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ABSTRACT. The present article answers in the negative the great and long-
standing problem in hypercyclicity posed by D. Herrero: Is T ⊕ T hypercyclic
whenever T is? It also answers simultaneously the significant question asked
by J. Bès, A. Peris, F. León-Saavedra and A. Montes-Rodríguez: Does every
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1. INTRODUCTION

If T is a linear bounded operator on a Banach space X, then the orbit of a
vector x ∈ X for T is the set Orb(T, x) = {x, T(x), T2(x), T3(x), . . .}. A vector
x is called hypercylic for T if Orb(T, x) is dense in X or, in other words, there is
no proper closed T-invariant subset of X containing x. An example of a Banach
space that supports an operator without non-trivial, closed, invariant subsets was
found by C. Read [18]. T is called hypercyclic if it has a hypercyclic vector. A vector
x ∈ X is said to be cyclic for an operator T ∈ B(X) if the linear span of Orb(T, x)
is dense in X. An operator T ∈ B(X) is cyclic if it has a cyclic vector. It is evident
that hypercyclicity implies cyclicity.

The first example of hypercyclicity appeared in the space of entire functions
in 1929 by Birkhoff [6]. He showed essentially that the translation operator is a
hypercyclic operator, while in 1952, MacLane [16] proved the hypercyclicity of
the differentiation operator. Hypercyclicity on Banach spaces was discussed in
1969 by Rolewicz [20], who showed that whenever |λ| > 1, λT is hypercyclic
where T is the unilateral backward shift on `p (1 6 p < ∞) or c0.

In 1982, C. Kitai determined in her Ph.D. Dissertation [13] conditions that
ensure a continuous linear operator to be hypercyclic. This result, commonly
referred to as the Hypercyclicity Criterion, was never published, and a few years



370 MANUEL DE LA ROSA AND CHARLES READ

later it was rediscovered in a broader form by R.M. Gethner and J.H. Shapiro [8],
who used it to unify the previously mentioned results of Birkhoff, MacLane and
Rolewicz, among others. We state here the criterion in the weak form due to J. Bès
and A. Peris [5]. We say that an operator T satisfies the Hypercyclicity Criterion if it
satisfies the hypothesis of the following criterion. Remember that a Fréchet space
is a complete, linear, metric and locally convex space.

THE HYPERCYCLICITY CRITERION. Let X be a separable Fréchet space and let
T be a continuous linear operator on X. If there are dense subsets X0 and Y0 of X and an
increasing sequence of natural numbers (nk)k and maps Sk : Y0 → X, k ∈ N such that:

(i) Tnk Sky → y ∀y ∈ Y0;
(ii) Sky → 0 ∀y ∈ Y0;

(iii) Tnk x → 0 ∀x ∈ X0;
then T is hypercyclic.

The direct sum of two hypercyclic operators is not in general a hypercyclic
operator, indeed, H. Salas [21] and D. Herrero [11] showed that there exist T1 and
T2 hypercyclic operators such that the direct sum T1 ⊕ T2 is not hypercyclic.

On the other hand if T satisfies the Hypercyclicity Criterion, then T ⊕ T is
hypercyclic. Therefore D. Herrero [12] posed the following question:

PROBLEM 1. Is T ⊕ T hypercyclic whenever T is?

H. Salas [21] and D. Herrero [11] showed in 1991 that there are hypercyclic
operators on a Hilbert space that do not satisfy the Hypercyclicity Criterion with
nk = k, nonetheless they satisfy the criterion in its general form. In 1995, H. Salas
[22] showed that every perturbation of the identity by a unilateral weighted back-
ward shift with non-zero bounded weights is hypercyclic, and some years later,
A. Montes-Rodríguez and F. León-Saavedra [14] showed that these hypercyclic
operators also satisfy the Hypercyclicity Criterion. It seemed by then that every
hypercyclic operator satisfied the criterion and for this reason J. Bès, A. Peris [5]
and F. León-Saavedra, A. Montes-Rodríguez [15] asked the following:

PROBLEM 2. Does every hypercyclic operator satisfy the Hypercyclicity
Criterion?

