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ABSTRACT. For a higher-rank graph Λ with sources we detail a construction
that creates a higher-rank graph Λ that does not have sources and contains Λ
as a subgraph. Furthermore, when Λ is row-finite the Cuntz-Krieger algebra
of Λ, C∗(Λ) is a full corner of C∗(Λ), the Cuntz-Krieger algebra of Λ.
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INTRODUCTION

Higher-rank graphs are generalizations of directed graphs that were intro-
duced by Kumjian and Pask in [7] who were motivated by the C∗-algebras of
buildings that were studied by Robertson and Steger in [15], [16], [17]. In this
paper, we extend a higher-rank graph with sources to another higher-rank graph
that has no sources. We will do this in such a way that the C∗-algebras of the
graphs are strongly Morita equivalent, thereby removing one of the technical dif-
ficulties encountered when working with higher-rank graphs.

A higher-rank graph can be viewed as a union of k directed graphs with
the same vertex set, where the edges of the different graphs are painted with k
different colors. A higher-rank graph also includes a factorization property that
dictates how the edges of different colors fit together to form paths. More pre-
cisely, a higher-rank graph Λ is a countable category together with a degree func-
tor d : Λ → Nk which satisfies the factorization property: for every λ ∈ Λ and
m, n ∈ Nk such that d(λ) = m + n, there are unique elements µ, ν ∈ Λ such that
λ = µν, d(µ) = m and d(ν) = n. The rank of Λ is k, and therefore, Λ is also
called a k-graph. The C∗-algebras of higher-rank graphs include the C∗-algebras
associated to directed graphs which have been the focus of much attention in re-
cent years. (See [10] for a detailed account of graph C∗-algebras. We will use the
conventions established in [10] when discussing directed graphs.)
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The development of the C∗-algebras of higher-rank graphs has progressed
in a manner similar to that of the C∗-algebras associated with directed graphs.
The C∗-algebras of directed graphs were first defined in terms of groupoids [8].
Next, in [2], the graph C∗-algebra is realized as the universal C∗-algebra gen-
erated by a collection of projections and partial isometries satisfying certain re-
lations. Both of these methods required that the directed graphs be row-finite,
that is, each vertex has finitely many edges pointing toward it. The groupoid
techniques also required that the directed graphs did not have any sources. (A
source is a vertex that does not have any edges pointing toward it.) In [6], the
C∗-algebra of an arbitrary directed graph was defined as a universal C∗-algebra.
Using a method similar to that used in [8] for directed graphs, Kumjian and Pask
realized the C∗-algebra of a higher-rank graph to be the C∗-algebra of a groupoid
associated to the higher-rank graph. Therefore, they also required that the higher-
rank graphs be row-finite and have no sources (Definitions 1.3 and 1.4). Raeburn,
Sims and Yeend in [11] defined, in a universal way, the C∗-algebras for a class of
higher-rank graphs known as locally convex k-graphs. Later, they extended their
definition to include the C∗-algebras of finitely aligned k-graphs in [12]. Finitely
aligned k-graphs allow for vertices to receive infinitely many edges and appear
to be the most general class of k-graphs to which a C∗-algebra can be associated.

One of the main accomplishments of Drinen and Tomforde in [3] is the de-
velopment of the method known as desingularization. If E is a directed graph,
possibly with sources and possibly not row-finite, a desingularization of F is
a row-finite directed graph without sources that is obtained from E. Further-
more, the C∗-algebras associated with E and F, C∗(E) and C∗(F), respectively,
are Morita equivalent. Therefore, when studying the C∗-algebras associated to
directed graphs, it usually suffices to consider directed graphs that are row-finite
and have no sources. The desingularization method, in addition to providing
easier proofs for the uniqueness theorems of graph C∗-algebras, also led to the
description of the ideal structure of graph algebras. (See also [1].)

The construction detailed in this paper, which “removes sources” from a
higher-rank graph, will have similar effects on the study of higher-rank graph C∗-
algebras. First of all, by transforming an arbitrary row-finite higher-rank graph
into a locally convex graph, we will be able to use the Cuntz-Krieger relations
from Definition 3.3 in [11] which are much simpler than those used to define the
algebras of finitely aligned k-graphs (Definition 1.9). Also, the construction given
here may allow for some of the results that exist for the C∗-algebras of row-finite
higher-rank graphs without sources to be extended to more general higher-rank
graph C∗-algebras. For example, in [4], Evans completely describes the K-theory
of the C∗-algebras associated to row-finite k-graphs without sources when k = 2
and obtains some partial results for k > 3. Robertson and Sims give necessary
and sufficient conditions describing when the C∗-algebra corresponding to a row-
finite k-graph without sources is simple in [14]. Since ideal structure and K-theory
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is preserved under Morita equivalence, it is expected that these results will hold
in the more general setting.

Our goal is to produce a desingularization method for higher-rank graphs
that is analogous to the process used for directed graphs. If a vertex v is a source
in a directed graph E, then the desingularization process “adds a head to v”. This
means we attach a graph of the form

v v1
ev1oo v2

ev2oo v3
ev3oo · · ·oo vn−1oo vn

evnoo · · ·oo

to v. This method was used by Bates, et. al. in [2] as well as by Drinen and Tom-
forde in [3].

In a directed graph, adding an edge to a vertex automatically creates an-
other directed graph. Therefore, dealing with sources in a directed graph is a
local problem. However, in a higher-rank graph, adding an edge of some degree
to one vertex will require that several edges of different degrees be added to other
vertices to ensure that the factorization property still holds. Hence, adding edges
to a vertex in a higher-rank graph is a global issue. The method we develop here
uses the so-called boundary paths of a higher-rank graph to identify the sources
and then extends those boundary paths in the necessary directions.

This paper is designed as follows. In Section 2, we define the terminology
necessary to discuss the C∗-algebra of a finitely aligned k-graph. In Section 3,
given a row-finite higher-rank graph Λ, we construct a row-finite higher-rank
graph Λ that is source free. We show that the C∗-algebra of the original k-graph
sits naturally inside the C∗-algebra of the extended k-graph as a full corner. Sec-
tion 4 includes examples of 2-graphs with sources and how they are extended to
graphs without sources using the method in this paper.

1. PRELIMINARIES

DEFINITION 1.1. Given k ∈ N, a k-graph (Λ, d) is a countable category Λ

together with a functor d : Λ → Nk, called the degree functor, which satisfies the
factorization property: for every λ ∈ Mor(Λ) and m, n ∈ Nk with d(λ) = m + n,
there are unique elements µ, ν ∈ Mor(Λ) such that λ=µν, d(µ)=m and d(ν)=n.

The factorization property enables the objects of Λ to be identified with the
morphisms with degree zero. Therefore, we can talk only about the morphisms
of Λ. We will write λ ∈ Λ instead of λ ∈ Mor(Λ).

We will use the following notation throughout this paper. For n ∈ Nk, let

Λn = {λ ∈ Λ : d(λ) = n}.

Thus, Obj(Λ) is identified with Λ0. For E ⊆ Λ and λ ∈ Λ, define

λE = {λµ : µ ∈ E, r(µ) = s(λ)} and Eλ = {µλ : µ ∈ E, s(µ) = r(λ)}.
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We will use e1, e2, . . . , ek to denote the usual basis for Nk. For m, n ∈ Nk,
we denote by m ∨ n the coordinate-wise maximum and the coordinate-wise min-
imum by m∧ n. For m, n ∈ Nk, m∨ n is the least element in Nk that is greater than
or equal to both m and n, and m ∧ n is the greatest element in Nk that is less than
or equal to both m and n.

We will use the convention that ∨ and ∧ precede addition and subtraction
in the order of operations; thus m + n ∧ p = m + (n ∧ p) for m, n, p ∈ Nk. For
m, n, p ∈ Nk, it is straightforward to show that (m + p) ∧ (n + p) = (m ∧ n) + p
and (m + p) ∨ (n + p) = (m ∨ n) + p.

Given a path λ ∈ Λ and m, n ∈ Nk satisfying 0 6 m 6 n 6 d(λ), the
factorization property guarantees that there are unique paths λi, i = 1, 2, 3, such
that d(λ1) = m, d(λ2) = n − m, d(λ3) = d(λ) − n and λ = λ1λ2λ3. We shall
write λ(0, m) for λ1, λ(m, n) for λ2 and λ(n, d(λ)) for λ3.

EXAMPLES 1.2. (i) Let E = (E0, E1, r, s) be a directed graph. Let E∗ denote
the category generated freely over all finite paths. Let l : E∗ → N give the length
of a path. Then (E∗, l) is a 1-graph.

(ii) For m ∈ (N∪ {∞})k, define Ωk,m to be the k-graph with

Obj(Ωk,m) = {p ∈ Nk : p 6 m},
Mor(Ωk,m) = {(p, q) ∈ Obj(Ωk,m)×Obj(Ωk,m) : p 6 q},
r(p, q) = p, s(p, q) = q, d(p, q) = q− p.

Drawn below are Ω2,(∞,∞) and Ω2,(1,2). In the diagrams, edges of degree (1, 0) are
solid; edges of degree (0, 1) are dashed. In each diagram λ = ((0, 2), (1, 2)) while
µ = ((0, 0), (0, 1)).
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Ω2,(∞,∞) Ω2,(1,2)

The path ((0, 0), (1, 2)) in either of the above graphs is viewed as the 1× 2 rec-
tangle from (0, 0) to (1, 2). The factorization property means that any of the ways
that one can connect (1, 2) to (0, 0) using the segments shown are, in fact, the
same path.
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DEFINITION 1.3. A k-graph (Λ, d) is row-finite if vΛn is at most finite for all
v ∈ Λ0 and n ∈ Nk.

DEFINITION 1.4. A vertex v ∈ Λ0 is a source if vΛn = ∅ for some n ∈ Nk.

In Example 1.2 (ii), every vertex in Ω2,(1,2) is a source. On the other hand,
the 2-graph Ω2,(∞,∞) has no sources. The “removing sources” construction in this
paper will extend Ω2,(1,2) to Ω2,(∞,∞).

DEFINITION 1.5. For λ, µ ∈ Λ, if there exist α, β ∈ Λ such that λα = µβ
and d(λα) = d(λ) ∨ d(µ), then λα is called a minimal common extension of λ and µ.
Define Λmin(λ, µ) to be the set

Λmin(λ, µ) = {(α, β) ∈ Λ×Λ : λα = µβ and d(λα) = d(λ) ∨ d(µ)}.

DEFINITION 1.6. A k-graph (Λ, d) is finitely aligned if Λmin(λ, µ) is at most
finite for all λ, µ ∈ Λ.

Definitions 1.4 and 1.6 highlight some key differences between 1-graphs and
k-graphs for k > 2. First of all, in the directed graph setting, a source is a vertex v
for which vΛ1 = ∅, or equivalently, if vΛ = {v}. However, a vertex in a 1-graph
is a source in the sense of Definition 1.4 if there exists a path λ ∈ vΛ such that
s(λ)Λ = {s(λ)}. This is not the case for arbitrary k-graphs. Consider the graph
Ω2,(∞,1) drawn here:

(0, 1)
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(1, 1)oo
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(2, 1)oo

��
�
�
�

(3, 1)oo

��
�
�
�

· · ·oo

(0, 0) (1, 0)oo (2, 0)oo (3, 0)oo · · ·oo

Each of the vertices (m, 1), m ∈ N is a source since (m, 1)Ωe2
2,(∞,1) = ∅. However,

there is no vertex v ∈ Ω0
2,(∞,1) with vΩ2,(∞,1) = {v}. The difference is that in

a k-graph for k > 2, vertices can be sources in some directions, but not in all.
Secondly, if Λ is a 1-graph and λ, µ ∈ Λ, the only way two paths can have a
minimal common extension is if one path is a subpath of the other. Therefore,
the set Λmin(λ, µ) is either empty or a singleton. Consequently, any 1-graph is
finitely aligned.

