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ABSTRACT. We study the index theory for actions of compact Lie groups on
C∗-algebras with an emphasis on principal actions. Given an invariant semifi-
nite faithful trace on the C∗-algebra we get semifinite spectral triples. For circle
actions we consider the relation to the dual Pimsner–Voiculescu sequence. On
the way we show that the notions “saturated” and “principal” are equivalent
for actions by compact Lie groups.
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1. INTRODUCTION

C∗-algebras can be considered as a noncommutative generalization of lo-
cally compact spaces. Let G be a compact group. A G-C∗-algebra is a C∗-algebra
A endowed with a G-action α inducing a continuous map A → C(G,A), a 7→
α(a). G-C∗-algebras generalize actions of compact groups on locally compact
spaces. The fixed point algebra Aα plays the role of the quotient. The notion of
a saturated action was introduced in [24] as a noncommutative version of a free
action. If α is saturated, then Aα and the crossed product A ×α G are strongly
Morita equivalent. More recently principal actions of quantum groups on C∗-
algebras were defined [10]. These generalize principal bundles. We will show
that for compact Lie groups the notions “saturated” and “principal” agree. We
refer to [1] for a detailed account on the correspondence between topological and
C∗-algebraic notions in this context.

Index theoretical concepts for actions of Lie groups have been studied at
several places in the literature: A general index theory was outlined in [7]. For
ergodic actions a spectral triple has been defined in Section 3 in [26]. For the torus
gauge action on (higher) graph C∗-algebras a semifinite spectral triple has been
constructed and an index theorem has been proven recently in [21], [22]. The aim



218 CHARLOTTE WAHL

of this paper is to study the index theory for actions of compact Lie groups in a
systematic way and in the case of principal actions to elaborate the analogy with
the index theory of vertical elliptic operators on a principal bundle. Our results
provide the missing link between the existing constructions and also a connection
to the index theory for pseudodifferential operators over C∗-algebras in general.
Furthermore we obtain a new class of examples of semifinite spectral triples.

We describe now our constructions and their relation to those mentioned
before in more detail.

In [7] a pseudodifferential calculus for an Rn-action on a C∗-algebra was
defined in a very concrete way, an Atiyah–Singer type exact sequence was con-
structed and an index theorem was proven. It was remarked that a similar theory
exists for general locally compact Lie groups. Our approach here is different: We
will show that for compact Lie groups the algebra of invariant pseudodifferential
operators on C∞(G,A) yields such an Atiyah–Singer type exact sequence (Sec-
tion 4). As in [7] the role of the algebra of compact operators is played by A×α G
and hence the index is an element in K∗(A×α G). An index theorem for the pair-
ing of the index with an invariant trace on A follows from the index theorem
proven in [29].

We will also define and study appropriate analogues of Sobolev spaces,
which will be Hilbert Aα-modules. If A = C(X) for a compact space X, then
these correspond to vertical Sobolev spaces on the fibration X → X/G. Our
calculations will show, as has been noted many times before in related situations,
that the crossed product is in general better behaved than the quotient from an in-
dex theoretic point of view. For saturated actions the pseudodifferential calculus
considered here generalizes the pseudodifferential calculus of vertical invariant
classical pseudodifferential operators on a principal bundle (Section 9).

We will particularly focus on Dirac operators: An invariant Dirac operator
on G induces an elliptic element D/ in our calculus and a class [D/ ] in KK∗(A,A×α

G) (Section 5). We prove an index formula for the pairing of K∗(A) with this class
if A is endowed with a suitable invariant trace. If the trace is faithful, then we
associate to any invariant Dirac operator on the group a semifinite spectral triple
for a matrix algebra over the enveloping von Neumann algebra of the crossed
product (Section 7).

In [21], [22] the authors associate to an invariant Dirac operator on a k-torus
Tk a selfadjoint operator with compact resolvents on a HilbertAα-module, where
A is a k-graph C∗-algebra (for a certain class of k-graphs) and α the gauge action.
They show that their construction yields a class in KK∗(A,Aα) and, in presence
of an invariant semifinite faithful trace, define a semifinite spectral triple to which
they apply the semifinite local index formula [5], [6]. For ergodic actions of com-
pact Lie groups on general C∗-algebras an analogous construction has been indi-
cated before in [26] yielding a (ordinary) spectral triple. We adapt the construc-
tion to saturated actions and show that the KK-theory class is related to the class
[D/ ] from above via Morita equivalence (Section 9). The geometric interpretation
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of the index theorem in this situation is that of a family index theorem for an in-
variant Dirac operator on a principal bundle with fiber G and noncommutative
base and total space. The von Neumann algebra defined in [22] was suspected
by the authors to be isomorphic to the (von Neumann algebraic) crossed product
of the k-graph algebra with Tk. Our approach shows that this is indeed the case
if the action is saturated.

One motivation for index theories lies in the construction and calculation
of invariants. Invariants of graph C∗-algebras have recently found interest in
connection with Mumford curves, see [8]. The pairing of K∗(A) with [D/ ] yields
invariants of the action α. If G = T, then these are well-known: We will iden-
tify two of the six maps of the dual Pimsner–Voiculescu sequence with the Kas-
parov product with [D/ ] (Section 8). For graph C∗-algebras, for example, the dual
Pimsner–Voiculescu sequence is well-understood and a useful tool in the study
of their K-theory, see Chapter 7 in [25].

The most popular example of a saturated action is probably the T2-action on
the noncommutative two-torus. Other examples arise from the T-action on graph
C∗-algebras and from C∗-algebraic quantum principal bundles (Section 10).
Though in the latter case the fiber is a Hopf-algebra in general, our results ap-
ply to the various quantum Hopf bundles whose structure group is the circle.

2. HILBERT C∗-MODULES AND KK-THEORY

In this section we review some notions related to Hilbert C∗-modules and
KK-theory needed in the sequel. We refer to [3] for more details.

Let A be a C∗-algebra with norm ‖ · ‖.
An A-valued scalar product on a right A-module H is a pairing 〈·, ·〉 : H ×

H → A that is linear in the second variable and such that for v, w ∈ H and a ∈ A
• 〈v, wa〉 = 〈v, w〉a,
• 〈v, w〉 = 〈w, v〉∗,
• 〈v, v〉 > 0,
• 〈v, v〉 = 0 only if v = 0.

The induced norm on H is given by ‖v‖2
H = ‖〈v, v〉‖.

A Hilbert A-module is a right A-module H endowed with an A-valued
scalar product such that H is complete with respect to the induced norm. An
elementary example of a HilbertA-module, which will however play a role in the
following, is the following: Let E be a finite dimensional complex vector space
with hermitian product 〈·, ·〉E. Then E ⊗ A endowed with the A-valued scalar
product

〈v⊗ a, w⊗ b〉 = 〈v, w〉Ea∗b

is a Hilbert A-module.
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The C∗-algebra of bounded adjointable (A-linear) operators on a HilbertA-
module H is denoted by B(H). For v, w ∈ H we define B(H) 3 Θv,w : x 7→
v〈w, x〉. The ideal of compact operators in B(H) is by definition the sub-C∗-
algebra K(H) of B(H) generated by the operators Θv,w, v, w ∈ H. An operator
F ∈ B(H) is called Fredholm if F is invertible in B(H)/K(H). If H is countably
generated, then there is a well-defined index ind(F) ∈ K0(A) of a Fredholm op-
erator F.

In an elementary way a closed ideal I in a C∗-algebra B defines a “gener-
alized index theory”: A Fredholm operator is an element F ∈ B whose class is
invertible in B/I and the index is the image of the class [F] ∈ K1(B/I) → K0(I).
The index theory constructed in Section 3 will be such a generalized index theory.

