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generally for a semi-bounded τ-measurable operator) together with an abun-
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1. INTRODUCTION

A continuous function f (t) on an interval I is said to be operator convex
when f (λx + (1− λ)y) 6 λ f (x) + (1− λ) f (y) is valid for each λ ∈ [0, 1] and
self-adjoint operators x, y with spectra included in I. It was shown in [8], [9] that
such an operator convex function f (t) satisfies

π( f (x)) > f (π(x))

for a positive unital map π. A closely related inequality is the so-called operator
Jensen inequality ([13], [14], [15]) stating

a∗ f (x)a > f (a∗xa).

Here, a is a contraction (i.e., ‖a‖ 6 1) and both of 0 ∈ I, f (0) 6 0 have to be
assumed. A readable account on these and related subjects can be found in [5],
[14], [15].
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Operator convexity is much stronger than the usual convexity, and for trace
inequalities we expect (or at least hope) that usual convexity (or concavity) is suf-
ficient to get estimates in similar nature. Indeed, the Jensen-type trace inequality

τ(a∗g(x)a) 6 τ(g(a∗xa))

was obtained in [7] for a semi-finite von Neumann algebra M with a trace τ,
where g(t) is a continuous concave function with g(0) = 0. Here, a ∈ M is
a contraction again and in [7] (as well as in [24]) x ∈ M was assumed to be
positive. Whenever such trace inequalities are considered, we will assume g(0) =
0 (otherwise τ(|g(a∗xa)|) = ∞ for x = 0 unless τ(1) < ∞). The notion of spectral
dominance (see Section 2.1) played an important role in this work. The closely
related inequality

τ(α( f (x))) > τ( f (α(x)))
for a positive contractive map α : M → M and a convex function f (t) with
f (0) = 0 was also proved in [24]. It is easy to see that these inequalities actually
remain valid for self-adjoint operators x (see Theorem 3.4 in Section 3).

In recent years some convexity inequalities of weak majorization-type were
obtained for eigenvalues of Hermitian matrices (see [4], [29] for instance). Weak
majorization for matrices deals with partial sums of eigenvalues, and usefulness
of this technique in the matrix and/or operator setting is concisely explained in
the survey article [3]. The purpose of the present article is to prove the Jensen-
type trace inequality for self-adjoint operators at first and then to obtain many
related weak majorization-type inequalities in the semi-finite von Neumann al-
gebra setting.

In Section 2 we will collect some basic notions (such as generalized singular
numbers and spectral scales) needed in the article. In Section 3 at first we will
prove

τ(a∗ f (x)a) > τ( f (a∗xa))
for a convex function f (t) with f (0) = 0 and x ∈ Msa (more precisely for a semi-
bounded τ-measurable operator), which will be referred to as the trace Jensen
inequality. Then, by closely examining its proof, we will study Jensen-type weak
majorization in the (semi-finite) von Neumann algebra setting. Here, “eigenval-
ues" make no sense and we will use the notion of generalized singular numbers
([10], [11]) to formulate our results. We will also obtain a certain comparison re-
sult between |x + y| and |x|+ |y| (i.e., an operator valued triangle inequality). In
Section 4 we will study Jensen-type weak majorization with the notion of spectral
scales [23]. Thus, τ has to be a finite trace, but results are more satisfactory in the
sense that many results known in the matrix setting can be proved. In Section 5
we will study monotonicity properties for the map: x ∈ Msa → τ( f (x)) for a
continuous increasing function f (t) satisfying f (0) = 0. As expected, the map
is indeed monotone relative to the ordinary order 6 on Msa although required
arguments are somewhat tricky. Results here are used in our related analysis [16]
and could be useful for other purposes as well.
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2. PRELIMINARIES

LetM be a semi-finite von Neumann algebra equipped with a faithful semi-
finite normal trace τ (throughout the article). A densely-defined closed operator
x affiliated with M is said to be τ-measurable if for any ε > 0 one can find a
projection e ∈ M such that the subspace cut by e is included in the domain of x
and τ(1− e) 6 ε. It is known that the setM (⊃M) of all τ-measurable operators
forms a ∗-algebra (and one can treat them without worrying “domain problems").
For ε, δ > 0 we set

V(ε, δ)={x∈M : there exists a projection e∈Msuch that ‖xe‖6ε and τ(1− e)6δ}.

The linear topology onM whose fundamental system of neighborhoods around
0 is given by V(ε, δ)’s is known as the measure topology. It is known thatM is
a complete ∗-algebra relative to this topology. Basic facts on τ-measurable opera-
tors and the measure topology can be found in [21] (see also [25]).

2.1. SPECTRAL DOMINANCE. For positive operators x, y ∈ M (or rather positive
τ-measurable operators) the spectral dominance x & y (or y . x) means

ex
(s,∞) & ey

(s,∞) (s > 0)

in the Murray–von Neumann sense. Here (and in the rest), the spectral projection
of x (corresponding to a subset I ⊆ R) will be denoted by ex

I (or simply eI(x)).
The following facts will be repeatedly used:

(a) For positive τ-measurable operators x, y with x 6 y we have the spectral
dominance x . y (see Lemma 3(i) of [7]).

(b) For positive τ-measurable operators x, y with x . y we have g(x) . g(y)
for any continuous increasing function g(t) on [0, ∞) satisfying g(0) = 0.

(c) If self-adjoint τ-measurable operators x, y satisfy x 6 y, then we have x+ .
y+. Indeed, with the support projection e of x+ we compute

x+ = exe 6 eye = ey+e− ey−e 6 ey+e.

On the other hand, since e(s,∞)(ey+e), e(s,∞)((y+)1/2e(y+)1/2) are equivalent pro-
jections and (y+)1/2e(y+)1/2 6 y+, we have x+ . y+.

2.2. GENERALIZED SINGULAR NUMBER. For x ∈ M positive and t > 0 we set

µt(x) = inf{s > 0; τ(ex
(s,∞)) 6 t}.

