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ABSTRACT. A framework analogous to path integrals in quantum physics is
set up for dynamical systems in a W∗-algebraic setting. We consider spaces
of evolutions, defined in a specific way, of a W∗-algebra A as an analogue of
spaces of classical paths, and show how integrals over such spaces, which we
call “evolution integrals”, lead to dynamics in a Hilbert space on a “higher
level” which is viewed as an analogue of quantum dynamics obtained from
path integrals. The measures with respect to which these integrals are per-
formed are projection valued.
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1. INTRODUCTION

Path integrals in quantum physics essentially express the dynamics of a
quantum system as an integral over a space of paths in the configuration space
(or in the phase space) of the corresponding classical system; see for example [7],
or many other standard texts on quantum physics. Also see [3] for the early work
on this topic. In this paper the goal is to set up an analogous framework for ab-
stract dynamical systems, where the dynamics of a system on a “higher level”
is expressed in terms of an integral over a space of evolutions of a system on a
“lower level”. The “lower level” will be given by a W∗-algebra while the “higher
level” will be expressed in terms of a Hilbert space. We will call such integrals
“evolution integrals”, and they will be defined in Section 4.

By an abstract dynamical system we mean a pair (A, α) where A is a C∗-
algebra and α is a representation G →Aut(A) : g 7→ αg of some group G in
the automorphism group Aut(A) of A. We can refer to α as the evolution of the
system. But for a given G, we can have different evolutions of A, namely different
representations of G in Aut(A).

All of these evolutions by definition have group properties. However, in
path integrals not all the paths in the space of paths over which we integrate
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can be expected to be a segment from a possibly longer path which has group
properties. For example a path may intersect itself in phase space. Therefore we
will also allow more general evolutions in the case of abstract dynamical systems,
where the group structure does not play a role anymore. First write α as (αg)g∈G.
Note that at every point in “time”, g ∈ G, an element a ∈ A at “time” e ∈ G (the
identity element) will have evolved to αg(a) by means of the ∗-automorphism αg.
If we want to retain this fact, but ignore the group structure, we can generalize
evolutions by allowing (αg)g∈G to be viewed as an evolution even when G 3
g 7→ αg ∈Aut(A) is an arbitrary function. This is a very wide class of functions,
but because of the methods we employ in this paper (see Section 3) we will not
restrict ourselves to smaller classes, for example functions which are continuous
in some specified topologies on G and Aut(A). Of course, we are now no longer
working with group representations, and in fact we will not make use of the
group structure of G or Aut(A) at all in this paper. Therefore we will replace G
by an arbitrary set T. In Section 4 we will describe how a grouplike structure
emerges on the “higher level” when we consider certain collections of sets T in a
measure space (T, Σ, µ).

We will in fact have to generalize even further, again because of the methods
we use, and replace Aut(A) by its closure Aut(A), which will be compact, in an
appropriate topology on the space of bounded linear operators on A. In order
to be able to do this, we will take A to be a W∗-algebra, rather than just a C∗-
algebra. The evolutions of A that we will consider will therefore be all functions
of the form T 3 t 7→ αt ∈ Aut(A). We discuss this space of evolutions, namely

Aut(A)
T

, in more detail in Section 2.
As will be explained in Section 4, the “evolution integrals” over Aut(A)

T

will differ from path integrals in an important respect. In the former case we will
use a projection valued measure obtained by spectral theory and the representa-

tion theory of C∗-algebras applied to C(Aut(A)
T
), which we discuss in Section 3,

but this measure will not be unique. We will in fact have many different mea-
sures, all of them natural (or canonical) in a sense to be explained, and all of them
being unitary transformations of one another. Another difference is that the sys-
tem we start off with (the “lower level”) need not abelian, that is to say classical.
In other words A can be a noncommutative W∗-algebra. The analogy between

path integrals and integrals over Aut(A)
T

is clarified in Section 5.
The mathematical results of this paper are concentrated in Sections 2 and 3

where we develop the mathematical tools that will enable us to set up the basic
framework of evolution integrals in Section 4. Sections 4 and 5 consist out of def-
initions, discussion and some simple results describing evolution integrals and
their meaning. We will not look at any applications of evolution integrals in this
paper.
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2. THE EVOLUTION SPACE

In this section, A will denote an arbitrary W∗-algebra, in other words a C∗-
algebra which when viewed as a Banach space has some Banach space as a pred-
ual; see for example [9]. It is known that this predual of A is unique, and we will
denote it by A∗. Let Aut(A) denote the set of all ∗-automorphisms of A.

We will use the following notation: For any normed spaces X and Y, let
B(X ×Y) denote the Banach space of all bounded bilinear mappings X ×Y → C,
and L(X, Y) the normed space of all bounded linear mappings X → Y. Further-
more we set L(X) := L(X, X). A unit ball will be indicated by X1 := {x ∈ X :
‖x‖ 6 1}. When X and Y are Banach spaces, we will denote their projective
tensor product (see for example [8]) by X⊗̂πY.

THEOREM 2.1. The space L(A) has a Banach space predual A⊗̂π A∗, which gives
a weak* topology on L(A) in which the closure Aut(A) of Aut(A) is a compact Hausdorff
space.