DEFINITION 1.7. Let (Λ, d) be a k-graph; let v ∈ Λ0 and E ⊂ vΛ. We say that
E is exhaustive if for every µ ∈ vΛ there exists a λ ∈ E such that Λmin(λ, µ) 6= ∅.
We denote the set of all finite exhaustive subsets of Λ by FE(Λ).

EXAMPLES 1.8. (i) For all m ∈ (N ∪ {∞})k and v ∈ Ω0
k,m, any finite (non-

empty) subset of vΩk,m is a finite exhaustive set.
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(ii) Consider the k-graph Λ below:
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Dashed edges represent edges of degree (0, 1) and solid edges represent edges
of degree (1, 0). The edges ξi where i ∈ N each have degree (1, 0). Any finite
exhaustive subset of wΛ must contain w. The set {µ} is a finite exhaustive subset
of vΛ, whereas {λ} is not because Λmin(λ, µβξi) = ∅ for any i ∈ N.

DEFINITION 1.9. Let (Λ, d) be a finitely aligned k-graph. A Toeplitz-Cuntz-
Krieger Λ-family in a C∗-algebra B is a family of partial isometries {tλ : λ ∈ Λ}
satisfying the Toeplitz-Cuntz-Krieger relations:

(TCK1) {tv : v ∈ Λ0} is a family of mutually orthogonal projections;
(TCK2) tλµ = tλtµ for all λ, µ ∈ Λ with s(λ) = r(µ);
(TCK3) t∗λtµ = ∑

(α,β)∈Λmin(λ,µ)
tαt∗β for all λ, µ ∈ Λ.

A Cuntz-Krieger Λ-family in a C∗-algebra B is a Toeplitz-Cuntz-Krieger Λ-family
that also satisfies

(CK) ∏
λ∈E

(tv − tλt∗λ) = 0 for all v ∈ Λ0 and E ∈ vFE(Λ).

Of course, the hypothesis that (Λ, d) is finitely aligned guarantees that the
sums in Definition 1.9 are finite sums and hence make sense in any C∗-algebra.

DEFINITION 1.10. Let (Λ, d) be a finitely aligned k-graph. The C∗-algebra
of Λ, denoted C∗(Λ), is the C∗-algebra generated by a universal Cuntz-Krieger
Λ-family {sλ : λ ∈ Λ} which is universal if the sense that if {tλ : λ ∈ Λ} is a
Cuntz-Krieger Λ-family in a C∗-algebra B, then there exists a C∗-homomorphism
π : C∗(Λ)→ B such that π(sλ) = tλ for all λ ∈ Λ.

We also call C∗(Λ) the Cuntz-Krieger algebra of Λ.

DEFINITION 1.11. A C∗-subalgebra B of a C∗-algebra A is called a corner if
there is a projection p in M(A) the multiplier algebra of A, such that B = pAp. A
corner is called full if it is not contained in any proper closed two-sided ideal.

Two C∗-algebras A and B are Morita equivalent if there exists an A− B im-
primitivity bimodule X. If B is a full corner of A, then one can show that an A− B
imprimitivity bimodule exists, and hence the two algebras are Morita equiva-
lent. Many C∗-algebraic properties are invariant under Morita equivalence, in-
cluding ideal structure (simplicity, in particular), being AF, pure infiniteness, real
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rank zero, stable rank one, primitive ideal space, K-theory, Ext, KK-theory and E
theory. For this reason, the notion of Morita equivalence is extremely useful in
classifying C∗-algebras. See Chapter 3 of [13] for more details.

DEFINITION 1.12. Let (Λ1, d1) and (Λ2, d2) be k-graphs. A graph morphism
is a functor F : Λ1 → Λ2 such that d2(F(λ)) = d1(λ) for all λ ∈ Λ.

DEFINITION 1.13. Let (Λ, d) be a k-graph. Define the path space of Λ to be
the set

XΛ = {x : Ωk,m → Λ : m ∈ (N∪ {∞})k and x is a graph morphism}.

We extend the range and degree maps of Λ to XΛ by defining, for x : Ωk,m → Λ,
r(x) = x(0) and d(x) = m.

REMARKS 1.14. (i) The factorization property of k-graphs implies that each
x ∈ XΛ is completely determined by {x(0, p) : p 6 m}: if l 6 n 6 p and
x(0, p) = λp, then x(l, n) = λp(l, n). If mi < ∞ for all i ∈ {1, 2, . . . , k}, then
x(0, m) completely determines x.

(ii) For each λ ∈ Λ, define xλ : Ωk,d(λ) → Λ by xλ(0, d(λ)) = λ. Then the map
λ 7→ xλ embeds Λ in XΛ.

Let x : Ωk,m → Λ be a graph morphism. For p 6 m, let σpx : Ωk,m−p → Λ

be defined by σpx(a, b) = x(a + p, b + p) for a, b ∈ Nk such that a 6 b 6 m− p. If
λ is a path such that s(λ) = x(0) define λx : Ωk,m+d(λ) → Λ by (λx)(0, d(λ)) = λ

and (λx)(0, p) = λx(0, p− d(λ)) for p ∈ Nk such that d(λ) 6 p 6 d(x) + d(λ).

DEFINITION 1.15. A k-graph (Λ, d) is locally convex if whenever λ ∈ vΛei

and µ ∈ vΛej for some v ∈ Λ0 and i, j ∈ {1, 2, . . . , k} with i 6= j, there exists
ξ ∈ s(λ)Λej and η ∈ s(µ)Λei .

DEFINITION 1.16. Let (Λ, d) be a k-graph. For q ∈ Nk, define

Λ6q = {λ ∈ Λ : d(λ) 6 q, and s(λ)Λei = ∅ when d(λ) + ei 6 q}.

EXAMPLES 1.17. (i) For any m ∈ (N ∪ {∞})k, Ωk,m is locally convex. More
generally, if Λ has no sources, then Λ is locally convex since vΛei is nonempty for
all v ∈ Λ0 and i ∈ {1, 2, . . . , k}.

(ii) The 2-graph in Example 1.8 (ii) is not locally convex. For the vertex u, we
have η ∈ uΛe1 and γ ∈ uΛe2 . However, s(η)Λe2 and s(γ)Λe1 are both empty.

REMARK 1.18. Condition (CK) of Definition 1.9 replaced earlier versions
of the Cuntz-Krieger condition that were used for row-finite k-graphs with no
sources [7] and for locally convex k-graphs [11]. The condition from [11] is

(CK′) tv = ∑
λ∈Λ6m

tλt∗λ for all v ∈ Λ0 and m ∈ Nk.

It is shown in Appendix B of [12] that the conditions in Definition 1.9 are
equivalent to those in [11] when the k-graph is locally convex.
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DEFINITION 1.19. Let (Λ, d) be a k-graph; let x : Ωk,m → Λ be a graph
morphism. Then x is a boundary path if there exists nx ∈ Nk such that nx 6 m and
for p ∈ Nk

(nx 6 p 6 m, and pi = mi)⇒ x(p)Λei = ∅.

We write Λ6∞ for the collection of all boundary paths of Λ.

Boundary paths are essential to the construction detailed in the next section.
Examples of boundary paths are given in Section 3. We will use the following
results about boundary paths.

LEMMA 1.20. Let Λ be a finitely aligned k-graph.
(i) ([12], Lemma 2.10) If x ∈ Λ6∞, then σpx and λx are elements of Λ6∞ for any

p 6 d(x) and λ ∈ x(0)Λ.
(ii) ([12], Lemma 2.11) For any v ∈ Λ0, the set vΛ6∞ is nonempty.

2. REMOVING SOURCES

In this section, we will develop a method that extends a k-graph with
sources, named Λ, to a k-graph without sources, Λ. When Λ is row-finite, C∗(Λ)
is Morita equivalent to C∗(Λ). The following theorem is the goal of this section.

THEOREM 2.1. Let (Λ, d) be a row-finite k-graph. Then there exists a row-finite
k-graph (Λ, d) without sources and an isomorphism ι of Λ onto a subgraph of Λ such that
the C∗-subalgebra of C∗(Λ) generated by {sλ : λ ∈ ιΛ} is a full corner of C∗(Λ) and is
canonically isomorphic to C∗(Λ).

We will spend the rest of the section constructing Λ and proving Theo-
rem 2.1. We begin by defining two equivalence relations ∼ and ≈. The equiv-
alence classes given by ∼ correspond to the paths that will be added to Λ, and
the equivalence classes of ≈ correspond to the new vertices.

DEFINITION 2.2. Let VΛ = {(x; m) : x ∈ Λ6∞ and m 66 d(x)}.
The set VΛ extends each element of Λ6∞ in the proper directions. Notice

that the set VΛ is disjoint from Λ0 because every vertex in Λ can be written as
x(m) for some x ∈ Λ6∞ and m 6 d(x). However, extending each boundary path
separately adds many more vertices to Λ than necessary because boundary paths
can overlap. An example of such overlap would occur when x and y are paths in
Λ6∞ such that y = σpx for some p 6 d(x). To take possible overlap into account,
we define the following relation on VΛ.

DEFINITION 2.3. Define a relation ≈ on VΛ by: (x; m) ≈ (y; p) if

(V1) x(m ∧ d(x)) = y(p ∧ d(y));
(V2) m−m ∧ d(x) = p− p ∧ d(y).
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Condition (V1) ensures that two new vertices are related if they project
down onto the same vertex in Λ. Condition (V2) relates two vertices in VΛ if
they are the same “distance” from Λ.

The proof of the next proposition is clear.

PROPOSITION 2.4. The relation ≈ on VΛ is an equivalence relation.

DEFINITION 2.5. Let PΛ = {(x; (m, n)) : x ∈ Λ6∞, n 66 d(x), and m 6 n}.
Recall the definition of Ωk,m in Example 1.2 (ii) where paths were denoted

by pairs of vertices. Definition 2.5 uses an analogous way to describe the paths
that extend the original k-graph. Since in Definition 2.5 n 66 d(x) but m may or
may not be less than or equal to d(x), we are requiring that the additional paths
start (have source) outside of the original k-graph but may or may not end (have
range) in the original k-graph. Again, the elements of PΛ are paths extending each
boundary path, and therefore, the overlapping of boundary paths must be taken
into account.

DEFINITION 2.6. Define a relation ∼ on PΛ by (x; (m, n)) ∼ (y; (p.q)) if

(P1) x(m ∧ d(x), n ∧ d(x)) = y(p ∧ d(y), q ∧ d(y));
(P2) m−m ∧ d(x) = p− p ∧ d(y);
(P3) n−m = q− p.

PROPOSITION 2.7. The relation ∼ on PΛ is an equivalence relation.

Let P̃Λ = PΛ/ ∼ and ṼΛ = VΛ/ ≈. The equivalence classes of P̃Λ will be
denoted [x; (m, n)], and the equivalence classes of ṼΛ will be denoted [x; m].

As mentioned earlier, our goal is to define a new category Λ that extends Λ.
The elements of ṼΛ will become the additional objects joined to Λ, and the new
morphisms will be the elements of P̃Λ. We now proceed by defining the range
and source maps as well as the composition (◦) and identity (id) functions on P̃Λ

that will be used to define the new category.

DEFINITION 2.8. Define r̃ : P̃Λ → (ṼΛ ∪Λ0) and s̃ : P̃Λ → ṼΛ as follows:

r̃([x; (m, n)]) =

{
x(m) if m 6 d(x),
[x; m] if m 66 d(x);

s̃([x; (m, n)]) = [x; n].

PROPOSITION 2.9. The maps r̃ and s̃ are well defined.