J. Bès and A. Peris [5] have shown that T ⊕ T is hypercyclic if and only if T
satisfies the Hypercyclicity Criterion or equivalent if T is hereditarily hypercyclic
with respect to some increasing sequence of natural numbers (nk)k, this is, for all
subsequences (nkj

)j of (nk)k there exists x ∈ X such that {T
nkj x : j ∈ N} is dense.

THEOREM 1.1 (Bès and Peris, 1999). Let X be a separable Fréchet space and let
T be a continuous linear operator on X. The following assertions are equivalent:

(i) T satisfies the Hypercyclicity Criterion;
(ii) T ⊕ T is hypercyclic;

(iii) T is hereditarily hypercyclic with respect to some sequence (nk)k.
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In this paper we show that there exists a continuous linear operator T which
is hypercyclic but its direct sum T ⊕ T is not. Thus answering in the negative
Problem 1 and Problem 2. The counterexample is given in the following way:
we shall find some “universal objects” for the Hypercyclicity Criterion consisting
of hypercyclic operators where the norm on the underlying space is in a specific
sense maximal; we shall show that if there is any counterexample for Problem 1,
then one of these specific operators must be a counterexample; and then we shall
show that some of these operators are indeed counterexamples.

2. A SQUARE-NORM HYPERCYCLICITY CRITERION

Let (X, ‖·‖) be a Banach space, let T be a bounded linear operator on X, and
let e0 be a cyclic vector for T. If ei = Tie0 for every i ∈ N, and c00 is the collection
of finite linear combinations of the vectors ei, then X will be the completion of c00
under the given norm ‖·‖. We define a new seminorm on X (we shall call it the
“square norm” — it is in fact a norm in the cases of interest to us):

(2.1) ‖x‖[2] = inf
{ n

∑
i=0
‖xi‖ : x = x0 +

n

∑
i=1

pi(T)xi with ‖pi(T)e0‖ 6 1
}

.

Obviously ‖x‖[2] 6 ‖x‖ for all x ∈ X; note that the two would be equal if
the norm ‖p‖ = ‖p(T)e0‖ were an algebra norm on the algebra C[X].

THEOREM 2.1. Let T be a bounded operator on the Banach space X, such that
T ⊕ T is hypercyclic. If e0 is a cyclic vector in X for T, then ‖e0‖[2] = 0.

Proof. We may assume that ‖e0‖ = 1. If T ⊕ T is hypercyclic, then T ⊕ T
has a dense set of hypercyclic vectors, so for every δ > 0 there exist y, z ∈ X such
that ‖y‖ < δ, ‖z‖ < δ and (e0 + y, e0 + z) is a hypercyclic vector. So, there exists
N ∈ N such that (T ⊕ T)N(e0 + y, e0 + z) is very close to (e0, 0), specifically we
can find an N such that

‖TNe0 + TNy− e0‖ < δ and ‖TNe0 + TNz‖ < δ.

Since e0 is a cyclic vector, we can approximate y, z by p(T)e0, q(T)e0 where
p and q are complex polynomials, in such a way that this is still true:

‖p(T)e0‖ < δ, ‖q(T)e0‖ < δ, ‖TNe0 + TN p(T)e0 − e0‖ < δ,

‖TNe0 + TNq(T)e0‖ < δ, and hence ‖TN(p(T)− q(T))e0 − e0‖ < 2δ.

