{1}+1}{n+|\alpha|+1}\right)^{1 / 2} \varepsilon^{2 n+2|\alpha|+2}\left(\frac{\alpha_{1}+1}{n+|\alpha|+1}\right)^{1 / 2} \varepsilon^{2 n+2|\alpha|+2} \gamma_{n+|\alpha|} e_{\alpha} \\
& =\frac{\alpha_{1}+1}{n+|\alpha|+1} \varepsilon^{4(n+|\alpha|+1)} \gamma_{n+|\alpha|}^{2} e_{\alpha} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
{\left[T_{\eta_{\varepsilon}}, T_{\bar{\eta}_{\varepsilon}}\right] e_{\alpha} } & =\left(\frac{\alpha_{1}}{n+|\alpha|} \varepsilon^{4(n+|\alpha|)} \gamma_{n+|\alpha|-1}^{2}-\frac{\alpha_{1}+1}{n+|\alpha|+1} \varepsilon^{4(n+|\alpha|+1)} \gamma_{n+|\alpha|}^{2}\right) e_{\alpha} \\
& =\left(\frac{\alpha_{1}}{\alpha_{1}+1} \frac{n+|\alpha|+1}{n+|\alpha|} \frac{\gamma_{n+|\alpha|-1}^{2}}{\gamma_{n+|\alpha|}^{2}}-\varepsilon^{4}\right) \frac{\alpha_{1}+1}{n+|\alpha|+1} \varepsilon^{4(n+|\alpha|)} \gamma_{n+|\alpha|}^{2} e_{\alpha} .
\end{aligned}
$$

This formula also holds for multi-indices α with $\alpha_{1}=0$.
For all $0<\varepsilon<1$ so that

$$
\varepsilon^{4} \notin\left\{\frac{\alpha_{1}}{\alpha_{1}+1} \frac{n+|\alpha|+1}{n+\alpha \mid} \frac{\gamma_{n+|\alpha|-1}^{2}}{\gamma_{n+|\alpha|}^{2}}: \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}\right\}
$$

the operator $T=\left[T_{\eta_{\varepsilon}}, T_{\bar{\eta}_{\varepsilon}}\right]^{2}$ can be written as

$$
T=\sum_{\alpha \in \mathbb{N}^{n}} s_{\alpha} e_{\alpha} \otimes e_{\alpha}
$$

where $s_{\alpha}>0$ for all α.

Since $\left\{w_{j}: j \in \mathbb{N}\right\}$ is separated and $B_{n}=\bigcup_{j \in \mathbb{N}} E\left(w_{j}, R\right)$ for some $0<R<1$, Theorem 1.2 implies that there is a positive number c so that

$$
A_{\varepsilon}=\sum_{j \in \mathbb{N}} U_{w_{j}} T U_{w_{j}}^{*}=\sum_{j \in \mathbb{N}} U_{w_{j}}\left[T_{\eta_{\varepsilon}}, T_{\bar{\eta}_{\varepsilon}}\right]^{2} U_{w_{j}}^{*} \geqslant c>0 .
$$

Now for each $j \in \mathbb{N}$,

$$
\begin{aligned}
U_{w_{j}}\left[T_{\eta_{\varepsilon}}, T_{\bar{\eta}_{\varepsilon}}\right] U_{w_{j}}^{*} & =U_{w_{j}}\left(T_{\eta_{\varepsilon}} T_{\bar{\eta}_{\varepsilon}}-T_{\bar{\eta}_{\varepsilon}} T_{\eta_{\varepsilon}}\right) U_{w_{j}}^{*}=U_{w_{j}} T_{\eta_{\varepsilon}} T_{\bar{\eta}_{\varepsilon}} U_{w_{j}}^{*}-U_{w_{j}} T_{\bar{\eta}_{\varepsilon}} T_{\eta_{\varepsilon}} U_{w_{j}}^{*} \\
& =\left(U_{w_{j}} T_{\eta_{\varepsilon}} U_{w_{j}}^{*}\right)\left(U_{w_{j}} T_{\bar{\eta}_{\varepsilon}} U_{w_{j}}^{*}\right)-\left(U_{w_{j}} T_{\bar{\eta}_{\varepsilon}} U_{w_{j}}^{*}\right)\left(U_{w_{j}} T_{\eta_{\varepsilon}} U_{w_{j}}^{*}\right) \\
& =T_{\eta_{\varepsilon} \circ \varphi_{w_{j}}} T_{\bar{\eta}_{\varepsilon} \circ \varphi_{w_{j}}}-T_{\bar{\eta}_{\varepsilon} \circ \varphi_{w_{j}}} T_{\eta_{\varepsilon} \circ \varphi_{w_{j}}}=\left[T_{\eta_{\varepsilon} \circ \varphi_{w_{j}}}, T_{\bar{\eta}_{\varepsilon} \circ \varphi_{w_{j}}}\right] .
\end{aligned}
$$

