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ABSTRACT. An operator S is a local intertwiner of operators A and B at vector
e if SAe = BSe. We characterize the spaces of all local intertwiners I(A, B; e)
that are reflexive (hyperreflexive). We show that in all interesting cases the re-
flexivity (hyperreflexivity) of I(A, B; e) depends only on B and is independent
of A and e. This has consequences concerning the reflexivity of the space of
intertwiners I(A, B) and of the commutant of an operator.
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INTRODUCTION

For complex Banach spaces X and Y , let B(X ,Y) be the Banach space of all
bounded linear operators from X to Y ; similarly, let B(X ) be the Banach algebra
of all bounded linear operators on X . The topological dual of X is denoted by
X ∗.

Let A ∈ B(X ), B ∈ B(Y), and e ∈ X be given. An operator S ∈ B(X ,Y)
intertwines A and B at e, if SAe = BSe. The set of all operators that intertwine
A and B at e is denoted by I(A, B; e). In particular, if X = Y and A = B, then
C(A, e) := I(A, A; e) is the local commutant of A at e. Local commutants were
introduced and studied by Larson [8], see also [3].

It is obvious that I(A, B; e) is a linear space of operators and it is not hard
to see that I(A, B; e) is closed in the strong operator topology, which means, by
convexity, that it is closed in the weak operator topology as well.

For a linear subspace S ⊆ B(X ,Y), the reflexive closure of S is given by

RefS = {T ∈ B(X ,Y); Tx ∈ [Sx] for all x ∈ X},
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where Sx = {Sx; S ∈ S} is the orbit of S at x and [Sx] is its closure. It is obvious
that RefS ⊇ S . If RefS = S , then the space S is said to be reflexive.

In Section 1 we give a complete description of subspaces I(A, B; e) that are
reflexive. It is easy to see that this space is reflexive if e is an eigenvector of A.
If e and Ae are linearly independent then the space I(A, B; e) is reflexive if and
only if

⋂
λ∈C

[im (B− λ)] = {0}. It is interesting that this condition depends only

on B and is independent of A and e. This has implications for the reflexivity of
I(A, B) := {S ∈ B(X ,Y); SA = BS}, the space of intertwiners between A and B.

Section 2 is devoted to the hyperreflexivity (for the definition see that sec-
tion). It is well-known that any hyperreflexive subspace of operators is reflexive
and that the converse does not hold, see Theorem 6 of [7]. We shall show that
spaces of locally intertwining operators provide natural examples of spaces of
operators that are reflexive but not hyperreflexive.

In the last section we discuss the k-reflexivity and k-hyperreflexivity of spa-
ces of local intertwiners.

1. REFLEXIVITY OF THE SPACE OF LOCALLY INTERTWINING OPERATORS

In this section we shall characterize those spaces I(A, B; e) that are reflexive.
The following proposition describes the orbits of spaces of local intertwiners.

PROPOSITION 1.1. Let A ∈ B(X ), B ∈ B(Y), and e, x ∈ X \ {0} be arbitrary.
(i) If x is not in the linear span of vectors e and Ae, i.e. x /∈ ∨{e, Ae}, then

I(A, B; e)x = Y .
(ii) If Ae = λe, for some λ ∈ C, and x is a scalar multiple of e, then I(A, B; e)x =

ker (B− λ).
(iii) If e and Ae are linearly independent and x = αAe + βe (α, β ∈ C), then

I(A, B; e)x = im (αB + β).

Proof. (i) Since x /∈ ∨{e, Ae} there exists ξ ∈ X ∗ that annihilates
∨{e, Ae},

that is ξ ∈
(∨{e, Ae}

)⊥, and 〈x, ξ〉 = 1. Let y ∈ Y be arbitrary. The operator
y⊗ ξ, which is given by (y⊗ ξ)z = 〈z, ξ〉y for z ∈ X , maps x into y and it is in
I(A, B; e) because of (y⊗ ξ)Ae = 0 = B(y⊗ ξ)e.

(ii) Let µ ∈ C \ {0} be such that x = µe. If S ∈ I(A, B; e), then (B− λ)Sx =
µS(Ae− λe) = 0. Thus, I(A, B; e)x ⊆ ker (B− λ). For the opposite inclusion, let
y ∈ ker (B − λ) be arbitrary. Then there exists S ∈ B(X ,Y) such that Sx = y.
Since (B− λ)Se = µ−1(B− λ)y = 0 we conclude that S ∈ I(A, B; e). Namely, it is
easily seen that I(A, B; e) = {S ∈ B(X ,Y); Se ∈ ker (B− λ)}.
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(iii) If S ∈ I(A, B; e), then Sx = S(αAe + βe) = (αB + β)Se, which shows
that I(A, B; e)x ⊆ im (αB + β). On the other hand, let y = (αB + β)w, where
w ∈ Y , be an arbitrary vector in the range im (αB + β). Since e and Ae are linearly
independent there exist ξ, η ∈ X ∗ such that 〈e, ξ〉 = 1 = 〈Ae, η〉 and 〈Ae, ξ〉 =
0 = 〈e, η〉. Set S := w⊗ ξ + Bw⊗ η. Then it is easily seen that S ∈ I(A, B; e) and
Sx = y.