An unbounded densely defined operator D on H is called regular if (1 +
D∗D)−1 has dense range. If D is selfadjoint and regular, then f (D) ∈ B(H) is
well-defined for f ∈ C(R).

We assume now that A,B are σ-unital C∗-algebras.

DEFINITION 2.1. A triple (ρ, D, H) with H a countably generated Hilbert B-
module, ρ : A → B(H) a C∗-homomorphism and D a selfadjoint regular operator
on H such that for all a ∈ A

ρ(a)(1 + D2)−1 ∈ K(H)

and such that there is a dense subset A ⊂ A with

[D, ρ(a)]

densely defined and bounded for all a ∈ A is called an odd unbounded Kasparov
(A,B)-module.

An even unbounded Kasparov (A,B)-module is a triple (ρ, D, H) as above such
that in addition H is Z/2-graded, D is odd and ρ(a) is even for all a ∈ A.

An even respectively odd unbounded Kasparov (A,B)-module (ρ, D, H)
defines a class [(ρ, D, H)] in KK0(A,B) respectively KK1(A,B). Usually we will
suppress ρ and H from the notation.

There is a pairing

⊗A : Ki(A)×KKj(A,B)→ Ki+j(B) ,

where i, j ∈ Z/2.
We will only consider the case i = j. Then the pairing generalizes the fol-

lowing index theoretic pairings by using K0(C) ∼= Z:
Let P be a symmetric elliptic pseudodifferential operator of order one acting

on the sections of a hermitian vector bundle E on a closed Riemannian manifold
M. Let m( f ) be the multiplication operator on L2(M, E) associated to f ∈ C(M).
Then (m, P, L2(M, E)) is an odd unbounded Kasparov (C(M), C)-module. In the
following m is suppressed in the notation.
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For a unitary u ∈ C∞(M, Mn(C))

[u]⊗C(M) [P] = sf(((1− t)P + tuPu−1)t∈[0,1]) ∈ Z ,

where sf denotes the spectral flow and P is understood as acting on L2(M, E)⊗
Cn.

If E is Z/2-graded and P is odd, then (m, P, L2(M, E)) is an even unbounded
Kasparov (C(M), C)-module. For a projection p ∈ C∞(M, Mn(C))

[p]⊗C(M) [P] = ind(p(P+(1 + P2)−1/2)p) ∈ Z .

Here p(P+(1 + P2)−1/2)p is understood as an operator from p(L2(M, E+)n) to
p(L2(M, E−)n).

3. ACTIONS BY COMPACT LIE GROUPS ON C∗-ALGEBRAS

In this section we recall some facts about actions of compact groups on C∗-
algebras.

We say that an action α of a compact group G on a Fréchet space V is con-
tinuous, if there is an induced continuous homomorphism

V 7→ C(G, V), v 7→ α(v) .

If not specified we will assume an action to be continuous. The space of fixed
points is denoted by Vα.

If G is endowed with an invariant measure with unit volume, then taking
the mean

Φα : V → Vα, v 7→
∫
G

αg(v) dg

is a continuous projection. In particular if S ⊂ V is a dense subset with Φα(S) ⊂
S, then Sα ⊂ Vα is dense. We will tacitly make use of this property. We note that
if V is a G-C∗-algebra, then Φα is a conditional expectation. However we will not
need this fact.

We denote by R the right regular representation defined for f ∈ C(G, V)
and g ∈ G by (Rg f )(h) = f (hg). The diagonal action on C(G, V) of α and R is
denoted byRα and is given by (Rα

g f )(h) = αg f (hg).
Now let A be a C∗-algebra with an action α of a compact Lie group G. For

simplicity we assume that G is connected. Endow G with an invariant Riemann-
ian metric with unit volume. We refer to Section 7 in [23] for proofs about the
properties of crossed products, which we discuss in the following. Since we deal
with amenable groups, there is no need to distinguish between crossed product
and reduced crossed product.

The convolution product on C(G,A) is given by

( f1 ?α f2)(g) :=
∫
G

f1(h)αh f2(h−1g) dh .
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For clarity we write sometimes C(G,A)?α for the space C(G,A) endowed with
the convolution product.

Let π : A → B(H) be a faithful representation. There is an induced faithful
representation

π̃ : C(G,A)?α → B(L2(G)⊗ H) ,

(π̃( f1) f2)(g) :=
∫
G

π(α−1
g ( f1(h)) f2(h−1g) dh .

The algebra A×α G is defined as the completion of C(G,A)?α with respect
to the norm of B(L2(G) ⊗ H). The homomorphisms A → B(L2(G) ⊗ H), a 7→
π(α−1(a)) and G → B(L2(G)⊗ H), g 7→ Rg define inclusions of A and G into
the multiplier algebra M(A×α G).

There is a C∗-homomorphism C : A×α G → B(L2(G,A)) defined for f1 ∈
C(G,A)?α and f2 ∈ C(G,A) ⊂ L2(G,A) by

C( f1)( f2)(g) =
∫
G

α−1
g ( f1(h)) f2(h−1g) dh =

∫
G

α−1
g ( f1(gh−1)) f2(h) dh .(3.1)

The aim of the following considerations is to define and study an action on
B(L2(G,A)) induced by α:

The diagonal action Rα extends to an action on L2(G,A) as a Banach space
since for f1, f2 ∈ C(G,A)

〈Rα
g f1,Rα

g f2〉L2 =
∫
G

αg( f1(hg)∗ f2(hg)) dh = αg〈 f1, f2〉 ,(3.2)

hence ‖Rα
g( f )‖ = ‖ f ‖.

In general Rα
g is not a Hilbert A-module morphism on L2(G,A). However

for any g ∈ G the map

Ag : B(L2(G,A))→ B(L2(G,A)), T 7→ Rα
gTRα

g−1

is a norm-preserving C∗-homomorphism, which depends continuously on g with
respect to the strong ∗-operator topology on B(L2(G,A)). In particular taking the
mean ΦA : B(L2(G,A)) → B(L2(G,A))A is continuous with respect to the norm
topology.

Furthermore A restricts to an action on K(L2(G,A)) endowed with the norm
topology.

A function k ∈ C(G × G,A) is the integral kernel of an invariant operator
K ∈ K(L2(G,A))A if and only if

k(g, h) = αg−1 k(e, hg−1) .(3.3)

Let f ∈ C(G,A)?α . Since the previous equation holds for

k(g, h) := α−1
g ( f (gh−1)) ,(3.4)
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we have that C( f ) ∈ K(L2(G,A))A. Hence the image of A×α G under C is con-
tained in K(L2(G,A))A. It is well-known that the following is an isomorphism:

C : A×α G → K(L2(G,A))A.

In general we will identify A×α G with K(L2(G,A))A.
The following diagram commutes:

0 // A×α G //

ι

��

B(L2(G,A))A //

��

B(L2(G,A))A/A×αG
//

��

0

0 // K(L2(G,A)) // B(L2(G,A)) // B(L2(G,A))/K(L2(G,A))
// 0 .

If F, G ∈ B(L2(G,A))A are such that FG − 1, GF − 1 are in A ×α G, then
[F] ∈ K1(B(L2(G,A))A/A×α G). We define indα(F) ∈ K0(A×α G) as the image
of [F] under the connecting map

K1(B(L2(G,A))A/A×α G)→ K0(A×α G) .

From the diagram and by identifying K0(K(L2(G,A))) ∼= K0(A) we get that

ι∗indα(F) = ind(F) .

4. INVARIANT PSEUDODIFFERENTIAL CALCULUS

In this section we study invariant pseudodifferential operators and con-
struct an Atiyah–Singer type exact sequence. For notational simplicity we restrict
to the scalar case. We begin by studying subspaces of invariant elements of the
Sobolev spaces Hk(G,A). These subspaces are Hilbert Aα-modules, whereas the
spaces Hk(G,A) are Hilbert A-modules.