A positive operator x affiliated withM is τ-measurable exactly when τ(ex
(s,∞)) <

∞ for some s > 0 (and consequently lim
s→∞

τ(ex
(s,∞)) = 0 by the dominated con-

vergence theorem). Thus, the quantity µt(x) < ∞ (for each t > 0) makes sense
for each positive τ-measurable operator x. It is known as the “t-th" generalized
singular number, and it also admits the “min-max" representation

µt(x) = inf sup{(xξ, ξ); ξ ∈ pH and ‖ξ‖ = 1},
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where the infimum is taken over all projections p ∈ M satisfying τ(1− p) 6 t.
Actually, the quantity µt(x) (= µt(|x|)) is defined for an arbitrary x ∈ M, and
{µt(·)}t>0 serves as a continuous analog for singular numbers {µn(·)}n=0,1,2,...
(see [12], [26]), i.e., the decreasing rearrangement of (positive) eigenvalues of the
absolute value part of a matrix in question.

The following properties are useful:
(a) The spectral dominance x & y (for x, y > 0) implies µt(x) > µt(y) (for

t > 0).
(b) The trace value can be computed as

τ(|x|) =
∞∫

0

µs(x) ds.

(c) We have x ∈ V(ε, δ) ⇐⇒ µδ(x) 6 ε (see Lemma 3.1 of [11]). Thus, a
sequence {xn} inM tends to x in the measure topology if and only if

lim
n→∞

µt(x− xn) = 0 (for each t > 0).

(d) If a sequence {xn} inM tends to x in the measure topology, then we have

µt(x) 6 lim inf
n→∞

µt(xn)

for each t > 0 (see Lemma C in Appendix of [20] or Lemma 3.4 of [11]).

2.3. SPECTRAL SCALE. We assume that M is a finite von Neumann algebra
equipped with a faithful normal trace τ satisfying τ(1) < ∞. For y ∈ Msa the
quantity

λt(y) = inf{s ∈ R; τ(ey
(s,∞)) 6 t} (t ∈ (0, τ(1)))

is known as the (“t-th") spectral scale of y. This notion is a continuous analog of
the decreasing rearrangement of (real) eigenvalues of a Hermitian matrix.
The above three notions will play important roles throughout, and their details
(as well as more information) can be found in [7], [10], [11] and [23] respectively.

2.4. WELL-DEFINEDNESS OF TRACE VALUES. Let y be a self-adjoint τ-measurable
operator. We say that τ(y) is well-defined if either τ(y+) < ∞ or τ(y−) < ∞. In
this case we can set

τ(y) = τ(y+)− τ(y−) (∈ [−∞, ∞]).

Let us summarize basic properties (see Lemma 8 and Lemma 9 of [7]):
(a) Let E be a τ-preserving conditional expectation (E to be used in Section 3

is very explicit). We compute

E(y)+ − E(y)− = E(y) = E(y+ − y−) = E(y+)− E(y−)
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with E(y±) > 0. Thus, minimality of the Jordan decomposition (relative to the
spectral dominance) guarantees E(y)± . E(y±) (see Lemma of [7] or the reason-
ing in 2.1,(c)) and consequently

τ(E(y)±) 6 τ(E(y±)) = τ(y±) (6 ∞).

(b) In particular, if τ(y) is well-defined, then so is τ(E(y)) and we have of
course

τ(y) = τ(E(y)).

(c) We assume that τ(y1), τ(y2) are well-defined for self-adjoint yi ∈ M. If
τ(y1) + τ(y2) is well-defined (in the sense that “∞ − ∞" does not occur), then
τ(y1 + y2) is also well-defined and

τ(y1 + y2) = τ(y1) + τ(y2).

This can be easily shown based on (y1 + y2)± . (y1)± + (y2)±, which is another
consequence of minimality of the Jordan decomposition.

2.5. MISCELLANEOUS FACTS. Some facts needed in later sections will be col-
lected here. We begin with the next fact (that is pointed out in Chapter II Section 5
of [12] for compact operators based on quite different arguments).

PROPOSITION 2.1. Let E be a τ-preserving conditional expectation. For a τ-
measurable operator x (inM+ L1(M; τ)) we have

t∫
0

µs(E(x)) ds 6

t∫
0

µs(x) ds for each t > 0.

Proof. We observe ‖E(x)‖ 6 ‖x‖ and ‖E(x)‖1 6 ‖x‖1, where ‖ · ‖1 is the
trace norm. The first inequality is obvious while for the second we note

‖E(y)‖1 = sup |τ(E(y)x)| = sup |τ(yE(x))|.
Here the supremum is over all x’s in the unit ball M1. But, for x ∈ M1 we
estimate

|τ(yE(x))| 6 ‖y‖1‖E(x)‖ 6 ‖y‖1‖x‖ 6 ‖y‖1.
Therefore, the desired result follows from the variational expression

t∫
0

µs(x) ds = inf{t‖x0‖+ ‖x1‖1}

(as a “K-functional"), where the infimum is taken over all decompositions x =
x0 + x1 (see p. 289 of [11] and [22])

In the rest of the subsection we will assume τ(1) < ∞ and deal with spectral
scales λt(·) (t ∈ (0, τ(1))). The next characterization is well-known for Hermitian
matrices. The standard proof (presented in Theorem 1.1 of [3] for instance) can
be easily modified to cover type II1 von Neumann algebras (see Proposition 1.2
of [17]), whose details are presented here for the reader’s convenience.
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PROPOSITION 2.2. For x, y ∈ Msa we have the weak majorization

t∫
0

λs(x) ds 6

t∫
0

λs(y) ds (t ∈ (0, τ(1)))

if and only if τ((x− r1)+) 6 τ((y− r1)+) for each r ∈ R.

Proof. We assume the weak majorization. If r > λ0(x), then we have (x −
r1)+ = 0 and hence τ((x − r1)+) = 0 6 τ((y − r1)+). On the other hand, if
r 6 λτ(1)(x), then we have (x− r1)+ = x− r1 and

τ((x−r1)+)=τ(x−r1)=τ(x)−rτ(1)6τ(y)−rτ(1)=τ(y−r1)6τ((y−r1)+).

Finally, if either r = λs0(x) or lim
s→s−0

λs(x) > r > λs0(x), then we estimate

τ((x− r1)+) =
τ(1)∫
0

(λs(x)− r)+ds =
s0∫

0

(λs(x)− r)ds

6

s0∫
0

(λs(y)− r)ds (by the assumption)

6

s0∫
0

(λs(y)− r)+ds 6

τ(1)∫
0

(λs(y)− r)+ds = τ((y− r1)+).