Proof. Suppose (x; (m, n)) ∼ (y; (p, q)). Then (P1) of Definition 2.6 implies
that n∧ d(x)−m∧ d(x) = q∧ d(y)− p∧ d(y). Subtracting this from the equation
in (P3) gives

n−m + m ∧ d(x)− n ∧ d(x) = q− p + p ∧ d(y)− q ∧ d(y)

⇔ n− n ∧ d(x)− (m−m ∧ d(x)) = q− q ∧ d(y)− (p− p ∧ d(y))

⇔ n− n ∧ d(x) = q− q ∧ d(y) using (P2).
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Since (P1) gives x(n ∧ d(x)) = y(q ∧ d(y)), it follows that (x; n) ≈ (y; q). There-
fore, s̃ is well defined.

To show r̃ is well-defined, first consider the case where m 6 d(x). Then
m ∧ d(x) = m. Therefore, m−m ∧ d(x) = 0, and (P2) implies that p ∧ d(y) = p.
Hence, x(m) = y(p) by (P1).

If m 66 d(x), then (P1) of Definition 2.6 implies x(m ∧ d(x)) = y(p ∧ d(y)),
and thus condition (V1) of Definition 2.3 is satisfied. Condition (P2) of Defini-
tion 2.6 is precisely (V2) of Definition 2.3. Therefore, (x; m) ≈ (y; p), and r̃ is well
defined.

PROPOSITION 2.10. Suppose x, y,∈ Λ6∞, and suppose p, q ∈ Nk are such that
p 6 d(x), q 6 d(y) and σpx = σqy. For all a, b ∈ Nk, if a 6 b and b + p 66 d(x), then
b + q 66 d(y) and [x; (a + p, b + p)] = [y; (a + q, b + q)].

Proof. By definition, d(σpx) = d(x)− p and d(σqy) = d(y)− q. Therefore

(2.1) d(x) = d(σpx) + p and d(y) = d(σqy) + q.

Suppose a, b ∈ Nk are such that a 6 b and b + p 66 d(x). Then

b + p 66 d(x)⇔ b + p 66 d(σpx) + p⇔ b 66 d(σpx)⇔ b 66 d(σqy)

⇔ b 66 d(y)− q⇔ b + q 66 d(y).

Thus [x; (a + p, b + p)] and [y; (a + q, b + q)] are elements in P̃Λ. To show that
[x; (a + p, b + p)] = [y; (a + q, b + q)], consider

x((a + p) ∧ d(x), (b + p) ∧ d(x))

= x(a ∧ d(σpx) + p, b ∧ d(σpx) + p) = σpx(a ∧ d(σpx), b ∧ d(σpx))

= σqy(a ∧ d(σqy), b ∧ d(σqy)) = y((a + q) ∧ d(y), (b + q) ∧ d(y)).

Thus condition (P1) of Definition 2.6 is satisfied. To show condition (P2), we have

a + p− (a + p) ∧ d(x) = a + p− (a ∧ d(σpx) + p) = a− a ∧ d(σpx)

= a− a ∧ d(σqy) = a + q− (a + q) ∧ d(y).

Condition (P3) is clear. Hence, [x; (a + p, b + p)] = [y; (a + q, b + q)].

If p = 0, then x = σqy, and Proposition 2.10 implies that for all b 66 d(x), we
have [x; (a, b)] = [y; (a + q, b + q)] .

The following proposition will be used to compose two paths in P̃Λ.

PROPOSITION 2.11. Let [x; (m, n)], [y; (p, q)] ∈ P̃Λ be such that [x; n] = [y; p].
Define z = x(0, n ∧ d(x))σp∧d(y)y. Then

(i) z ∈ Λ6∞;
(ii) m ∧ d(x) = m ∧ d(z) and n ∧ d(x) = n ∧ d(z);

(iii) x(m ∧ d(x), n ∧ d(x)) = z(m ∧ d(z), n ∧ d(z)) and y(p ∧ d(y), q ∧ d(y)) =
z(n ∧ d(z), (n + q− p) ∧ d(z)).
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Proof. (i) Since y ∈ Λ6∞, the path z belongs to Λ6∞ by Lemmas 2.10 and
2.11 of [12].

(ii) We will show that m ∧ d(x) = m ∧ d(z) and n ∧ d(x) = n ∧ d(z) on
a coordinate by coordinate basis. Let i ∈ {1, 2, . . . , k}. Since [x; n] = [y; p], it
follows that n− (n ∧ d(x)) = p− (p ∧ d(y)). Therefore,

d(z) = n ∧ d(x) + d(y)− p ∧ d(y) = d(y) + n− p.

Furthermore, since n − n ∧ d(x) = p − p ∧ d(y), ni 6 d(x)i if and only if
pi 6 d(y)i.

Case 1. Suppose d(y)i = ∞. Then pi < d(y)i, and so mi 6 ni 6 d(x)i.
Moreover, d(z)i = ∞ by definition, so (m ∧ d(x))i = mi = (m ∧ d(z))i and (n ∧
d(x))i = ni = (n ∧ d(z))i.

Case 2. Suppose d(y)i < ∞. We have

d(z)i = d(y)i + ni − pi = d(y)i + (n ∧ d(x))i − (p ∧ d(y))i < ∞.

Suppose pi 6 d(y)i. Then, as before, mi 6 ni 6 d(x)i. Also d(y)i − pi > 0. This
implies mi 6 ni 6 ni + d(y)i − pi = d(z)i. Thus (m ∧ d(x))i = mi = (m ∧ d(z))i
and (n ∧ d(x))i = ni = (n ∧ d(z))i.

If instead pi > d(y)i, then ni > d(x)i as well, and in this case

d(z)i = (n ∧ d(x))i + d(y)i − (p ∧ d(y))i = d(x)i + d(y)i − d(y)i = d(x)i.

Consequently (m ∧ d(x))i = (m ∧ d(z))i and (n ∧ d(x))i = (n ∧ d(z))i.
So in either case, we have that both (m ∧ d(x))i = (m ∧ d(z))i and (n ∧

d(x))i = (n ∧ d(z))i. Since i was arbitrarily chosen, this proves (ii).
(iii) Notice that (ii) implies that m−m ∧ d(x) = m−m ∧ d(z) and that

z(m ∧ d(z), n ∧ d(z)) = z(m ∧ d(x), n ∧ d(x)) = x(m ∧ d(x), n ∧ d(x))

because z = x(0, n ∧ d(x))σp∧d(y)y. Thus [x; (m, n)] = [z; (m, n)].
To show [z; (n, n + q − p)] = [y; (p, q)], we have that σn∧d(x)z = σp∧d(y)y.

By (ii), we have n ∧ d(z) = n ∧ d(x), and since [x; n] = [y; p], it follows that
n− n ∧ d(z) = p− p ∧ d(y). Then

[z; (n, n + q− p)]

= [z; (n− n ∧ d(z) + n ∧ d(z), n + q− p− n ∧ d(z) + n ∧ d(z))]

= [y; (n− n ∧ d(z) + p ∧ d(y), n + q− p− n ∧ d(z) + p ∧ d(y))] (by Prop. 2.10)

= [y; (p− p ∧ d(y) + p ∧ d(y), p + q− p− p ∧ d(y) + p ∧ d(y))] = [y; (p, q)].

This proves (iii).

DEFINITION 2.12. Let P̃Λ ×ṼΛ
P̃Λ be the set

{([x; (m, n)], [y; (p, q)]) ∈ P̃Λ × P̃Λ : s̃([x; (m, n)]) = r̃([y; (p, q)])}.

For ([x; (m, n)], [y; (p, q)]) ∈ P̃Λ ×ṼΛ
P̃Λ, let z = x(0, n ∧ d(x))σp∧d(y)y. Define

[x; (m, n)] ◦ [y; (p, q)] = [z; (m, n + q− p)].
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PROPOSITION 2.13. The composition defined on P̃Λ×ṼΛ
P̃Λ given in Definition 2.12

is well-defined.

Proof. This follows from Proposition 2.11.

PROPOSITION 2.14. For λ ∈ Λ and (x; (m, n)) ∈ PΛ with s(λ) = x(m), let
z = λσmx. Then

(i) z ∈ Λ6∞, and
(ii) [z; (d(λ), n−m + d(λ))] = [x; (m, n)].

Proof. Since x ∈ Λ6∞, (i) follows from Lemmas 2.10 and 2.11 of [12].
Using the fact that σd(λ)z = σmx, Proposition 2.10 implies that

[z; (d(λ), n−m + d(λ))] = [x; (m, n−m + m)] = [x; (m, n)].

Thus (ii) follows.

DEFINITION 2.15. Let Λ×Λ0 P̃Λ be the set

{(λ, [x; (m, n)]) ∈ Λ× P̃Λ : s(λ) = r̃([x; (m, n)])}

For (λ, [x; (m, n)]) ∈ Λ×Λ0 P̃Λ, let z = λσmx. Define

λ ◦ [x; (m, n)] = [z; (0, d(λ) + n−m)].

The proof of the following is a direct consequence of Proposition 2.14.

PROPOSITION 2.16. The composition defined on Λ×Λ0 P̃Λ given in Definition 2.15
is well-defined.

REMARK 2.17. If [x; (m, n)], [y; (p, q)], and [z; (m, n + q− p)] are as in Defi-
nition 2.12, notice that [z; (m, n)] ◦ [z; (n, n + q− p)] = [z; (m, n + q− p)] as well.
Thus Proposition 2.13 and Proposition 2.9 imply that

r̃([z; (m, n + q− p)]) = r̃([z; (m, n)]) = r̃([x; (m, n)]),

s̃([z; (m, n + q− p)]) = s̃([z; (n, n + q− p)]) = s̃([y; (p, q)]).

Similarly, if λ, [x; (m, n)], and [z; (d(λ), n−m + d(λ))] are as in Definition 2.15, it
follows that

r̃([z; (d(λ), n−m + d(λ))]) = r(λ),

s̃([z; (d(λ), n−m + d(λ))]) = s̃([x; (m, n)]).

We are now ready to define the k-graph Λ mentioned in Theorem 2.1. The
objects of Λ consist of the objects of Λ together with the elements of ṼΛ; the mor-
phisms of Λ are the morphisms of Λ and the elements of P̃Λ, and Definitions 2.12
and 2.15 describe the composition in Λ.

DEFINITION 2.18. Define Λ by

Obj(Λ) = Obj(Λ) ∪ ṼΛ = Λ0 ∪ ṼΛ, Mor(Λ) = Mor(Λ) ∪ P̃Λ = Λ∪ P̃Λ,
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with r and s defined as follows:

r : Mor(Λ)→ Obj(Λ); r |Mor(Λ)= r, and r |P̃Λ
= r̃;

and

s : Mor(Λ)→ Obj(Λ); s |Mor(Λ)= s, and s |P̃Λ
= s̃.

Define ◦ : Mor(Λ)×Obj(Λ) Mor(Λ) → Mor(Λ) as follows. For an element

(λ, [x; (m, n)]) ∈ Λ×Λ0 P̃Λ define

λ ◦ [x; (m, n)] = [λσmx; (0, d(λ) + n−m)].

For ([x; (m, n)], [y; (p, q)]) ∈ P̃Λ ×ṼΛ
P̃Λ, let z = x(0, n ∧ d(x))σp∧d(y)y, and define

[x; (m, n)] ◦ [y; (p, q)] = [z; (m, n + q− p)].

For λ, µ ∈ Λ define λ ◦ µ as in Λ.
Define id[x;m] = [x; (m, m)] for [x; m] ∈ ṼΛ, and define idv as in Λ for v ∈ Λ0;

that is, idv = v for v ∈ Λ0.

LEMMA 2.19. With the definitions given above, Λ is a category.

Proof. Using the axioms for a category detailed in Section I.2 of [9], it must
be shown that:

(i) r(idc) = c = s(idc) for all c ∈ Obj(Λ);
(ii) s( f ◦ g) = s(g) and r( f ◦ g) = r( f ) for all f , g ∈ Mor(Λ);

(iii) ( f ◦ g) ◦ h = f ◦ (g ◦ h) for all f , g, h ∈ Mor(Λ);
(iv) f ◦ idc = f and idc ◦g = g for all c ∈ Obj(Λ) and f , g ∈ Mor(Λ) such that

s( f ) = c = r(g).
(i) Since r = r and s = s on Λ, (i) holds for v ∈ Λ0 because Λ is a category. If

[x; m] ∈ ṼΛ, then m 66 d(x). Therefore,

r(id[x;m]) = r([x; (m, m)]) = [x; m] = s([x; (m, m)]) = s(id[x;m]).