An Aα-valued scalar product on A is given by

〈a, b〉Aα := 〈α−1(a), α−1(b)〉L2 = 〈α(a), α(b)〉L2 =
∫
G

αg(a∗b) dg .

We write H(A) for the Hilbert Aα-module completion.
The inclusion A → L2(G,A), a 7→ α−1(a) extends to an isometric isomor-

phism between the Hilbert Aα-modules:

U (α) : H(A) ∼= L2(G,A)R
α
.

In particular it follows that left multiplication of A on A induces a continuous
map

A → B(H(A))

and that the following inclusion is continuous:

A → H(A).
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Furthermore as in (3.2) one can show that for g ∈ G the map αg : A → A ex-
tends to a unitary on H(A) depending in a strongly continuous way on g. The
extension will be denoted by αg as well.

The algebra A∞ := {a ∈ A : α(a) ∈ C∞(G,A)} is dense and closed under
holomorphic functional calculus in A. It inherits the structure of a locally m-
convex Fréchet algebra from C∞(G,A), since U (α) restricts to a bijection between
A∞ and C∞(G,A)R

α
. Analogously we can define

Ak = {a ∈ A : α(a) ∈ Ck(G,A)} .

Let ∆ be the scalar Laplacian on G. Let s ∈ R and let Hs(G,A) be the Sobolev
space of order s, which we define here as the Hilbert A-module completion of
C∞(G,A) with respect to the A-valued scalar product

〈 f1, f2〉Hs = 〈(1 + ∆)s/2 f1, (1 + ∆)s/2 f2〉L2 .

The theory of Sobolev spaces and pseudodifferential operators over unital
C∗-algebras was introduced in [19]. More analytic details relevant here, as for
example the Atiyah–Singer exact sequence, are discussed in Section 5.2 in [29].

We consider Hs(G,A) as a sub Banach space of Hs(G, Ã) in order to make
use of the results of [19]. Here Ã denotes the unitalization of A. Since the op-
erators (1 + ∆)s/2 are invariant, it is straightforward to verify that the action Rα

on C∞(G,A) extends to a continuous action on Hs(G,A). We define the Hilbert
Aα-module

Hs(A) = {x ∈ H(A) : α(x) ∈ Hs(G,A)} ,
which is isometrically isomorphic to Hs(G,A)R

α
via U (α). The algebra A∞ is

dense in Hs(A) for all s ∈ R.
Sobolev’s Lemma implies that for s > dim G

2 + k there is a continuous em-
bedding

Hs(A) ↪→ Ak

and that there is an isomorphism of Fréchet spaces⋂
s∈R

Hs(A) ∼= A∞ .

We say that a regular operator T on L2(G,A) is invariant if its bounded
transform T(1 + T∗T)−1/2 is invariant.

We get from the previous arguments:

PROPOSITION 4.1. For r, s ∈ R there is a continuous homomorphism

B(Hr(G,A), Hs(G,A))A → B(Hr(A), Hs(A)) , T 7→ Tα := U (α)∗TU (α) .

In particular we get an induced homomorphism

Cα : A×α G → B(H(A)), f 7→ Cα( f ) := C( f )α .

Moreover there is an induced map sending invariant regular operators on L2(G,A) to
regular operators on H(A).
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Proof. It remains to show the last assertion. Let T be an invariant regular
operator on L2(G,A). We denote by F its bounded transform. Since Ran(1 −
F∗F)1/2 is dense in L2(G,A), we have that Ran(1− F∗α Fα)1/2 is dense in H(A).
By Theorem 10.4 in [17] this implies that Fα is the bounded transform of a unique
regular operator Tα on H(A) given by dom Tα = Ran(1− F∗α Fα)1/2 and Tαx :=
Fαy if x = (1− F∗α Fα)1/2y.

For f ∈ C(G,A) and a ∈ A ⊂ H(A) it holds that

Cα( f )(a) =
∫
G

f (g)αg(a) dg ∈ A ⊂ H(A) .

Note that for a, b ∈ A
Cα(aα(b∗)) = Θa,b : z 7→ a〈b, z〉Aα .(4.1)

Hence K(H(A)) is contained in the image of Cα. We will see in Section 9 that the
action α is principal if and only if Cα is an isomorphism onto K(H(A)). In general
Cα need not be injective and its image need not be contained in K(H(A)).

For the remainder of this section assume that A is unital. Then we have
an analogue of the Atiyah–Singer exact sequence for pseudodifferential opera-
tors (see Section 5.2 in [29]): We denote the closure in B(L2(G,A)) of the algebra
of classical pseudodifferential operators of order smaller than or equal to 0 on
C∞(G,A) by Ψ(G,A).

Let SG denote the sphere bundle of G with the induced G-action.

PROPOSITION 4.2. There is a commuting diagram with exact rows:

0 // A×α G //

��

Ψ(G,A)A //

��

C(SG,A)R
α //

��

0

0 // K(L2(G,A)) // Ψ(G,A)
σ // C(SG,A) // 0 .

Proof. It is enough to show that σ : Ψ(G,A)A → C(SG,A)R
α

is surjective.
For f ∈ C(SG,A)R

α
let P( f ) ∈ Ψ(G,A) be such that σ(P( f )) = f . It follows from

Lemma 6.1 in [28] that the action A is well-defined and continuous on Ψ(G,A).
Hence the mean ΦA(P( f )) is an element in Ψ(G,A)A with σ(ΦA(P( f ))) = f .

There is a G-equivariant isomorphism of sphere bundles G × Sdim G−1 →
SG. Here G-action on Sdim G−1 is assumed trivial. Hence

C(SG,A)R
α ∼= C(Sdim G−1,A)

via restriction to the fiber over e ∈ G. Using this we see that the first row of the
diagram corresponds to the sequence defined in [7] for G = Rn.

The rows of the diagram are subsequences of the rows of the diagram at
the end of Section 3. Hence if Q is an invariant pseudodifferential operator, then
indα(Q) only depends on the class [σ(Q)] ∈ K1(C(SG,A)R

α
).
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A pseudodifferential operator is called elliptic if the image under the sym-
bol map is invertible. The index theory for invariant elliptic pseudodifferential
operators over C∗-algebras has been studied in [28]. The index defined there
is an element in KG

∗ (A). It agrees with indα via the isomorphism KG
∗ (A) ∼=

K∗(A×α G). Also the powerful machinery of equivariant KK-theory can be ap-
plied to the present situation. One can apply the index theorem in Section 4.2 in
[29] in order to obtain Theorem 10 in [7] for compact Lie groups.

5. AN INDEX FORMULA FOR DIRAC OPERATORS

In the following we consider the index theory for Dirac operators in more
detail. We associate a class in KK∗(A,A×α G) to an invariant Dirac operator and
derive an index formula for the pairing with K∗(A). Here A is allowed to be
nonunital. For the index formula we will assume the existence of an approximate
unit with certain properties.

We assume that G is endowed with the trivial spin structure. Write g :=
TeG. We identify TG with G× g using right invariant vector fields.

Let E be a hermitian finite dimensional vector space endowed with a selfad-
joint action of the Clifford algebra Cl(g) and let G act trivially on E. Endow G× E
with an invariant Clifford connection and let ∂/E be the associated Dirac operator.
If dim G is even, then E is Z/2-graded and ∂/E is odd.