Let us consider the vector

x = TN(p(T)− q(T))q(T)e0
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in two different ways:

x = q(T)(TN(p(T)− q(T))e0) = q(T)(e0 + γ), ‖γ‖ < 2δ; and

x = (p(T)− q(T))TNq(T)e0 = (p(T)− q(T))(−TNe0 + γ2)

= (p(T)− q(T))γ2 − (e0 + γ), ‖γ2‖ < δ;

therefore

e0 = (p(T)− q(T))γ2 − γ− x = (p(T)− q(T))γ2 − γ− q(T)(e0 + γ).(2.2)

Using (2.2) and applying (2.1) we have:

‖e0‖[2] = ‖(p(T)− q(T))γ2 − γ− q(T)(e0 + γ)‖[2]

6 ‖(p(T)− q(T))γ2‖[2] + ‖γ‖[2] + ‖q(T)e0‖[2] + ‖q(T)γ‖[2]

6 ‖(p(T)− q(T))e0‖‖γ2‖+ ‖γ‖+ ‖q(T)e0‖+ ‖q(T)e0‖‖γ‖
6 2δ · δ + 2δ + δ + 2δ · δ = 3δ + 4δ2.

This is true for every δ > 0, so ‖e0‖[2] = 0.

3. UNIVERAL OBJETS FOR THE HYPERCYCLICITY PROBLEM

If p is a complex polynomial, let degp denote the degree of p, and let |p|
denote the sum of the absolute values of the coefficients of p.

Let (pi)∞
i=1 ⊂ C[z] be a fixed sequence of complex polynomials such that:

(i) deg pi 6 i for all i ∈ N;
(ii) |pi| 6 i for all i ∈ N; and

(iii) for all n ∈ N, the set {pi : deg pi < n} is dense in the finite dimensional
space of all complex polynomials of degree less than n.

Now let Λ ⊂ NN be an “upper interval” in the sense of Read [19], i.e. a
collection of sequences of natural numbers d = (di)∞

i=1 which increase at least at
a rate specified by a fixed sequence of growth conditions. We have the following
lemma:

LEMMA 3.1. Let T be a bounded operator on the Banach space X and let e0 be a
hypercyclic vector for T. Write ei = Tie0 for all i ∈ N. Then for some d ∈ Λ, writing
ai = d2i−1 and bi = d2i, we have

(3.1) ‖ebi
− pi(T)e0‖ <

1
ai

for every i ∈ N.

Proof. Let us say the “growth conditions” which define Λ are:

d1 > c and di+1 > Fi(d1, d2, . . . , di) for given c ∈ N and Fi : Ni → N.

We choose ai and bi recursively as follows:
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(i) Choose a1 = c + 1 and find b1 > max(a1, F1(a1)) such that

‖eb1 − p1(T)e0‖ 6
1
a1

.

This is possible because p1(T)e0 lies in the closed orbit {ei : i > 0}, in fact, it lies
in {ei : i > α} for any fixed α.

(ii) Given a1, b1, a2, . . . , an, bn we define

an+1 = 1 + max(bn, F2n(a1, b1, . . . , bn))

and find bn+1 > max(an+1, F2n+1(a1, b1, . . . , an+1)) such that

‖ebn+1 − pn+1(T)e0‖ 6
1

an+1
.

This is again possible because for any polynomial p and constant α, we have
p(T)e0 belongs to {ei : i > α}.

Thus we find a sequence a1, b1, a2, b2, . . . which grows fast enough to be in
Λ and satisfies (3.1) for all i ∈ N.

LEMMA 3.2. Let c00 denote the vector space of all terminating sequences
n
∑

i=0
λiei

where n ∈ N and λi ∈ C. For every C > 1 and all sequences (ai), (bi), (pi) as above,
there is a unique largest seminorm ‖·‖ on c00 with the following properties:

(i) ‖e0‖ 6 1;
(ii) ‖Tx‖ 6 C‖x‖ for all x ∈ c00;

(iii) ‖ebn − pn(T)e0‖ 6 1
an

for all n ∈ N.
Specifically, this seminorm is

(3.2) ‖x‖max = inf
{ N

∑
i,j=0

Cj|λij| : x =
N

∑
j=0

λ0jej +
N

∑
i=1

N

∑
j=0

λijai(ej+bi
− pi(T)ej)

}
.