Thus (i) is true for all c ∈ Obj(Λ).
(ii) Suppose λ, µ ∈ Λ ⊆ Mor(Λ). Then (ii) follows because Λ is a cate-

gory and s agrees with s on Λ. If λ ∈ Λ and [x; (m, n)] ∈ P̃Λ ⊆ Mor(Λ), then
s([λσm∧d(x)x; (0, d(λ) + n − m)]) = [λσm∧d(x)x; d(λ) + n − m]. Thus (ii) is true
because [λσmx; d(λ) + n − m] = [σmx; n − m] = [x; n] by Proposition 2.10 (ap-
plied twice). To show that (ii) holds for [x; (m, n)], [y; (p, q)] ∈ P̃Λ, the definition
of composition in Λ yields [x; (m, n)] ◦ [y; (p, q)] = [x(0, n∧ d(x))σp∧d(y)y; (m, n +
q− p)]. Therefore,

s([x(0, n ∧ d(x))σp∧d(y)y; (m, n + q− p)]) = [x(0, n ∧ d(x))σp∧d(y)y; n + q− p],
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and

[x(0, n ∧ d(x))σp∧d(y)y; n + q− p] = [σp∧d(y)y; n + q− p− n ∧ d(x)]

= [y; n + q− p− n ∧ d(x) + p ∧ d(y)]
(by Proposition 2.10)

=[y; n− n ∧ d(x) + q− (p− p ∧ d(x))]= [y; q]

since [x; n] = [y; p] implies that n− n ∧ d(x) = p− p ∧ d(y).
Showing that r( f ◦ g) = r( f ) follows in a similar manner.
(iii) There are four cases to consider.
Case 1. Suppose λ, µ, ν ∈ Λ ⊆ Mor(Λ). Condition (iii) holds in this case

because Λ is a category and composition in Λ on Λ ⊆ Mor(Λ) agrees with the
composition in Λ.

Case 2. Suppose λ, µ ∈ Λ and [x; (m, n)] ∈ P̃Λ ⊆ Mor(Λ). Then

(λ ◦ µ) ◦ [x; (m, n)] = (λµ) ◦ [x; (m, n)] = [(λµ)σmx; (0, n−m + d(λµ))]

= [λ(µσmx); (0, n−m + d(λ) + d(µ))]
(because composition in Λ is associative)

= λ ◦ [µσmx; (0, n−m + d(µ))] = λ ◦ (µ ◦ [x; (m, n)]).

Case 3. Suppose λ ∈ Λ and [x; (m, n)], [y; (p, q)] ∈ P̃Λ. Then

(λ ◦ [x; (m, n)]) ◦ [y; (p, q)] = [λσmx; (0, n−m + d(λ))] ◦ [y; (p, q)]

= [z; (0, n−m + d(λ) + q− p)]

where z = (λσmx)(0, (n−m + d(λ)) ∧ d(λσmx))σp∧d(y)y.
On the other hand,

λ ◦ ([x; (m, n)] ◦ [y; (p, q)]) = λ ◦ [w; (m, n + q− p)]

= [λσmw; (0, n−m + q− p + d(λ))]

where w = x(0, n ∧ d(x))σp∧d(y)y.
To show

(2.2) [z; (0, n−m + d(λ) + q− p)] = [λσmw; (0, n−m + q− p + d(λ))],

notice that

z (0∧ d(z), (n−m + q− p + d(λ)) ∧ d(z))(2.3)

= z (0, (n−m + d(λ)) ∧ d(z)) ◦
◦ z ((n−m + d(λ)) ∧ d(z), (n−m + d(λ) + q− p) ∧ d(z))

= (λσmx) (0, (n−m + d(λ)) ∧ d(λσmx))y (p ∧ d(y), q ∧ d(y))

by Proposition 2.11 (iii).
Since d(λσmx) = d(λ)−m + d(x), we have that

(n−m+d(λ))∧d(λσmx)=(n−m+d(λ))∧(d(x)−m+d(λ))=d(λ)−m+n∧d(x)
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because addition in Nk distributes over ∧. Thus we can continue with the calcu-
lation:

(λσmx)(0, (n−m + d(λ)) ∧ d(λσmx))y(p ∧ d(y), q ∧ d(y))(2.4)

= (λσmx)(0, d(λ)−m + n ∧ d(x))y(p ∧ d(y), q ∧ d(y))

= λ(σmx)(0,−m + n ∧ d(x))y(p ∧ d(y), q ∧ d(y))

= λx(m, n ∧ d(x))y(p ∧ d(y), q ∧ d(y)).

Equations (2.3) and (2.4) show that

(2.5) z (0∧d(z), (n−m+q−p+d(λ))∧d(z))=λx(m, n∧d(x))y(p∧d(y), q∧d(y)).

Similarly, it can be shown using Proposition 2.11 that the right hand side of Equa-
tion (2.5) is equal to (λσmw)(0, (n−m + q− p + d(λ))∧ d(λσmw)) as well. There-
fore, Condition (P1) of Definition 2.6 is satisfied. Condition (P2) holds by Propo-
sition 2.11 (ii). Clearly, Condition (P3) holds; therefore Equation (2.2) holds.

Case 4. Suppose [x; (m, n)], [y; (p, q)], [z; (t, u)] ∈ P̃Λ ⊆ Mor(Λ). We must
show that

([x; (m, n)] ◦ [y; (p, q)]) ◦ [z; (t, u)] = [x; (m, n)] ◦ ([y; (p, q)] ◦ [z; (t, u)]).

Let W1 = x(0, n ∧ d(x))σp∧d(y)y. Then [x; (m, n)] ◦ [y; (p, q)] = [W1; (m, q − p +
n)]. Next, define Z1 to be the path W1(0, (q− p + n) ∧ d(W1))σt∧d(z)z. Then,

([x; (m, n)] ◦ [y; (p, q)]) ◦ (z, t, u) = [W1; (m, q− p + n)] ◦ [z; (t, u)]

= [Z1; (m, u− t + q− p + n)].

On the other hand, for the graph morphisms W2 and Z2 defined as

W2 = y(0, q ∧ d(y))σt∧d(z)z, Z2 = x(0, n ∧ d(x))σp∧d(W2)W2

we see that

[x; (m, n)] ◦ ([y; (p, q)] ◦ [z; (t, u)]) = [x; (m, n)] ◦ [W2; (p, u− t + q)]

= [Z2; (m, u− t + q− p + n)].

We must show [Z1; (m, u− t + q− p + n)] = [Z2; (m, u− t + q− p + n)].
Using Proposition 2.11 (ii) again, we see that

m ∧ d(Z1) = m ∧ d(x) = m ∧ d(Z2).

Therefore m−m∧ d(Z1) = m−m∧ d(Z2), and so Condition (P2) of Definition 2.6
is satisfied. It is clear that Condition (P3) holds. To show that Condition (P1) is
met, it can be shown using Proposition 2.11 repeatedly that

Z1(m ∧ d(Z1),(u− t + q− p + n) ∧ d(Z1))

= x(m ∧ d(x), n ∧ d(x))y(p ∧ d(y), q ∧ d(y))z(t ∧ d(z), u ∧ d(z))

= Z2(m ∧ d(Z2), (u− t + q− p + n) ∧ d(Z2)).
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Thus the equation

[Z1; (m, u− t + q− p + n)] = [Z2; (m, u− t + q− p + n)],

holds, and composition is associative in this case.
Hence, Λ satisfies (iii).
(iv) Suppose v is an element of Λ0. Then (iv) follows for all f , g ∈ Λ such

that s( f ) = v = r(g) because Λ is a category. There does not exist an f ∈ P̃Λ

such that s( f ) = v. However, for a path g ∈ P̃Λ such that r(g) = v, we have that
g = [x; (m, n)] for some x ∈ Λ6∞ with x(m) = v. Therefore,

v ◦ [x; (m, n)] = [vσmx; (0, n−m)] = [σmx; (0, n−m)]

= [x; (m, n)] (by Proposition 2.10).

Next suppose [x; m] ∈ ṼΛ ⊆ Obj(Λ). There is no path f ∈ Λ such that
r( f ) = [x; m] or s( f ) = [x; m]; thus suppose f ∈ Mor(Λ) is a path such that
s( f ) = [x; m]. Then we can write f = [y; (p, q)] for some [y; (p, q)] ∈ P̃Λ such that
[x; m] = [y; q]. By definition of composition in Λ, we have

[y; (p, q)]◦id[x;m] =[y; (p, q)]◦[x; (m, m)]= [y(0, q∧d(y))σm∧d(x)x; (p, q + m−m)]

= [y(0, q ∧ d(y))σm∧d(x)x; (p, q)]

= [y; (p, q)] (by Proposition 2.11 (iii)).

It is shown similarly that if [z; (t, u)] is an element of P̃Λ with [x; m] = [z; t], the
equality id[x;m] ◦[z; (t, u)] = [z; (t, u)] holds. We have shown that (iv) holds.

Thus Λ is a category.

From now on, we will write λµ instead of λ ◦ µ for all λ, µ ∈ Mor(Λ).
We will view Nk as a category with one object (?), a morphism set equal to

Nk and composition determined by addition in Nk.

DEFINITION 2.20. Define d : Λ → Nk as follows. For all c ∈ Obj(Λ), let
d(c) = ?. Furthermore, define

d |Mor(Λ)= d, and d([x; (m, n)]) = n−m, for [x; (m, n)] ∈ P̃Λ.

It is straightforward to show that d defines a functor. Together Λ and d
form a k-graph. The key to proving this is the next lemma, which shows that
factorization property of Definition 1.1 holds.

LEMMA 2.21. The category Λ with the functor d defined in Definition 2.20 satis-
fies the factorization property. That is, for f ∈ Mor(Λ) with d( f ) = a + b, there exist
unique elements g, h ∈ Mor(Λ) such that f = g ◦ h with d(g) = a and d(h) = b.

Proof. If f ∈ Λ ⊆ Mor(Λ), then since Λ has the factorization property and d
agrees with d on Λ, the required elements exist and are unique.
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Suppose that [x; (m, n)] ∈ P̃Λ ⊆ Mor(Λ). Then d([x; (m, n)]) = n − m.
Suppose that n− m = a + b. There are three cases to consider: m 66 d(x); m 6
d(x) while m + a 66 d(x); and m 6 m + a 6 d(x).

Case 1. Suppose m 66 d(x). By definition of composition in P̃Λ and Re-
mark 2.17, the necessary elements exist, namely [x; (m, m + a)] and [x; (m + a, n)].
For uniqueness, suppose that [x; (m, n)] = [x; (m, m + a)][x; (m + a, n)] as well
as [x; (m, n)] = [y; (p, q)][z; (t, u)] with q − p = a and u − t = b. Using the
definition of composition in P̃Λ, [y; (p, q)][z; (t, u)] = [w; (p, q + u − t)] where
w = y(0, q ∧ d(y))σt∧d(z)z. Since Λ is a category, it follows that

[x; m] = r([x; (m, n)]) = r([y; (p, q)]) = [y; p] and

[x; n] = s([x; (m, n)]) = s([z; (t, u)]) = [z; u].

Also, since s([y; (p, q)]) = r([z; (t, u)]), it follows that [y; q] = [z; t]. Therefore,
Condition (V2) of Definition 2.3 gives the following equalities:

m−m ∧ d(x) = p− p ∧ d(y),(2.6)

n− n ∧ d(x) = u− u ∧ d(z),(2.7)

q− q ∧ d(y) = t− t ∧ d(z).(2.8)

Furthermore, since [x; (m, n)] equals both [x; (m, m + a)][x; (m + a, n)] and
[y; (p, q)][z; (t, u)], Condition (P1) of Definition 2.6 implies that

x(m ∧ d(x), n ∧ d(x)) = x(m ∧ d(x), (m + a) ∧ d(x))x((m + a) ∧ d(x), n ∧ d(x))

= y(p ∧ d(y), q ∧ d(y))z(t ∧ d(z), u ∧ d(z)).

