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ABSTRACT. It is well known that any scattered C∗-algebra is of type I and AF.
We give conditions for C∗-algebras being of type I or AF to be scattered. In
particular, it is shown that a C∗-algebra A is scattered if and only if A is a type I
C∗-algebra satisfying that the center of A is scattered. As an application to a
C∗-dynamical system (A, G, α) with a compact abelian group G, it is shown
that the fixed point algebra Aα of A under the action α is scattered if and only
if so is the C∗-crossed product A×α G.
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1. INTRODUCTION

Recall that a topological space is called scattered (or dispersed) if every non-
empty subset necessarily contains an isolated point. For a compact Hausdorff
space Ω, it is shown in [12] that Ω is scattered if and only if every Radon measure
on Ω is atomic. As a non-commutative generalization of a scattered compact
Hausdorff space, the notion of a scattered C∗-algebra was introduced indepen-
dently by Jensen [7] and Rothwell [13]. We say that a C∗-algebra A is scattered if
every positive linear functional on A is the countable sum of pure positive linear
functionals on A, or equivalently, A is of type I and the spectrum Â of A is a scat-
tered topological space equipped with the Jacobson topology ([8], Corollary 3 and
[13], Theorem 3.8). The reader is referred to [2], [6], [7], [8], [13] for other equiv-
alent conditions on scattered C∗-algebras. On the other hand, any scattered C∗-
algebra is AF ([10], Lemma 5.1). Thus we have reached the question of whether
every AF C∗-algebra of type I is scattered. But there are AF C∗-algebras of type I
which are not scattered. For example, the C∗-algebra C(2ω) of all continuous
functions on the Cantor set 2ω is one of such C∗-algebras. In fact, C(2ω) is AF
because 2ω is totally disconnected. But the Cantor set, which is identified with
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the spectrum of C(2ω), is not scattered as a topological space. The purpose of this
paper is to study conditions for C∗-algebras being of type I or AF to be scattered.

In Section 2, we will give conditions for an AF C∗-algebra of type I to be
scattered in terms of the center of the C∗-algebra considered. More precisely,
we prove that a C∗-algebra A is scattered if and only if A is a type I C∗-algebra
satisfying that the center Z(A) of A is scattered, or equivalently, A is an AF C∗-
algebra of type I satisfying that the center Z(A) of A is AF and that C(2ω) can
not be embedded into Z(A1) as a C∗-algebra, where A1 denotes the C∗-algebra
obtained from A by adjunction of an identity.

In Section 3, we consider the problem of when the C∗-crossed product of a
scattered C∗-algebra becomes scattered. Let (A, G, α) be a C∗-dynamical system.
We suppose that G is a compact abelian group. In [3], Chu showed that if a C∗-
algebra A is scattered, then so is also the C∗-crossed product A×α G. We remark
that conversely, the scatteredness of A ×α G does not necessarily imply that of
A in general (see the last paragraph in Section 3). In Section 3, we elaborate
Chu’s result above, that is, we will show that the fixed point algebra Aα of A
under the action α is scattered if and only if so is the C∗-crossed product A×α G.
Thus scatteredness of the C∗-crossed product can be completely characterized by
the fixed point algebra. If A is scattered, then it is obvious that Aα is scattered.
Hence our result refines Chu’s result that the C∗-crossed product of a scattered
C∗-algebra by a compact abelian group is scattered, and our main theorem in
Section 3 could be considered to be a crucial result for the question of when the
C∗-crossed product of a C∗-algebra by a compact abelian group is scattered.

2. A CHARACTERIZATION OF SCATTERED C∗-ALGEBRAS

In this section, the term AF C∗-algebra has a slightly wider sense than the
usual one which is assumed to be separable and to have identity. We will ease
those restrictions. In fact, we say that a C∗-algebra A is an approximately finite-
dimensional C∗-algebra (or simply AF) if A is a C∗-algebra in which any finite set
of elements in A can be approximated arbitrarily closely in norm by elements of
a finite-dimensional C∗-algebra. In this definition, any scattered C∗-algebra is AF
([10], Lemma 5.1).