Proof. The ‖x‖max is clearly a seminorm and clearly satisfies

‖e0‖max 6 1, ‖Tx‖max 6 C‖x‖max and ‖ebi
− pi(T)e0‖max 6

1
ai

for all i.

Thus it satisfies all conditions of the lemma. However any other seminorm ‖·‖0
satisfying these conditions satisfies:

‖ej‖0 6 Cj and ‖ej+bi
− pi(T)ej‖0 6

Cj

ai

for all i, j ∈ N; hence ‖x‖0 6 ‖x‖max for all x ∈ c00. Then ‖x‖max is the largest
such seminorm.

DEFINITION 3.3. Let C > 1 be given, and an upper interval Λ ⊂ NN. Let
T ∈ B(X), let e0 ∈ X, and write ei = Tie0. We say T is a (C, Λ)-maximal hypercyclic
operator if X is the completion of (c00, ‖·‖max) where the norm ‖·‖max is one of the
family of seminorms defined in Lemma 3.2.
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In the view of equation (3.1) it is plain that T will have a hypercyclic vector
e0; and if T is any hypercyclic operator satisfying the conditions of Lemma 3.2,
then ‖p(T)e0‖ 6 ‖p(T)e0‖max as in (3.2).

THEOREM 3.4. Let C > 1 be given, and an upper interval Λ. If T ⊕ T is hy-
percyclic for every (C, Λ)-maximal operator T, then T ⊕ T is hypercyclic for every hy-
percyclic operator T of norm less than or equal to C. In particular, for each hypercyclic
operator T of norm at most C, with hypercyclic vector e0, we can find a (C, Λ)-maximal
T′ with hypercyclic vector e′0, such that ‖p(T)e0‖ 6 ‖p(T′)e′0‖ for all complex polyno-
mials p.

Proof. Let T ∈ B(X) be hypercyclic with ‖T‖ 6 C, and pick a hypercyclic
vector e0 for T with norm 1. By Lemma 3.1, we can find a1 < b1 < a2 < b2 < · · ·
in Λ such that writing ei = Tie0, we have

‖ebi
− pi(T)e0‖ <

1
ai

.

We can identify X with the completion of c00 under its norm, and we have

‖p(T)e0‖ 6 ‖p(T)e0‖max

for every complex polynomial p. Let Y describe the completion of (c00, ‖·‖max)
and let (y1, y2) ∈ Y⊕Y be hypercyclic for T ⊕ T. We can write

yi =
∞

∑
j=0

qij(T)e0 (i = 1, 2)

where
∞

∑
j=0
‖qij(T)e0‖max < ∞.

In the original space X the sums y′i =
∞
∑

j=0
qij(T)e0 converge just as fast. We

claim (y′1, y′2) is hypercyclic for T ⊕ T ∈ B(X ⊕ X). For given i and j in N and
δ > 0 we can find an N such that

‖TNy1 − pi(T)e0‖max < δ and ‖TNy2 − pj(T)e0‖max < δ;

hence
‖TNy′1 − pi(T)e0‖X < δ and ‖TNy′2 − pj(T)e0‖X < δ;

so (y′1, y′2) ∈ X⊕ X is indeed hypercyclic for T ⊕ T.

4. Λ-MAXIMAL HYPERCYCLIC OPERATORS T WHERE T ⊕ T IS NOT HYPERCYCLIC

The previous theorem shows that the maximal hypercyclic operators are in
some sense the most likely to fail to have T⊕ T hypercyclic. That this does indeed
happen is shown by our main theorem:
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THEOREM 4.1. If Λ is a sufficiently fast increasing upper interval, then for no
(2, Λ)-maximal hypercyclic operator T is T ⊕ T hypercyclic. (The growth conditions on
Λ that we require for this to be so will be explained below.)