Let σp(T) be the point spectrum (the set of eigenvalues) of a given linear
operator T ∈ B(X ). It is well-known that a number λ is in σp(T∗) if and only if
the range im (T − λ) is not dense in X . Recall that a nonempty set S ⊆ B(X ) is
transitive if, for any x 6= 0, the orbit Sx is dense in X . The following corollary is
a consequence of Proposition 1.1.

COROLLARY 1.2. Let A, B ∈ B(X ) and e ∈ X . Assume that e and Ae are lin-
early independent. Then the point spectrum of B∗ is empty if and only if I(A, B; e) is tran-
sitive. In particular, the local commutant C(A, e) is transitive if and only if σp(A∗) = ∅.

Now we describe the reflexive closure of the space of local intertwiners.

PROPOSITION 1.3. Let A ∈ B(X ), B ∈ B(Y), and e ∈ X be arbitrary. If e
and Ae are linearly independent, then Ref I(A, B; e) = {T ∈ B(X ,Y); T(A− λ)e ∈
[im (B− λ)] for all λ ∈ C}.

Proof. Let T ∈ Ref I(A, B; e) be arbitrary. Choose λ ∈ C and set xλ =
Ae− λe. By Proposition 1.1 (iii), we have I(A, B; e)xλ = im (B− λ). Since Tx ∈
[I(A, B; e)x] for any x ∈ X we conclude that T(A− λ)e = Txλ ∈ [I(A, B; e)xλ] =
[im (B− λ)].

Now, assume that T ∈ B(X ,Y) satisfies T(A − λ)e ∈ [im (B − λ)] for all
λ ∈ C. Let x ∈ X be arbitrary. It is obvious that Tx ∈ [I(A, B; e)x] for x =
0. Suppose therefore that x 6= 0. If x /∈ [{e, Ae}], then, by Proposition 1.1 (i),
I(A, B; e)x = Y , which gives Tx ∈ [I(A, B; e)x] in this case. If x is a scalar multiple
of e, say x = βe for some β 6= 0, then I(A, B; e)x = im (βI) = Y , by Propo-
sition 1.1 (iii), and again Tx ∈ [I(A, B; e)x]. Finally assume that x = αAe + βe
with α 6= 0. Then Tx = αT(A + β/α)e = (B + β/α)Te ∈ [im (B + β/α)]. Since,
by Proposition 1.1 (iii), im (B + β/α) = I(A, B; e)(A + β/α)e we conclude that
Tx ∈ [I(A, B; e)(A + β/α)e] = [I(A, B; e)x].

COROLLARY 1.4. If e and Ae are linearly independent, then Ref I(A, B; e) =
B(X ,Y) if and only if σp(B∗) = ∅.
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Proof. If σp(B∗) = ∅, then [im (B − λ)] = Y for all λ ∈ C. Thus, every
T ∈ B(X ,Y) satisfies the condition T(A − λ)e ∈ [im (B − λ)] (λ ∈ C), which
means, by Proposition 1.3, that T ∈ I(A, B; e).

On the other hand, if there exists λ ∈ σp(B∗), then [im (B− λ)] 6= Y . Since
(A − λ)e is a nonzero vector there exists T ∈ B(X ,Y) such that T(A − λ)e /∈
[im (B− λ)].

Let e be an eigenvector of A, say Ae = λe, and assume that T ∈ Ref I(A, B; e).
Then Te ∈ ker (B− λ), by Proposition 1.1. It follows that BTe = λTe = TAe, i.e.
T ∈ I(A, B; e). We have proved the next proposition.

PROPOSITION 1.5. Let A ∈ B(X ) and B ∈ B(Y). If e ∈ X is an eigenvector of
A, then I(A, B; e) is reflexive.

For an operator T ∈ B(X ) such that σp(T∗) 6= ∅, let Eig(T∗) be the weak-∗
closure of the subspace of X ∗ that is spanned by the eigenvectors of T∗. If σp(T∗)
is empty, then we set Eig(T∗) = {0}.

THEOREM 1.6. Let A ∈ B(X ), B ∈ B(Y), and e ∈ X be arbitrary. If e and Ae
are linearly independent, then the following are equivalent:

(i) I(A, B; e) is reflexive;
(ii) Eig(B∗) = Y∗;

(iii)
⋂

λ∈C
[im (B− λ)] = {0}.

Proof. First about the equivalence of (ii) and (iii). It follows from the equality
Eig(B∗)⊥ =

⋂
λ∈C

[im (B − λ)], where Eig(B∗)⊥ is the preannihilator of Eig(B∗).