There is ω ∈ End E such that

∂/E =
dim G

∑
i=1

c(Xi)Xi + ω ,

where (Xi)i=1,...,dim G is an orthonormal basis of g.
We define the operator D/ E on the Hilbert A-module L2(G, E ⊗ A) as the

tensor product of the unbounded operator ∂/E on L2(G, E) with the identity onA.
Taking closures is understood where necessary. The operator D/ E acts also as a
regular operator on K(L2(G, E⊗A)) by

(D/ E + i)−1K(L2(G, E⊗A))→ K(L2(G, E⊗A)), K 7→ D/ EK .

Here D/ EK, as usual, is the composition of D/ E with K.
We consider the Hilbert K(L2(G,A))-module K(L2(G,A)) ⊗ E as a sub-

space of K(L2(G, E ⊗ A)) as follows: Fix a unit vector v ∈ E (which we con-
sider as an element of the dual space of E) and identify K(L2(G,A)) ⊗ E with
K(L2(G,A)) ⊗ (E ⊗ v) ⊂ K(L2(G, E ⊗A)). By restricting, the operator D/ E de-
fines a regular operator on K(L2(G,A))⊗ E. It restricts further to a regular opera-
tor on the Hilbert A×α G-module (A×α G)⊗ E. The definition does not depend
on the choice of v.

In order to understand better the action of D/ E on (A×α G)⊗ E we derive
a concrete formula for the action of the vectors Xi on A×α G by using (3.1): Let
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f1, f2 ∈ C∞(G,A) such that XiC( f1) = C( f2). Then (with Xi acting on the vari-
able g)

α−1
g f2(gh−1) = Xi(α−1

g f1(gh−1)) = α−1
h Xi(α−1

gh−1 f1(gh−1)) .

By setting h = e we get the following that will be needed later on:

f2 = α(Xi(α−1 f1)) .(5.1)

For a ∈ A∞ we have that

[D/ E, α−1(a)] ∈ C∞(G,A)R
α ⊗ End E ⊂ M(A×α G)⊗ End E .(5.2)

Since furthermore α−1(a)(D/ 2
E + 1)−1 ∈ (A ×α G) ⊗ End E for all a ∈ A, the

triple (α−1, D/ E, (A×α G)⊗ E) is an unbounded Kasparov (A,A×α G)-module,
whose parity equals the parity of dim G. The induced class is denoted by [D/ E] ∈
KKdim G(A,A×α G). By homotopy invariance this class does not depend on ω.

In the following we deduce an index formula for the pairing of K∗(A) with
[D/ E] from the index theorem proven in Section 4.2 in [29] and its even counter-
part. The main point here is that we allow for non-unital algebras, motivated by
the situation considered in [21].

We assume that there is an approximate unit {ei}i∈N ⊂ Aα
∞ of A such that

eiei+1 = ei. See Section 2.2 in [21] and references therein for the relevance of this
type of approximate unit in the context of spectral triples.

Define Ai as the closure of the algebra eiAei in A. (We will not use the
spaces Ak defined before, so there should be no confusion.) Let Ac :=

⋃
i∈N
Ai be

endowed with the direct limit topology. Let τ be an invariant trace on A that
restricts to a continuous trace on Ai for any i ∈ N. We denote the induced trace
on Ac ⊗ End E⊗Mn(C), which is defined by tensoring with the canonical trace
on End E⊗Mn(C), by τ as well. We get an induced homomorphism

Trτ : K0(A×α G)→ K0(K(L2(G,A))) ∼= K0(A) ∼= lim
i→∞

K0(Ai)
τ−→ R .

In the following proposition we identify K∗(A) with Ker(K∗(Ã)→ K∗(C)).
We write D/ α = (D/ E)α.

PROPOSITION 5.1. (i) Let dim G be even. For projections p, q ∈ Mn(Ãi) with
[p]− [q] ∈ K0(A) and such that α(p), α(q) ∈ C∞(G, Mn(Ãi)) we have that

Trτ(([p]− [q])⊗A [D/ E]) = Cτ(p[D/ α, p]dim G − q[D/ α, q]dim G) .

(ii) Let dim G be odd. For a unitary u ∈ Mn(Ãi) with α(u) ∈ C∞(G, Mn(Ãi)) we
have that

Trτ([u]⊗A [D/ E]) = Cτ(u−1[D/ α, u]([D/ α, u−1][D/ α, u])(dim G−1)/2) .

Here C ∈ C is a constant, which only depends on dim G.
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We give the index formulas in the present form in order to point out the
analogy to other index formulas in noncommutative geometry. For calculations
one may use the explicit formulas given in [29].

Proof. For unital A and finite trace τ the proposition follows in a standard
way from the results in [29] by using [D/ , f ] = c(d f ) for f ∈ C∞(G,A) and the
relation between the trace on the Clifford algebra and the Berezin integral on the
exterior algebra.

From this we deduce the general case:
The action α restricts to an action αi on Ai. We also have a class [D/ i] ∈

KKdim G(Ai,Ai ×αi G) defined as above from ∂/E. The diagram

K∗(Ai)
⊗Ai

[D/ i ] //

��

K∗+dim G(Ai ×αi G) τ //

��

C

=

��
K∗(A)

⊗A [D/ E ] // K∗+dim G(A×α G) τ // C .

commutes and the vertical maps, which are induced by the inclusion, become
isomorphisms in the inductive limit. The trace extends to a trace τi on the unital-
ization Ãi by setting τi(1) = τ(ei+1). We also have induced action α̃i on Ãi and
an element [D̃/ i] ∈ KKdim G(Ãi, Ãi ×α̃i

G).
As before there is a commutative diagram

K∗(Ai)
⊗Ai

[D/ i ] //

��

K∗+dim G(Ai ×αi G)

��

τ // C

=

��
K∗(Ãi)

⊗Ãi
[D̃/ i ]

// K∗+dim G(Ãi ×α̃i
G)

τi // C .

The assertion follows now from the unital case.

6. CONSTRUCTING SEMIFINITE VON NEUMANN ALGEBRAS

We discuss some constructions concerning semifinite von Neumann alge-
bras. See [9] for more information on semifinite von Neumann algebras in general
and on Hilbert algebras.

For a von Neumann algebra N with semifinite normal faithful trace τ we
denote by K(N ) the norm closure of the ideal

l1(N ) = {A ∈ N : τ(|A|) < ∞} .

Since l1(N ) is dense and closed under holomorphic functional calculus in K(N )
the trace induces a homorphims τ : K0(K(N ))→ C.

In order to streamline the arguments we introduce the following notion: A
pair (A, τ), where A is a pre-C∗-algebra and τ a faithful trace on A, is called a
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Hilbert pair, if A is a Hilbert algebra with respect to the scalar product (a, b) 7→
τ(a∗b) and if multiplication from the left induces a continuous map π : A →
B(L2

τ(A)). Here L2
τ(A) denotes the Hilbert space completion of A.

Denote by A the completion of A, which is a C∗-algebra. If (A, τ) is a Hilbert
pair, then π is faithful and extends to a faithful representation of the multiplier
algebra M(A). Furthermore the trace τ extends to a semifinite normal faithful
trace on the von Neumann algebra A′′ and we have that π(A) ⊂ l2(N ), π(A) ⊂
K(A′′) and π((M(A)) ⊂ A′′ (see Section 3.12 in [23]). In particular there is a
homomorphism

K0(A)→ K0(K(A′′)) τ−→ C .

In general we will drop π from the notation and identify A with its image
in B(L2

τ(A)). We also need tensor products: Assume that (A1, τ1), (A2, τ2) are
Hilbert pairs. We consider the algebraic tensor product A1 � A2 as a subalgebra
of the spatial tensor product A1 ⊗ A2. (In our case A1 will always be nuclear,
so that any C∗-algebraic tensor product works.) Then (A1 � A2, τ := τ1 ⊗ τ2)
is a Hilbert pair and L2

τ(A1 ⊗ A2) = L2
τ1

(A1) ⊗ L2
τ2

(A2). In particular we get a
continuous map

A1 ⊗ A2 → B(L2
τ1

(A1)⊗ L2
τ2

(A2)) .