The reason why T⊕ T is not hypercyclic is that, contrary to Theorem 2.1, we
have ‖e0‖[2] > 0, where ‖·‖[2] is the square norm (2.1) derived from the original
maximal norm ‖·‖ as in (3.2). To show this, we shall exhibit a ‖·‖[2]-continuous
linear funtional ϕ on c00 such that ϕ(e0) = 1. We make a fairly common-sense
recursive definition of the key numbers ϕ(ei) as follows:

For d = (di)∞
i=1 ∈ NN we will always write

ai = d2i−1 and bi = d2i.

We impose the growth conditions

b1 > 2 and bn > 3bn−1 + n + 1 (n > 2).

We define ϕ(e0) = 1, ϕ(ei) = 0 for i ∈ (0, b1) and ϕ(eb1) = ϕ(p1(T)e0) which is
known because deg p1 6 1 and ϕ(ei) = 0 is known for i < b1; in fact ϕ(p1(T)e0)
is precisely the constant coefficient of p1. We define ϕ(ei) = 0 for i ∈ (b1, 2b1) and
ϕ(e2b1) = ϕ(p2

1(T)e0) (which is the square of the constant coefficient of p1, since
ϕ(e1) = ϕ(e2) = 0 and deg p1 6 1). We define ϕ(ei) = 0 for i ∈ (2b1, b2). For each
n > 1, we define ϕ(ei) as follows for i in the interval [bn, bn+1):

(4.1) ϕ(ei) =


ϕ(pn(T)ei−bn) if bn 6 i 6 bn + 3bn−1,

or 2bn 6 i 6 2bn + 3bn−1,
0 otherwise.

Note that since bn > 3bn−1, the intervals [bn, bn + 3bn−1] and [2bn, 2bn + 3bn−1] do
not overlap with each other, nor with the corresponding intervals for different n;
also since deg pn 6 n and bn > n the vector pn(T)ei−bn is supported on [0, i− 1]
so the recursive definition ϕ(ei) = ϕ(pn(T)ei−bn) makes sense. We will have
ϕ(ei) = 0 whenever

i /∈ {0, b1, 2b1} ∪
( ∞⋃

n=2
([bn, bn + 3bn−1] ∪ [2bn, 2bn + 3bn−1])

)
.

We will need the following lemma:

LEMMA 4.2. Let n ∈ N with n > 2. Thus we have ϕ(ei) = ϕ(pn(T)ei−bn) not
only for

i ∈ [bn, bn + 3bn−1] ∪ [2bn1 , 2bn + 3bn−1]

but also for
i ∈ [bn, 2bn − n) ∪ [2bn, 3bn − n).

Proof. If i ∈ (bn + 3bn−1, 2bn − n) certainly ϕ(ei) = 0 by (4.1) but also
pn(T)ei−bn is supported on (3bn−1, bn − n + deg pn) ⊂ (3bn−1, bn) so

ϕ(pn(T)ei−bn) = 0.
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Hence
ϕ(ei) = ϕ(pn(T)ei−bn) = 0.

Similarly if i ∈ (2bn + 3bn−1, 3bn − n) we have

ϕ(ei) = ϕ(pn(T)ei−bn) = 0.

THEOREM 4.3. Given suitable growth conditions on the upper interval Λ, we will
have ‖ϕ‖∗[2] = 1, where this denotes the norm of ϕ as an element of (c00, ‖·‖[2])

∗.

Given what we already know, this is enough to prove that ‖e0‖[2] = 1 and
so complete the proof of Theorem 4.1. Let us therefore prove Theorem 4.3.