Conversely, when τ((x− r1)+) 6 τ((y− r1)+) (r ∈ R), for t ∈ (0, τ(1)) we
estimate

t∫
0

λs(y) ds =
t∫

0

{λs(y)− λt(y)}ds + tλt(y) = τ((y− λt(y)1)+) + tλt(y)

> τ((x− λt(y)1)+) + tλt(y) (by the assumption)

=
τ(1)∫
0

(λs(x)− λt(y))+ds + tλt(y) >

t∫
0

(λs(x)− λt(y))+ds + tλt(y)

>

t∫
0

{(λs(x)− λt(y)}ds + tλt(y) =
t∫

0

λs(x) ds,

and we are done.

For x ∈ M we set

x̂ =
[

x 0
0 0

]
∈ M⊗M2(C).
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A generalized singular number µt(·) satisfies µt(x̂) = µt(x) (for t < τ(1)), where
µt(x̂) is relative to the product trace τ ⊗ TrM2(C) with the unnormalized trace
TrM2(C). Although a spectral scale λt(·) does not possess this property, we have

COROLLARY 2.3. For x, y ∈ Msa we have
t∫

0

λs(x) ds 6

t∫
0

λs(y) ds (t ∈ (0, τ(1)))

if and only if
t∫

0

λs(x̂) ds 6

t∫
0

λs(ŷ) ds (t ∈ (0, 2τ(1))).

Proof. We note

(x̂− r1)+ =
[
(x− r1)+ 0

0 (−r1)+1

]
,

(τ ⊗ TrM2(C))((x̂− r1)+) = τ((x− r1)+) + (−r)+τ(1)

(and similarly for y’s) so that the result follows from Proposition 2.2.

3. WEAK MAJORIZATION (SEMI-FINITE CASE)

In this section the trace Jensen inequality (in Section 1) for x ∈ Msa will be
proved at first. More precisely it will be shown for semi-bounded τ-measurable
operators (see Remark 3.3). Arguments here will actually enable us to obtain
some weak majorization inequalities with the notion of generalized singular num-
bers (explained in 2.2).

Throughout the section f (t) is a continuous convex function with f (0) = 0,
and let us recall two lemmas from [7]:

LEMMA 3.1 ([7], Lemma 9). Let a ∈ M be a contraction and we assume x ∈
Msa, the self-adjoint operators inM. For a unit vector ξ we have

f ((a∗xaξ, ξ)) 6 (a∗ f (x)aξ, ξ).

LEMMA 3.2 ([7], Lemma 10). Let I ⊂ R be an interval on which f (t) is monotone
(either increasing or decreasing). For a contraction a ∈ M and a self-adjoint x ∈ M we
set p = ea∗xa

I .
(i) If f (t) > 0 on I, then we have pa∗ f (x)ap > 0 and moreover

pa∗ f (x)ap & p f (a∗xa)p.

(ii) If f (t) 6 0 on I, then the negative part (pa∗ f (x)ap)− (> 0) of the Jordan
decomposition satisfies

−p f (a∗xa)p & (pa∗ f (x)ap)− .
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The former is just the Jensen inequality applied to the probability measure

µ(I) = ‖ex
I aξ‖2 + (1− ‖aξ‖2) δ0(I) (for a subset I ⊂ R).

The latter (proved based on the former) was the main technical ingredient in [7]
(where x > 0 and the concavity of f (t) were assumed). Proofs there work in
the current case as well with obvious modifications so that details are left to the
reader.

REMARK 3.3. For a general (unbounded) x = x∗ the notion of an “inner
product" (a∗xaξ, ξ) makes no sense. To avoid this difficulty, let us assume that a
self-adjoint τ-measurable operator x is semi-bounded, i.e.,

either −m 6 x or x 6 m (for some m ∈ R+).
We assume −m 6 x for instance, and we set xn = xχ[−m,n](x) ∈ Msa for each
n ∈ N. Since f (t) is monotone (increasing or decreasing) for t large, we can set

(a∗ f (x)aξ, ξ) = lim
n→∞

(a∗ f (xn)aξ, ξ)

belonging to (−∞, ∞] (respectively [−∞, ∞)) in the increasing (respectively de-
creasing) case. Note that (a∗xaξ, ξ) ∈ (−∞, ∞] is well-defined due to lower semi-
boundedness −m 6 x. When (a∗xaξ, ξ) = ∞, we set

f ((a∗xaξ, ξ)) = lim
t→∞

f (t).

With the conventions so far, Lemma 3.1 obviously remains valid for x > −m (by
the obvious limiting argument). Of course we can play a similar game for a upper
semi-bounded x 6 m.

Lemma 3.2 is just based on Lemma 3.1 (together with careful analysis on
Murray–von Neumann equivalence of relevant spectral projections), and conse-
quently it remains valid for semi-bounded (self-adjoint) τ-measurable operators.

Let us consider the case where f (t) is decreasing at the origin in this section.
(The opposite case can be handled by considering f (−t) and−x.) We assume that
f (t) is

(i) positive and decreasing on I1 = (−∞, 0),
(ii) negative and decreasing on I2 = [0, t1),

(iii) negative and increasing on I3 = [t1, t2),
(iv) positive and increasing on I4 = [t2, ∞).

Some of these intervals could be ∅. For example, we have I2 = I3 = ∅ for
f (t) > 0, and I3 = I4 = ∅ for f (t) decreasing.

Let x be a self-adjoint operator inM, and we set

pi = ea∗xa
Ii

(i = 1, 2, 3, 4) and E(y) =
4

∑
i=1

piypi.

Since pi’s are spectral projections, we have pi f (a∗xa)pi = f (pia∗xapi) due to
f (0) = 0. It is convenient and intuitive to express f (a∗xa) (= E( f (a∗xa))) in the
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matrix form:

f (a∗xa) =


p1 f (a∗xa)p1 0 0 0

0 p2 f (a∗xa)p2 0 0
0 0 p3 f (a∗xa)p3 0
0 0 0 p4 f (a∗xa)p4


with

pi f (a∗xa)pi > 0 (i = 1, 4) and pi f (a∗xa)pi 6 0 (i = 2, 3).