The equality of the above paths implies that

(2.9) n ∧ d(x)−m ∧ d(x) = q ∧ d(y)− p ∧ d(y) + u ∧ d(z)− t ∧ d(z).

If q ∧ d(y) − p ∧ d(y) = (m + a) ∧ d(x) − m ∧ d(x), then the factorization
property of Λ will imply that x(m ∧ d(x), (m + a) ∧ d(x)) = y(p ∧ d(y), q ∧ d(y)).
Then by (2.6) and the fact that a = (m + a) − m = q − p, it will follow that
[x; (m, m + a)] = [y; (p, q)]. Consequently, we will have [x; (m + a, n)] = [z; (t, u)].
Thus, we must show that q ∧ d(y)− p ∧ d(y) = (m + a) ∧ d(x)−m ∧ d(x). This
will be done on a coordinate by coordinate basis; i.e., for all i ∈ {1, 2, . . . , k}, we
will show that (q ∧ d(y))i − (p ∧ d(y))i = ((m + a) ∧ d(x))i − (m ∧ d(x))i.

Fix i ∈ {1, 2, . . . , k}. Then (2.6) implies that mi 6 d(x)i precisely when
pi 6 d(y)i. Similarly, by (2.7), ni 6 d(x)i if and only if ui 6 d(z)i, and (2.8)
ensures qi 6 d(y)i if and only if ti 6 d(z)i. Therefore there are 5 subcases to
consider:

(1-i) pi 6 qi 6 d(y)i and mi 6 mi + ai 6 d(x)i;
(1-ii) pi 6 qi 6 d(y)i and mi 6 d(x)i < mi + ai;

(1-iii) pi 6 d(y)i < qi and mi 6 mi + ai 6 d(x)i;
(1-iv) pi 6 d(y)i < qi and mi 6 d(x)i < mi + ai;
(1-v) d(y)i < pi 6 qi and d(x)i < mi 6 mi + ai.
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Cases (1-i) and (1-v) are shown by a simple calculation.
For Case (1-iv), since ni > mi + ai > d(x)i, it follows that ui > d(z)i. Fur-

thermore, the fact that qi > d(y)i gives the inequality ti > d(z)i. Substituting into
(2.9), we obtain

d(x)i −mi = d(y)i − pi + d(z)i − d(z)i = d(yi)− pi,

which also equals ((m + a) ∧ d(x))i − (m ∧ d(x))i = (q ∧ d(y))i − (p ∧ d(y))i.
Equations (2.6), (2.7), (2.8) and (2.9) can be used to show that the remaining

subcases do not, in fact, occur.
Case 2. Suppose that m 6 d(x) and m + a 66 d(x). By definition of composi-

tion in P̃Λ and Remark 2.17, we have [x; (m, n)] = [x; (m, m + a)][x; (m + a, n)]. For
uniqueness, suppose that [x; (m, n)] also equals [y; (p, q)][z; (t, u)] where q− p = a
and u− t = b. As in Case 1, since [x; (m, n)] = [y; (p, q)][z; (t, u)], we know

x(m) = r([x; (m, n)]) = r([y; (p, q)]) = y(p) and

[x; n] = s([x; (m, n)]) = s([z; (t, u)]) = [z; u].

Condition (P1) of Definition 2.6 implies that

x(m, n ∧ d(x)) = x(m, (m + a) ∧ d(x))x((m + a) ∧ d(x), n ∧ d(x))

= y(p, q ∧ d(y))z(t ∧ d(z), u ∧ d(z)),

and therefore in this case, equation (2.9) is replaced with

(2.10) n ∧ d(x)−m = q ∧ d(y)− p + u ∧ d(z)− t ∧ d(z).

Since m 6 d(x), it follows that p 6 d(y), and equations (2.7) and (2.8) still hold.
The factorization property of Λ will give the uniqueness provided that

(m + a) ∧ d(x)−m = q ∧ d(y)− p.

Again, this will be done on a coordinate by coordinate basis. Fix i ∈ {1, 2, . . . , k}.
This time there are four subcases to consider:

(2-i) pi 6 qi 6 d(y)i and mi 6 mi + ai 6 d(x)i;
(2-ii) pi 6 qi 6 d(y)i and mi 6 d(x)i < mi + ai;

(2-iii) pi 6 d(y)i < qi and mi 6 mi + ai 6 d(x)i;
(2-iv) pi 6 d(y)i < qi and mi 6 d(x)i < mi + ai.

Subcases (2-i) is a simple calculation. The same argument used to prove Sub-
case (1-iv) proves Subcase (2-iv). Similar to Case 1, the Subcases (2-ii) and (2-iii)
do not occur.

Case 3. Suppose that m 6 d(x) and m + a 6 d(x). Then using the definition
of composition in Λ, we have [x; (m, n)] = x(m, m + a)[x; (m + a, n)]. To show
uniqueness, suppose that [x; (m, n)] can be written as λ[y; (p, q)] for some λ ∈ Λ

and [y; (p, q)] ∈ P̃Λ, with d(λ) = a and q − p = b = n − (m + a). Then by
Condition (P1) of Definition 2.6,

x(m, n ∧ d(x)) = x(m, m + a)x(m + a, n ∧ d(x)) = λy(p, q ∧ d(y)).
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The factorization property of Λ gives that x(m, m + a) = λ. Consequently, the
equality x(m + a, n ∧ d(x)) = y(p, q ∧ d(y)) holds. So, [x; (m + a, n)] = [y; (p, q)]
which gives uniqueness in this case.

THEOREM 2.22. Let (Λ, d) be a k-graph. Then the extension of this k-graph given
by the pair (Λ, d) of Definition 2.18 is a k-graph with no sources.

Proof. The fact that Λ is a k-graph follows from Lemmas 2.19 and 2.21.
We will show that vΛ

ei is nonempty for all v ∈ Λ
0 and all i ∈ {1, 2, . . . , k}.

If v ∈ Λ
0\Λ0, then v = [x; m] for some x ∈ Λ6∞ and m 66 d(x). Then for each

i ∈ {1, 2, . . . , k}, the path [x; (m, m + ei)] is an element of vΛ
ei . If v ∈ Λ0, choose

x ∈ vΛ6∞, which is nonempty by Lemma 2.11 of [12]. Fix i ∈ {1, 2, . . . , k}. If
d(x)i > 0, then x(0, ei) ∈ vΛei ⊆ vΛ

ei . If d(x)i = 0, then [x; (0, ei)] ∈ vΛ
ei . Hence,

for all v ∈ Λ
0 and i ∈ {1, 2, . . . , k}, vΛ

ei 6= ∅. Therefore, Λ is a k-graph without
sources.

Notice that Definition 2.18 provides a way to extend any k-graph to a larger
k-graph without sources. We will show next that if Λ is finitely aligned or row-
finite, then the extension Λ will have the same property.

LEMMA 2.23. Let (Λ, d) be a finitely aligned k-graph and let (Λ, d) be the k-graph
given in Definition 2.18. For λ, µ ∈ Λ, we have Λmin(λ, µ) = Λ

min(λ, µ).

Proof. Of course Λmin(λ, µ) ⊆ Λ
min(λ, µ) because Λ ⊆ Λ. To show the other

containment, suppose there is a pair ([x; (m, n)], [y; (p, q)]) ∈ Λ
min(λ, µ) which is

not an element of Λmin(λ, µ). Then

[λσmx; (0, n−m+d(λ))]=λ[x; (m, n)]=µ[y; (p, q)]=[µσpy; (0, q−p+d(µ))](2.11)

where d(λ[x; (m, n)]) = d(λ) ∨ d(µ). Therefore n−m = d(λ) ∨ d(µ)− d(λ). But
(2.11) and Condition (P1) of Definition 2.6 imply

λx(m, n ∧ d(x)) = µy(p, q ∧ d(y)).

Both λ and µ are subpaths of λx(m, n ∧ d(x), which means that the inequality
d(λ) + n ∧ d(x)−m > d(λ) ∨ d(µ) holds. Hence,

n ∧ d(x)−m > d(λ) ∨ d(µ)− d(λ) = n−m.

It follows that n ∧ d(x) = n, and so n 6 d(x), contradicting our assumption that
the path [x; (m, n)] is not an element of Λ. Thus the set Λ

min(λ, µ) is a subset of
Λmin(λ, µ), and the proof is complete.

Let λ and µ be two paths in a k-graph Λ. Recall from Definition 1.5, that if
(α, β) is an element of Λmin(λ, µ), then the path λα = µβ is a minimal common
extension of λ and µ. We denote the set of all minimal common extensions of λ
and µ by MCE(λ, µ). Therefore Λ is finitely aligned if and only if MCE(λ, µ) is
finite for all λ, µ ∈ Λ.
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THEOREM 2.24. Let (Λ, d) be a k-graph and let (Λ, d) be the k-graph given in
Definition 2.18. If Λ is finitely aligned, the extension Λ is also finitely aligned. If Λ is
row-finite, then so is Λ.

Proof. Suppose that Λ is finitely aligned. To show Λ is finitely aligned, we
will show that |MCE(λ, µ)| < ∞ for all λ, µ ∈ Λ. Fix two paths λ and µ in Λ. Let
L = d(λ) ∨ d(µ).

First, if r(λ) 6= r(µ), then MCE(λ, µ) = ∅.
Next, suppose λ = [x; (m, n)] and µ = [y; (p, q)] are elements of Λ\Λ such

that r(λ) = r(µ). Any element of MCE(λ, µ) is of the form [z; (az, az + L)] for
some z ∈ Λ6∞ and az ∈ Nk with az + L 66 d(z). Also [z; (az, az + d(λ))] = λ and
[z; (az, az + d(µ))] = µ. Let ξz = z(az ∧ d(z), (az + L) ∧ d(z)). Then ξz ∈ Λ, and
by Proposition 2.11, we have that

ξz = z(az ∧ d(z), (az + d(λ)) ∧ d(z))z((az + d(λ)) ∧ d(z), (az + L) ∧ d(z))

= x(m ∧ d(x), n ∧ d(x))z((az + d(λ)) ∧ d(z), (az + L) ∧ d(z)).

Also the degree of x(m ∧ d(x), n ∧ d(x)) is

n ∧ d(x)−m ∧ d(x) = (n−m) ∧ d(x)

= (n−m) ∧ d(z) (by Proposition 2.11 (ii))

= d(λ) ∧ d(z).

On the other hand, we have

ξz = y(p ∧ d(y), q ∧ d(y))z((az + d(µ)) ∧ d(z), (az + L) ∧ d(z)),

where q ∧ d(y)− p ∧ d(y) = d(µ) ∧ d(z). The properties of ∧ and ∨ show that

(d(λ) ∧ d(z)) ∨ (d(µ) ∧ d(z)) = (d(λ) ∨ d(µ)) ∧ d(z) = d(ξz).

Therefore, the path ξz is a minimal common extension of x(m ∧ d(x), n ∧ d(x))
and y(p ∧ d(y), q ∧ d(y)).

If [z; (az, az + L)] and [w; (aw, aw + L)] are two distinct elements of the set
MCE(λ, µ), then Condition (P1) of Definition 2.6 is not satisfied. This implies that
ξz and ξw (as defined above) are two minimal common extensions of the paths
x(m ∧ d(x), n ∧ d(x)) and y(p ∧ d(y), q ∧ d(y)) in Λ. It follows that

|MCE(λ, µ)| = |MCE(x(m ∧ d(x), n ∧ d(x)), y(p ∧ d(y), q ∧ d(y)))|,
which is finite because Λ is finitely aligned.