Proof. We have canonical isometric isomorphisms (which we can also call
Banach space isomorphisms)

(2.1) (A⊗̂π A∗)∗ ∼= B(A × A∗) ∼= L(A, (A∗)∗) = L(A)

so L(A) has A⊗̂π A∗ as a predual. By Alaoglu’s theorem the unit ball L(A)1 is
compact in the weak* topology thus obtained on L(A), and of course the weak*
topology on L(A) is Hausdorff, since a predual separates the points of a space. In
particular then, L(A)1 is weak* closed in L(A). By definition any α ∈Aut(A) is a
linear mapping A → A, but since it is a ∗-isomorphism and A a C∗-algebra, we
also know that it is norm preserving, so ‖α‖ = 1. Hence Aut(A) ⊂ L(A)1. Since
L(A)1 is weak* closed, we have Aut(A) ⊂ L(A)1 for the weak* closure of Aut(A)
in L(A), and therefore Aut(A) is compact and Hausdorff.

By Tychonoff’s theorem we then immediately have:

COROLLARY 2.2. For any set T, the product space Aut(A)
T

:= ∏
t∈T

Aut(A) is

compact and Hausdorff.

Because A∗ is the unique predual of A, the predual A⊗̂π A∗ is canonical
in the sense that the Banach space isomorphisms in (2.1) are canonical. In this
sense we can view the weak* topology in which the closure Aut(A) was taken as
a natural weak* topology on L(A). It is however unclear whether A⊗̂π A∗ is the
unique predual of L(A); for example this type of problem has been studied in [4],
but assuming the Radon-Nikodým property for A and A∗, which unfortunately
we do not have in general [2], [1].

We will call Aut(A)
T

in Corollary 2.2 the evolution space of A over the set T.
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Theorem 2.1 is the only place in this paper where we use the properties of

∗-automorphisms of A. From now on we will only use the fact that Aut(A)
T

is a
compact Hausdorff space.

3. NATURAL SPECTRAL MEASURES

In path integrals the measure can be heuristically viewed as an infinite di-
mensional Lebesgue measure. In particular we want such a measure to be natural
in a certain sense, and intuitively we want it to assign the same weight to each
path. In the case of an abstract dynamical system we would similarly like to

obtain measures on Aut(A)
T

which are in some way natural and intuitively as-
sign the same weight to each evolution. We will approach this problem using
the representation theory of C∗-algebras, in particular for the C∗-algebra C(K) of
continuous functions K → C with K a compact Hausdorff space. We will in fact
obtain projection valued measures, and this will be done using the following re-
sult, which is the reason why compact Hausdorff spaces play an important role
in this paper:

If K is a compact Hausdorff space, H a Hilbert space, and ϕ : C(K) → L(H)
a unital ∗-homomorphism, then there is a unique spectral measure E relative to
(K, H) such that

(3.1) ϕ( f ) =
∫
K

f dE

for all f ∈ C(K), where by a spectral measure relative to (K, H) we mean a map
E from the σ-algebra of Borel sets of K to the set of projections in L(H) such that
E(∅) = 0, E(K) = 1, E(V1 ∩ V2) = E(V1)E(V2) for all Borel V1, V2 ⊂ K, and
for all x, y ∈ H the function Ex,y : V 7→ 〈x, E(V)y〉 is a regular complex Borel
measure on K; see for example [6]. We will refer to E as the spectral resolution
of ϕ, and will sometimes denote it by Eϕ. Note that the integral

∫
K

f dE is de-

fined for all bounded complex-valued Borel functions f on K, the space of such
functions being denoted by B∞(K) which with the sup-norm is a C∗-algebra, by
demanding that

〈
x,

( ∫
K

f dE
)

y
〉

=
∫
K

f dEx,y for all x, y ∈ H. Besides being well

defined, this integral in fact also allows us to use (3.1) to naturally extend ϕ to a
unital ∗-homomorphism ϕ̃ : B∞(K) → L(H) : f 7→

∫
K

f dE. We will from now on

consistently use this notation to denote the extension B∞(K) → L(H) of a unital
∗-homomorphism C(K) → L(H) given by its spectral resolution.

However, we will require a ϕ which is in some way a canonical representa-
tion of C(K). Since C(K) is an abelian C∗-algebra, and K is a compact Hausdorff
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space, the set of pure states of C(K) can be identified with K via

ωx( f ) := f (x)

which defines a pure state ωx on C(K) corresponding to x ∈ K. Let (Hx, πx, Ωx)
be the GNS representation of C(K) associated to ωx, namely Hx is a Hilbert space
(which in this case happens to be one dimensional), πx : C(K) → L(Hx) is a
∗-homomorphism, and Ωx ∈ Hx is a cyclic vector for πx such that ωx( f ) =
〈Ωx, πx( f )Ωx〉 for all f ∈ C(K). Now consider the direct sum of all such rep-
resentations, namely

H :=
⊕
x∈K

Hx and π :=
⊕
x∈K

πx

which we will call a pure representation (H, π) of C(K). This of course is a faithful
representation by the standard representation theory of C∗-algebras (see for ex-
ample [5]), and it is straightforward to see that it is unital, i.e. π(1) = 1 ∈ L(H).
We can view this representation as being canonical, since no pure state is given
preference over another. The spectral resolution Eπ can in this sense then be
viewed as a natural spectral measure defined on the Borel σ-algebra of K. Note
however that such a pure representation is not quite unique, since the GNS rep-
resentation is only unique up to unitary equivalence, where this unitary operator
can be from one Hilbert space to another. For example, if U : H → H is unitary,
then U∗π(·)U is also a pure representation of C(K) obtained out of unitary trans-
formations of the GNS representations above from the Hx’s to other subspaces of
H. Hence the spectral measure that we obtain is also not unique, despite being
natural. This lack of uniqueness has a role to play, as we will briefly discuss in
Section 4.