On the other hand, a∗ f (x)a is not necessarily diagonal and we have

E(a∗ f (x)a) =


p1a∗ f (x)ap1 0 0 0

0 p2a∗ f (x)ap2 0 0
0 0 p3a∗ f (x)ap3 0
0 0 0 p4a∗ f (x)ap4


with

pia∗ f (x)api > 0 (i = 1, 4)

(thanks to the first part of Lemma 3.2(i)). The Jordan decomposition

f (a∗xa) = f (a∗xa)+ − f (a∗xa)−

(with f (a∗xa)± > 0 and orthogonal supports) is obviously given by

f (a∗xa)+ =


p1 f (a∗xa)p1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 p4 f (a∗xa)p4

 ,

f (a∗xa)− =


0 0 0 0
0 −p2 f (a∗ f xa)p2 0 0
0 0 −p3 f (a∗xa)p3 0
0 0 0 0

 .

On the other hand, the Jordan decomposition of a∗ f (x)a is difficult to describe.
However, the one for E(a∗ f (x)a) is simply given by

(E(a∗ f (x)a))+ =


p1a∗ f (x)ap1 0 0 0

0 (p2a∗ f (x)ap2)+ 0 0
0 0 (p3a∗ f (x)ap3)+ 0
0 0 0 p4a∗ f (x)ap4

 ,

(E(a∗ f (x)a))− =


0 0 0 0
0 (p2a∗ f (x)ap2)− 0 0
0 0 (p3a∗ f (x)ap3)− 0
0 0 0 0

 .
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Lemma 3.2 enables us to compare the diagonal blocks of f (a∗xa)± with those of
(E(a∗ f (x)a))±:

pia∗ f (x)api & pi f (a∗xa)pi for i = 1, 4,

− pi f (a∗xa)pi & (pia∗ f (x)api)− for i = 2, 3.

The spectral dominance is preserved under taking a direct sum and we have

(E(a∗ f (x)a))+ >


p1a∗ f (x)ap1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 p4a∗ f (x)ap4

 & f (a∗xa)+,(3.1)

f (a∗xa)− & (E(a∗ f (x)a))− .(3.2)

Note that (3.1) implies

(E(a∗ f (x)a))+ & f (a∗xa)+ and τ((E(a∗ f (x)a))+) > τ( f (a∗xa)+)

while (3.2) says

τ( f (a∗xa)−) > τ((E(a∗ f (x)a))−).

Let us assume that both of τ(a∗ f (x)a), τ( f (a∗xa)) are well-defined (see 2.4).
Then, so is τ(E(a∗ f (x)a)), and from the above inequalities on trace values we
have

τ(E(a∗ f (x)a)) = τ((E(a∗ f (x)a))+)− τ((E(a∗ f (x)a))−)

> τ( f (a∗xa)+)− τ( f (a∗xa)−) = τ( f (a∗xa)).

But, since E preserves τ, the above means the following trace Jensen inequality:

τ(a∗ f (x)a) > τ( f (a∗xa)).

Note that the middle part in (3.1) is

(E(a∗ f (x)a))+ − (p2a∗ f (x)ap2)+ − (p3a∗ f (x)ap3)+ (& f (a∗xa)+).

Thus, it is possible to strengthen the above trace inequality as follows:

τ(a∗ f (x)a) > τ( f (a∗xa)) + τ((p2a∗ f (x)ap2)+) + τ((p3a∗ f (x)ap3)+).

Discussions so far obviously remain valid for semi-bounded τ-measurable
operators (see Remark 3.3), and hence we have shown the next result.

THEOREM 3.4. We assume that a ∈ M is a contraction and x is a semi-bounded
τ-measurable operator. For a continuous convex function f (t) with f (0) = 0 the trace
Jensen inequality

τ( f (a∗xa)) 6 τ(a∗ f (x)a)

holds true as long as the both sides are well-defined.
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The semi-boundedness requirement here can be dropped in certain cases.
For example, when f (t) > 0 on R, for any self-adjoint τ-measurable operator x
we have

τ( f (a∗xa)) 6 τ(a∗ f (x)a) (6 ∞).

To prove this based on “Fatou’s lemma for traces" (see Theorem 3.5 of [11] for
instance) is an easy exercise, and the next Theorem 3.5 actually covers this fact.

THEOREM 3.5. Let f (t) be a continuous convex function satisfying f (0) = 0.
For a contraction a ∈ M and a self-adjoint τ-measurable operator x the following weak
majorization holds true:

t∫
0

µs( f (a∗xa)+) ds 6

t∫
0

µs((a∗ f (x)a)+) ds (for each t > 0).

In particular, by letting t→ ∞, we always have

τ( f (a∗xa)+) 6 τ((a∗ f (x)a)+) (6 ∞).

Proof. Let us begin with the case when x is a semi-bounded τ-measurable
operator. We have the spectral dominance

(E(a∗ f (x)a))+ . E((a∗ f (x)a)+)

(see 2.4(a)), showing (together with (3.1))

f (a∗xa)+ . E((a∗ f (x)a)+).

Thus, the weak majorization in this case follows from Proposition 2.1.
Let us move to the general case. It suffices to consider the following three

situations:

(i) f (t) > 0 on R,
(ii) f (t) is monotone decreasing on R,

(iii) f (t) is monotone decreasing on (−∞, t0] with t0 > 0, increasing on [t0, ∞)
and lim

t→∞
f (t) = ∞.

Note that the case when f (t) is increasing at t = 0 can be reduced to the
above (ii) or (iii) by considering f (−t) and −x. Let us approximate x by the
following semi-bounded operators:

xn =
{

xχ[−n,n](x) in case (i),
xχ[−n,∞)(x) in cases (ii) and (iii).

Note f (xn) 6 f (x) in all the cases (since f (t) > 0 on (−∞, 0] in cases (ii) and
(iii)). We thus have the spectral dominance (a∗ f (xn)a)+ . (a∗ f (x)a)+ (see 2.1(c)).
Since f (a∗xna)+ → f (a∗xa)+ in measure (see [28]), lower semi-continuity of µs(·)
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relative to the measure topology (see 2.2(d)) and Fatou’s lemma guarantee

t∫
0

µs( f (a∗xa)+) ds 6

t∫
0

lim inf
n→∞

µs( f (a∗xna)+) ds 6 lim inf
n→∞

t∫
0

µs( f (a∗xna)+) ds

6 lim inf
n→∞

t∫
0

µs((a∗ f (xn)a)+) ds 6

t∫
0

µs((a∗ f (x)a)+) ds.

