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INTRODUCTION

In the theory of pseudodifferential operators, the sharp Gårding inequality
plays an important role in the study of propagation of singularities as well as
in local solvability [6], [3]; we may notice that if P is a pseudodifferential oper-
ator, then the fact that P satisfies the sharp Gårding inequality is equivalent to
the positivity of the operator

( P+P∗
2 + C · Id

)
for some constant C. Therefore, it

is interesting to get criteria of positivity for pseudodifferential operators. How-
ever, if the symbol of a pseudodifferential operator is nonnegative, it does not
imply that the operator is positive, not even bounded from below, and there are
positive pseudodifferential operators whose symbols are not nonnegative [4]. It
is thus advisable to understand better the inter-relations between lower bounds
for pseudodifferential operators and lower bounds for their symbols. One deep
result was given by C. Fefferman and D.H. Phong by the use of microlocal anal-
ysis, cf. [3]. We would like to study this problem in a different way. In [5], V.
Guillemin recalls an isomorphism between operators in the Weyl algebra defined
on Rn and Toeplitz operators defined on the complex n-ball ; this isomorphism is
called the Boutet de Monvel - Howe correspondence [2], [5]. We can use it to obtain
sufficient conditions of positivity for Weyl operators, but we need first obtain suf-
ficient conditions of positivity for Toeplitz operators: this is the purpose of this
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paper. We describe now the setting of the theory of Toeplitz operators we need,
cf. [1], [7], [8].

Let X be the unit sphere of Cn and dσ the Borel measure on X, invariant
under rotation. The space L2(X) is endowed with the inner product ( f , g) =∫
X

f (x)g(x)dσ(x) . We denote by Hs(X) the Sobolev space on X of order s ∈ R

and Os := Hs(X) ∩ Ker∂b, the subspace of functions of Hs(X) which have an
analytic continuation in a neighborhood of X. Let m ∈ R , a Toeplitz operator
of order m is a linear operator T : Os → Os−m for all s ∈ R, such that it is of
the form T = SP where S is the Szegö orthogonal projection Hs(X) → Os and
P is a pseudodifferential operator on X of order m. If P is a differential opera-
tor with polynomial coefficients, the associated Toeplitz operator will be called a
differential Toepliz operator.

In [8] a symbolic calculus for Toeplitz operators on X of order zero was
given. This symbolic calculus needs to be extended to Toeplitz operators of any
order: This is the matter of the second section of this paper. The computable
model for these operators lives in the spaces of entire functions defined on Cn

of exponential type, so that we will need specific techniques to compute them:
for this purpose, formulas are given in the first section. In the last section, a
simple and computable sufficient condition on the covariant symbol is given for
a Toeplitz operator to be positive.

Throughout this paper h̄ is a positive constant and n > 1 is an integer.

1. REPRODUCING KERNELS AND DIVISION FORMULAS

The space of entire functions of exponential type will be denoted by E0 :=
L2(Cn; v0dν) ∩ Ker∂ with v0(z) := (πh̄)−2nK0

( 2
h̄ |z|

)
, where, for every x > 0,

K0(x) = 1
2

∞∫
0

e−t−x2/4t dt
t is the Macdonald function of order zero and dν is the

Lebesgue measure on Cn.
In [8] we gave a reproducing kernel for entire functions of exponential type

in E0. Indeed, if we apply (15) in [8] to A = Id, we get:

(1.1) F(z) = ( π
2 h̄2)−n

∫
Cn

F(u)I−n−1(
2
h̄

√
u · z)K0 ( 2

h̄ |u|) dν(u)

for any function F ∈ E0. This formula can be shown explicitly by computations
and we will give here a generalization of it. Before that, we need to extend the
definition of weight functions.
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For every ν, s ∈ R+, we set:

I−ν (z) := z−ν Iν(z) = 2−ν
∞

∑
m=0

( z
2
)2m

m!Γ(m + ν + 1)
for every z ∈ C,(1.2)

K+
ν (x) := xνKν(x) for every x > 0,(1.3)

vs(z) := (πh̄)−2n2−2sK+
2s(

2
h̄ |z|) for every z ∈ Cn,(1.4)

where Iν is the modified Bessel function of the first kind and of order ν and Kν is
the modified Bessel function of the third kind of order ν also called Macdonald
function cf. [9].

On the space E s := L2(Cn; vsdν) ∩Ker∂, we define the inner product:

(1.5) 〈F, G〉s :=
∫
Cn

F(z)G(z)vs(z)dν(z) for every F, G ∈ E s.