The unit vector Ωx can also be viewed as an element of H in the obvious
canonical way: Ω′

x := (Ω′
x,y)y∈K with Ω′

x,y = Ωx when y = x, and Ω′
x,y = 0 oth-

erwise. Hence Ω′
x represents ωx as a vector in H, namely ωx( f ) = 〈Ωx, πx( f )Ωx〉

= 〈Ω′
x, π( f )Ω′

x〉 for all f ∈ C(K). The vectors Ω′
x, x ∈ K, are orthonormal in H.

Furthermore, since C(K) is an abelian C∗-algebra and ωx is a pure state, it fol-
lows that Hx is one dimensional for every x ∈ K. This means that {Ω′

x}x∈K is a
total orthonormal set in H, i.e. it is an orthonormal basis for H. This gives us a
simple interpretation for H, namely it has an orthonormal basis {Ω′

x}x∈K whose
elements represent the points of K.

We now want to argue that E := Eπ attaches the same “weight” to each of
K ’s elements, and more generally that if the Borel sets V1, V2 ⊂ K are in some
intuitive sense “equally big”, then the projections E(V1) and E(V2) are “equally
big”. We do this via the following theorem, in which spanM denotes the space of
finite linear combinations of elements of the set M in a vector space, and spanM
its norm closure in case of a normed space:

THEOREM 3.1. Let (H, π) be a pure representation of C(K) where K is a compact
Hausdorff space, and let E be the spectral resolution of π. Let (Hx, πx, Ωx) for x ∈ K



204 ROCCO DUVENHAGE

be the GNS representations of which (H, π) is the direct sum (as above). Represent each
Ωx in the canonical way as an element of H, and still denote it by Ωx. It then follows
that E(V) is the projection of H onto the subspace

span{Ωx : x ∈ V}

for any Borel V ⊂ K.

Proof. Consider any x ∈ K and define the positive Borel measure Ex on K
by Ex(V) = 〈Ωx, E(V)Ωx〉. The first thing to notice is that from E(K) = 1 and
‖Ωx‖ = 1 we have Ex(K) = 1. Since Ex is regular as mentioned above, we can in
particular approximate Ex({x}) from above, namely for any ε > 0 there exists an
open set V0 ⊂ K containing x such that

(3.2) Ex(V0) < Ex({x}) + ε.

Since {x} is closed and K is normal, we know by Urysohn’s lemma that there is a
continuous f : K → [0, 1] such that f (x) = 1 and f |K\V0

= 0. Furthermore, since
f ∈ C(K), it follows that∫

K

f dEx = 〈Ωx, π( f )Ωx〉 = f (x).

Also note from χ{x} 6 f 6 χV0 , where χ denotes characteristic functions, that∫
K

χ{x}dEx 6
∫
K

f dEx 6
∫
K

χV0dEx. Hence Ex({x}) 6 f (x) 6 Ex(V0), which when

combined with (3.2) gives

f (x)− ε < Ex({x}) 6 f (x)

and since ε > 0 was arbitrary, this means that Ex({x}) = f (x) = 1. Thus for
any Borel V ⊂ K containing x we have 1 = Ex({x}) 6 Ex(V) 6 Ex(K) = 1,
so ‖E(V)Ωx‖2 = Ex(V) = 1 = ‖Ωx‖2 hence E(V)Ωx = Ωx, since E(V) is a
projection. For any Borel V ⊂ K not containing x, on the other hand, it follows
that ‖E(V)Ωx‖2 = Ex(V) = 1− Ex(K\V) = 0, so E(V)Ωx = 0. We have therefore
shown that

E(V)Ωx =
{

Ωx if x ∈ V,
0 if x ∈ K\V,

for all Borel V ⊂ K. However, we have already argued that the vectors Ωx, x ∈ K,
form a total orthonormal set in H, which completes the proof.

Now we argue intuitively as follows: By Theorem 3.1, E({x}) is the pro-
jection onto CΩx for every x ∈ K, hence it seems clear that E attaches an equal
“weight” to every point of K, namely projections of equal size, in this case one-
dimensional. More generally, if the Borel sets V1, V2 ⊂ K are “equally big”, by
which we intuitively mean they have “the same number of points”, then Theo-
rem 3.1 tells us that E(V1)H and E(V2)H are “equally big” in the sense that they
are both spanned by “the same number of vectors” from the total orthonormal set
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{Ωx : x ∈ K}, i.e. we can view the projections E(V1) and E(V2) as being equally
big.

We will apply these ideas in the case where K is a product space of the form

Aut(A)
T

. Therefore we next study spectral measures as obtained above, in the
case of topological product spaces.