Hence $A_{\varepsilon}=\sum_{j \in \mathbb{N}}\left[T_{\eta_{\varepsilon} \circ \varphi_{w_{j}}}, T_{\bar{\eta}_{\varepsilon} \circ \varphi_{w_{j}}}\right]^{2}$.
Note that for each j, the function $\eta_{\varepsilon} \circ \varphi_{w_{j}}$ is supported in the set

$$
\left\{z \in B_{n}:\left|\varphi_{w_{j}}(z)\right| \leqslant \varepsilon\right\}=\left\{z \in B_{n}: \rho\left(z, w_{j}\right) \leqslant \varepsilon\right\}=E\left(w_{j}, \varepsilon\right)
$$

We now decompose $\mathcal{W}=\mathcal{W}_{1} \cup \cdots \cup \mathcal{W}_{N}$ such that $E(z, \varepsilon) \cap E(w, \varepsilon)=\varnothing$ for all $z \neq w$ in \mathcal{W}_{j}, for all $1 \leqslant j \leqslant N$ as in Lemma 2.3. Hence

$$
A_{\varepsilon}=\sum_{i=1}^{N} \sum_{w \in \mathcal{W}_{i}}\left[T_{\eta_{\varepsilon} \circ \varphi_{w}}, T_{\bar{\eta}_{\varepsilon} \circ \varphi_{w}}\right]^{2},
$$

where, by Proposition 2.7 and the remark following it, each of the summands is in $\mathfrak{C T}\left(G_{\varepsilon}\right)$. Here we remind the reader that G_{ε} is the subset of L^{∞} consisting of all functions of the form $\sum_{j \in F} \eta_{\varepsilon} \circ \varphi_{w_{j}}$ or $\sum_{j \in F} \bar{\eta}_{\varepsilon} \circ \varphi_{w_{j}}$ where F is a subset of \mathbb{N}.

It then follows that $A_{\mathcal{\varepsilon}}$ itself belongs to $\mathfrak{C T}\left(G_{\varepsilon}\right)$.

5. REMARKS

In this section we are discussing some remarks about Theorem 1.1. Our first remark is the existence of a separated sequence as in the hypothesis of Theorem 1.1. This is actually a consequence of Zorn's lemma. In fact, let $0<r<1$ and Ω_{r} be the collection of all sets of points $\left\{w_{j}: j \in J\right\}$ in B_{n} so that $\rho\left(w_{j}, w_{k}\right)>r$ for all $j \neq k$. The sets in Ω_{r} are ordered by inclusion. Apply Zorn's lemma, we get a maximal set in Ω_{r}. Denote this set by $\left\{w_{j}: j \in J\right\}$. Since J must be infinite and countable, we can assume that J is \mathbb{N}. Then for any $z \in B_{n}$, by maximality there is a $j \in \mathbb{N}$ so that $\rho\left(z, w_{j}\right) \leqslant r$. Hence $B_{n}=\bigcup_{j \in \mathbb{N}} E\left(w_{j}, r\right)$.

The second remark is about the set G_{ε}. Note that all functions in G_{ε} vanish on $B_{n} \backslash E_{\varepsilon}$, where E_{ε} is a subset of $V_{\varepsilon}=\bigcup_{j \in \mathbb{N}} E\left(w_{j}, \varepsilon\right)$. The following lemma gives an upper estimate for the Lebesgue measure of V_{ε} for small $\varepsilon>0$.

Lemma 5.1. Suppose $0<\varepsilon_{0}<1$ so that $E\left(w_{j}, \varepsilon_{0}\right) \cap E\left(w_{l}, \varepsilon_{0}\right)=\varnothing$ for all $j \neq l$. Then for any $\varepsilon<\varepsilon_{0}$,

$$
v\left(V_{\varepsilon}\right) \leqslant\left(\frac{\varepsilon}{\varepsilon_{0}}\right)^{2 n} v\left(V_{\varepsilon_{0}}\right)
$$

Proof. For any $0<\delta<1$ and $z \in B_{n}$, we have

$$
\begin{aligned}
v(E(z, \delta)) & =\int_{E(z, \delta)} \mathrm{d} v(w) \\
& \left.=\int_{E(0, \delta)} \frac{\left(1-|z|^{2}\right)^{n+1}}{|1-\langle\zeta, z\rangle|^{2(n+1)}} \mathrm{d} v(\zeta) \quad \text { (by the change-of-variable } w=\varphi_{z}(\zeta)\right) \\
& =\left(1-|z|^{2}\right)^{n+1} \int_{E(0,1)} \frac{\delta^{2 n} \mathrm{~d} v(\zeta)}{|1-\langle\delta \zeta, z\rangle|^{2(n+1)}} \\
& =\left(1-|z|^{2}\right)^{n+1} \delta^{2 n} \int_{E(0,1)}\left(1-(\delta|z|)^{2}\right)^{-n-1}\left|k_{\delta z}(\zeta)\right|^{2} \mathrm{~d} v(\zeta) \\
& =\left(1-|z|^{2}\right)^{n+1} \delta^{2 n}\left(1-(\delta|z|)^{2}\right)^{-n-1}\left\|k_{\delta z}\right\|^{2} \\
& =\left(1-|z|^{2}\right)^{n+1} \delta^{2 n}\left(1-(\delta|z|)^{2}\right)^{-n-1} .
\end{aligned}
$$