REMARK 1.1. The well-known asymptotic formula for Macdonald functions
shows that the definition of E s is equivalent to the one given in [7].

LEMMA 1.2. For every A > 0 and s ∈ R+, we have

(1.6)
∞∫

0

r2n−1+2AK+
2s
( 2

h̄ r
)

dr = 22s−2h̄2n+2AΓ(A + 2s + n)Γ(A + n).

Proof. This is an application of the Heaviside formula, cf. formula 13.21(8)
in [9].

LEMMA 1.3. For every multi-index α, β ∈ Nn and s ∈ R+, we have

(1.7)
∫
Cn

zαzβK+
2s
( 2

h̄ |z|
)

dν(z)=

{
0 if α 6= β,
( π

2 h̄2)n2n−1+2s h̄2|α|α!Γ(|α|+2s+n) if α= β.

Proof. We express the integral in polar coordinates and use formula (1.6).

LEMMA 1.4. Let R, S ∈ R+, p(z, z) a polynomial and u ∈ Cn, then we have:∫
Cn

p(z, z)I−R ( 2
h̄

√
z·u) K+

S ( 2
h̄ |z|) dν(z)(1.8)

= 2−R
∞

∑
m=0

h̄−2m

m!Γ(m + R + 1)

(
∑
|γ|=m

m!
γ!

uγ
∫
Cn

zγ p(z, z)K+
S
( 2

h̄ |z|
)

dν(z)
)

.

Proof. Following (1.2) the left hand side of (1.8) reads 2−R∫
Cn

( ∞
∑

m=0
fm(z, z)

)
dν(z)

with

fm(z, z) =
h̄−2m p(z, z)

m!Γ(m + R + 1)
(z · u)mK+

S
( 2

h̄ |z|
)

.
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These functions are integrable since the Macdonald function K+
S ( 2

h̄ |z|) is expo-

nentially decreasing at infinity. Moreover, the series
( ∞

∑
m=0

fm

)
is simply con-

verging to 2R p(z, z)I−R ( 2
h̄

√
z · u)K+

S ( 2
h̄ |z|) and the asymptotic formulas for Bessel

functions show that, for every M ∈ N, the finite sums
M
∑

m=0
fm are dominated by

C|p(z, z)||z|−R/2−S−3/4exp( 2
h̄ φ(z)) with φ(z) = (|u|1/2 − |z|1/2)|z|1/2

for some constant C depending on h̄ and u. When |z| is large enough the domi-
nating function is exponentially decreasing, thus integrable, so that we may use
the theorem of Lebesgue to interchange the integration and the summation and
get formula (1.8).

PROPOSITION 1.5. For every α ∈ Nn, s ∈ R, we have

(1.9) ( π
2 h̄2)−n ∫

Cn
zα I−n−1+2s(

2
h̄

√
z · u)K+

2s(
2
h̄ |z|)dν(z) = uα.

Proof. We denote by J the left hand side of (1.9). By Lemma 1.4 we get

J = ( π
2 h̄2)−n21−n−2s

∞
∑

m=0

h̄−2m

m!Γ(m+2s+n)

(
∑
|β|=m

m!
β! uβ

∫
Cn

zαzβK+
2s(

2
h̄ |z|)dν(z)

)
.

Lemma 1.3 tells us that the last integral vanishes except for β = α. There-
fore, the only remaining term is for m = |α| and using formula (1.7) we find

J =( π
2 h̄2)−n21−n−2s h̄−2|α|

m!Γ(|α|+2s+n)
m!
α! uα( π

2 h̄2)n2n−1+2s h̄2|α|α!Γ(|α|+2s+n)=uα.

COROLLARY 1.6. For every s ∈ R and u ∈ Cn , we have

(1.10) ( π
2 h̄2)−n∫

Cn
F(z)I−n−1+2s(

2
h̄

√
z·u)K+

2s
( 2

h̄ |z|
)

dν(z)= F(u) for every F ∈ E s.

This is a reproducing kernel for entire functions of exponential type in E s.

Proof. We expand F(z) into a power series: F(z) = ∑
β

aβzβ and use (1.9).

PROPOSITION 1.7. For every α ∈ Nn, s ∈ R+ and u ∈ Cn, we have

(1.11) ( π
2 h̄2)−n ∫

Cn
zα I−n−1(

2
h̄

√
z · u)K+

2s(
2
h̄ |z|)dν(z) = 22s Γ(|α|+2s+n)

Γ(|α|+n) uα.