THEOREM 3.2. Let T be any non-empty set, and Kt a compact Hausdorff space for
every t ∈ T. Set

KT := ∏
t∈T

Kt

with the product topology for every T ⊂ T, write K := KT, let ιT : K → KT : (xt)t∈T 7→
(xt)t∈T and define ψT : C(KT) → C(K) : f 7→ f ◦ ιT . Let H be any Hilbert space and
ϕ : C(K) → L(H) any unital ∗-homomorphism, and set ϕT := ϕ ◦ ψT for every T ⊂ T.
Let ET be the spectral resolution of ϕT and write E := ET, i.e. E is the spectral resolution
of ϕ. Then we have

ET = E ◦ ι−1
T

for all T ⊂ T with T 6= ∅.

Proof. The case T = T is trivial, so we will assume T 6= T. This will ensure
that products written as KT × KT\T are not trivial.

For any x ∈ H we know from previous remarks that ET,x := (ET)x,x and
Ex := Ex,x are regular positive Borel measures. Since ιT is continuous, we can
similarly define

(E ◦ ι−1
T )x(V) := 〈x, (E ◦ ι−1

T )(V)x〉 = 〈x, E(ι−1
T (V))x〉 = Ex ◦ ι−1

T (V)

for every Borel V ⊂ KT , from which it is clear that FT,x := (E ◦ ι−1
T )x = Ex ◦ ι−1

T is
a positive Borel measure on KT . Note that here we use the notation FT = E ◦ ι−1

T .
We now firstly prove that FT,x is regular:

Consider any Borel V ⊂ KT , then ι−1
T (V) is a Borel set in K, but Ex is regular,

so for any ε > 0 there exists a compact set V1 ⊂ K and an open set V0 ⊂ K such
that V1 ⊂ ι−1

T (V) ⊂ V0 and

Ex(V0)− ε < Ex(ι−1
T (V)) < Ex(V1) + ε.

Since ιT is continuous, V ′
1 := ιT(V1) is compact, and clearly we also have V ′

1 ⊂
ιT(ι−1

T (V)) ⊂ V (in fact, the last inclusion is equality, since ιT is a surjection) and
V1 ⊂ ι−1

T (V ′
1) so Ex(V1) 6 FT,x(V ′

1). With the set V0 we need to be a bit more
careful. We need an open V ′

0 ⊂ KT such that V ⊂ V ′
0 and ι−1

T (V ′
0) ⊂ V0. Since ιT is

a projection, we have ι−1
T (V) = V × KT\T while KT\T is compact by Tychonoff’s

theorem. Hence, for every v ∈ V we have {v} × KT\T ⊂ V0, and the tube lemma
says that there is a “tube” Nv × KT\T with Nv an open neighbourhood of v in KT
such that {v} × KT\T ⊂ Nv × KT\T ⊂ V0. Let V ′

0 :=
⋃

v∈V
Nv, which is then an open

set in KT such that V =
⋃

v∈V
{v} ⊂ V ′

0, and ι−1
T (V ′

0) =
⋃

v∈V
Nv × KT\T ⊂ V0 hence
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FT,x(V ′
0) 6 Ex(V0). To summarize, we have found a compact V ′

1 ⊂ KT and an
open V ′

0 ⊂ KT such that V ′
1 ⊂ V ⊂ V ′

0 and

FT,x(V ′
0)− ε < FT,x(V) < FT,x(V ′

1) + ε

which means that FT,x is regular.
Now we can prove the theorem. For any f ∈ C(KT) we have∫

KT

f dFT,x =
∫
K

( f ◦ ιT)dEx = 〈x, ϕT( f )x〉 =
∫

KT

f dET,x

and since both ET,x and FT,x are regular, we then know from Riesz’s representa-
tion theorem that ET,x = FT,x. In other words

〈x, ET(V)x〉 = 〈x, FT(V)x〉

for all x ∈ H and all Borel V ⊂ KT , hence by the polarization identity ET = FT .

COROLLARY 3.3. Extend ϕT in Theorem 3.2 to a unital ∗-homomorphism ϕ̃T :
B∞(KT) → L(H) defined by

ϕ̃T( f ) :=
∫

KT

f dET

for all T ⊂ T, and write ϕ̃ := ϕ̃T which is therefore the extension of ϕ given by E. Set
ψ̃T : B∞(KT) → B∞(K) : f 7→ f ◦ ιT . Then ϕ̃T = ϕ̃ ◦ ψ̃T for all non-empty T ⊂ T.

Proof. Note that ψ̃T is well defined, since ιT is continuous. For any x ∈ H
we have using the notation of the previous proof that

〈x, ϕ̃T( f )x〉 =
∫

KT

f dET,x =
∫

KT

f d(Ex ◦ ι−1
T ) =

∫
K

( f ◦ ιT)dEx = 〈x, ϕ̃ ◦ ψ̃T( f )x〉

for all f ∈ B∞(KT). Hence by the polarization identity ϕ̃T = ϕ̃ ◦ ψ̃T .

We also have the following simple proposition regarding spectral resolu-
tions:

PROPOSITION 3.4. Let K be a compact Hausdorff space, H a Hilbert space, ϕ :
C(K) → L(H) a unital ∗-homomorphism and E its spectral resolution. For any unitary
U : H → H set ϕ′ := U∗ϕ(·)U and let E′ be its spectral resolution. Then E′ =
U∗E(·)U. Furthermore, for the situation in Theorem 3.2 and Corollary 3.3, and with E′

T
the spectral resolution of ϕ′T := ϕ′ ◦ ψT , we have E′

T = U∗ET(·)U and hence ϕ̃′T =
U∗ ϕ̃T(·)U with ϕ̃′T the extension of ϕ′T to B∞(KT) given by E′

T .