7. SEMIFINITE SPECTRAL TRIPLES FROM DIRAC OPERATORS

Semifinite spectral triples, also called unbounded Breuer-Fredholm mod-
ules, were first introduced in [4] in the unital case as a generalization of spectral
triples. See also [2] for the non-unital case.

DEFINITION 7.1. Let N be a semifinite von Neumann algebra endowed
with a semifinite normal faithful trace, A an involutive Banach algebra with a
continuous morphism of involutive Banach algebras A→ N (which will be sup-
pressed in the notation) and D a selfadjoint operators affiliated to N . The triple
(A, D,N ) is called an odd p-summable semifinite spectral triple if there is a dense
involutive subalgebra Ac of A such that for all a ∈ Ac

a(1 + D2)−1/2 ∈ lp(N )

and [a, D] is densely defined and in N . The triple (A, D,N ) is called an even
semifinite spectral triple if N is in addition Z/2-graded, the operator D is odd and
the image of A is in N+.

An odd respectively even semifinite spectral triple induces a homomor-
phism from K1(A) respectively K0(A) to R, see [15] and Section 2.4 in [2].

In this section we associate a semifinite spectral triple to the Kasparov mod-
ule (α−1, D/ E, (A×α G)⊗ E) defined in Section 5.
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First we define the semifinite von Neumann algebra. We assume that the
trace τ is faithful on Ac. Then (Ac, τ) is a Hilbert pair. Denote by Tr the canon-
ical trace on the space of trace class operators on L2(G, E). We write I : C(G ×
G, End E) → K(L2(G, E)) for the map assigning to an integral kernel the corre-
sponding operator. Let C(E) be the image of I. The pair (C(E), Tr) is also a Hilbert
pair.

The tensor product construction in the previous section implies that the
trace Tr⊗ τ on the dense subalgebra C(E) � Ac ⊂ K(L2(G, E ⊗ A)) extends to
a semifinite trace Trτ on the enveloping von Neumann algebraM of K(L2(G, E⊗
A)). Furthermore the tensor product of the map I with the identity onAc defines
a continuous map C(G× G, End E⊗Ac)→ l2(M).

We denote by N the enveloping von Neumann algebra of A×α G and con-
sider N ⊗ End E as a subalgebra of M. The trace Trτ restricts to a semifinite
trace on N ⊗ End E (here we use its invariance). It is clear that for E = C the
composition

K0(A×α G)→ K0(K(N )) Trτ−→ R

agrees with the map Trτ defined before Proposition 5.1, which justifies our nota-
tion.

Next we define an operator affiliated toN ⊗End E from D/ E. For an element
λ in the spectrum σ(D/ E) of D/ E, which is discrete, let P(λ) ∈ B(L2(G, E⊗A)) be
the projection onto the corresponding eigenspace. Then

eiP(λ) ∈ (C(E)�Ac)A ⊂ l2(N )⊗ End E .

The equality eiP(λ)ei+1P(λ) = eiP(λ) implies that eiP(λ) ∈ l1(N ). Let H be
a Hilbert space on which N ⊗ End E is faithfully represented. We define DE as
the closure of the unbounded symmetric operator

⊕
λ∈σ(D/ E)

λP(λ) on H. This is a

selfadjoint operator affiliated to N ⊗ End E.
We have a map A → M(A×α G) → N and by (5.2) we have the following

for all a ∈ A∞:

[a,DE] ∈ N ⊗ End E.

For f ∈ C0(R) and a ∈ A we have that a f (DE) ∈ K(N )⊗ End E. If a ∈ Ac
and f ∈ C0(R) is a positive function with f (D/ E) ∈ l1(L2(G, E)), then a f (DE) ∈
l1(N )⊗ End E.

We summarize:

PROPOSITION 7.2. The triple (A,DE,N ⊗ End E) is a semifinite spectral triple.
Its degree (even or odd) equals the parity of the dimension of the group G. The semifinite
spectral triple is p-summable for p > dim G.
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The results in [15] imply that the induced map Kdim G(A) → R agrees with

the composition Kdim G(A)
⊗A [D/ E ]−→ K0(A×α G) Trτ−→ R. Using this, one may prob-

ably get an alternative proof of Proposition 5.1 for faithful traces from the local
index formula in the semifinite setting [5], [6].

8. THE DUAL PIMSNER–VOICULESCU SEQUENCE

This section is devoted to circle actions. We will see how the dual Pimsner–
Voiculescu sequence is related to the index theory studied above. We refer to
Section 10.6 in [3] for its definition and proof. At some points we will use different
sign conventions. Here we do not assume the existence of an approximate unit
as in Section 5.

Let T = R/Z. We take E = C and write D/ = −i d
dx . There is a dual action α̂

of Z on A×α T: Let S ∈ B(L2(T,A)) be defined by

(S f )(x) = e2πix f (x) .

Then B(L2(T,A))A → B(L2(T,A))A, A 7→ SAS−1 is well defined and, for f ∈
A×α T,

C(α̂(1) f ) = SC( f )S−1.

The dual Pimsner–Voiculescu sequence associated to an action by the circle
T on A is, with α̂∗ := α̂(1)∗,

K0(A×α T)
1−α̂∗ // K0(A×α T)

ι∗ // K0(A)

q∗
��

K1(A)

q∗

OO

K1(A×α T)
ι∗oo K1(A×α T) .

1−α̂∗oo

The definition of the map q∗ will be recalled in the proof of the following
proposition. The definition of ι∗ will be given in the second proposition.

PROPOSITION 8.1. The following map agrees with q∗:

⊗A[D/ ] : K∗(A)→ K∗+1(A×α T).

Proof. We begin by recalling the definition of the map q∗: There is a sur-
jection p : A ×α R → A ×α T, which will be given below in detail. Here the
R-action α is defined from the T-action α via the projection R → T. Composing
the Connes–Thom isomorphism K∗(A) ∼= K∗+1(A×α R) with the induced map
p∗ gives q∗.

The map p is constructed by using arguments from the proof of Proposi-
tion 10.3.2 in [3]: Represent A faithfully on a Hilbert space H. We use the faithful
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representation π of A×α T on L2(T)⊗ H given for h ∈ C(T,A) by

(π(h) f )(t) =
∫
T

α−t(h(r)) f (t− r) dr .

A representation µ of A×α R on the Hilbert C(T)-module C(T)⊗ L2(T)⊗ H is
defined for h ∈ Cc(R,A) by

(µ(h) f )(s, t) =
∫
R

α−t(h(r))e2πirs f (s, t− r) dr .

The evaluation ev : C(T) → C at the point 0 induces a homomorphism ev∗ :
B(C(T)⊗ L2(T)⊗ H)→ B(L2(T)⊗ H), since the Hilbert module tensor product
(C(T)⊗ L2(T)⊗H)⊗ev C is isomorphic to L2(T)⊗H. We see that (ev∗ ◦µ)(A×α

R) = π(A ×α T). The map ev∗ ◦ µ defines the map p. Note that p( f ) = f ∈
A×α T for f ∈ C0((0, 1),A) ⊂ A×α R.

We also need a concrete description of the Connes–Thom isomorphism. It
is given by the Kasparov product with the Thom element in KK1(A,A ×α R),
whose definition, due to Fack–Skandalis, we recall now from Section 19.3 in [3]:

The Fourier transform F : L2(R,A) → L2(R,A) is a unitary. Note that for
f1 ∈ Cc(R), f2 ∈ Cc(R,A) we have the following, where ? denotes the convolu-
tion product for the trivial action:

f1 ?α f2 = α( f1 ? (α−1 f2)) .