That the last equality holds is a consequence of the well known fact that [im (B−
λ)] = ker (B∗ − λ)⊥. Namely, if x ∈ [im (B− λ)], for all λ ∈ C, then 〈x, ξ〉 = 0,
for any eigenvector ξ of B∗. It follows that x ∈ Eig(B∗)⊥. On the other hand, if
x ∈ X is not in the intersection

⋂
λ∈C

[im (B − λ)], then there exists a number λ0

such that x /∈ [im (B− λ0)] = ker (B∗ − λ0)⊥. Thus, there exists an eigenvector ξ

of B∗ such that 〈x, ξ〉 6= 0, which means x /∈ Eig(B∗)⊥.
Now we shall prove the equivalence of (i) and (ii). If Eig(B∗) is a proper

subspace of Y∗, then there exists a non-zero vector y ∈ Eig(B∗)⊥. Let ξ ∈ X ∗ be
such that 〈e, ξ〉 = 0 and 〈Ae, ξ〉 = 1. Then T := y ⊗ ξ is not in I(A, B; e), since
TAe = y 6= 0 = BTe. However, for an arbitrary number λ0, we have

T(A− λ0)e = y ∈ Eig(B∗)⊥ =
⋂

λ∈C
[im (B− λ)] ⊆ [im (B− λ0)],

which gives T ∈ Ref I(A, B; e), by Proposition 1.3.
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For the opposite implication, assume that Eig(B∗) = Y∗. Let T be an arbi-
trary operator in Ref I(A, B; e). By Proposition 1.3, we have T(A− λ)e ∈ [im (B−
λ)] for all λ ∈ C. Choose and fix λ0 ∈ σp(B∗). Then 〈T(A− λ0)e, η〉 = 0 for each
η ∈ ker (B∗ − λ0). It follows that 〈TAe, η〉 = λ0〈Te, η〉 = 〈Te, B∗η〉 = 〈BTe, η〉.
Thus, 〈(BT − TA)e, η〉 = 0 for all η ∈ ker (B∗ − λ0). Since λ0 ∈ σp(B∗) is arbi-
trary and since Eig(B∗) = Y∗ we conclude that (BT − TA)e = 0, i.e. the operator
T is in I(A, B; e).

Note that conditions (ii) and (iii) in Theorem 1.6 do not depend on the vector
e. Thus, the following assertion holds.

COROLLARY 1.7. If I(A, B; e) is reflexive for e ∈ X \ {0} that is not an eigen-
vector for A, then I(A, B; f ) is reflexive for any f ∈ X .

Clearly
⋂

e∈X
I(A, B; e) = I(A, B). Since an arbitrary intersection of reflexive

spaces is a reflexive space as well we have the following corollary, which extends
Lemma 1 of [10].

COROLLARY 1.8. Let A ∈ B(X ) and B ∈ B(Y). If Eig(B∗) = Y∗, then I(A, B)
is reflexive.

Note however that the condition Eig(B∗) = Y∗ is not necessary for reflex-
ivity of I(A, B). For instance, let N be a normal operator without eigenvalues
on a complex Hilbert space H. Then, of course, Eig(N∗) = {0}. On the other
hand, the commutant {N}′ is reflexive since it is a von Neumann algebra ([2],
Proposition 56.6).

COROLLARY 1.9. Let A ∈ B(X ) be an arbitrary operator and let B ∈ B(Y) be a
non-zero nilpotent operator. If I(A, B; e) is reflexive for some non-zero e ∈ X , then e is
an eigenvector of A.

Proof. Since B is a non-zero nilpotent the adjoint operator B∗ is a non-zero
nilpotent as well. It follows that Eig(B∗) 6= Y∗. By Theorem 1.6, I(A, B; e) cannot
be reflexive if e is not an eigenvector of A.

In the first part of the proof of Theorem 1.6 we showed that the conditions
(ii) and (iii) of that theorem are always equivalent, and it depends only on opera-
tor B whether they are fulfilled.

PROPOSITION 1.10. Let T ∈ B(X ) and S ∈ B(Y) be operators such that there
exists an injective operator V ∈ I(T, S). If S satisfies the equivalent conditions (ii) and
(iii) of Theorem 1.6, then T satisfies these conditions as well.
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Proof. Assume that T does not satisfy the conditions. Then there exists a
non-zero vector x ∈ ⋂

λ∈C
[im (T − λ)]. The intertwiner V is injective therefore

Vx ∈ Y is also a non-zero vector. Let λ ∈ C be an arbitrary number. Since x ∈
[im (T− λ)] there exists a sequence (xn) in X such that lim

n→∞
‖(T− λ)xn− x‖ = 0.

It follows

lim
n→∞

‖(S− λ)Vxn −Vx‖ 6 ‖V‖ lim
n→∞

‖(T − λ)xn − x‖ = 0,

which gives Vx ∈ [im (S− λ)]. We conclude that S does not satisfy the condition
(iii) of Theorem 1.6.