Proof. We use a similar argument as in the proof of Theorem 3.2. Let F :=
U∗E(·)U; then Fx,x := 〈x, F(·)x〉 = EUx,Ux is a regular positive Borel measure on
K for all x ∈ H by the properties of E. Furthermore, for every f ∈ C(K) and
every x ∈ H we have

∫
K

f dE′
x,x = 〈x, ϕ′( f )x〉 = 〈Ux, ϕ( f )Ux〉 =

∫
K

f dFx,x but
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E′
x,x is also a regular positive Borel measure on K by definition, hence by Riesz’s

representation theorem and the polarization identity E′ = F.
Now, for the situation in Theorem 3.2 and with ϕ̃′ := ϕ̃′T, consider any Borel

V ⊂ KT , then E′
T(V) = ϕ̃′T(χV) = ϕ̃′ ◦ ψ̃T(χV) = ϕ̃′(χ

ι−1
T (V)) = E′(ι−1

T (V)) =

U∗E(ι−1
T (V))U = U∗ET(V)U by Corollary 3.3 and Theorem 3.2.
For any f ∈ B∞(KT) and x ∈ H it now follows (using the notation of The-

orem 3.2’s proof) that 〈x, ϕ̃′T( f )x〉 =
∫

KT

f dE′
T,x =

∫
K

f dET,Ux = 〈Ux, ϕ̃T( f )Ux〉 =

〈x, U∗ ϕ̃T( f )Ux〉.

These results will be used in the next section.
The remainder of this section shows how the imbedding ψT : C(KT) →

C(K) that appears in Theorem 3.2, or to be more precise, the extended imbed-
ding ψ̃T in Corollary 3.3, can be carried over to the pure representations of C(KT)
and C(K). This rounds off the discussion in this section, but is less important
for the rest of the paper. Note that by the term imbedding we mean an injective
∗-homomorphism from one C∗-algebra to another. By standard theory of C∗-
algebras such an imbedding is automatically norm preserving, and its image a
C∗-algebra.

Let T, Kt, KT , K and ψT be as in Theorem 3.2, let (HT , θT) be a pure represen-
tation of C(KT) for every non-empty T ⊂ T and set (H, π) := (HT, θT). Keep in
mind that θ̃T(B∞(KT)) ⊂ L(HT) is a C∗-algebra, since B∞(KT) is a C∗-algebra and
θ̃T is a ∗-homomorphism. We simply want to show that there is an imbedding
ηT : θ̃T(B∞(KT)) → L(H) such that ηT ◦ θ̃T = π̃ ◦ ψ̃T , i.e. we have a commuta-
tive diagram, which means that the imbedding ψ̃T : B∞(KT) → B∞(K) has been
carried over to θ̃T(B∞(KT)) → L(H) in a consistent way.

To do this it will be notationally convenient to write pure representations in
a slightly more concrete form. For any compact Hausdorff space K it is easily seen
that the GNS representation of the pure state ωx previously used in constructing
a pure representation (H, π) of C(K) can be taken to be (Hx, πx, Ωx) = (C, ωx, 1)
where here we view ωx( f ) as an element of L(C) by C → C : z 7→ ωx( f )z for all
f ∈ C(K). This pure representation is then given by

H :=
⊕
x∈K

C(3.3)

π :=
⊕
x∈K

ωx(3.4)

so π( f ) =
⊕
x∈K

f (x) for all f ∈ C(K) where
⊕
x∈K

ax, with any bounded K 3 x 7→

ax ∈ C, denotes an element of L(H) defined by
( ⊕

x∈K
ax

)
(vx)x∈K := (axvx)x∈K

for (vx)x∈K ∈ H. When we use the form (3.3) and (3.4) we will say that π is
in diagonal form. Since the GNS representation of ωx can always be written in
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the form (C, ωx, 1), we know that a pure representation can always be written in
diagonal form.

PROPOSITION 3.5. Let K be a compact Hausdorff space and (H, π) a pure repre-
sentation of C(K) in diagonal form. Then

π̃( f ) =
⊕
x∈K

f (x)

for all f ∈ B∞(K).

Proof. Let E be the spectral resolution of π and define Ωx ∈ H by Ωx :=
(Ωx,y)y∈K where Ωx,y = 1 for y = x and Ωx,y = 0 otherwise. Hence Ωx, x ∈ K, is
the total orthonormal set in H that we used previously (but now in π ’s diagonal
form). Setting Ex,y := 〈Ωx, E(·)Ωy〉 for all x, y ∈ K it follows from Theorem 3.1
that

Ex,x(V) =
{

1 if x ∈ V,
0 if x /∈ V,

for all Borel V ⊂ K, while Ex,y = 0 for x 6= y. Hence

〈Ωx, π̃( f )Ωy〉 =
∫
K

f dEx,y = f (x)〈Ωx, Ωy〉 =
〈

Ωx,
[ ⊕

z∈K

f (z)
]
Ωy

〉
and since Ωx, x ∈ K, is a total orthonormal set in H, the result follows.

COROLLARY 3.6. Let K be a compact Hausdorff space and (H, π) a pure repre-
sentation of C(K), then π̃ : B∞(K) → L(H) is injective.