There is a homomorphism B : C(R) → M(A ×α R) given for f1 ∈ C(R)
and f2 ∈ Cc(R,A) by B( f1) f2 = α(F−1( f1F (α−1 f2))). It extends to a map from
unbounded continuous functions on R to regular operators on the Hilbert A×α

R-module A×α R.
The Thom element is the class [B(x)] ∈ KK1(A,A×α R). For f ∈ C∞

c (R,A)

B(x) f = α(F−1(xF (α−1 f ))) = −α
(

i
d

dx
α−1 f

)
.

The assertion follows since for f ∈ C∞(T,A)?α ⊂ A×α T by (5.1)

D/ f = −α
(

i
d

dx
α−1 f

)
.

We recall that K∗(K(L2(T,A))) ∼= K∗(A) via Morita equivalence.

PROPOSITION 8.2. The map

ι∗ : K∗(A×α T)→ K∗(A)

is induced by the inclusion

K(L2(T,A))A → K(L2(T,A)) .

Proof. By definition the map ι∗ is induced from the inclusion

ι : A×α T → (A×α T)×α̂ Z, f 7→ f δ0 ,
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by using Takai duality (A ×α T) ×α̂ Z ∼= K(L2(T,A)) and Morita equivalence.
The Takai duality isomorphism assigns to f δk with f ∈ A ×α T the operator
C( f )Sk ∈ K(L2(T,A)). This implies the assertion.

9. SATURATED ACTIONS

In this section we consider saturated actions. We will see that for saturated
actions the pseudodifferential calculus defined in Section 4 agrees with the calcu-
lus of vertical pseudodifferential operators on a principal bundle, ifA is commu-
tative. Under this analogy A corresponds to the algebra of continuous functions
on the total space and the fixed point algebra Aα to the algebra of continuous
functions on the base space.

Also here we do not assume the existence of an approximate unit as defined
in the second part of Section 5.

Recall from Corollary 7.1.5 in [24]:

DEFINITION 9.1. The action α is called saturated if the span Fin of the func-
tions aα(b∗), a, b ∈ A is dense in A×α G.

Since Cα(Fin) consists of finite rank operators on H(A) by (4.1), we have
that Cα(A×α G) ⊂ K(H(A)) if α is saturated. This shows part of the following
proposition.

PROPOSITION 9.2. The action α is saturated if and only if Cα maps A×α G iso-
morphically onto K(H(A)).

Proof. Assume that α is saturated. It remains to show that Cα is injective.
By (a slight modification due to different conventions of) Proposition 7.1.3 in [24]
there is aA×α G-valued scalar product 〈·, ·〉A×αG making the leftA×α G-module
H(A) a Hilbert A×α G-module. Since α is saturated, the scalar product is essen-
tial by Definition 7.1.4 in [24]. Let 0 6= a ∈ A×α G. Then there are v, w ∈ H(A)
such that

0 6= a〈v, w〉A×αG = 〈Cα(a)v, w〉A×αG .

Hence Cα(a) 6= 0.
The converse is clear.

PROPOSITION 9.3. Assume that α is saturated. Then

B(Hr(G,A), Hs(G,A))A → B(Hr(A), Hs(A)), T 7→ Tα

is an isomorphism, which maps compact operators to compact operators.

Proof. Since the maps (1+∆)s/2 : Hs(G,A) → L2(G,A) and (1+∆α)s/2 :
Hs(A)→H(A) are isomorphisms, it is enough to consider the case s=0. The map

K(L2(G,A))A → K(H(A)), T 7→ Tα
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is an isomorphism by the previous proposition. Let 0 6= T ∈ B(L2(G,A))A. Since
(1 + ∆)−1 has dense range, we have that 0 6= T(1 + ∆)−1 ∈ K(L2(G,A))A. It
follows that Tα(1 + ∆α)−1 6= 0, thus Tα 6= 0. This shows injectivity.

For surjectivity let S ∈ B(H(A)). Without loss of generality we may assume
that S is selfadjoint. Let S̃n ∈ K(L2(G,A))A be the preimage of Se−(1/n)∆α ∈
K(H(A)). Then (S̃n(1 + ∆)−1)n∈N respectively (S̃∗n(1 + ∆)−1)n∈N is a Cauchy
sequence in K(L2(G,A))A with limit T1 respectively T2. Since (T1)α = S(1 +
∆α)−1 = (T2)α, the previous proposition implies that T1 = T2. Hence S̃n and S̃∗n
converge strongly on the range of (1 + ∆)−1 to an invariant operator S̃. Since the
sequences (S̃n)n∈N and (S̃∗n)n∈N are uniformly bounded by ‖S‖ and the range of
(1 +∆)−1 is dense, the operator S̃ is bounded as well and selfadjoint. Furthermore
the map T 7→ Tα is also continuous with respect to the strong ∗-operator topology
on both sides. Hence the image of S̃ is S.

In the following we assume that α is saturated and that A is separable. By
Morita equivalence K∗(Aα) ∼= K∗(K(H(A)). In view of the first proposition we
recover that

K∗(Aα) ∼= K∗(A×α G) .

By Lemma 7.1.7 in [24] the following map induces the isomorphism:

φ : Aα → A×α G, a 7→ a ∈ C(G,A)?α .

The second proposition implies that multiplication of a ∈ A∞ from the left
induces a compact map from Hr(A) to Hs(A) for r > s.

The Dirac operator D/ E on L2(G, E⊗A) defined in Section 5 induces a reg-
ular selfadjoint operator D/ α := (D/ E)α on H(A) ⊗ E by Proposition 4.1. Since
a(D/ 2

α + 1)−1 ∈ K(H(A)⊗ E) for any a ∈ A and [D/ α, a] ∈ B(H(A)⊗ E) for any
a ∈ A∞, we obtain a class [D/ α] ∈ KKdim G(A,Aα).

PROPOSITION 9.4. It holds that

φ∗[D/ α] = [D/ E] ∈ KKdim G(A,A×α G) .

Proof. The K(H(A))-valued scalar product on the Hilbert K(H(A))-module
H(A)⊗φ K(H(A)) is given by

〈v⊗ K1, w⊗ K2〉⊗ = K∗1 φ(〈v, w〉)K2 .

One checks that the linear map H(A) ⊗φ K(H(A)) → K(H(A)) that maps v ⊗
Θa,b with a, b ∈ A to ΘvΦα(a),b is an isometry between Hilbert K(H(A))-modules.
It is clear that the map has dense range. Hence it is an isomorphism. The induced
isomorphism

(H(A)⊗ E)⊗φ K(H(A)) ∼= K(H(A))⊗ E

interchanges D/ α ⊗ 1 and D/ E and is compatibel with the action ofA. This implies
the assertion.
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For the class [D/ α] ∈ KKdim G(A,Aα) to be well-defined the condition on α
to be saturated is not necessary: For example it was indicated in Section 3 in [26]
that the triple (A, D/ α, H(A)) is a spectral triple if the action is ergodic. However
the relation to the construction in Section 5 is more involved in general.

Next we show that Trτ from Section 7 considered as a trace on K(H(A))
behaves as one would expect from a trace on an algebra of compact operators.
For notational simplicity we set E = C. For the following proposition we assume
the existence of an approximate unit as in Section 5.

PROPOSITION 9.5. For v, w ∈ Ac ⊂ H(A)

Trτ(Θv,w) = τ(〈w, v〉Aα) .

Proof. For v, w ∈ Ac there is i ∈ N such that eivei = v, eiwei = w. The
constant functions v, w ∈ C(G,A)?α ⊂ A×α G are in l2(N ), hence Θv,ei , Θw,ei ∈
l2(N ). Thus Θv,w = Θv,eiΘei ,w ∈ l1(N ) and Trτ(Θv,w) = Trτ(Θv,eiΘei ,w).