The third inequality here of course follows from the first half of the proof.

Another weak majorization akin to Theorem 3.5 is also possible: We have

(p1 + p4)a∗ f (x)a(p1 + p4) =


p1a∗ f (x)ap1 0 0 p1a∗ f (x)ap4

0 0 0 0
0 0 0 0

p4a∗ f (x)ap1 0 0 p4a∗ f (x)ap4

 .

By cutting off-diagonal blocks, i.e., E((p1 + p4)a∗ f (x)a(p1 + p4)), we get the mid-
dle part (which majorizes f (a∗xa)+ in the sense of spectral dominance) in (3.1).
Since the sum e = p1 + p4 is nothing but the support projection of f (a∗xa)+, we
conclude

t∫
0

µs( f (a∗xa)+) ds 6

t∫
0

µs(e(a∗ f (x)a)e) ds for each t > 0.

Related estimates for the special convex function f (t) = |t|r with r > 1 (and for
compact operators) were studied in [18], [19].

COROLLARY 3.6. Let f (t) be a continuous convex function with f (0) = 0. For
self-adjoint τ-measurable operators x, y and a, b ∈ M satisfying a∗a + b∗b 6 1 we have

t∫
0

µs( f (a∗xa + b∗yb)+) ds 6

t∫
0

µs((a∗ f (x)a + b∗ f (y)b)+) ds (for each t > 0).

Proof. We set

A =
[

a 0
b 0

]
, X =

[
x 0
0 y

]
,

and observe that A ∈ M⊗M2(C) is a contraction. It is also elementary to see

f (A∗XA)+ =
[

f (a∗xa+b∗yb)+ 0
0 0

]
, (A∗ f (X)A)+ =

[
(a∗ f (x)a+b∗ f (y)b)+ 0

0 0

]
,

so that (from the very definition of µt(·)) we have

µt( f (A∗XA)+) = µt( f (a∗xa + b∗yb)+),

µt((A∗ f (X)A)+) = µt((a∗ f (x)a + b∗ f (y)b)+),
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(where the left side µt(·) is relative to the product trace τ ⊗ TrM2(C) with the
unnormalized trace TrM2(C)). Thus, the result follows from Theorem 3.5.

Notice that majorization of the form

t∫
0

µs( f (a∗xa)) ds 6

t∫
0

µs(a∗ f (x)a) ds (t > 0)

cannot be expected (since ‖ f (a∗xa)‖ 6 ‖a∗ f (x)a‖ is simply false). The fact that
µs(·) destroys information on “negative eigenvalues" is responsible for this fail-
ure, and majorization of the above form holds true for spectral scales λs(·) (at-
tached to a finite trace τ) as will be clarified in the next section (see Theorem 4.2).

Operator triangle inequalities (for the absolute value part |x| =
√

x∗x) of
the form

|x + y| 6 u|x|u∗ + v|y|v∗

(with u, v unitaries or something alike) have been studied by several authors (see
[1], [27]). Note that the operator inequality |x + y| 6 |x| + |y| is false even for

Hermitian matrices. For example, 2× 2 matices x =
[

1 1
1 1

]
and y =

[
0 0
0 −2

]
give us

|x + y| =
[√

2 0
0
√

2

]
and |x|+ |y| =

[
1 1
1 3

]
,

and hence |x + y| 66 |x|+ |y| (see p. 1 of [26]). The eigenvalus of the latter are

µ1(|x|+ |y|) = 2 +
√

2, µ2(|x|+ |y|) = 2−
√

2,

and hence the spectral dominance |x + y| . |x|+ |y| is not valid either.
On the other hand, Corollary 3.6 applied to the positive convex function

f (t) = |t| and a = b = 1/
√

2 yields

(3.3)
t∫

0

µs(|x + y|) ds 6

t∫
0

µs(|x|+ |y|) ds

for self-adjoint τ-measurable operators x, y. For x =
[

1 0
0 0

]
, y =

[
0 1
0 0

]
we com-

pute

‖x + y‖ (=
√

2) 66 ‖ |x|+ |y| ‖ (= 1).

showing that the weak majorization (3.3) cannot be expected for general x, y.

THEOREM 3.7. For a, b ∈ M we have

t∫
0

f (µs(a + b)) ds 6

t∫
0

f (µs(|a|+ |b|)1/2µs(|a∗|+ |b∗|)1/2)ds (t > 0)
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for a continuous increasing function f (t) on [0, ∞) such that t → f (et) is convex and
f (0) = 0. In particular, (with f (t) = t) we have

t∫
0

µs(a + b) ds 6

t∫
0

µs(|a|+ |b|)1/2µs(|a∗|+ |b∗|)1/2ds

6
1
2

t∫
0

[µs(|a|+ |b|) + µs(|a∗|+ |b∗|)]ds.

Proof. For a ∈ M (with the polar decomposition a = u|a|) we have[
|a| a∗

a |a∗|

]
=
[
|a| |a|u∗

u|a| u|a|u∗
]

=
[

1 0
0 u

] [
|a| |a|
|a| |a|

] [
1 0
0 u

]∗
> 0

(and positivity of the corresponding matrix for b), and consequently[
|a|+ |b| a∗ + b∗

a + b |a∗|+ |b∗|

]
> 0.

Hence, there exists a contraction c ∈ M satisfying

a + b = (|a∗|+ |b∗|)1/2c (|a|+ |b|)1/2

(see [2] for instance). Since Λt(·) = exp
( t∫

0
log µs(·)ds

)
is submultiplicative (see

[10] or Theorem 4.2 of [11]) and Λt(c) 6 1, we get

Λt(a + b) 6 Λt((|a∗|+ |b∗|)1/2)Λt(c)Λt((|a|+ |b|)1/2)

6 Λt((|a|+ |b|))1/2Λt((|a∗|+ |b∗|))1/2

(for each t > 0), which means
t∫

0

log µs(a + b) ds 6

t∫
0

1
2
[log µs(|a|+ |b|) + log µs(|a∗|+ |b∗|)]ds.

The result thus follows from standard majorization theory.