Proof. Without loss we can put π in diagonal form, hence π̃ is given by
Proposition 3.5. Now for any bounded K 3 x 7→ ax ∈ C and K 3 x 7→ bx ∈ C
with

⊕
x∈K

ax =
⊕
x∈K

bx as elements of L(H), we have

ax =
〈

Ωx,
( ⊕

y∈K

ay

)
Ωx

〉
=

〈
Ωx,

( ⊕
y∈K

by

)
Ωx

〉
= bx

for every x ∈ K, with Ωx as in Proposition 3.5’s proof. In particular, if π̃( f ) =
π̃(g) for f , g ∈ B∞(K), then f = g.

COROLLARY 3.7. For the situation in Theorem 3.2, but with ϕ = π a pure rep-
resentation of C(K), it follows that π̃T is injective, and with π in diagonal form it is
given by

(3.5) π̃T( f ) =
⊕
x∈K

f (ιT(x))

for all f ∈ B∞(KT).

Proof. By Corollary 3.3 we have π̃T( f ) = π̃( f ◦ ιT), and since π̃ is injective
by Corollary 3.6 while ιT is surjective, it follows that π̃T is injective. With π in di-
agonal form, (3.5) follows immediately from Corollary 3.3 and Proposition 3.5.
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THEOREM 3.8. For the situation in Theorem 3.2, let (HT , θT) be a pure represen-
tation of C(KT), and set π := θT and πT := π ◦ ψT for every non-empty T ⊂ T. Then
for every such T there is a unique function

ηT : θ̃T(B∞(KT)) → L(H)

such that ηT ◦ θ̃T = π̃T . Furthermore, ηT is an injective norm preserving unital ∗-
homomorphism. With π and θT in diagonal form, it is given by

(3.6) ηT

( ⊕
x∈KT

f (x)
)

=
⊕
x∈K

f (ιT(x))

for all f ∈ B∞(KT).

Proof. The existence and uniqueness of ηT follow from the injectivity of θ̃T
given by Corollary 3.6. It is a ∗-homomorphism, since θ̃T and π̃T are, and it
is injective, since π̃T is injective according to Corollary 3.7. Hence ηT is norm
preserving. It is unital since θ̃T and π̃T are. In diagonal form θ̃T is given by
Proposition 3.5, hence (3.6) follows directly from (3.5).

COROLLARY 3.9. For the situation in Theorem 3.8, and with ET and FT the spec-
tral resolutions of πT and θT respectively, we have ηT ◦ FT = ET .

Proof. For any Borel V ⊂ KT we have ηT(FT(V)) = ηT(θ̃T (χV)) = π̃T(χV)
= ET(V).

4. EVOLUTION INTEGRALS

Now we apply the ideas of the previous section to find an analogue of path
integrals for abstract dynamical systems. Fix an arbitrary set T. We will allow T to
be any subset of T. We will view T as the set of all points in “time” (corresponding
to R in usual quantum mechanics), and the T ’s as “time intervals”. Let A be a
W∗-algebra as in Section 2, and set

XT := Aut(A)
T

which is the evolution space over T. Write X := XT. Our goal is to do integrals
over XT to represent dynamics on a “higher level” as discussed in the introduc-
tion, the higher level being a Hilbert space obtained from a pure representation.
However, we would like to use the same Hilbert space for different T, since then
we can interpret the integrals for different T ’s to represent the dynamics of the
same system but over different “time intervals”. Therefore we will imbed C(XT)
canonically into C(X) and then consider a pure representation of C(X). To do this
let ιT and ψT be defined as in Theorem 3.2 in terms of K = X and KT = XT . Then
ψT is a well defined injective norm preserving unital ∗-homomorphism, which
can be viewed as a canonical imbedding of C(XT) into C(X). Let (H, π) be a pure
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representation of C(X), which makes H independent of T, and then consider the
spectral resolution ET := EπT of the injective unital ∗-homomorphism

πT := π ◦ ψT : C(XT) → L(H).

This spectral measure ET can be viewed as being natural, since π and ψT are both
canonical (also see Section 3), and allows us to do integrals over the evolution
space XT , namely

(4.1) π̃T( f ) =
∫

XT

f dET

is defined for all f ∈ B∞(XT). We will call integrals of the form (4.1) evolution
integrals.

Theorem 3.8 tells us that it would in fact be mathematically equivalent to
work on the various Hilbert spaces HT , T ⊂ T, however we will express every-
thing in terms of H, since this is a simpler point of view as far as the dynamical
system on the higher level is concerned.

The arguments in Section 3 that E := ET attaches the same weight to all
the points of K = X can be interpreted as each evolution over T having the same
weight. Via Theorem 3.2 we can then also say that ET attaches the same weight
to each of the evolutions over T, namely to each point of XT . This is analogous
to path integrals, as explained at the beginning of Section 3, and hence is exactly
the type of structure that we intuitively want.

Our interpretation of H in a pure representation of C(K) in Section 3 gives us
a nice picture in the case where K = X, namely the vectors {Ω′

α}α∈X defined as in
the case of K represent the evolutions of A over the entire T as a total orthonormal
set in H. In a similar way an evolution β ∈ XT corresponds to the set of evolutions
in X projected onto β by ιT , and hence to the set of Ω′

α ’s with ιT(α) = β.
The basic idea for getting dynamics on H is to consider a unitary uT ∈

B∞(XT), and then set UT = π̃T(uT) which is a unitary operator on H, since π̃T is
a unital ∗-homomorphism. We will interpret UT as representing dynamics on H
over the set T, and will discuss this in more detail below, and in the next section.