Note that the condition in Proposition 1.10 is satisfied if T is a quasi-affine
transform of S. In particular, the condition is weaker than the quasi-similarity of
operators T and S.

Now we shall describe which operators satisfy the equivalent conditions
(ii) and (iii) of Theorem 1.6. Our description is based on the idea presented in
Solution 69 of [5].

Let Ω be a non-empty set and let X(Ω) be a Banach space of complex-
valued functions on Ω satisfying the following two conditions:

for each ω ∈ Ω, there exists f ∈ X(Ω) such that f (ω) 6= 0;

| f (ω)| 6 ‖ f ‖, for f ∈ X(Ω) and ω ∈ Ω.
(1.1)

An operator M ∈ B(X(Ω)) is a multiplication operator if there exists a complex-
valued function ϕ on Ω such that (M f )(ω) = ϕ(ω) f (ω) for all ω ∈ Ω. If M
is a multiplication operator, then the corresponding function ϕ is uniquely de-
termined. In the sequel we shall write Mϕ to indicate the connection between a
multiplication operator and the corresponding function.

For each ω ∈ Ω, define the point evaluation ξω on X(Ω) by 〈 f , ξω〉 = f (ω)
( f ∈ X(Ω)). Since

|〈 f , ξω〉| = | f (ω)| 6 ‖ f ‖ ( f ∈ X(Ω))

each ξω is a linear functional with norm at most 1. By the first condition in (1.1),
each ξω is non-zero and it is not hard to see that the linear span of {ξω; ω ∈ Ω}
is weak-∗ dense in X(Ω)∗. Let Mϕ ∈ B(X(Ω)) be an arbitrary multiplication
operator. Then

〈 f , (Mϕ)∗ξω〉 = 〈Mϕ f , ξω〉 = ϕ(ω) f (ω) = 〈 f , ϕ(ω)ξω〉 ( f ∈ X(Ω))

holds for any ω ∈ Ω. Thus, each ξω is an eigenvector for (Mϕ)∗ (with ϕ(ω) as
the corresponding eigenvalue) and consequently Eig((Mϕ)∗) = X(Ω)∗.
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Now, let X be a Banach space that is isometrically isomorphic to X(Ω), i.e.
there exists a (bijective) linear isometry U : X → X(Ω). Assume that T ∈ B(X )
is equivalent to a multiplication operator Mϕ ∈ B(X(Ω)), which means T =
U−1MϕU. It is easily seen that the linear span of {U∗ξω; ω ∈ Ω} is weak-∗ dense
in X ∗ and that T∗U∗ξω = ϕ(ω)U∗ξω (ω ∈ Ω). Thus, Eig(T∗) = X ∗. We have
proved one implication in the following theorem.

THEOREM 1.11. Let X be a Banach space. An operator T satisfies Eig(T∗) = X ∗

if and only if T is equivalent to a multiplication operator Mϕ on a Banach space X(Ω)
satisfying (1.1).

Proof. Let Ω be the set of all eigenvectors of T∗ of norm 1. For each x ∈ X ,
let Ux be the complex function on Ω defined by (Ux)(ω) = 〈x, ω〉. Of course
X(Ω) := {Ux; x ∈ X} is a linear space of complex-valued functions on Ω and
U : x 7→ Ux is a linear surjection from X to X(Ω). The map U is also injective
since the weak-∗ closed linear span of Ω is Eig(T∗) = X ∗. If we equip X(Ω) with
the norm ‖Ux‖ := ‖x‖ (x ∈ X ), then X(Ω) becomes a Banach space satisfying
(1.1) and U becomes an isometry, which means thatX and X(Ω) are isometrically
isomorphic Banach spaces. Define ϕ : Ω → C through T∗ω = ϕ(ω)ω and let
Mϕ : X(Ω)→ X(Ω) be given by (MϕUx)(ω) = ϕ(ω)(Ux)(ω). Then

(MϕUx)(ω) = ϕ(ω)〈x, ω〉 = 〈x, T∗ω〉 = (UTx)(ω),

which gives Mϕ = UTU−1. Thus, Mϕ is bounded and it is a multiplication oper-
ator equivalent to T.

We have an additional equivalent condition for reflexivity of the space of
locally intertwining operators.

COROLLARY 1.12. Let A ∈ B(X ), B ∈ B(Y), and e ∈ X be arbitrary. If e and
Ae are linearly independent, then I(A, B; e) is reflexive if and only if B is equivalent to a
multiplication operator Mϕ on a Banach space X(Ω) satisfying (1.1).