Proof. ϕ(e0) = 1 so obviously ‖ϕ‖∗[2] > 1. In view of the definition of the
square norm (2.1), it is sufficient to show that |ϕ(y)| 6 1 whenever ‖y‖ 6 1 and
whenever y = p(T)z with ‖y‖ 6 1 and ‖p(T)e0‖ 6 1. If we use the convolution
multiplication on c00 (cautiously, for it isn’t continuous with respect to either ‖·‖
or ‖·‖[2]) such that ei · ej = ei+j, this is equivalent to showing that |ϕ(y)| 6 1
and |ϕ(y · z)| 6 1 whenever ‖y‖, ‖z‖ 6 1. Now our norm is one of the “max”
norms defined in (3.2), with C = 2. In these norms the unit ball is the absolutely
convex hull of the vectors 2−jej (j > 0), and 2−jai(ej+bi

− pi(T)ej) (j > 0, i > 1).
So it is enough to check that |ϕ(y)| 6 1 when y is a vector of form 2−jej (j > 0),
or 2−jak(ej+bk

− pk(T)ej) (j > 0, k > 1), or 2−jakal(Tbk − pk(T))(Tbl − pl(T))ej
(j > 0, l > k > 1). We proceed to check all these cases.

Case 1: Suppose y = 2−jej for some j > 0.
From our recursive definition (4.1), it is evident that since |p1| 6 1, we have

(4.2) max
i<b2

|ϕ(ei)| 6 1,

so certainly |ϕ(y)| 6 1 if j < b2; and for n > 2, we have

max
i∈[bn ,2bn)

|ϕ(ei)| = max
i∈[bn ,bn+3bn−1]

|ϕ(pn(T)ei−bn)| 6 |pn| · max
i∈[0,bn)

|ϕ(ei)|

since 3bn−1 + deg pn < bn (n > 2); and

max
i∈[2bn ,bn+1)

|ϕ(ei)| = max
i∈[bn ,bn+3bn−1]

|ϕ(pn(T)ei)| 6 |pn|2 · max
i∈[0,bn)

|ϕ(ei)|.

Hence for all n > 3,

max
i∈[0,bn)

|ϕ(ei)| 6 max(1, |pn|2) · max
i∈[0,bn−1)

|ϕ(ei)|.

Using (4.2) and the fact that |pn| 6 n, we find that for all n,

(4.3) max
i∈[0,bn)

|ϕ(ei)| 6 (n!)2.

If we impose the growth conditions bn > 2(n+1)2
(n > 2), we find that for all

n > 3, j ∈ [bn−1, bn) and y = 2−jej we have

|ϕ(y)| 6 2−bn−1(n!)2 6 2−n2
(n!)2 6 1
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as required.

Case 2: Suppose y = 2−jak(ej+bk
− pk(T)ej) (j > 0, k > 1). We split this case

into subcases depending on how large j is.
Subcase 2a: Suppose j < 2 log2 ak. Then

j + bk ∈ [bk, bk + 2 log2 ak) ⊂ [bk, 2bk − k)

(given the very mild growth condition

(4.4) bk > bk−1 + 2k + 3 log2 ak.

— this could be even milder for the present need but we will use it again below).
So by Lemma 4.2, ϕ(ej+bk

) = ϕ(pk(T)ej) hence

ϕ(y) = 0.

Subcase 2b: Suppose j ∈ [2 log2 ak, bk+1 − bk). Let | · |1 denote the l1 norm on
c00, that is ∣∣∣ n

∑
i=0

λiei

∣∣∣
1

=
n

∑
i=0
|λi|.

Then since 2−jak 6 a−1
k , we have

|y|1 6 a−1
k (1 + |pk|) 6 a−1

k (1 + k),

and since y is supported on [0, bk+1) we have

|ϕ(y)| 6 |y|1 · max
r<bk+1

|ϕ(er)| 6 a−1
k (1 + k)(k!)2 6 1,

given the growth condition ak > (1 + k)(k!)2 (k > 0).
Subcase 2c: Suppose j ∈ [br − bk, br+1 − bk) for some r > k. Then

|y|1 6 2bk−br ak(1 + |pk|) 6 2bk−br ak(1 + k).