By (3.4) the image of Θv,ei under the injection K(H(A)) ∼= A ×α G →
K(L2(G,A)) is the integral operator with integral kernel kv(g, h) := αg−1(v), and
the image of Θei ,w has integral kernel kw(g, h) = αg−1(αgh−1(w∗)) = αh−1(w∗).
This implies that

Trτ(Θv,eiΘei ,w) = τ
( ∫

G

∫
G

kv(g, h)kw(h, g) dhdg
)

=τ
( ∫

G

∫
G

αg−1(v)αg−1(w∗) dhdg
)

= τ
( ∫

G

αg(vw∗) dg
)

= τ(〈w, v〉Aα) .

Now we will establish the connection to the classical situation. Consider
a compact principal bundle G → P → B endowed with a vertical Riemannian
metric coming from the Riemannian metric on G. We denote by α the G-action
on C(P). The vertical L2-scalar product is denoted by 〈·, ·〉v. For simplicity we
assume that P is a closed manifold. Let ∆v be the vertical Laplace operator. For
s ∈ R we define the vertical Sobolev space Hs

v(P) as the completion of C∞(P)
with respect to the norm induced by the C(B)-valued scalar product

〈 f1, f2〉vs (b) := 〈(∆v + 1)s/2 f1, (∆v + 1)s/2 f2〉v(b) .

Denote by Ψs
v (P) the space of vertical classical pseudodifferential operators of

order smaller than or equal to s with coefficients depending continuously on the
parameter b ∈ B and by Ψ

s
v(P) its completion with respect to the operator norm

of bounded operators from Hs
v(P) to H0

v(P).
The elements of Ψs(G, C(P)) are continuous operators from Hs(G, C(P))

to L2(G, C(P)). Let Ψ
s(G, C(P)) be the completion with respect to the operator

norm. We define

Ψ
s
α(G, C(P)) := U (α)Ψ

s(G, C(P))AU (α)−1 .
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PROPOSITION 9.6. For all s ∈ R

Hs(C(P)) = Hs
v(P) and Ψ

s
α(G, C(P)) = Ψ

s
v(P) .

Proof. Let X∈g and let Xv be the induced invariant vertical vector field on P.
From Xα f = Xv f for f ∈ C∞(P) it follows that

(∆v + 1) f = (∆α + 1) f .

Now the first assertion follows from the definition.
By Ψ

s
v(P) = Ψ

0
v(P)(∆v + 1)s and Ψ

s
α(G, C(P)) = Ψ

0
α(G, C(P))(∆α + 1)s it is

enough to show the second assertion for s = 0. We denote by K(L2
v(P)) the space

of compact vertical operators depending continuously on the base point. It is not
difficult to check that it is isomorphic to K(H(C(P)).

We write SvP ⊂ TvP for the vertical sphere bundle. An orthonormal basis of
g defines a trivialisation of TvP. Thus SvP ∼= P× Sdim G−1. We write σv : Ψ

0
v(P)→

C(SvP) for the vertical symbol map.
There is the following commutative diagram:

0 // K(L2
v(P)) //

∼=
��

Ψ
0
v(P)

σv //

��

C(P× Sdim G−1) //

��

0

0 // K(H(C(P))) // B(H(C(P))) // B(H(C(P)))/K(H(C(P))) // 0

0 // K(H(C(P))) //

=

OO

Ψ
0
α(G, C(P))

σ //

OO

C(P× Sdim G−1) //

OO

0 .

The rows are exact. All vertical maps are injective.
Let (Xi)i=1,...,dim G be an orthonormal basis of g and let xi : g ∼= Rdim G → R

be the induced coordinate functions. We use the same notation for the restriction
of xi to Sdim G−1. For f ∈ C(P) the operator f Xi

v(1 + ∆v)−1/2 is in Ψ
0
v(P) and the

operator f Xi
α(1 + ∆α)−1/2 in Ψ

0
α(G, C(P)). Furthermore

σv( f Xi
v(1 + ∆v)−1/2) = f xi = σ( f Xi

α(1 + ∆α)−1/2) .

Since the algebra generated by the set { f xi : f ∈ C(P), i = 1, . . . , dim G} is dense
in C(P× Sdim G−1) and since the operators f Xi

α(1 + ∆α)−1/2 and f Xi
v(1 + ∆v)−1/2

agree in B(H(C(P)), the assertion follows.

If P is endowed with a Riemannian metric and has unit volume, then an
invariant trace τ on A = C(P) is given by τ( f ) =

∫
P

f (x)dx. In this situation

Proposition 5.1 corresponds to the degree zero part of the Atiyah–Singer index
formula for families.

In order to complete the picture, we establish a relation between principal
and saturated action. This is not needed in the remainder of the paper. The notion
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of a principal action was introduced in [10] in the more general framework of
Hopf C∗-algebras. Specialized to the present context its definition is:

DEFINITION 9.7. Let α be an action of a compact group G on a C∗-algebra
A. Then α is called principal if the span Fin of the functions aα(b∗), a, b ∈ A is
dense in C(G,A).

If α is principal, then α is saturated. The converse holds at least for compact
Lie groups:

PROPOSITION 9.8. Let G is a compact Lie group and let α be an action of G on a
C∗-algebra A. If α is saturated, then α is principal.

Proof. We denote by Ã the unitalization of A if A is nonunital, and we set
Ã = A for unital A in the following. The action α extends to Ã.

We need some technical preliminaries: We write Cα(G, Ã) for the space
C(G, Ã) endowed with the right Ã-module structure

Cα(G, Ã)× Ã → Cα(G, Ã), ( f , a) 7→ f α(a) .

The Hilbert Ã-module L2
α(G, Ã) is defined as the completion of Cα(G, Ã)

with respect to the norm induced by the Ã-valued scalar product

〈 f1, f1〉α =
∫
G

α−1
g ( f1(g)∗ f2(g)) dg .

There is an isometric isomorphism of Hilbert Ã-modules

U : L2(G, Ã)→ L2
α(G, Ã), f 7→ (g 7→ αg f (g)) .

Since for f1, f2 ∈ C(G,A)

UC( f1)U−1 f2 = f1 ?α f2 ,

the map f1 7→ ( f2 7→ f1 ?α f2)) extends to a C∗-homomorphism A ×α G →
B(L2

α(G, Ã)).
Let ∆ be the Laplace operator on G. For t > 0

Ue−t∆U−1 : L2
α(G, Ã)→ C(G, Ã)

is continuous. Recall that e−t∆ converges strongly to the identity on C(G,A) for
t → 0. We denote by kt the integral kernel of e−t∆. Since e−t∆ is equivariant with
respect to the left as well as the right regular representation on L2(G), it holds
that kt(g, h) = kt(e, g−1h) = kt(e, hg−1).

For f ∈ C(G,A)

f ?α kt(·, e) =
∫
G

kt(·, h) f (h) dh = e−t∆ f .

We see that f ?α kt(·, e) converges to f in C(G,A) for t→ 0.
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If f = aα(b∗) for a, b ∈ A, then

a
∫
G

kt(g, h)αh(b∗) dh = a
∫
G

kt(e, g−1h)αh(b∗) dh = aαg

∫
G

kt(e, h)αh(b∗) dh ,

thus f ?α kt(·, e) ∈ Fin. Furthermore for f ∈ C(G,A)

(Ue−t∆U−1 f )(g) = U
∫
G

kt(g, h)αh−1 f (h) dh =
∫
G

kt(gh−1, e)αgh−1 f (h) dh

=
∫
G

kt(h, e)αh f (h−1g) dh = (kt(·, e) ?α f )(g) .