Assume that a multiplication operator Mϕ on X(Ω) (satisfying (1.1)) is also
an algebraic operator. Let m(z) = (z− λ1)r1 · · · (z− λk)rk be its minimal polyno-
mial. It is easily seen that the condition m(Mϕ) = 0 is equivalent to the condition

(ϕ(ω)− λ1)r1 · · · (ϕ(ω)− λk)rk = 0 for all ω ∈ Ω.

However, (ϕ(ω) − λ1)r1 · · · (ϕ(ω) − λk)rk = 0 if and only if (ϕ(ω) − λ1) · · ·
· · · (ϕ(ω) − λk) = 0. Thus, if Mϕ is an algebraic operator, then each zero of
its minimal polynomial is simple. On the other hand, if ϕ(Ω) = {λ1, . . . , λk},
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then Mϕ is an algebraic multiplication operator with the minimal polynomial
m(z) = (z− λ1) · · · (z− λk).

COROLLARY 1.13 (Cf. Section 3 of [1]). If B ∈ B(Y) is an algebraic operator
such that each zero of its minimal polynomial is simple, then I(A, B; e) is reflexive for any
A ∈ B(X ) and any e ∈ X . On the other hand, if B is algebraic and I(A, B; e) is reflexive
for an operator A ∈ B(X ) and a vector e ∈ X that is not an eigenvector for A, then the
minimal polynomial of B has only simple zeroes.

Proof. Let m(z) = (z − λ1) · · · (z − λk) be the minimal polynomial of B
(thus, λi 6= λj if i 6= j). For each 1 6 i 6 k, let qi(z) := m(z)/(z − λi). Since
m(B) = 0 we have [im (B− λi)] ⊆ ker qi(B) and consequently

⋂
λ∈C

[im (B− λ)] ⊆
k⋂

i=1

[im (B− λi)] ⊆
k⋂

i=1

ker qi(B).

However, the intersection
k⋂

i=1
ker qi(B) is trivial since the greatest common divisor

of the polynomials qi is equal to 1.
It follows, by Theorems 1.6 and 1.11, that B is equivalent to a multiplication

operator Mϕ. Of course, Mϕ is an algebraic operator with the same minimal poly-
nomial as B. By the observation above, we conclude that the minimal polynomial
has only simple zeroes.

EXAMPLE 1.14. (i) An operator B ∈ B(Y) will be called a semi-shift if it

is bounded below and
∞⋂

n=1
im Bn = {0}. Any semi-shift satisfies the equiva-

lent conditions of Theorem 1.6. Indeed, there is an open neighbourhood U of
0 such that B − λ is bounded below for λ ∈ U. Then, by Proposition 3.1.11 of

[9]
⋂

λ∈U
im (B − λ) =

∞⋂
n=1

im Bn = {0}. Hence the spaces of local intertwiners

I(A, B; e) are reflexive for all A ∈ B(X ) and e ∈ X , which gives the reflexivity of
I(A, B) for any A ∈ B(X ).

(ii) In particular, let B ∈ B(H) be a unilateral weighted shift on a Hilbert space
H. Thus, Bei = wiei+1 (i = 0, 1, . . .), where e0, e1, . . . is an orthonormal basis forH
and (wi) ⊂ C is a bounded sequence. Suppose that im B is closed, i.e. inf

i
|wi| > 0.

Then B is a semi-shift and therefore it satisfies the conditions of Theorem 1.6.
The assumption that im B is closed is necessary. For example, let B be the

weighted shift with weights wi = 1/(i + 1). Then ‖Bn‖ = 1/n! and so B is
quasinilpotent. Hence

⋂
λ∈C

[im (B− λ)] = [im B] =
∨{ei; i > 1} and B does not

satisfy the conditions of Theorem 1.6.
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2. HYPERREFLEXIVITY OF THE SPACE OF LOCALLY INTERTWINING OPERATORS

Let S ⊆ B(X ,Y) be a closed linear subspace. For an operator T ∈ B(X ,Y),
define

α(T,S) = sup{dist(Tx,Sx); x ∈ X , ‖x‖ = 1}.
The space S is said to be hyperreflexive if there is a constant c > 0 such that the
inequality dist(T,S) 6 c α(T,S) holds for all T ∈ B(X ,Y). It is well known
that hyperreflexivity is a stronger condition than reflexivity, that is, each hyper-
reflexive space is reflexive. In this section we shall show that some spaces of local
intertwiners can serve as natural examples of spaces that are reflexive but not
hyperreflexive.

First we give a characterization of hyperreflexive spaces of local intertwin-
ers.

PROPOSITION 2.1. Let A ∈ B(X ) and B ∈ B(Y) be arbitrary operators and
assume that Ae = λe for some λ ∈ C. Then I(A, B; e) is hyperreflexive.

Proof. Without loss of generality we may assume that ‖e‖ = 1. Let S ∈
B(X ,Y). By Proposition 1.1, we have α(S, I(A, B; e)) = dist(Se, ker (B− λ)).