Note that since B∞(XT) is abelian and π̃T is a homomorphism, all UT ’s
obtained in this way will commute with each other. This is where the fact that
a pure representation of C(K) is not unique, as mentioned in Section 3, comes
into play. To obtain unitaries on H which do not commute with these UT ’s,
we can use a unitary transformation of π to get another pure representation of
C(K), namely π′ := U∗π(·)U with U a unitary operator on H, and then replace
ET by the spectral resolution E′

T of π′
T := π′ ◦ ψT . By Proposition 3.4 we get

U′
T :=

∫
XT

uTdE′
T = U∗UTU instead of UT . In this sense evolution integrals differ

from path integrals. Instead of having one R+ ∪ {∞}-valued measure, we have
many projection valued measures.
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Although we will not discuss detailed examples and applications in this pa-
per, in this paragraph we give a brief description of how simple examples can be
obtained, before we resume with the theory. As mentioned above we are inter-
ested in unitary operators on H given by UT = π̃T(uT) with uT ∈ B∞(XT) uni-
tary. A simple case of this would be uT = eiST where ST : XT → R is continuous.
Hence we look at a simple class of examples of such an ST . Let T be a finite subset
of T and let ft ∈ L(A)∗ for every t ∈ T. Let gt : C → R be continuous for every
t ∈ T, for example gt = | · | or gt = | · |2. Fix any (τt)t∈T ∈ XT . For f ∈ L(A)∗ and
α ∈ Aut(A) we view α as a linear functional on L(A)∗ and denote its value at f
by f (α). Now set ST(α) := ∑

t∈T
gt( ft(αt − τt)) for all α = (αt)t∈T ∈ XT . Then ST is

continuous, since T is finite and we are using the product topology on XT . This
example gives some indication that we would have to be careful when attempting
to construct examples for the case where T is not finite.

Next we refine our idea for obtaining dynamics on H, by taking T to be a
measure space (T, Σ, µ) with Σ a σ-algebra in T and µ a usual positive measure on
Σ. In the following section this will allow us to clarify the analogy with path inte-
grals. Let U (A) denote the set of all unitary elements of any unital C∗-algebra A.

DEFINITION 4.1. Let (T, Σ, µ) be a measure space, and Σ0 ⊂ Σ a set such
that T1 ∪ T2 ∈ Σ0 when T1, T2 ∈ Σ0. Now consider a function

u : Σ0 →
⋃

T∈Σ0

B∞(XT) : T 7→ uT

such that

uT ∈ U (B∞(XT))

for all T ∈ Σ0,

(4.2) uT1∪T2(ιT1∪T2(α)) = uT1(ιT1(α))uT2(ιT2(α))

for all α ∈ X and all T1, T2 ∈ Σ0 with µ(T1 ∩ T2) = 0, and

(4.3) uT = 1

for all T ∈ Σ0 with µ(T) = 0. Such a u, or (u, Σ0, µ) to be more complete, will be
called an action weight for (A, T). If uT ∈ U (C(XT)) for all T ∈ Σ0, we will call u a
continuous action weight.

The word “action” in the term action weight is borrowed from the classical
action which appears in usual path integrals in quantum mechanics. Note that
when using an action weight, we no longer allow all subsets T ⊂ T, but only
T ∈ Σ0. A typical situation might be where T is a locally compact Hausdorff
group, Σ its Borel σ-algebra, µ its Haar-measure, and Σ0 the Borel sets with finite
measure.
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So let u be an action weight as in Definition 4.1, and define

(4.4) UT =
∫

XT

uTdET

for all T ∈ Σ0 with the convention that U∅ = 1 if ∅ ∈ Σ0. Note that UT is defined
in terms of a fixed pure representation π of C(X), so all the UT ’s commute with
one another as discussed earlier. Although u corresponds to the classical level
in path integrals, and U to the quantum level, one should keep in mind that A
need not be abelian, hence we in general do not view u as coming from “classical”
dynamics, unless A is abelian. Next we show that the dynamics on H given by
the UT ’s have familiar grouplike properties:

PROPOSITION 4.2. Let UT be defined as in (4.4). Then we have

UT1UT2 = UT1∪T2

for all T1, T2 ∈ Σ0 with µ(T1 ∩ T2) = 0, and

UT = 1

for all T ∈ Σ0 with µ(T) = 0.

Proof. If any of T1, T2 or T are empty, the result is trivial, so assume they are
not empty. Using Corollary 3.3 and its notation, we have

UT1UT2 = π̃T1(uT1)π̃T2(uT2) = π̃(ψ̃T1(uT1))π̃(ψ̃T2(uT2))

= π̃(ψ̃T1(uT1)ψ̃T2(uT2)) = π̃(ψ̃T1∪T2(uT1∪T2)) = UT1∪T2

by (4.2). From (4.3) on the other hand, we immediately have UT = π̃T(uT) =
π̃T(1) = 1.