Proof. The proof is similar to the one of Proposition 1.5.

PROPOSITION 1.8. Let α, β ∈ Nn, k, s ∈ R+. Let u ∈ Cn such that uα 6= 0 and
uβ 6= 0.
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(i) If β > α (i.e. β j > αj, for every j) then we have:

( π
2 h̄2)−n ∫

Cn
zαzβ I−n−1+k(

2
h̄

√
z · u)K+

2s(
2
h̄ |z|)dν(z)(1.12)

= 22s−k h̄2|α| Γ(|β|+ 2s + n)
Γ(|β| − |α|+ k + n)

β!
(β− α)!

uβ

uα
.

If β is not > α, then the integral vanishes.
(ii) If α > β (i.e. αj > β j, for every j) then we have:

( π
2 h̄2)−n ∫

Cn
zαzβ I−n−1+k(

2
h̄

√
u · z)K+

2s(
2
h̄ |z|)dν(z)(1.13)

= 22s−k h̄2|β| Γ(|α|+ 2s + n)
Γ(|α| − |β|+ k + n)

α!
(α− β)!

uα

uβ
.

If α is not > β, then the integral vanishes.

Proof. (i) We denote by J the left hand side of (1.12). By Lemma 1.4 we get

J = ( π
2 h̄2)−n21−n−k ∑

m>0

h̄−2m

m!Γ(m+k+n) uγ ∑
|γ|=m

m!
γ!

∫
Cn

zβzα+γK+
2s(

2
h̄ |z|)dν(z).

Lemma 1.3 tells us that the last integral vanishes if β 6= α + γ. We suppose
first that β > α. The only remaining term is for γ = β− α, therefore in the sum
we keep only the term where m = |β| − |α| and γ = β − α. Then we may use
formula (1.7) to deduce the claimed formula.

Now if β is not > α, then β j < αj for some j so that β j < αj + γj for any
γj > 0. Therefore β will never be equal to α + γ and the integral will vanish.

(ii) The second assertion is proved in the same way.

COROLLARY 1.9. For every α, β ∈ Nn, k, s ∈ R+ and u ∈ Cn, we have

( π
2 h̄2)−n ∫

Cn
zα+βzα I−n−1+k(

2
h̄

√
z · u)K+

2s(
2
h̄ |z|)dν(z)(1.14)

= 22s−k h̄2|α| Γ(|α|+ |β|+ 2s + n)
Γ(|β|+ k + n)

(α + β)!
β!

uβ.

2. THE COVARIANT SYMBOLIC CALCULUS

The analysis by wave packet made in [7] and the Berezin quantization have
led us to build a covariant symbolic calculus for Toeplitz operators of order zero
on the sphere. Several formulas were given in [8] and we sum up here some of
them:

• The packet transform: f̂ (z) :=
∫
X

f (x)ex·z/h̄dσ(x) for every f ∈Os and s∈R.

• The Szegő kernel: S(x, y) = (πh̄)−2n ∫
Cn

e(x·z+y·z)/h̄K0( 2
h̄ |z|)dν(z) as an

oscillatory integral.
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• The indicator of orthogonality: (ez, eu) :=
∫
X

e(x·z+x·u)/h̄dσ(x)=(2π)n I−n−1

( 2
h̄

√
z · u).
This Bessel function plays a central role in our calculus and it is as important

as the exponential function is important in Fourier analysis.
• The covariant symbol for a Toeplitz operator T: σT(z, u) := (Tez ,eu)

(ez ,eu) with

ez(x) := e(x·z)/h̄ and (z, u) closed enough to the diagonal z = u in Cn ×Cn.
• Properties of these covariant symbols: σId(z, u)≡1, σT∗(z, u)=σT(u, z).
• Formula of composition: σA#σB(z, u) := σAB(z, u) =

( π
2 h̄2)−n

I−n−1(
2
h̄

√
z · u)

∫
Cn

I−n−1(
2
h̄

√
z · w)σB(z, w)I−n−1(

2
h̄

√
w · u)σA(w, u)K0( 2

h̄ |w|)dν(w).

We need to extend these formulas to Toeplitz operators of any order.
From Theorem 1 in [7], the spaces E s are isomorphic toOs. In order to make

them isometric, we may define the inner product in Os by: ( f , g)s := 〈 f̂ , ĝ〉s.