For a C∗-algebra A, we always denote by Z(A) the center of A, and by
A1 the C∗-algebra obtained from A by adjunction of an identity. Let Â be the
spectrum of A which is the set of all equivalence classes of nonzero irreducible
representations equipped with the Jacobson topology. As is well known, Â is
locally compact, but it is not necessarily a Hausdorff space. If A is unital, Â is
compact. If I is a closed ideal of A, then Î is regarded as an open subset of Â. The
reader is referred to [11] for background material on the spectra of C∗-algebras.

We will repeatedly use the result that if an abelian C∗-algebra is AF in our
sense above, then its spectrum with the Jacobson topology is totally disconnected



A CHARACTERIZATION OF SCATTERED C∗ -ALGEBRAS 419

([1], Proposition 3.1). Although such a result is given in [1] for separable C∗-
algebras, the separability is not needed in order to obtain the result. In fact, the
result follows from the fact that the projections in an abelian C∗-algebra corre-
spond to the open-closed subsets in its spectrum and every AF C∗-algebra is gen-
erated by the projections.

For a locally compact space Ω, we denote by C0(Ω) the C∗-algebra of all
continuous functions on Ω vanishing at infinity. If Ω is compact, we denote by
C(Ω) the C∗-algebra of all continuous functions on Ω. Throughout this section,
we denote by 2ω the Cantor set. Note that the Cantor set 2ω is totally discon-
nected and is not scattered. Hence C(2ω) is AF, but it is not scattered.

Here we recall that a topological space X is called 0-dimensional if each point
of X has a neighborhood base consisting of open-closed sets. Equivalently, X
is 0-dimensional if and only if for each point x ∈ X and each closed set F not
containing x, there is an open and closed set containing x and not meeting F.

For a C∗-algebra A, we denote by A′′ the enveloping von Neumann alge-
bra of A, which is identified with the second dual of A as a Banach space. The
following lemma is known for von Neumann algebras.

LEMMA 2.1. Let A be a C∗-algebra and let e be a projection in the center Z(A′′)
of A′′. Then we have

Z(Ae) = Z(A)e.

Proof. We may assume that A is universally represented on the universal
Hilbert space. Since it is obvious that Z(Ae) ⊃ Z(A)e, we will prove that Z(Ae) ⊂
Z(A)e. For this, we take any ze ∈ Z(Ae) with z ∈ A. We have only to show that
z ∈ A′.

For any a ∈ A, we see that (z(1− e))(ae) = za(1− e)e = 0 and (ae)(z(1−
e)) = aze(1− e) = 0, so that (z(1− e))(ae) = (ae)(z(1− e)). Hence z(1− e) ∈
(Ae)′ = A′e. (It is known that the last equality (Ae)′ = A′e holds if A is a ∗-
algebra on the Hilbert space.) Since we have

z = ze + z(1− e) ∈ Z(Ae) + (Ae)′ ⊂ (Ae)′ = A′e,

we see that z has the form of z = a′e with some a′ ∈ A′, so that z ∈ A′.

A local characterization of a scattered C∗-algebra A is that each self-adjoint
element h ∈ A has a scattered spectrum SpA(h) in A ([6]). We will use this char-
acterization to prove the implication (v) ⇒ (i) in the following theorem. Fur-
thermore, it follows from the local characterization of a scattered C∗-algebra or
from Theorem 1 and Theorem 3 of [2] that every C∗-subalgebra of a scattered C∗-
algebra is also scattered. This result will also be used repeatedly in the proof of
the next theorem.

Now we are in a position to give the main theorem in this section.

THEOREM 2.2. Let A be a C∗-algebra. Then the following conditions (i)–(v) are
equivalent:
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(i) A is scattered.
(ii) A is an AF C∗-algebra of type I, the center Z(A) of A is AF, and C(2ω) can not

be embedded into the center Z(A1) of A1 as a C∗-algebra.
(iii) A is a type I C∗-algebra and the center Z(A) of A is scattered.
(iv) Every abelian C∗-subalgebra B of A is AF and C(2ω) can not be embedded into

B1 as a C∗-algebra.
(v) Every separable abelian C∗-subalgebra B of A is AF and C(2ω) can not be embed-

ded into B1 as a C∗-algebra.