If λ 6∈ Λ and µ ∈ Λ such that r(λ) = r(µ), then λ may be written as [x; (0, n)]
for some x ∈ Λ6∞ with x(0) = r(µ). In this case every element in MCE(λ, µ)
is of the form [z; (0, L)] and z(0, L ∧ d(z)) ∈ MCE(x(0, n ∧ d(x)), µ). An argu-
ment similar to the previous case shows that |MCE([x; (0, n)], µ)| is the same as
|MCE(x(0, n ∧ d(x)), µ)|, and the latter is finite because Λ is finitely aligned.

For λ, µ ∈ Λ, Proposition 2.23 implies that Λ
min(λ, µ) = Λmin(λ, µ). Thus

Λ
min(λ, µ) is finite since Λ is finitely aligned.
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Therefore if Λ is finitely aligned, MCE(λ, µ) is finite for all λ, µ ∈ Λ, show-
ing that Λ is finitely aligned.

Now, suppose that Λ is row-finite; fix v ∈ Λ
0 and i ∈ {1, 2, . . . , k}. Since

Λ ⊆ Λ is row finite, the set vΛei is at most finite. Let P = vΛ
ei\Λ. Any element in

P is of the form [x; (mx, mx + ei)] for some boundary path x ∈ Λ6∞ and mx ∈ Nk.
Two elements [x; (mx, mx + ei)], [y; (my, my + ei)] ∈ P, are distinct if and only if

x(mx ∧ d(x), (mx + ei) ∧ d(x)) 6= y(my ∧ d(y), (my + ei) ∧ d(y)).

Hence, |P| is equal to

|{x(mx ∧ d(x), (mx + ei) ∧ d(x)) : [x; mx, mx + ei] ∈ P}|.

Because Λ is row-finite and P is a subset of {w} ∪ wΛei (where w = x(m ∧ d(x))
for any [x; (mx, mx + ei)] ∈ P), P is a finite set. Thus the k-graph Λ is row-finite.

If {tλ : λ ∈ Λ} is a Cuntz-Krieger Λ-family, we will show that {tλ : λ ∈ Λ}
is a Cuntz-Krieger Λ-family. The key elements to show this are Lemma 2.23,
which proves that Λ

min(λ, µ) equals Λmin(λ, µ) for paths λ, µ ∈ Λ, and the fol-
lowing lemma that shows any finite exhaustive subset E of Λ is exhaustive in
Λ.

LEMMA 2.25. Let (Λ, d) be a finitely aligned k-graph and let (Λ, d) be the k-graph
given in Definition 2.18. Suppose v ∈ Λ0 and E ⊆ vΛ is a finite exhaustive subset of Λ.
Then E is also finite exhaustive subset of Λ.

Proof. Since E is a finite exhaustive subset of Λ, for every λ ∈ Λ such that
r(λ) = v, there exists µ ∈ E with Λmin(λ, µ) 6= ∅. Therefore, it remains to show
the same holds for paths in vΛ\Λ.

Fix [x; (m, n)] ∈ Λ with r([x; (m, n)]) = x(m) = v. We may assume, without
loss of generality, that m = 0 because [x; (m, n)] = [σmx; (0, n− m)] by Proposi-
tion 2.10.

Since x ∈ Λ6∞, by definition there exists nx ∈ Nk such that nx 6 d(x) and
such that if p ∈ Nk, with nx 6 p 6 d(x) and pi = d(x)i, then x(p)Λei = ∅. Define

λ= x(0, (n ∧ d(x)) ∨ nx), ξ = x(0, n ∧ d(x)), η = x(n ∧ d(x), (n ∧ d(x)) ∨ nx).

Notice that if (n ∧ d(x))i = d(x)i for some i, then ((n ∧ d(x)) ∨ nx)i = d(x)i. This
implies that d(η)i = 0 and that s(η)Λei = s(λ)Λei = ∅. Hence,

for any path ζ ∈ Λ such that r(ζ) = s(λ) = s(η),(?)

d(ζ)i = 0 if (n ∧ d(x))i = d(x)i.

There exists µ ∈ E and (α, β) ∈ Λmin(λ, µ) because E is a finite exhaustive
subset of Λ. Thus

λα = µβ and d(λα) = d(λ) ∨ d(µ) = ((n ∧ d(x)) ∨ nx) ∨ d(µ).
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Since λ = ξη, and Λmin(λ, µ) 6= ∅, it follows that Λmin(ξ, µ) 6= ∅. In particular,
let

ν = (λα)(d(ξ), d(ξ) ∨ d(µ)) = (ηα)(0, (n ∧ d(x)) ∨ d(µ)− n ∧ d(x)) and

ω = (λα)(d(µ), (n ∧ d(x)) ∨ d(µ)).

Then (ν, ω) ∈ Λmin(ξ, µ). Moreover, for all i ∈ {1, 2, . . . , k} satisfying the equality
(n ∧ d(x))i = d(x)i, then 0 = d(η)i = d(α)i, giving d(ν)i = 0 and d(ξν)i = d(ξ)i.

There exists y ∈ Λ6∞ such that y(0, d(ηα)) = ηα by Lemmas 2.10 and 2.11
of [12]. Also, if (n ∧ d(x))i = d(x)i, then d(y)i = 0 by (?).

Claim 1. Consider n− n ∧ d(x). We claim that n− n ∧ d(x) 66 d(y).

Proof of Claim 1. To see this, note that because n 66 d(x) there exists i such
that ni > d(x)i > 0. For this i, (?) implies that d(y)i = 0. Therefore, ni − (n ∧
d(x))i = ni − d(x)i > 0 = d(y)i, giving (n − n ∧ d(x))i 66 d(y)i. This proves
Claim 1.

Claim 1 establishes that the vertex [y; n− n ∧ d(x)] is an element of Λ
0 and

that [y; (n− n ∧ d(x), n− n ∧ d(x) + d(ν))] is a path in Λ.

Claim 2. The vertices [y; n− n ∧ d(x)] and [x; n] are equal.

Proof of Claim 2. In the case where (n∧ d(x))i = ni, then (n− n∧ d(x))i = 0,
and ((n− n ∧ d(x)) ∧ d(y))i = 0. If, instead, (n ∧ d(x))i = d(x)i, then d(y)i = 0
by (?), and ((n− n ∧ d(x)) ∧ d(y))i = 0. Therefore (n− n ∧ d(x)) ∧ d(y) = 0. It
follows that

y((n− n ∧ d(x)) ∧ d(y)) = y(0) = r(η) = x(n ∧ d(x)).

Also n − n ∧ d(x)− ((n − n ∧ d(x)) ∧ d(y)) = n − n ∧ d(x), which implies that
[y; n− n ∧ d(x)] = [x; n]. This proves Claim 2.

Claim 2 implies that [x; (0, n)] and [y; (n− n∧ d(x), n− n∧ d(x) + d(ν))] are
composable in Λ. Composing them produces [x(0, n ∧ d(x))y; (0, n + d(ν))].

Claim 3. We claim

d([x(0, n ∧ d(x))y; (0, n + d(ν))]) = n + d(ν) = n ∨ d(µ).

Proof of Claim 3. Since d(ν) = (n ∧ d(x)) ∨ d(µ)− n ∧ d(x), we have

n + d(ν) = n + (n ∧ d(x)) ∨ d(µ)− n ∧ d(x)

= n ∨ (n− n ∧ d(x) + d(µ)) (distributing over ∨).

When (n ∧ d(x))i = ni, the equation above shows that (n + d(ν))i = (n ∨ d(µ))i.
On the other hand, when (n ∧ d(x))i = d(x)i, then d(ν)i = 0 by (?). There-

fore, (n + d(ν))i = ni. Distributing over ∨ shows

d(ν) = (n ∧ d(x)) ∨ d(µ)− n ∧ d(x) = 0∨ (d(µ)− n ∧ d(x)),

and since d(ν)i = 0, we see that

(2.12) 0 > (d(µ)− n ∧ d(x))i = d(µ)i − d(x)i.
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Equation (2.12) implies

ni > d(µ)i + ni − d(x)i > d(µ)i (since ni > d(x)i).

Consequently, (n ∨ d(µ))i = ni = (n + d(ν))i when (n ∧ d(x))i = d(x)i as well,
establishing Claim 3.

Recall that y(0, d(ηα)) = ηα. This gives

x(0, n ∧ d(x))y = ξy = (ξηα)σd(ηα)y = (λα)σd(ηα)y = (µβ)σd(ηα)y

because (α, β) ∈ Λmin(λ, µ). Hence

[x(0, n ∧ d(x))y; (0, n + d(ν))] = [µβσd(ηα)y; (0, n + d(ν))]

= µ[βσd(ηα)y; (d(µ), n + d(ν)− d(µ))].

By Claim 2, we may also write

[x(0, n ∧ d(x))y; (0, n + d(ν))] = [x; (0, n)][y; (n− n ∧ d(x), n− n ∧ d(x) + d(ν))].

Claim 3 shows that d([x(0, n ∧ d(x))y; (0, n + d(ν))]) = n ∨ d(µ). Therefore, the
path [x(0, n ∧ d(x))y; (0, n + d(ν))] is a minimal common extension of [x; (0, n)]
and µ. The pair

([y; (n− n ∧ d(x), n− n ∧ d(x) + d(ν))], [βσd(ηα)y; (d(µ), n + d(ν)− d(µ))])

is an element of Λmin([x; (0, n)], µ), showing that E is a finite exhaustive subset of
Λ.

The proof of the next theorem follows easily from Lemmas 2.23 and 2.25.

THEOREM 2.26. Let (Λ, d) be a finitely aligned k-graph and let (Λ, d) be the k-
graph given in Definition 2.18. If {tλ : λ ∈ Λ} is a Cuntz-Krieger Λ-family, then the
restriction of this set to the elements generated by the subgraph Λ, {tλ : λ ∈ Λ}, is a
Cuntz-Krieger Λ-family.

Proof. Conditions (TCK1) and (TCK2) of Definition 1.9 follow because the
set {tλ : λ ∈ Λ} is a Cuntz-Krieger Λ-family. Condition (TCK3) is satisfied be-
cause Lemma 2.23 implies that Λ

min(λ, µ) ⊆ Λ. Lemma 2.25 gives that any finite
exhaustive subset of Λ is a finite exhaustive subset of Λ. Therefore, the fact that
{tλ : λ ∈ Λ} is a Cuntz-Krieger Λ-family implies that Condition (CK) of Defini-
tion 1.9 is satisfied, proving the result.

In the next theorem, we show that C∗(Λ) is naturally isomorphic to a subal-
gebra of C∗(Λ). The isomorphism is natural in the sense that C∗(Λ) is isomorphic
to the C∗-algebra generated by the set of elements of the form tλ where λ is a path
in the original k-graph, Λ. Furthermore, the isomorphism maps generators to el-
ements in the canonical way.
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THEOREM 2.27. Let (Λ, d) be a finitely aligned k-graph and let (Λ, d) be the k-
graph given in Definition 2.18. Let {tλ : λ ∈ Λ} be a Cuntz-Krieger Λ family. Then
C∗(Λ) is isomorphic to the subalgebra of C∗(Λ) generated by the set {tλ : λ ∈ Λ}.

Proof. Let C∗(Λ) be generated by {tλ : λ ∈ Λ}, and let C∗(Λ) be generated
by the Cuntz-Krieger Λ-family {sλ : λ ∈ Λ}. Let A = C∗({tλ : λ ∈ Λ}) in
C∗(Λ). By Theorem 2.26, {tλ : λ ∈ Λ} is a Cuntz-Krieger Λ-family; thus the
universal property of C∗(Λ) gives a ∗-homomorphism π : C∗(Λ) → C∗(Λ) such
that π(sλ) = tλ for all λ ∈ Λ. Because π maps the generators of C∗(Λ) onto the
set of generators of A, we have π(C∗(Λ)) = A. Since tv 6= 0 for all v ∈ Λ0 ⊆ Λ

0,
it follows that π(sv) = tv 6= 0 for all v ∈ Λ0.