Now for $0<\varepsilon<\varepsilon_{0}<1$ as in the hypothesis,

$$
\begin{aligned}
v\left(V_{\varepsilon}\right) & =\sum_{j \in \mathbb{N}} v\left(E\left(w_{j}, \varepsilon\right)\right)=\sum_{j \in \mathbb{N}}\left(1-\left|w_{j}\right|^{2}\right)^{n+1} \varepsilon^{2 n}\left(1-\left(\varepsilon\left|w_{j}\right|\right)^{2}\right)^{-n-1} \\
& =\sum_{j \in \mathbb{N}}\left(1-\left|w_{j}\right|^{2}\right)^{n+1} \varepsilon_{0}^{2 n}\left(1-\left(\varepsilon_{0}\left|w_{j}\right|\right)^{2}\right)^{-n-1}\left(\frac{\varepsilon}{\varepsilon_{0}}\right)^{2 n}\left(\frac{1-\left(\varepsilon_{0}\left|w_{j}\right|\right)^{2}}{1-\left(\varepsilon\left|w_{j}\right|\right)^{2}}\right)^{n+1} \\
& \left.\leqslant\left(\frac{\varepsilon}{\varepsilon_{0}}\right)^{2 n} \sum_{j \in \mathbb{N}} v\left(E\left(w_{j}, \varepsilon_{0}\right)\right) \quad \text { (because } \frac{1-\left(\varepsilon_{0}\left|w_{j}\right|\right)^{2}}{1-\left(\varepsilon\left|w_{j}\right|\right)^{2}} \leqslant 1 \text { for } \varepsilon<\varepsilon_{0}\right) \\
& =\left(\frac{\varepsilon}{\varepsilon_{0}}\right)^{2 n} v\left(V_{\varepsilon_{0}}\right) . \quad \mathbf{1}
\end{aligned}
$$

This lemma implies that if the separated set is fixed then the Lebesgue measure $v\left(V_{\varepsilon}\right)$ can be made as small as we please provided that ε is small.

To conclude the paper, we will show that if η is a continuous function on $[0,1]$ then G_{ε} is contained in $C\left(B_{n}\right)$, the space of continuous functions on the open unit ball B_{n}. This remark together with Theorem 1.1 implies that $\mathfrak{C T}\left(C\left(B_{n}\right) \cap L^{\infty}\right)$ coincides with the full Toeplitz algebra $\mathfrak{T}\left(L^{\infty}\right)$. The reader should compare this with the fact that $\mathfrak{C T}\left(C\left(\bar{B}_{n}\right)\right)$ is the same as the ideal \mathcal{K} of compact operators.

Suppose η is continuous on $[0,1]$, then for each $j \in \mathbb{N}$ the function $\eta_{\varepsilon} \circ$ $\varphi_{w_{j}}$ is continuous and supported in the ball $E\left(w_{j}, \varepsilon\right)$. Suppose F is a subset of \mathbb{N}. Let $f=\sum_{j \in F} \eta_{\varepsilon} \circ \varphi_{w_{j}}$. Let $0<R<1$ be given. By Lemma 2.2, all but a finite number of functions in the series vanish on $E(0, R)$. Thus f, being a finite sum of
continuous functions on $E(0, R)$, is continuous on $E(0, R)$ for all $0<R<1$. So f is continuous on the open unit ball B_{n}. Similarly, functions of the form $\sum_{j \in F} \bar{\eta}_{\varepsilon} \circ \varphi_{w_{j}}$ are also continuous on B_{n}.

Acknowledgements. This paper is part of the author's Ph.D. Dissertation work under the supervision of Professor Jingbo Xia at the State University of New York at Buffalo.

The author wishes to thank the referee for many valuable suggestions which improved the presentation of the paper. In particular, the argument (3.4) and the use of Bergman reproducing kernels in (3.6) are due to the referee.

REFERENCES

[1] L.A. CObURN, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23(1973/74), 433-439.
[2] R.G. Douglas, Banach Algebra Techniques in Operator Theory, Springer-Verlag, New York 1998.
[3] Y.J. Lee, Pluriharmonic symbols of commuting Toeplitz type operators on the weighted Bergman spaces, Canad. Math. Bull. 41(1998), 129-136.
[4] W. Rudin, Function Theory in the Unit Ball of C ${ }^{n}$, Springer-Verlag, New York 1980.
[5] D. SuÁrez, The Toeplitz algebra on the Bergman space coincides with its commutator ideal, J. Operator Theory 51(2004), 105-114.
[6] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker Inc., New York 1990.

TRIEU LE, Department of Mathematics, Univ. of Toronto, Toronto, ON, CANADA M5S 2E4

E-mail address: tle@fields.utoronto.ca