We shall prove that dist(S, I(A, B; e)) = dist(Se, ker (B− λ)). Let ε > 0 and
let y ∈ ker (B− λ) satisfy ‖Se− y‖ < dist(Se, ker (B− λ)) + ε. Let y∗ ∈ Y∗ satisfy
〈e, y∗〉 = 1 = ‖y∗‖. Define S0 ∈ B(X ,Y) by S0e = y and S0|ker y∗ = S|ker y∗ . Then
S0 ∈ I(A, B; e) and dist(S, I(A, B; e)) 6 ‖S− S0‖. Let x ∈ X have norm 1. Write
x = αe + x0 with α ∈ C and x0 ∈ ker y∗. Then

‖(S−S0)x‖=‖α(S−S0)e‖= |〈x, y∗〉| · ‖Se−y‖6‖Se−y‖6dist(S, ker (B−λ))+ε.

Hence dist(S, I(A, B; e)) 6 dist(Se, ker (B− λ)).

LEMMA 2.2. Let A ∈ B(X ) and B ∈ B(Y) be arbitrary operators. Let e ∈ X
and Ae be linearly independent. Then there exists a constant k > 0 such that for any
S ∈ B(X ,Y) it is possible to find S0 ∈ B(X ,Y) with the properties

S0e = 0, S− S0 ∈ I(A, B; e), and ‖S0‖ 6 k‖SAe− BSe‖.

Consequently, dist(S, I(A, B; e)) 6 k‖SAe− BSe‖.

Proof. Since e and Ae are linearly independent there exists k > 0 such that
|β| 6 (k/2)‖αe + βAe‖ for arbitrary α, β ∈ C. Choose and fix an idempotent
P ∈ B(X ) whose image is

∨{e, Ae} and norm ‖P‖ 6 2. Let S ∈ B(X ,Y) be
arbitrary. Now let S0 ∈ B(X ,Y) be defined by conditions

S0e = 0, S0 Ae = SAe− BSe and S0|ker P = 0.
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Since (S − S0)Ae = SAe − SAe + BSe = B(S − S0)e, the operator S − S0 is in
I(A, B; e). Let x ∈ X be an arbitrary vector of norm 1 and let x = αe + βAe + x0

with x0 ∈ ker P. Then

‖S0x‖ = ‖βS0 Ae‖ = |β| · ‖SAe− BSe‖ 6
k
2
‖αe + βAe‖ · ‖SAe− BSe‖

6
k
2
‖Px‖ · ‖SAe− BSe‖ 6 k‖SAe− BSe‖.

It follows now that dist(S, I(A, B; e)) 6 ‖S0‖ 6 k‖SAe− BSe‖.

THEOREM 2.3. Let A ∈ B(X ) and B ∈ B(Y) be arbitrary operators and assume
that e ∈ X and Ae are linearly independent. Then I(A, B; e) is hyperreflexive if and only
if there exists a number ε > 0 such that sup{dist(y, im (B− λ)); λ ∈ C} > ε, for all
y ∈ Y with ‖y‖ = 1.

Proof. Note that there is no loss of generality if we assume that ‖e‖ = 1,
‖A‖ 6 1, and ‖B‖ 6 1.

Suppose that for any ε > 0 there exists a vector yε ∈ Y of norm one such
that

(2.1) sup{dist(yε, im (B− λ)); λ ∈ C} < ε.

Since e and Ae are linearly independent there exists ξ ∈ X ∗ such that 〈e, ξ〉 = 0
and 〈Ae, ξ〉 = 1. Let Fε := yε⊗ ξ. Thus, Fε is a rank-one operator that maps e into 0
and Ae into yε. Let us show that dist(Fε, I(A, B; e)) > 1/2. Towards contradiction
suppose that there exists an operator S ∈ I(A, B; e) such that ‖Fε − S‖ < 1/2.
Then ‖Se‖ = ‖Fεe − Se‖ 6 ‖Fε − S‖ < 1/2 and therefore ‖SAe‖ = ‖BSe‖ 6

‖B‖‖Se‖ < 1/2. It follows ‖(Fε − S)Ae‖ = ‖yε − SAe‖ > ‖yε‖ − ‖SAe‖ > 1−
1/2 = 1/2. Since ‖Ae‖ 6 1 we conclude that ‖Fε − S‖ > 1/2, which contradicts
the assumption.

We have seen that for any ε > 0 there exists a rank-one operator Fε such that
dist(Fε, I(A, B; e)) > 1/2. Now we shall estimate α(Fε, I(A, B; e)).