Since for f = aα(b∗) with a, b ∈ A

(kt(·, e) ?α f )(g) =
∫
G

kt(h, e)αh(a) dh αg(b∗) ,

it follows that Ue−t∆U−1(Fin) ⊂ Fin.
It is clear that Ue−t∆U−1 f converges to f in C(G,A) for t → 0 for general

f ∈ C(G,A).
We are ready for the main argument: Let f ∈C(G,A) and let ( fn)n∈N be a

sequence in Fin converging in A×α G to f . Let ε > 0. There is t > 0 such that we
have the following, where ‖ · ‖∞ denotes the supremum norm:

‖Ue−t∆U−1( f ?α kt(·, e))− f ‖∞ <
ε

2
.

Since kt(·, e) ∈ L2
α(G, Ã), the functions fn ?α kt(·, e) converge to f ?α kt(·, e)

in L2
α(G, Ã) for n→ ∞. Hence there is n ∈ N such that

‖Ue−t∆U−1( fn ?α kt(·, e))−Ue−t∆U−1( f ?α kt(·, e))‖∞ <
ε

2
,

hence
‖ f −Ue−t∆U−1( fn ?α kt(·, e))‖∞ < ε .

From the first part of the proof it follows that Ue−t∆U−1( fn ∗ kt(·, e)) ∈ Fin.

In order to determine whether a torus action is saturated or not the follow-
ing criterion due to Rieffel (see Theorem 7.1.15 in [24]) is useful:

PROPOSITION 9.9. Let G be a compact abelian group and let α be a G-action on
A. Let Ĝ be the dual group of G. For χ ∈ Ĝ let

A(χ) = {a ∈ A : αg(a) = χ(g)a for all g ∈ G} .

Then α is saturated if and only if the linear span A(χ)∗A(χ) of elements of the form a∗b
with a, b ∈ A(χ) is dense in Aα for any χ ∈ Ĝ.

HenceAα is saturated ifA(χ)∗A(χ) generatesAα as aAα-bimodule for any
χ ∈ Ĝ.
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10. EXAMPLES OF SATURATED ACTIONS BY COMPACT LIE GROUPS

10.1. PRINCIPAL BUNDLES. Let A = C0(X) where X is a locally compact space.
By Proposition 7.1.12 in [24], if the action α is saturated, then the induced action
of G on X is free. Since G is compact, the action is proper. Hence the fibration
X 7→ X/G is a principal bundle. We refer to [1] for a detailed survey on the
relation between noncommutative notions and their commutative counterparts
in this context.

10.2. CROSSED PRODUCTS BY Zn-ACTIONS. Let β be an action of Zn on a C∗-
algebra B. Then there is an induced action α of the dual group Tn on the crossed
product A = B ×β Zn. It is well-known that this action is saturated.

10.3. NONCOMMUTATIVE TORI. For notational simplicity we restrict to noncom-
mutative two-tori in the following.

The noncommutative two-torus Aθ with angle 2πθ, θ ∈ [0, 1) is defined as
the universal algebra generated by two unitaries U1, U2 subdued to the relation
U1U2 = e2πiθU2U1.

There is an action of T2 on Aθ determined by (z1, z2, Ui) 7→ ziUi. In [10] it
was verified that the action is principal. As an illustration we give a different ar-
gument based on Proposition 9.9, which works in similar form for other universal
algebras as well, for example for graph C∗-algebras (see the references below).

PROPOSITION 10.1. The action of T2 on Aθ is saturated.

Proof. For (k, l) ∈ Z2 (considered as a character on T2) we have that Uk
1Ul

2 ∈
Aθ(k, l). Since (Uk

1Ul
2)
∗(Uk

1Ul
2) = 1, the assertion follows from Proposition 9.9.

10.4. HIGHER RANK GRAPH C∗-ALGEBRAS. Higher rank graph C∗-algebras were
introduced in [16] as a generalization of graph C∗-algebras. The conventions
used here are as in [22]. See [25] for a monograph on graph C∗-algebras, which
also includes a discussion on the higher rank case. A k-graph C∗-algebra comes
equipped with a Tk-action, called gauge action.

Higher rank graph C∗-algebras behave similarly to Cuntz–Krieger algebras.
In Lemma 4.1.1 in [20] it was shown that the gauge action on row-finite Cuntz–
Krieger algebras is saturated under certain conditions. The proof is based on
Proposition 9.9 and uses a particularly simple set of generators of the fixed point
algebra. It carries over to row-finite graph C∗-algebras, where a similar descrip-
tion of the fixed point algebra exists, see Corollary 3.3 in [25]. The proof can also
be generalized to the higher rank case by using the description of the fixed point
algebra from Lemma 3.3(ii) in [16]. It turns out that the right condition in the case
of k-graph C∗-algebras is that the k-graph have no sinks nor sources.

Since we did not find the statement in the literature, we formulate it as a
proposition here:
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PROPOSITION 10.2. Let E be a row-finite k-graph with no sources and no sinks
and let C∗(E) be its k-graph C∗-algebra. Then the gauge Tk-action on C∗(E) is saturated.

For locally finite graphs the previous proposition was proven in [27] by ver-
ifying the definition for principal actions.

One may ask which geometric properties of the graph are reflected by C∗-
algebraic properties of gauge action on C∗(E). Using the dual Pimsner–Voicules-
cu sequence one can, under certain conditions, get back the length of loops in the
graph. See [21], [8] for more detailed discussions of some aspects of this ques-
tion. In general, the action (up to equivariant isomorphism) does not determine
the graph up to isomorphism: By the proof of Corollary 2.6 in [25] there is an
isomorphism between the C∗-algebra of a graph and the C∗-algebra of the dual
graph that preserves the gauge action. However a graph need not be isomorphic
to its dual graph.

10.5. COMPACT QUANTUM GROUPS AND QUANTUM PRINCIPAL BUNDLES. We
refer to [18] for a survey on compact quantum groups, which were introduced by
Woronowicz. We give a short introduction with the aim to show that the action
of a subgroup on a compact quantum group is saturated.

A comultiplication on a unital C∗-algebra A is a unital ∗-homomorphism
Φ : A → A ⊗ A satisfying coassociativity (Φ ⊗ 1)Φ = (1 ⊗ Φ)Φ. (Here the
spatial tensor product is used.) A compact quantum group is a pair (A, Φ), where
A is a unital C∗-algebra and Φ is a comultiplication on A such that Φ(A)(A⊗ 1)
and (A⊗ 1)Φ(A) are dense in A⊗A. A compact quantum subgroup (B, Φ2) of
a compact quantum group (A, Φ) is a surjective C∗-homomorphism π : A → B
compatible with the coproducts.

A compact Lie group G defines a compact quantum group (C(G), ΦG) with
ΦG : C(G)→ C(G× G), (ΦG f )(g, h) = f (gh).

Let G be a compact Lie group and a subgroup of a compact quantum group
(A, Φ). The surjective homomorphism π : A → C(G) induces a homomorphism
α = (π ⊗ 1) ◦ Φ : A → C(G,A), hence an action of G on A. The span of {(1⊗
b)Φ(a), a, b ∈ A} is dense inA⊗A and the range of (π⊗ 1) : A⊗A → C(G,A)
is dense. Thus the equality (π⊗ 1)((1⊗ b)Φ(a)) = bα(a) implies that the span of
{bα(a), a, b ∈ A} is dense in C(G,A). Hence α is saturated.

Quantum principal bundles have been extensively studied in the literature
in various settings. Our results apply to quantum principal bundles in the sense
of [10] whose structure quantum groups are compact Lie groups. Examples can
be found in [11], [12] [13] [14] [27], among others.
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