These are the properties that one would have in quantum mechanics coming
from path integrals over closed intervals, say T1 = [t0, t1] and T2 = [t1, t2], with
T = R, µ the Lebesgue measure on R, and Σ0 for example being the sets with
finite Lebesgue measure. There one would interpret these properties as the group
structure of the quantum dynamics, with inverses of the unitaries providing the
group inverse. Since all the UT ’s commute, this grouplike structure is inherently
abelian.

REMARK 4.3. Any unital ∗-homomorphism ϕ : C(X) → L(H), with H any
Hilbert space, in principle gives us another definition of evolution integrals if
we replace π by ϕ, but π seems most canonical, and also gives a very simple
interpretation of H as discussed above. Note that Proposition 4.2 still holds if we
replace π by such a ϕ. One other choice besides π that would be canonical, is the
universal representation of C(X).

A different approach we could have followed in setting up our framework
is to begin with a Hilbert space H0 instead of A, and then consider the set U (H0)
of unitary operators H0 → H0 instead of Aut(A). Since U (H0) ⊂ L(H0) with
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L(H0) a von Neumann algebra which therefore has a unique predual, we could
look at the closure U (H0) in the resulting weak* topology on L(H0). Then replace

Aut(A)
T

in the framework we set up above with the compact Hausdorff space

U (H0)
T

, the elements of which we would interpret as evolutions in H0. How-
ever, to start with A instead of H0 seems more natural simply because the alge-
braic formulation is a more natural way to formulate a dynamical system, with
a Hilbert space being a specific way of representing such a system. This is espe-
cially clear if we start with a classical system on the lower level. This raises the
question if the dynamical system on the higher level, namely the Hilbert space H
and the dynamics on it, is in some natural way a representation of an algebraic
formulation of the same dynamical system.

5. THE ANALOGY WITH PATH INTEGRALS

We now make the analogy between evolution integrals and path integrals
more explicit. We will continue using the notation from the previous section. In
particular, Σ is still a σ-algebra in T. For T ∈ Σ, set Σ|T := {V ∩ T : V ∈ Σ} which
is a σ-algebra in T. Denote the vector space of bounded Σ|T-measurable functions
T → C with the sup-norm by B∞(Σ|T). Although this space is a C∗-algebra, we
will only use its normed space structure.

DEFINITION 5.1. Let Σ0 ⊂ Σ be the sets with finite µ-measure. Consider
a mapping L : T 7→ LT on Σ0 such that LT : XT → B∞(Σ|T) : α 7→ LT,α is
continuous, LT,α is real-valued and LT,α|T′ = LT′ ,α|T′ for all T, T′ ∈ Σ0 with T′ ⊂
T. We will call an L with these properties a Lagrangian. Define ST : XT → R by

ST(α) :=
∫
T

LT,αdµ

for all α ∈ XT and all T ∈ Σ0. The mapping S : T 7→ ST defined on Σ0 will be
called the action of L.

The terminology in this definition is of course borrowed from classical me-
chanics. The simple example given in Section 4 is such an action.

PROPOSITION 5.2. The function ST in Definition 5.1 is continuous, hence S is a
function Σ0 →

⋃
T∈Σ0

C(XT) with ST ∈ C(XT) for every T ∈ Σ0. Setting uT := eiST for

all T ∈ Σ0 makes the function u given by Σ0 3 T 7→ uT a continuous action weight.

Proof. For any α, β ∈ XT we have

|ST(α)− ST(β)| =
∣∣∣ ∫

T

(LT,α −LT,β)dµ
∣∣∣ 6 ‖LT,α −LT,β‖µ(T)
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and since µ(T) < ∞ while LT is continuous by assumption, we know that for
every ε > 0 there is a neighbourhood N of α in X such that

|ST(α)− ST(β)| < ε

for all β ∈ N. Hence ST is continuous. Since ST is continuous and real-valued, we
have uT ∈ U (C(XT)). For T1, T2 ∈ Σ0 with µ(T1 ∩ T2) = 0 we have for all α ∈ X
that

ST1∪T2(ιT1∪T2(α)) =
∫

T1∪T2

LT1∪T2,ιT1∪T2 (α)dµ =
∫
T1

LT1,ιT1 (α)dµ +
∫
T2

LT2,ιT2 (α)dµ

= ST1(ιT1(α)) + ST2(ιT2(α))

from which (4.2) follows. For T ∈ Σ0 with µ(T) = 0 we immediately have ST = 0,
and (4.3) follows.

The evolution integral (4.4) takes the form

UT =
∫

XT

eiST dET

for all T ∈ Σ0 in the case of the action weight given by Proposition 5.2, which
makes the analogy with path integrals in quantum mechanics particularly clear,
although a path integral gives an amplitude and therefore more properly corre-
sponds to 〈x, UTy〉 with x, y ∈ H.

6. CONCLUDING REMARKS

There are a number of aspects of evolution integrals that could merit fur-
ther investigation. For example, is it possible to use only continuous evolutions
T → Aut(A) where we assume T is a topological space? Or to use Aut(A)T in-

stead of Aut(A)
T

? Also, if given a Hilbert space representation of an abstract
dynamical system, is there a way to decide whether or not its dynamics is given
by evolution integrals over some other system with certain properties, for exam-
ple having an abelian W∗-algebra? And can evolution integrals be linked more
closely with quantum physics, for example by trying to find the connection be-
tween the Hilbert space H used above and the usual quantum state space in the
case where A is abelian and represents a classical physical system?
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