Let θ : Tk → Aut(C∗(Λ)) and γ : Tk → Aut(C∗(Λ)) denote the gauge
actions on C∗(Λ) and C∗(Λ), respectively. For all z ∈ Tk and λ, µ ∈ Λ,

(θz ◦ π)(sλs∗µ) = θz(tλt∗µ) = zd(λ)−d(µ)tλt∗µ = π(zd(λ)−d(µ)sλs∗µ) = (π ◦ γz)(sλs∗µ).

It follows then that θz ◦ π = π ◦ γz for all z ∈ Tk because C∗(Λ) is spanned by
elements of the form sλs∗µ with s(λ) = s(µ) by Condition (TCK3) of Definition 1.9.
Therefore by Theorem 4.2 of [12], π is injective. The previous paragraph shows
that π maps C∗(Λ) surjectively onto A. Thus C∗(Λ) ∼= A.

THEOREM 2.28. Let (Λ, d) be a row-finite k-graph and let (Λ, d) be the k-graph
given in Definition 2.18. Then C∗(Λ) is a full corner of C∗(Λ).

It is in the following proof that the row-finite condition of Λ is necessary.
The row-finiteness of Λ implies that its extension Λ is also row-finite and does
not have any sources. Condition (CK) of Definition 1.9 is equivalent to Condi-
tion (CK’) in Remark 1.18 when the k-graph is row-finite and has no sources.
Both conditions are used in the proof of Theorem 2.28

Proof of Theorem 2.28. Suppose C∗(Λ) is generated by {tλ : λ ∈ Λ}. Let
A = C∗({tλ : λ ∈ Λ}) ⊆ C∗(Λ). Then A ∼= C∗(Λ) by Theorem 2.27. We will
show that A is a full corner of C∗(Λ).

Using an argument like that in Lemma 1.29(c) of [2], the sum ∑
v∈Λ0

tv con-

verges strictly in M(C∗(Λ)) to a projection p satisfying

ptλt∗µ p =

{
tλt∗µ if r(λ), r(µ) ∈ Λ0,
0 otherwise.

Therefore, for all λ, µ ∈ Λ, tλt∗µ = ptλt∗µ p ∈ pC∗(Λ)p. Hence A ⊆ pC∗(Λ)p
because A is spanned by elements of the form tλt∗µ where λ and µ are paths in Λ

with s(λ) = s(µ).
For the reverse conclusion, we must show that ptλt∗µ p ∈ A for all paths λ

and µ in Λ with s(λ) = s(µ) (again because pC∗(Λ)p is spanned by elements of
this form).
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If either r(λ) or r(µ) is in Λ
0\Λ, then ptλt∗µ p = 0 ∈ A. This leaves the case

when λ and µ are elements in Λ such that r(λ), r(µ) ∈ Λ0 and s(λ) = s(µ). Thus,
we must prove the following claim.

Claim. If λ, µ ∈ Λ with r(λ), r(µ) ∈ Λ0 and s(λ) = s(µ) 6∈ Λ0, then ptλt∗µ p is
an element of A.

Proof of Claim. Since s(λ) and s(µ) are not in Λ0, the paths λ and µ are paths
in Λ\Λ. Thus there exist x, y ∈ Λ6∞, and m, q ∈ Nk such that m 66 d(x), q 66 d(y),
λ = [x; (0, m)] and µ = [y; (0, q)]. We will proceed by induction on m.

Suppose for an inductive hypothesis that for all n < m the Claim holds for
all paths ξ and η with r(ξ), r(η) ∈ Λ0 and s(ξ) = s(η) = [x; n].

Since s(λ) = s(µ), (V1) and (V2) of Definition 2.3 show that the paths
[x; (m ∧ d(x), m)] and [y; (q ∧ d(y), q)] are equal. Let

λ′= x(0, m∧d(x)), µ′=y(0, q∧d(y)), ν=[x; (m∧d(x), m)]= [y; (q∧d(y), q)].

Then λ = λ′ν and µ = µ′ν. There are two cases to consider.
Case 1. There exist i0, i1 ∈ {1, 2, . . . , k} such that mij > d(x)ij + 1.
Let a = m − ei0 . Then m ∧ d(x) < a < m, and a ∧ d(x) = m ∧ d(x). Fur-

thermore, ν = [x; (m ∧ d(x), a)][x; (a, m)]. We will show that {[x; (a, m)]} is a
finite exhaustive subset of [x; a]Λ. Suppose [z; (t, u)] ∈ [x; a]Λ. Then the path
[z; (t, t + (m − a) ∨ (u − t))] is a minimal common extension of [z; (t, u)] and
[x; (a, m)]. To see this, we must show that [z; (t, t + m − a)] = [x; (a, m)]. Since
[z; t] = r([z; (t, u)]) = [x; a] it follows that

(2.13) z(t ∧ d(z)) = x(a ∧ d(x)) and t− t ∧ d(z) = a− a ∧ d(x).

If i 6= i0, we have ai = mi and so ((t + m − a) ∧ d(z))i = (t ∧ d(z))i. Since
mi0 − ai0 = 1 and mi0 > d(x)i0 + 1, it follows that ai0 > d(x)i0 which implies that
ti0 > d(z)i0 because of (2.13). Thus d(z)i0 = (t ∧ d(z))i0 = ((t + m− a) ∧ d(z))i0 .
Hence

z(t ∧ d(z), (t + m− a) ∧ d(z)) = z(t ∧ d(z), t ∧ d(z)) = x(a ∧ d(x), m ∧ d(x))

because a ∧ d(x) = m ∧ d(x). This, together with (2.13) shows that the equality
[z; (t, t + m− a)] = [x; (a, m)] holds. Therefore, the pair

([z; (u, t + (m− a) ∨ (u− t))], [z; (t + m− a, t + (m− a) ∨ (u− t))])

is an element in Λ
min([z; (t, u)], [x; (a, m)]). Since [z; (t, u)] ∈ [x; a]Λ was arbitrary,

this implies that {[x; (a, m)]} is a finite exhaustive subset of [x; a]Λ.
Let ν′ = [x; (m ∧ d(x), a)]. Then ν = ν′[x; (a, m)], and r(ν′) = r(ν) = s(λ′).

Furthermore

ptλt∗µ p = ptλ′ν′ [x;(a,m)]t
∗
µ′ν′ [x;(a,m)]p = ptλ′ tν′ t[x;(a,m)]t

∗
[x;(a,m)]t

∗
ν′ t
∗
µ′ p

= ptλ′ tν′ t[x;a]t
∗
ν′ t
∗
µ′ p (because {[x; (a, m)]} ∈ [x; a]FE(Λ))

= ptλ′ν′ t
∗
µ′ν′ p



190 CYNTHIA FARTHING

which belongs to A by the inductive hypothesis since s(ν′) = [x; a] and a < m.
This concludes Case 1.

Case 2. Suppose that m = m ∧ d(x) + ei0 for some i0 ∈ {1, 2, . . . , k}. Let u
be the vertex x(m ∧ d(x)). We will show that uΛ

ei0 \Λ is the set {ν}. Let ξ 6∈ Λ

be an element of uΛ
ei0 . Then ξ = [z; (0, ei0)] for some z ∈ uΛ6∞. We know that

ei0 66 d(z). This along with the fact that (ei0)j 6 d(z)j for j 6= i0 implies d(z)i0 = 0.
Then ei0 ∧ d(z) = 0 and 0− (ei0 ∧ d(z)) = 0; therefore z(0, ei0 ∧ d(z)) = z(0, 0) =
u. It is then clear that [z; (0, ei0)] = [x; (m ∧ d(x), m)] = ν.

Let E = uΛ
ei0 ∩Λ. Then E = uΛ

ei0 \{ν}. Since Λ has no sources by Theo-
rem 2.22 and is row-finite by Theorem 2.24, we have that uΛ

6ei0 = uΛ
ei0 . Then

by Proposition B.1 of [12],

tu = ∑
ξ∈uΛ

6ei0

tξ t∗ξ = tνt∗ν + ∑
λ∈E

tξ t∗ξ .

Thus

ptλt∗µ p = ptλ′νt∗µ′ν p = ptλ′ tνt∗νt∗µ′ p = ptλ′

(
tu − ∑

ξ∈E
tξ t∗ξ

)
t∗µ′ p

which belongs to A because u ∈ Λ and E ⊆ Λ. This concludes Case 2, and proves
the claim.

Therefore A is a corner of C∗(Λ)p ⊆ A, that is A = pC∗(Λ)p. To show that
A is a full corner of C∗(Λ), suppose that J is an ideal in C∗(Λ) such that A ⊆ J. Of
course {tλ : λ ∈ Λ} ⊆ J because this set generates A. Let v be a vertex in Λ

0\Λ.
Then v = [x; m] for some x ∈ Λ6∞ and m 66 d(x). Let α = [x; (m ∧ d(x), m)].
Then α ∈ Λ; r(α) = x(m ∧ d(x)) ∈ Λ0, and s(α) = v. Thus tα = tr(α)tα ∈ J
because tr(α) ∈ J, and as a consequence, tv = t∗αtα ∈ J. This shows that the

set {tv : v ∈ Λ
0} is contained in J. Next let λ ∈ Λ\Λ. Then r(λ) ∈ Λ

0 and
tλ = tr(λ)tλ ∈ J. Hence {tλ : λ ∈ Λ}, the set of generators of C∗(Λ) lies in J,
which implies that J = C∗(Λ).

We now conclude the chapter with the proof of Theorem 2.1.

Proof of Theorem 2.1. The pair (Λ, d) of Definition 2.18 is a row-finite k-graph
without sources by Theorems 2.24 and 2.22. By definition of Λ, Obj(Λ) ⊆ Obj(Λ),
and Mor(Λ) ⊆ Mor(Λ). Furthermore, r|Mor(Λ) = r, s|Mor(Λ) = s, and d|Λ = d.
Thus the map ι : Λ→ Λ, where ι(λ) = λ for all λ ∈ Λ is a k-graph isomorphism
between Λ and ιΛ. Therefore A = {tλ : λ ∈ ιΛ} is isomorphic to C∗(Λ) by
Theorem 2.27, and is a full corner of C∗(Λ) by Theorem 2.28.
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3. EXAMPLES

In this section, we will apply the construction of Section 2 to several exam-
ples of row-finite k-graphs. The examples include k-graphs that are and are not
locally convex. The examples were chosen to illustrate how the conditions in Def-
initions 2.3 and 2.6 affect the construction as well as why they are necessary. For
the diagrams in this chapter, edges of degree (1, 0) appearing in the original k-
graph will be drawn with double solid arrows ( +3 ); edges of degree (0, 1) in the
original k-graph will be drawn with double dashed arrows ( +3__ __ ). Edges of de-
gree (1, 0) or (0, 1) that appear in the extension will be represented, respectively,
by solid arrows ( // ) and dashed arrows ( //__ ).

EXAMPLE 3.1. Let Λ be a row-finite 1-graph with sources. In [2] and [3]
the method of “adding heads to sources” was used to create a row-finite 1-graph
without sources that preserved the Morita equivalence class of C∗(Λ). We will
show that the method developed in Chapter 3 coincides with the previous con-
struction of [2], [3].

Let ΛS = {v ∈ Λ0 : vΛ1 = ∅}. Let v ∈ ΛS. Then ΛS is the set of sources
as defined for a directed graph. In [2], adding a head to v means attaching the
following graph to v:

v v1
ev1oo v2

ev2oo v3
ev3oo · · ·oo vn−1oo vn

evnoo · · ·oo

Let Γ denote the 1-graph that results from adding a head to each v ∈ ΛS.
Then any path in Γ is either a path in Λ or it is of the form λev1 ev2 · · · evn for some
v ∈ ΛS, λ ∈ Λv and n ∈ N with n > 1.