REMARK 2.1. If s = 0, then ( f , g)0 = ( f , g) and 〈 f̂ , ĝ〉0 = 〈 f̂ , ĝ〉.
Since one main goal of our calculus is computations, we will first give some

formulas involving these new inner products.

LEMMA 2.2. For every α ∈ Nn and w ∈ Cn, we have:

x̂α(w) =
2πn h̄−|α|

Γ(|α|+ n)
wα;(2.1)

êz(w) = (2π)n I−n−1(
2
h̄

√
z · w).(2.2)

Proof. (i)

x̂α(w) =
∫
X

xαex·w/h̄dσ(x) =
∫
X

xα
∞

∑
m=0

h̄−m

m! ∑
|β|=m

m!
β!

xβwβdσ(x)

=
∞

∑
m=0

h̄−m

m! ∑
|β|=m

m!
β!

wβ
∫
X

xαxβdσ(x).

The only non zero term is for β = α: x̂α(w)= h̄−|α|
|α|!

|α|!
α! wα 2πnα!

Γ(|α|+n) = 2πn h̄−|α|
Γ(|α|+n) wα.

(ii) Following formula (13) in [8], we have: êz(w) = (ez, ew) = (2π)n I−n−1
( 2

h̄

√
z · w).
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PROPOSITION 2.3. For every α, β ∈ Nn, z, u ∈ Cn and s ∈ R+, we have:

(xα, xβ)s =

{
0 if α 6= β,

2πnα!
Γ(|α|+n)

Γ(|α|+2s+n)
Γ(|α|+n) if α = β;

(2.3)

(ez, eu)s = 2πn
∞

∑
m=0

h̄−2m(z · u)m

m!Γ(m + n)
Γ(m + 2s + n)

Γ(m + n)
.(2.4)

Proof. We show the first equation:
If α 6= β then following (1.7) we get (xα, xβ)s = 〈x̂α, x̂β〉s = 0, otherwise

(xα, xα)s = 〈x̂α, x̂α〉s = (πh̄)−2n2−2s
( (2π)n h̄−|α|

Γ(|α|+ n)

)2 ∫
Cn

|wα|2K+
2s(

2
h̄ |w|)dν(w)

and the conclusion follows again from formula (1.7). Now we show the second
equation:

(ez, eu)s = 〈êz, êu〉s =
∫
Cn

êz(w) · êu(w)vs(w)dν(w).

Following (2.2) and (1.4), we have

(ez, eu)s=(2π)2n
∫
Cn

I−n−1(
2
h̄

√
z · w)I−n−1(

2
h̄

√
w · u)vs(w)dν(w)

=( 2
h̄ )2n21−n−2s∫

Cn

∞
∑

m=0

h̄−2m

m!
1

Γ(m+n) ∑
|γ|=m

m!
γ! zγwγ I−n−1(

2
h̄

√
w · u)K+

2s(
2
h̄ |w|)dν(w).

Following Lemma 1.4 we may interchange the integration and the summa-
tion and we get for the last expression

( 2
h̄ )2n21−n−2s

∞
∑

m=0

h̄−2m

m!
1

Γ(m+n) ∑
|γ|=m

m!
γ! zγ

∫
Cn

wγ I−n−1(
2
h̄

√
w · u)K+

2s(
2
h̄ |w|)dν(w).

The claimed formula is then obtained thanks to formula (1.11).

Let α ∈ Nn, we denote by Xα the operator of mutiplication by xα. Let Dj =
∂

∂xj
and Dα = ( ∂

∂x )α which is a differential Toeplitz operator of order |α|.

PROPOSITION 2.4. Let α ∈ Nn and A a Toeplitz operator on X, we have:

(i) If T = Xα then σT(z, u) = ( 2
h̄ )
|α|

uα
I−n−1+|α|(

2
h̄

√
z·u)

I−n−1(
2
h̄

√
z·u)

.

(ii) If T = A ◦ Xα then σT(z, u) = h̄|α|

I−n−1(
2
h̄

√
z·u)

(
∂
∂z
)α(

σA(z, u)I−n−1(
2
h̄

√
z · u)

)
.

(iii) If T = Dα then σT(z, u) = h̄−|α|zα.
(iv) If T = A ◦ Dα then σT(z, u) = h̄−|α|zασA(z, u).