If a vector x ∈ X is not in [{e, Ae}], then I(A, B; e)x = Y , by Proposition 1.1.
Thus, dist(Fεx, I(A, B; e)x) = 0 in this case. Assume therefore that x = αAe + βe,
for some α, β ∈ C, and ‖x‖ = 1. Of course, there is a number M > 0 such
that M > |α| for all α ∈ C that satisfy condition ‖αAe + βe‖ = 1 for some β ∈
C. Note that M does not depend on ε. By Proposition 1.1, if x = αAe + βe,
then I(A, B; e)x = im (αB + β). Thus, dist(Fεx, I(A, B; e)x) = dist(αyε, im (αB +
β)) 6 M dist(yε, im (αB + β)) and therefore, by (2.1), dist(Fεx, I(A, B; e)x) < Mε.
We conclude that α(Fε, I(A, B; e)) < Mε. Now, since lim

ε→0
α(Fε, I(A, B; e)) = 0 and

dist(Fε, I(A, B; e)) > 1/2 for any ε > 0, the space I(A, B; e) is not hyperreflexive.
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For the opposite implication, let S be arbitrary and let S0 be an operator that
satisfies the conditions from Lemma 2.2, so dist(S, I(A, B; e)) 6 ‖S0‖ 6 k‖SAe−
BSe‖. Since S− S0 ∈ I(A, B; e) we have α(S, I(A, B; e)) = α(S0, I(A, B; e)). By the
assumption, there is λ ∈ C such that dist(S0 Ae, im (B− λ)) > ε‖S0 Ae‖. If S0 A =
0, then S ∈ I(A, B; e) and dist(S, I(A, B; e)) = 0 = α(S, I(A, B; e)). If S0 Ae 6= 0,
then λ ∈ σ(B), and so |λ| 6 ‖B‖. Note also that I(A, B; e)(Ae− λe) = im (B− λ),
by Proposition 1.1. So we have

α(S, I(A, B; e))=α(S0, I(A, B; e))>‖Ae−λe‖−1dist(S0(Ae−λe), I(A, B; e)(Ae−λe))

>
dist(S0 Ae, im (B− λ))

(‖A‖+ ‖B‖)‖e‖ >
ε‖S0 Ae‖

(‖A‖+ ‖B‖)‖e‖ .

Recall that S0 Ae = SAe− BSe (see the proof of Lemma 2.2) and so α(S, I(A, B; e))
> c‖SAe− BSe‖, where c = ε/(‖A‖+ ‖B‖)‖e‖.

EXAMPLE 2.4. Let Y = `2 and let B ∈ B(`2) be given by

B : (x1, x2, x3, . . .) 7→
(

x1,
1
2

x2,
1
3

x3, . . .
)

.

It is easily seen that im (B − 1/n) = {(xi) ∈ `2; xn = 0}, for any n ∈ N, and
that im (B − λ) = `2 if λ 6= 1/n (∀n ∈ N). Thus, B satisfies the condition (iii)
of Theorem 1.6 and we conclude that I(A, B; e) is reflexive for any Banach space
X and arbitrary A ∈ B(X ) and e ∈ X . On the other hand these spaces are
hyperreflexive if and only if e is eigenvector of A or e = 0. Namely, we shall see
that B does not satisfy the condition of Theorem 2.3.

For a positive integer k, let f (k) = ( f (k)
j ) ∈ `2 be given by

f (k)
j =

{
1/k 1 6 j 6 k2;
0 k2 < j.

Then ‖ f (k)‖ = 1 and f (k) ∈ im (B− λ) if λ /∈ {1, 1/2, . . . , 1/k2}. Thus,

dist( f (k), im (B− λ)) = 0 if λ /∈ {1, 1/2, . . . , 1/k2}.

On the other hand, for 1 6 n 6 k2,

dist( f (k), im (B− 1/n)) = min{‖ f (k) − (xj)‖; xn = 0} = 1/k.

We conclude that sup{dist( f (k), im (B − λ)); λ ∈ C} = 1/k, which means that
the condition of Theorem 2.3 is not fulfilled.
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3. k-REFLEXIVITY AND k-HYPERREFLEXIVITY OF THE SPACE OF
LOCALLY INTERTWINING OPERATORS

Let X and Y be complex Banach spaces and let F(Y ,X ) be the space of
all operators of finite rank from Y to X , that is the linear span of all operators
of rank 1. Thus, an operator F ∈ B(Y ,X ) is of finite rank if and only if there
exist a positive integer n and x1, . . . , xn ∈ X , η1, . . . , ηn ∈ Y∗ such that F =
x1⊗ η1 + · · ·+ xn ⊗ ηn. The pair (B(X ,Y), F(Y ,X )) is a dual pair via the pairing

〈T, F〉 = 〈Tx1, η1〉+ · · ·+ 〈Txn, ηn〉,

where T ∈ B(X ,Y) and F = x1 ⊗ η1 + · · · + xn ⊗ ηn ∈ F(Y ,X ) are arbitrary.
If U ⊆ B(X ,Y), then let U⊥ := {F ∈ F(Y ,X ); 〈S, F〉 = 0 for all S ∈ U} and,
similarly, forW ⊆ F(Y ,X ), letW⊥ := {S ∈ B(X ,Y); 〈S, F〉 = 0 for all F ∈ W}.