Note that we have Λt(a + b) 6 Λt(|a|+ |b|) for a, b normal, a considerable
strengthening of (3.3). Also, standard approximation arguments (similar to those
in the proof of Theorem 3.5) enable us to get the above estimates for general τ-
measurable operators.

4. WEAK MAJORIZATION (FINITE TRACE CASE)

In this sectionM is a finite von Neumann algebra without minimal projec-
tions equipped with a faithful normal trace τ satisfying τ(1) < ∞. With the no-
tion of spectral scales (in 2.3) we will investigate weak majorization inequalities.
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For simplicity only bounded self-adjoint operators will be dealt with although
spectral scales can be defined for unbounded ones as well.

LEMMA 4.1. Let f (t) be a continuous convex function with f (0) = 0. For x ∈
Msa and a contraction a ∈ M we have

τ( f (a∗xa)) 6 τ(a∗ f (x)a).

It was already proved in Theorem 3.4. In [24] the result is obtained with
x > 0 and a positive contraction map x → α(x). Arguments there can actually
deal with self-adjoint operators, and slight modifications give us a completely
elementary proof for the lemma. This proof is quite direct in the sense that no
technical apparatus such as . is needed, and it will be presented in the appendix
for the reader’s convenience.

THEOREM 4.2. Let f (t) be a continuous convex function with f (0) 6 0. For
x ∈ Msa and a contraction a ∈ M we have

t∫
0

λs( f (a∗xa)) ds 6

t∫
0

λs(a∗ f (x)a) ds (for each t ∈ (0, τ(1))).

Proof. At first we assume f (0) = 0. For each t ∈ (0, τ(1)) we can find a
projection e ∈ M commuting with a∗xa such that

t∫
0

λs( f (a∗xa)) ds = τ(e f (a∗xa)e)

and τ(e) 6 t (see Lemma 1 of [23] or Lemma 4.1 of [11]). Since [e, f (a∗xa)] = 0
and f (0) = 0, we have e f (a∗xa)e = f (ea∗xae). Thus, Lemma 4.1 yields

t∫
0

λs( f (a∗xa)) ds = τ( f (ea∗xae)) 6 τ(ea∗ f (x)ae) = τ(a∗ f (x)ae),

which is majorized by
t∫

0
λs(a∗ f (x)a) ds due to τ(e) 6 t (see Theorem 3 of [23]).

When f (0) 6 0, with g(t) = f (t)− f (0) (vanishing at 0) we have

λs( f (a∗xa)) = λs(g(a∗xa) + f (0)1) = λs(g(a∗xa)) + f (0),

λs(a∗ f (x)a) > λs(a∗g(x)a + f (0)1) = λs(a∗g(x)a) + f (0),

(due to f (0)a∗a > f (0)1) and get the result by applying the first half to g(t).

When the convex function f (t) is monotone (either increasing or decreas-
ing), the conclusion of the theorem can be strengthened to

λt( f (a∗xa)) 6 λt(a∗ f (x)a) for each t ∈ (0, τ(1)).

In fact, the “min-max" representation in 2.2 is also available for λs(·) (as is ex-
plained in [23]). Thus, by assuming increasingness of f (t) (use f (−t) and −x
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otherwise), one can repeat arguments in the proof of Lemma 4.5 of [11] together
with Lemma 3.1 (which is easily shown to remain valid as long as f (0) 6 0).

COROLLARY 4.3. Let f (t) be a continuous convex function with f (0) 6 0. For
x, y ∈ Msa and a, b ∈ M satisfying a∗a + b∗b 6 1 we have

t∫
0

λs( f (a∗xa + b∗yb)) ds 6

t∫
0

λs(a∗ f (x)a + b∗ f (y)b) ds (for each t ∈ (0, τ(1))).

Moreover, when a∗a + b∗b = 1, the above holds true regardless of the parity of f (0).

Proof. When f (0) = 0, we can use the 2× 2 matrix trick used in the proof
of Corollary 3.6 and the desired weak majorization is a consequence of The-
orem 4.2. One subtlety here is that λt( f (A∗XA)) = λt( f (a∗xa + b∗yb)) and
λt(A∗ f (X)A) = λt(a∗ f (x)a + b∗ f (y)b) are false (which should be compared with
the situation for µt(·)). However, Corollary 2.3 is in rescue. On the other hand,
to deal with the general case f (0) 6 0, we can repeat the same trick as in the
proof of Theorem 4.2 thanks to f (0)(a∗a + b∗b) > f (0)1 (which comes free when
a∗a + b∗b = 1).

5. MONOTONICITY

Let f (t) be a continuous increasing function on R satisfying f (0) = 0. Here,
we will collect various monotonicity properties on trace values τ( f (x)) for x self-
adjoint.

THEOREM 5.1. Let f (t) be a continuous increasing function (on R) with f (0) =
0, and we assume that self-adjoint τ-measurable operators x, y satisfy x 6 y.

(i) We have the spectral dominance f (x)+ . f (y)+, f (y)− . f (x)−, and the trace
inequality τ( f (x)) 6 τ( f (y)) holds true as long as the both sides are well-defined (in
particular when f (x), f (y) ∈ L1(M; τ)).

(ii) We further assume strict increasingness of f (t) and integrability x, y, f (x), f (y)
∈ L1(M; τ). Then, we have x = y if and only if τ( f (x)) = τ( f (y)).

(iii) We have the same conclusion as (ii) under convexity and strict increasingness of
f (t) and integrability f (x), f (y) ∈ L1(M; τ).

Proof. (i) Note f (x)+ = f (x+), f (y)+ = f (y+) since f (t) is increasing and
f (0) = 0. On the other hand, with the (increasing) function g(t) = − f (−t) we
observe

f (x)− = (− f (x))+ = g(−x)+ = g((−x)+) = g(x−)

and similarly f (y)− = g(y−). Hence, the Jordan decompositions of f (x), f (y) are{
f (x) = f (x)+ − f (x)− = f (x+)− g(x−),
f (y) = f (y)+ − f (y)− = f (y+)− g(y−).
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Here, we have y+ & x+, i.e., µt(y+) > µt(x+), t > 0 (as was seen in 2.1(c)) while
−x > −y yields x− = (−x)+ & (−y)+ = y−. Since f (t), g(t) are increasing, we
actually have f (y+) & f (x+) and g(x−) & g(y−) (see 2.1(b)). Therefore, we have

(5.1) τ( f (x+)) =
∞∫

0

f (µt(x+)) dt 6

∞∫
0

f (µt(y+)) dt = τ( f (y+))

(and similarly τ(g(y−)) 6 τ(g(x−))), and hence

τ( f (y))− τ( f (x)) = (τ( f (y+))− τ(g(y−)))− (τ( f (x+))− τ(g(x−)))

= (τ( f (y+))− τ( f (x+))) + (τ(g(x−))− τ(g(y−))) > 0.