Proof. The first two equations were shown in [8]. The two other formulas
are shown by the equation ( ∂

∂x )
α
ex·z/h̄ = h̄−|α|zαex·z/h̄ and the definition of a

covariant symbol.
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Therefore, we can compute easily the covariant symbol of any differential
Toeplitz operator. These covariant symbols are finite sums of

cα,βzβuα
I−n−1+|α|(

2
h̄

√
z · u)

I−n−1(
2
h̄

√
z · u)

with α, β ∈ Nn and cα,β ∈ C.

3. A CONDITION OF POSITIVITY

DEFINITION 3.1. A covariant symbol is said to be of positive type when it is
a finite sum of terms of the form

cα,kzαuα
I−n−1+k(

2
h̄

√
z · u)

I−n−1(
2
h̄

√
z · u)

with α ∈ Nn, cα,k > 0 and k ∈ N.

The following theorem is our main result:

THEOREM 3.2. Let T be a differential Toeplitz operator on X. If its covariant
symbol is of positive type then the operator T is positive.

Proof. Since polynomials are dense in each Os it is sufficient to prove that
(T f , f ) > 0 for any polynomial f . Following formula (15) in [8], we have

(T f , f ) = 〈T̂ f , f̂ 〉

= cn

∫
Cn

[ ∫
Cn

σT(z, w)I−n−1(
2
h̄

√
z · w) f̂ (z)K0( 2

h̄ |z|)dν(z)
]

f̂ (w)K0( 2
h̄ |w|)dν(w)

with cn=( π
2 h̄2)−n×(πh̄)−2n. We may suppose that σT(z, w)=cα,kzαwα I−n−1+k(

2
h̄

√
z·w)

I−n−1(
2
h̄

√
z·w)

for some α ∈ Nn, cα,k > 0 and k ∈ N. Now according to Lemma 2.2 f̂ (z) is also a
polynomial in the variable z: f̂ (z) = ∑

β
aβzβ. The integral J in the brackets reads

J = cα,k

∫
Cn

zαwα I−n−1+k(
2
h̄

√
z · w)

(
∑
β

aβzβ
)

K0( 2
h̄ |z|)dν(z)

= ∑
β

cα,kaβwα
∫
Cn

zαzβ I−n−1+k(
2
h̄

√
z · w)K0( 2

h̄ |z|)dν(z).

Following Proposition 1.8, if β is not > α then the integral vanishes.
If β > α then the integral alone is equal to ( π

2 h̄2)n2−k h̄2|α| (|β|+n−1)!
(|β|−|α|+k+n−1)!

β!
(β−α)!

wβ

wα so that J = cα,k2−k( π
2 )n h̄2n+2|α| ∑

β>α

(|β|+n−1)!
(|β|−|α|+k+n−1)!

β!
(β−α)! aβwβ.

Let us notice that the coefficient of each aβwβ is positive which will be de-
noted by κα,β,k.
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Now we have to integrate with respect to dν(w) and we get:

(T f , f ) = cn ∑
β>α

∑
γ

κα,β,kaβaγ

∫
Cn

wβwγK0( 2
h̄ |w|)dν(w).

Following formula (1.7), the only remaining term in the last sum is when γ = β
and we get

(T f , f ) = cn ∑
β>α

κα,β,k|aβ|2
∫
Cn

|wβ|2K0( 2
h̄ |w|)dν(w).

which is positive.

A covariant symbol of positive type is thus a covariant symbol which is
nonnegative on the diagonal of Cn × Cn. This idea may be used to choose an
adequate definition for the algebra of covariant symbols for general Toeplitz op-
erators.

EXAMPLE 3.3. (i) The covariant symbol of X∗j ◦ Xj is 2 I−n ( 2
h̄

√
z·u)

I−n−1(
2
h̄

√
z·u)

+ ( 2
h̄ )2zjuj

I−n+1(
2
h̄

√
z·u)

I−n−1(
2
h̄

√
z·u)

which is of positive type, therefore this operator is positive.

(ii) The covariant symbol of the radial derivative operator
n
∑

j=1
xj

∂
∂xj

is 1
2 ( 2

h̄ )2z ·

u I−n ( 2
h̄

√
z·u)

I−n−1(
2
h̄

√
z·u)

which is of positive type, therefore this operator is positive.

(iii) The covariant symbol of xα( ∂
∂x )

α
is 2−|α|( 2

h̄ )
2|α|

zαuα
I−n−1+|α|(

2
h̄

√
z·u)

I−n−1(
2
h̄

√
z·u)

which is

of positive type, therefore this operator is positive.
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