Suppose x : Ω1,m → Λ is a graph morphism for some m ∈ N (so we are
considering only finite paths). Then x ∈ Λ6∞ if and only if x(m) = x(d(x)) ∈ ΛS.
Thus,

VΛ =
⋃

v∈ΛS

{(x; m) : x(d(x)) = v and m > d(x)} and

PΛ =
⋃

v∈ΛS

{(x; (m, n)) : x(d(x)) = v, m 6 n and n > d(x)}.

Suppose x and y are paths in Λ6∞ such that d(x) and d(y) are finite. Sup-
pose further that x(d(x)) = y(d(y)) = v for some source v ∈ ΛS. Then it follows
that σd(x)x = σd(y)y = v. Proposition 2.10 implies that for all m ∈ N, m > 1

[x; d(x) + m] = [y; d(y) + m] = [v; m],

[x; (d(x) + m, d(x) + n)] = [y; (d(y) + m, d(y) + n)] = [v; (m, n)],
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for all m, n ∈ N with m 6 n. For any [x; (m, n)] ∈ P̃Λ, let vx = x(d(x)). Then
vx ∈ ΛS and we have that

[x; (m, n)] =

{
[vx; (m− d(x), n− d(x))] if m > d(x),
x(m, d(x)])[vx; (0, n− d(x))] if m < d(x).

Therefore, the vertices and paths added to Λ to form Λ are

ṼΛ =
⋃

v∈ΛS

{[v; m] : m > 1}, and

P̃Λ =
⋃

v∈ΛS

{[v; (m, n)] : m, n ∈ N, m 6 n} ∪ {λ[v; (0, n)] : λ ∈ Λv, n > 0}.

The assignment [v; m] 7→ vm and [v; (m − 1, m)] 7→ evm for all v ∈ Λ0 and
m ∈ N with m > 1 creates a graph isomorphism between Λ and Γ when it is
extended in a natural way to the entire category. That is, define Φ : Λ→ Γ by

Φ(λ) = λ for all λ ∈ Λ;

Φ([v; m]) = vm for all [v; m] ∈ Obj(Λ);

Φ([v; (m, n)]) = evm+1 evm+2 · · · evn for all v ∈ ΛS, m 6 n; and

Φ(λ[v; (0, n)]) = λev1 ev2 · · · evn for all v ∈ ΛS, λ ∈ vΛ, n ∈ N.

Then Φ is a graph isomorphism, and so for 1-graphs, the desingularization de-
veloped in Section 2 is the same as the method used in [2], [3].

EXAMPLE 3.2 (Ωk,m). Let Λ be the 2-graph Ω2,(1,1) shown below:

v2
µ

��
�
�

�
� v3

βks

α
��

�
�

�
�

v0 v1
λ

ks

For this example, Λ6∞ consists of four elements:

w : Ω2,(0,0) → Λ x : Ω2,(0,1) → Λ

w((0, 0)) = v3 x((0, 0), (0, 1)) = α

y : Ω2,(1,0) → Λ z : Ω2,(1,1) → Λ

y((0, 0), (1, 0)) = β z((0, 0), (1, 1)) = λα = µβ.

Since d(w) = (0, 0), the set {[w; m] : m ∈ N2, m > (0, 0)} lies in ṼΛ, and the
set {[w; (m, n)] : m, n ∈ N2 and m 6 n} is a subset of X̃Λ. The figure that follows
shows the 1-skeleton of these elements together with the original graph Λ. In this
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figure, aw = [w; (1, 1)], bw = [w; (1, 2)] and ξw = [w; ((1, 1), (1, 2))].

...
��
�
�

...
��

...
��
�
�

◦

��
�
� bw

ξw
��
�
�

oo ◦

��
�
�

oo · · ·oo

◦

��
�
� aw

��
�
�

oo ◦

��
�
�

oo · · ·oo

v2
µ

��
�
�

�
� v3

βks

α
��

�
�

�
� ◦oo ◦oo · · ·oo

v0 v1
λ

ks

From the boundary path x, we have {[x; m] : m ∈ N2, m 66 (0, 1)} ⊂ ṼΛ

and {[x; (m, n)]) : m 6 n, n 66 (0, 1)} ⊂ P̃Λ. Below, we see the 1-skeleton of
these elements as well as Λ. In this case, ax = [x; (1, 2)], bx = [x; (1, 3)] and
ξx = [x; ((1, 2), (1, 3))].
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�
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v2
µ

��
�
�

�
� v3

βks

α
��

�
�

�
� ◦

��
�
�

oo ◦

��
�
�

oo · · ·oo

v0 v1ks ◦oo ◦oo · · ·oo

The elements of VΛ and PΛ resulting from the boundary paths y and z are
similar. The next two figures show Λ together with the additional vertices and
paths. In the first figure that follows, we have ay = [y; (2, 1)], by = [y; (2, 2)] and
ξy = [y; ((2, 1), (2, 2))], while in the second az = [z; (2, 2)], bz = [z; (2, 3)] and
ξz = [z; ((2, 2), (2, 3))].
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...
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Since x = σ(1,0)z, Proposition 2.10 implies that [x; m] = [z; m + (1, 0)] for all
m 66 (1, 0), and [x; (m, n)] = [z; (m + (1, 0), n + (1, 0))] for all m 6 n, n 66 (1, 0).
Similarly y = σ(0,1)z and w = σ(1,1)z. Therefore by Proposition 2.10, we obtain
the following equalities

[y; m] = [z; m + (0, 1)] for all m 66 (0, 1);

[y; (m, n)] = [z; (m + (0, 1), n + (0, 1))] for all m 6 n, n 66 (0, 1);

[w; m] = [z; m + (1, 1)] for all m > (0, 0) and

[w; (m, n)] = [z; (m + (1, 1), n + (1, 1))] for all m 6 n, n > (0, 0).

Thus,

ṼΛ = {[z; m] : m 66 (1, 1)}, and P̃Λ = {[z; (m, n)] : m 6 n and n 66 (1, 1)}.

Therefore, Λ is Ω2,(∞,∞).
It can be shown that C∗(Λ) ∼= M4(C) and that C∗(Λ) ∼= K(`2(N2)). So we

see that C∗(Λ) is indeed a full corner of C∗(Λ).
In general, if Λ = Ωk,m for some m ∈ (N∪ {∞})k, then Λ = Ωk. This seems

reasonable since Ωk is the simplest k-graph without sources that contains Ωk,m as
a subgraph. In a sense, we are just “filling in the gaps” of Ωk,m to extend it to Ωk.

EXAMPLE 3.3 (A non-locally convex graph). Let Λ be the 2-graph shown
below.

v2

µ

��
�
�
�

�
�
�

v0 v1
λ

ks

While Λ is a subgraph of Ω2,(∞,∞), the C∗-algebra of Λ is not isomorphic to a full
corner of C∗(Ω2,(∞,∞)). According to [18], C∗(Λ) will have two maximal ideals
corresponding to the saturated and hereditary subsets of Λ which are {v1} and
{v2}. However, C∗(Ω2,(∞,∞)) is a simple C∗-algebra.

For this example, Λ6∞ consists of four boundary paths, but there are only
two boundary paths that we must consider. All other elements of Λ6∞ are shifts
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of the paths x and y described below. As in the previous example, Proposi-
tion 2.10 implies that Λ is determined by these paths.

Define x : Ω2,(1,0) → Λ and y : Ω2,(0,1) → Λ to be the following graph
morphisms:

x : Ω2,(1,0) → Λ y : Ω2,(0,1) → Λ

x((0, 0), (1, 0)) = λ y((0, 0), (0, 1)) = µ.

Both x and y extend to form a copy of Ω2,(∞,∞) in Λ. Now we must determine if
the extensions of these paths are equivalent according to Definition 2.3 or Defini-
tion 2.6.

Let [x; m] and [y; p] be elements of Λ
0. Suppose that [x; m] = [y; p]. Then

because x and y agree only at x((0, 0)) = y((0, 0)) = v0, we must have that
m ∧ d(x) = p ∧ d(y) = (0, 0) by Condition (V1) of Definition 2.3. Therefore
m = (0, m2) and p = (p1, 0) for m2, p1 > 0. But Condition (V2) would imply that
(0, m2) = (p1, 0), which is impossible. Hence, [x; m] 6= [y; p] for all m 66 d(x) and
p 66 d(y). Hence the two copies of Ω2,(∞,∞) that these boundary paths contribute
to Λ intersect only at v0. The extension of Λ is drawn below. For this example
C∗(Λ) ∼= M2 ⊕M2 and C∗(Λ) ∼= K(`2(N2))⊕K(`2(N2)).
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4. ADDITIONAL QUESTIONS

For directed graphs, the desingularization process developed in [3] takes
any directed graph with sources and infinite receivers and builds a directed graph
without these singular vertices while still preserving the Morita equivalence class
of the graph C∗-algebras.
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Consider the following directed graph E. This graph does not have any
sources, but v receives infinitely many edges. Label the edges from w to v as αi,
i ∈ N.

· · · •oo •oo voo w∞oo •oo •oo · · ·oo

The desingularization process will add a head to v and redistribute the
edges to the new vertices. Let F denote the desingularization of E. The directed
graph F is drawn below. There is a bijection between the set of all finite paths of
E and the set of finite paths in F that have range and source in E. This bijection
maps α1 to f1 and sends αi, i > 1 to the path ev1 ev2 · · · evi−1 fi.

· · · •oo •oo voo w
f1

oo

f2

~~}}}}}}}}

f3

����������������
•oo •oo · · ·oo

v1

ev1

OO

v2

ev2

OO

...

ev3

OO

It remains to be seen if a desingularization process for infinite receivers in a
higher-rank graph can be developed. The process outlined in this paper for deal-
ing with sources in a higher-rank graph is analogous to the process of “adding
a head to a source”. When a head is attached to a source in a 1-graph, a copy
of Ω1,∞ is created in the 1-graph. The method developed in Section 2 extends a
k-graph with sources in a way that creates a copy of Ωk,(∞,...,∞) in the extension.
If the desingularization of a k-graph with infinite receivers is to remain analo-
gous to what occurs in the 1-graph setting, then we must redistribute infinitely
many edges of various degrees throughout a copy of Ωk,(∞,...,∞). Deciding how
to do this is complicated by the fact that adding just one edge to a vertex often
necessitates adding many edges to other vertices to ensure that the factorization
property holds. Furthermore, there are many different ways that a vertex in a
k-graph can receive infinitely many paths of a certain degree. For example, in the
2-graphs Λ1 through Λ4 below, the vertex v0 receives infinitely many edges of
degree (1, 1).
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Λ1 Λ2 Λ3 Λ4
(λiα = µiβ) (λαi = µiβ) (λiα = µβi) (λαi = µβi)

When Λ is a finitely aligned k-graph, the set Λ6∞ is used to create a non-
degenerate Toeplitz-Cuntz-Krieger Λ-family in [11]. For locally convex, row-
finite k-graphs, these paths are related to the sets Λ6n, which appear in the Cuntz-
Krieger relation (CK′) (Remark 1.18). The elements in Λ6∞, in a way, point out
where the sources are in the k-graph and are crucial to the process developed in
Section 2. In [19], a different set of boundary paths, the set ∂Λ, is introduced to
study relative Cuntz-Krieger algebras of finitely aligned k-graphs. A graph mor-
phism x : Ωk,m → Λ belongs to ∂Λ if for every n 6 m and every finite-exhaustive
set E ⊆ x(n)Λ, there exists µ ∈ E such that x(n, n + d(µ)) = µ ([19], Defini-
tion 4.4). The set ∂Λ also plays a part in developing a groupoid model for finitely
aligned k-graphs [5]. In general, the set Λ6∞ is a proper subset of ∂Λ, and in some
sense, the paths of ∂Λ are the limits of sequences of paths in Λ6∞. The elements in
∂Λ identify which vertices in Λ are infinite receivers as well as sources. Perhaps
a construction using these paths would lead to a desingularization of a k-graph
with infinite receivers.
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