(ii) The assumption τ( f (x)) = τ( f (y)) and the above arguments in (i) force

(5.2) τ( f (x+)) = τ( f (y+)) and τ(g(x−)) = τ(g(y−)).

From the first equality we have f (µt(x+)) = f (µt(y+)) (see (5.1)) and µt(x+) =
µt(y+) (for f (t) strictly increasing). We similarly have µt(x−) = µt(y−). We
claim

(5.3) x+ 6 y+ and y− 6 x−

(in the usual positive definite sense), and note that the conclusion x = y is ob-
tained once this claim is shown. Indeed, the obvious computation

τ(y+ − x+) = τ(y+)− τ(x+) =
∞∫

0

µt(y+) dt−
∞∫

0

µt(x+) dt = 0

and the similar one τ(x− − y−) = 0 (with x, y ∈ L1(M; τ)) yield x± = y±.
To show the claim, we note

τ(x+) 6 τ(eye) = τ(ey+e)− τ(ey−e) 6 τ(ey+e) 6 τ(y+)

(see 2.1(c)). But, since τ(x+) = τ(y+) < ∞, we actually have

τ(ey−e) = 0, τ(y+) = τ(ey+e) (= τ(y1/2
+ ey1/2

+ )),

showing y−e = 0 and y+(1− e) = 0. Hence, the support of y− is majorized by
1− e and that of y+ is majorized by e. Since y± have orthogonal supports, this
means

(5.4) y+ = eye and y− = −(1− e)y(1− e).

The same expressions for x± are obviously valid (always) and (5.3) holds true:

y+ − x+ = e (y− x) e > 0, x− − y− = −(1− e)(x− y)(1− e) > 0.

(iii) The equality (5.2) is still valid, and the main issue here is to prove (5.3)
in the current setting (i.e., without x, y ∈ L1(M; τ)). We note

τ( f (x+)) 6 τ( f (eye)) (because of 0 6 x+ 6 eye)(5.5)

6 τ(e f (y)e) 6 τ(e f (y+)e) 6 τ( f (y+)).
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The second inequality is the trace Jensen inequality (Theorem 3.4). However, y
is not necessarily semi-bounded so that some justification is needed here. To do
so, we set yn = yχ[−n,∞)(y) for each n ∈ N. The semi-bounded operators yn

obviously satisfy y 6 yn. Also, the assumption f (y) ∈ L1(M; τ) guarantees
f (yn) ∈ L1(M; τ) and

(5.6) lim
n→∞

‖ f (yn)− f (y)‖1 = 0.

Note 0 6 x+ = exe 6 eye 6 eyne and f (eyne) > 0. In particular, τ( f (eyne)) is
well-defined. Also so is τ(e f (yn)e) because of f (yn), e f (yn)e ∈ L1(M; τ). Since
f (eyne) → f (eye) (> 0) in measure (see [28]), “Fatou’s lemma for traces" (see
Theorem 3.5 of [11]), Theorem 3.4 and (5.6) altogether yield the desired estimate:

τ( f (eye)) 6 lim inf
n→∞

τ( f (eyne)) 6 lim inf
n→∞

τ(e f (yn)e) = τ(e f (y)e).

The quantities appearing in (5.5) are all finite, and the equality (5.2) means

τ(eg(y−)e) = 0 and τ( f (y+)) = τ(e f (y+)e).

Thus, the support of g(y−) (respectively f (y+)) is majorized by e (respectively
1− e). However, since f (y+), y+ and g(y−), y− have same supports, (5.4) and
hence (5.3) remain valid.

We next make use of the estimates

τ( f (x+)) 6 τ( f (x+)) + τ( f (y+ − x+)) 6 τ( f (y+))

(see Proposition 4.6(ii) of [11]). The equality (5.2) shows τ( f (y+ − x+)) = 0
and consequently f (y+ − x+) = 0. Finally, f (t) being strictly increasing with
f (0) = 0, we conclude y+ − x+ = 0. Similar arguments also yield x− − y− = 0
and we are done.

APPENDIX A. DIRECT PROOF OF LEMMA 4.1

In this appendix a direct proof of Lemma 4.1 is presented.
We choose and fix an arbitrary ε > 0. We can then choose δ > 0 satisfying

|s− t| 6 δ =⇒ | f (s)− f (t)| 6 ε.

for s, t ∈ [−‖x‖, ‖x‖] ∪ [−‖a∗xa‖, ‖a∗xa‖]. Let

x =
‖x‖∫
−‖x‖

s dex
s and a∗xa =

‖a∗xa‖∫
−‖a∗xa‖

t dea∗xa
t

be the spectral decomposition of x and a∗xa respectively. We divide the intervals
[−‖x‖, ‖x‖] and [−‖a∗xa‖, ‖a∗xa‖] into subintervals of length at most δ:

s0 = −‖x‖ < s1 < s2 < · · · < sn = ‖x‖,
t0 = −‖a∗xa‖ < t1 < t2 < · · · < tm = ‖a∗xa‖.
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Let

p1 = ex
[s0,s1]

, pi = ex
(si−1,si ]

(i = 2, 3, · · · , n),

q1 = ea∗xa
[t0,t1]

, qj = ea∗xa
(tj−1,tj ]

(j = 2, 3, · · · , m),

be the corresponding spectral projections, and we set y =
n
∑

i=1
si pi. We have

(A.1) ‖x− y‖ 6 δ

from the construction while uniform continuity guarantees

(A.2) ‖ f (x)− f (y)‖ 6 ε.