For a positive integer k, let Fk(Y ,X ) ⊆ F(Y ,X ) be the subset of all operators
from Y to X whose rank is at most k. Since Fk(Y ,X )⊥ = {0} and Fk(Y ,X ) is
closed under multiplication by the scalars, (B(X ,Y), F(Y ,X ), Fk(Y ,X )) satisfies
the conditions of a reflexive triple (over C) in the sense of [4]. Thus, for a linear
subspace S ⊆ B(X ,Y) we define the k-reflexive cover of S as RefkS := (S⊥ ∩
Fk(Y ,X ))⊥. The sets RefkS are linear subspaces of B(X ,Y) closed in the weak
operator topology. Of course, S ⊆ RefkS . We shall say that S is k-reflexive if
S = RefkS . Clearly, the 1-reflexivity coincides with the notion of reflexivity. The
reader is referred to [4] for details; especially for the relation to the classical notion
of a reflexive algebra.

Let S ⊆ B(X ,Y) be a weakly closed subspace such that S = W⊥ with
W ⊆ Fk(Y ,X ). Then S⊥ ∩ F(Y ,X ) = (W⊥)⊥ ∩ F(Y ,X ) ⊇ W and consequently
RefkS = (S⊥ ∩ F(Y ,X ))⊥ ⊆ W⊥ = S . It follows that S is k-reflexive. On
the other hand, if S is k-reflexive, then S = W⊥ with W = S⊥ ∩ Fk(Y ,X ) ⊆
Fk(Y ,X ). Thus, S is k-reflexive if and only if there is a subsetW ⊆ Fk(Y ,X ) such
that S =W⊥.

PROPOSITION 3.1. For arbitrary A ∈ B(X ), B ∈ B(Y), and e ∈ X , the subspace
I(A, B; e) ⊆ B(X ,Y) is 2-reflexive.

Proof. It is obvious that an operator S ∈ B(X ,Y) satisfies SAe = BSe if
and only if 〈S, Ae ⊗ η − e ⊗ B∗η〉 = 0 holds for all η ∈ Y∗. Thus, I(A, B; e) =
G(A, B; e)⊥, where G(A, B; e) := {Ae⊗ η − e⊗ B∗η; η ∈ Y∗} ⊆ F2(Y ,X ).
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Let S ⊆ B(X ,Y) be a subspace and T ∈ B(X ,Y). For a positive integer k,
define

αk(T,S) = sup
{

inf
A∈S

k

∑
i=1
‖Txi − Axi‖; x1, . . . , xk ∈ X , ‖x1‖+ · · ·+ ‖xk‖ = 1

}
.

In particular, for k = 1, we have α1(T,S) = α(T,S). The space S is said to be
k-hyperreflexive if the seminorms dist(·,S) and αk(·,S) are equivalent.

Denote by dist1 the distance in the space Y k (the `1-direct sum of k copies of
Y). We have

αk(T,S)= sup
x1,...,xk∈X

‖x1‖+···+‖xk‖=1

dist1((Tx1, . . . , Txk), {(Ax1, . . . , Axk); A ∈ S})

= sup
x1,...,xk∈X

‖x1‖+···+‖xk‖=1

sup
y∗1 ,...,y∗k∈Y

∗

‖y∗1‖61,...,‖y∗k ‖61

{∣∣∣ k

∑
i=1
〈Txi, y∗i 〉

∣∣∣; k

∑
i=1
〈Axi, y∗i 〉=0 for all A∈ S

}

= sup
F∈Fk(Y ,X )
‖F‖161

|〈T, F〉|.

Thus, this definition agrees with that given by Kliś and Ptak in [6] for Hilbert
spaces.

Again, the notion of 1-hyperreflexivity coincides with that of hyperreflexiv-
ity.

THEOREM 3.2. For arbitrary A ∈ B(X ), B ∈ B(Y), and e ∈ X , the subspace
I(A, B; e) ⊆ B(X ,Y) is 2-hyperreflexive.

Proof. If e is an eigenvector of A, then I(A, B; e) is even hyperreflexive, by
Proposition 2.1. Let T ∈ B(X ,Y) be arbitrary. By Lemma 2.2, there is a constant
k > 0 such that dist(T, I(A, B; e)) 6 k‖TAe− BTe‖. On the other hand, let y∗ ∈ Y∗

satisfy ‖y∗‖ = 1 and 〈TAe− BTe, y∗〉 = ‖TAe− BTe‖. We have

α2(T, I(A, B, e)) > ‖Ae⊗ y∗ − e⊗ B∗y∗‖−1
1 |〈T, Ae⊗ y∗ − e⊗ B∗y∗〉|

> ((‖A‖+ ‖B‖)‖e‖)−1|〈TAe− BTe, y∗〉|

= ((‖A‖+ ‖B‖)‖e‖)−1‖TAe− BTe‖.
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