Since y is supported on [0, br+1) we have

|ϕ(y)| 6 2bk−br ak(1 + k) · max
s<br+1

|ϕ(es)| 6 2bk−br ak(1 + k)(r!)2

6 2br−1−br ar−1 · r · (r!)2 6 1,

given the growth conditions br > br−1 + log2(ar−1 · r · (r!)2) (r > 2).

Case 3: Suppose y = 2−jakal(Tbk − pk(T))(Tbl − pl(T))ej (j > 0, l > k > 1).
We split this case into subcases depending on the value of j, and also according
to whether l = k or l > k.

Subcase 3a: Suppose l = k and 0 6 j 6 3 log2 al . Then

j + 2bl ∈ [2bl , 3bl − l)

by (4.4), so Lemma 4.2 tells us

ϕ(ej+2bl
) = ϕ(pl(T)ej+bl

),
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i.e.
ϕ(Tbl (Tbl − pl(T))ej) = 0.

The vector pl(T)ej is supported on

[0, l + 3 log2 al) ⊂ [0, bl − l) by (4.4),

so Lemma 4.2 again tells us

ϕ(Tbl pl(T)ej) = ϕ(p2
l (T)ej).

Hence
ϕ((Tbl − pl(T))2ej) = 0,

and so ϕ(y) = 0.
Subcase 3b: Suppose l > k and 0 6 j 6 3 log2 al . Then the vector

u = (Tbk − pk(T))ej

is supported on
[0, bk + 3 log2 al) ⊂ [0, bl − l) by (4.4).

Lemma 4.2 then tells us that

ϕ(Tbl u) = ϕ(pl(T)u)

hence
ϕ((Tbl − pl(T))(Tbk − pk(T))ej) = 0

and so ϕ(y) = 0.
Subcase 3c: Suppose j ∈ [3 log2 al , bl+1 − 2bl). Then 2−j < a−3

l hence

|y|1 6 aka−2
l (1 + |pl |)(1 + |pk|) 6 a−1

l (1 + l)2;

y is supported on [0, bl+1), so

|ϕ(y)| 6 |y| · max
i<bl+1

|ϕ(ei)| 6 a−1
l ((l + 2)!)2

because |ϕ(ei)| 6 ((l + 1)!)2 for i < bl+1 by (4.3). We can be sure |ϕ(y)| 6 1
provided we include the growth conditions

al > ((l + 2)!)2 (l > 0).

Subcase 3d: Suppose j ∈ [br − 2bl , br+1 − 2bl) for some r > l + 2. Then once
again y is supported on [0, br+1) and therefore (4.3) tells us

|ϕ(y)| 6 ((r + 1)!)2 · |y|.
But in this final case j is large enough that |y| is very small indeed, in fact

|y| 6 22bl−br akal(1 + |pk|)(1 + |pl |) 6 22br−1−br a2
r−1 · r2,

and so we conclude that |ϕ(y)| 6 1 provided we have the growth conditions
br > 2br−1 + log2(((r + 1)!)2 · a2

r−1 · r2) (r > 2).
So given appropriate growth conditions in the definition of Λ, we can be

sure that ‖ϕ‖∗[2] 6 1 whenever ϕ is as in (4.1) and the norm ‖·‖ is a (2, Λ)-maximal
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norm as defined in (3.2). This brings the proof of Theorem 4.3 to a close, and so
also the proof of our main Theorem 4.1.

5. CONCLUSION

We have shown not only that there exist hypercyclic operators such that
T⊕ T is not hypercyclic, but that in some sense all the “maximal” ones also have
this property. For given an upper interval Λ and a pair (T′, e′0) consisting of an
operator of norm at most 2 and a hypercyclic vector for it, we can use Theorem 3.4
to find a (2, Λ)-maximal operator T on an appropriate completion of c00, such that
for every complex polynomial p, ‖p(T′)e′0‖ 6 ‖p(T)e0‖. If Λ has been chosen
appropriately, T ⊕ T will definitely not be hypercyclic.
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