To approximate τ( f (a∗xa)) by a Riemann sum (of the form
m
∑

j=1
f (ξ j)τ(qi)), we set

ξ j =
τ(a∗xaqj)

τ(qj)
(j = 1, 2, . . . , m)

with the following convention: When τ(qj) = 0, we do not define ξi and simply

omit j from the sum
m
∑

j=1
. The obvious fact tj−1qj 6 a∗xaqj 6 tjqj yields

tj−1τ(qj) 6 τ(a∗xaqj) 6 tjτ(qj) and hence tj−1 6 ξ j 6 tj.

So uniform continuity shows | f (t) − f (ξ j)| 6 ε on the j-th subinterval, and we
have

∣∣∣τ( f (a∗xa))−
m

∑
j=1

f (ξ j)τ(qj)
∣∣∣=∣∣∣ ‖a

∗xa‖∫
−‖a∗xa‖

f (t) dτ(ea∗xa
t )−

m

∑
j=1

f (ξ j)τ(qj)
∣∣∣6 ετ(1).(A.3)

Let us fix j satisfying τ(qj) > 0. We remark

f (ξ j) = f
(τ(a∗xaqj)

τ(qj)

)
= f

(τ(a∗yaqj)
τ(qj)

+
τ(a∗(x− y)aqj)

τ(qj)

)
,

|τ(a∗(x− y)aqj)| 6 ‖a∗(x− y)a‖τ(qj) 6 ‖a‖2‖x− y‖τ(qj) 6 δτ(qj),

(see (A.1)) so that (by uniform continuity again) we have

(A.4) f (ξ j) 6 f
(τ(a∗yaqj)

τ(qj)

)
+ ε.
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Since
n
∑

i=1
pi = 1, we can estimate the above right side as follows:

f
(τ(a∗yaqj)

τ(qj)

)
= f

( n

∑
i=1

τ(a∗ypiaqj)
τ(qj)

)
= f

( n

∑
i=1

(
si ×

τ(a∗piaqj)
τ(qj)

))
(because of ypi = si pi)

= f
(

0×
τ(qj)− τ(a∗aqj)

τ(qj)
+

n

∑
i=1

(
si ×

τ(a∗piaqj)
τ(qj)

))
6 f (0)×

τ(qj)− τ(a∗aqj)
τ(qj)

+
n

∑
i=1

(
f (si)×

τ(a∗piaqj)
τ(qj)

)
=

n

∑
i=1

(
f (si)×

τ(a∗piaqj)
τ(qj)

)
=

1
τ(qj)

n

∑
i=1

f (si)τ(a∗piaqj).

Here, convexity of f (t) and f (0) = 0 were used. This estimate (with (A.4)) means

f (ξ j) 6
1

τ(qj)

n

∑
i=1

f (si)τ(a∗piaqj) + ε,

and consequently
m

∑
j=1

f (ξ j)τ(qj) 6
m

∑
j=1

n

∑
i=1

f (si)τ(a∗piaqj) + ε
m

∑
j=1

τ(qj) =
n

∑
i=1

f (si)τ(a∗pia) + ετ(1)

= τ
(

a∗
( n

∑
i=1

f (sj)pi

)
a
)

+ ετ(1) = τ(a∗ f (y)a) + ετ(1).

From this estimate together with (A.3) and the obvious inequality

|τ(a∗ f (x)a)− τ(a∗ f (y)a)| 6 ‖a∗ f (x)a− a∗ f (y)a‖τ(1) 6 ετ(1)

(see (A.2)) we conclude

τ( f (a∗xa)) 6 τ(a∗ f (x)a) + 3ετ(1),

and we are done.

Acknowledgements. The authors would like to thank the referee for suggesting certain
improvement of the original manuscript.

REFERENCES

[1] C.A. AKEMANN, J. ANDERSON , G.K. PEDERSEN, Triangle inequalities in operator
algebras, Linear and Multilinear Algebra 11(1982), 167–178.

[2] T. ANDO, Topics on Operator Inequalities, Lecture Notes at Ryukyu Univ., Sapporo 1978.



TRACE JENSEN INEQUALITY IN SEMI-FINITE VON NEUMANN ALGEBRAS 149

[3] T. ANDO, Majorization, doubly stochastic matrices, and comparison of eigenvalues,
Linear Algebra Appl. 118(1989), 163–248.

[4] J.S. AUJLA, F.C. SILVA, Weak majorization inequalities and convex functions, Linear
Algebra Appl. 369(2003), 217–233.

[5] J. BENDAT, S. SHERMAN, Monotone and convex operator functions, Trans. Amer.
Math. Soc. 79(1955), 58–71.

[6] R. BHATIA, Matrix Analysis, Graduate Text in Math., vol. 169, Springer-Verlag, New
York 1997.

[7] L.G. BROWN, H. KOSAKI, Jensen’s inequality in semi-finite von Neumann algebras,
J. Operator Theory 23(1990), 3–19.

[8] M.D. CHOI, A Schwarz inequality for positive linear maps on C∗-algebras, Illinois J.
Math. 18(1974), 565–574.

[9] C. DAVIS, A Schwarz inequality for convex operator functions, Proc. Amer. Math. Soc.
8(1957), 42–44.

[10] T. FACK, Sur la notion de valeur caractéristique, J. Operator Theory 7(1982), 307–333.

[11] T. FACK, H. KOSAKI, Generalized s-numbers of τ-measurable operators, Pacific J.
Math. 123(1986), 269–300.

[12] I.C. GOHBERG, M.G. KREIN, Introduction to the Theory of Linear Nonselfadjoint Opera-
tors, Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, RI 1969.

[13] F. HANSEN, An operator inequality, Math. Ann. 246(1980), 249–250.

[14] F. HANSEN, G.K. PEDERSEN, Jensen’s inequality for operators and Löwner’s theo-
rem, Math. Ann. 258(1982), 229–241.

[15] F. HANSEN, G.K. PEDERSEN, Jensen’s operator inequality, Bull. London Math. Soc.
35(2003), 553–564.

[16] T. HARADA, H. KOSAKI, On equality condition for trace Jensen inequality in semi-
finite von Neumann algebras, Internat. J. Math. 19(2008), 481–501.

[17] F. HIAI, Y. NAKAMURA, Majorization for generalized s-numbers in semi-finite von
Neumann algebras, Math. Z. 195(1987), 17–27.

[18] O. HIRZALLAH, F. KITTANEH, Norm inequalities for weighted power means of op-
erators, Linear Algebra Appl. 341(2002), 181–193.
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