Proof. (i) ⇒ (ii) Since A is scattered, it is of type I and AF. Since every C∗-
subalgebra of a scattered C∗-algebra is scattered, so is Z(A). In particular, Z(A)
is AF. Since A is scattered, we easily see that A1 is also scattered. In particular,
Z(A1) is scattered. Since C(2ω) is not scattered, it can not be embedded into
Z(A1) because every C∗-subalgebra of a scattered C∗-algebra is scattered.

(ii) ⇒ (iii) Since Z(A) is AF and Z(A1) = Z(A) + C · 1, Z(A1) is also AF.
Hence its spectrum Ẑ(A1) is a compact Hausdorff and totally disconnected space
([1]). Here recall that a locally compact Hausdorff space is 0-dimensional as a

topological space if and only if it is totally disconnected. Hence Ẑ(A1) is 0-

dimensional. On the other hand, Z(A1) is isomorphic to C(Ẑ(A1)). If there exists

a surjective continuous map π from Ẑ(A1) onto 2ω, then π induces the injective

homomorphism from C(2ω) into C(Ẑ(A1)) in a usual way. But this contradicts

the assumption. Thus there is no surjective continuous map from Ẑ(A1) onto 2ω,

from which it follows that Ẑ(A1) is scattered (see 2.Main Theorem of [12]). Thus
we see that Ẑ(A) is also scattered.

(iii) ⇒ (i) Assume condition (iii). Then A1 is of type I and Z(A1) is also
scattered. If A1 is scattered, then so is A. Hence without loss of generality we
may assume that A is unital.

Since A is of type I, A has a series (so-called a composition series) of closed
ideals I0 = {0} ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Iα ⊂ · · · ⊂ Iβ = A such that Iα+1/Iα has

continuous trace for each α and Iα =
⋃

γ<α

Iγ for each limit ordinal α (see 6.2.11 of

[11]). We may assume that the composition series {Iα} consists of uncountably
many ideals. To show (i), we have only to show that every Iα is scattered (see
Proposition 2.5 or Proposition 2.6 of [7] or Proposition 3.6 of [13]). To do this, we
use transfinite induction on α.

First we show that I1 is scattered. Recall that Z(A) is isomorphic to C(Â)
by the Dauns–Hofmann Theorem ([11], 4.4.8). Hence C(Â) is scattered. Here
we remark that Â is not necessarily a Hausdorff space, that is, the spectrum of
C(Â) may not be Â. Since I1 has continuous trace, it is a liminary C∗-algebra
with Hausdorff spectrum. Since Î1 is identified with an open subset of Â and Â
is compact, C0( Î1) is isomorphic to a closed ideal of C(Â) (which is a scattered
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C∗-algebra) in a canonical way. Hence C0( Î1) is scattered, which means that Î1 is
scattered because it is a locally compact Hausdorff space. Since I1 is of type I, it
is scattered.

Next we will show that for any α, Iα is scattered. Assume that Iγ is scattered
for all γ < α. If α is not a limit ordinal, Iα/Iα−1 has continuous trace. Let p be
the open projection in Z(A′′) satisfying that Iα−1 = A′′p ∩ A. Then A/Iα−1

∼=
A(1− p), and it follows from Lemma 2.1 that

Z(A/Iα−1) ∼= Z(A(1− p)) = Z(A)(1− p) ∼= Z(A)/(Z(A) ∩ Iα−1).

Thus Z(A/Iα−1) is scattered, since it is a quotient of a scattered C∗-algebra Z(A)
(see Proposition 2.4 of [7] or Proposition 3.6 of [13]). Since Iα/Iα−1 is a closed
ideal with continuous trace of A/Iα−1, with I1 replaced by Iα/Iα−1 and with A
by A/Iα−1 in the discussion of the preceding paragraph it follows from the same
discussion as in the paragraph that Iα/Iα−1 is scattered. Then scatteredness of
both Iα−1 and Iα/Iα−1 implies that Iα is scattered ([7], Proposition 2.4). If α is a
limit ordinal, Iα is the norm closure of

⋃
γ<α

Iγ. Since Iγ is scattered for all γ < α, it

follows from Proposition 2.5 of [7] that Iα is scattered.
(i) ⇒ (iv) Since A is scattered, every abelian C∗-subalgebra B of A is also

scattered, hence AF. Since every C∗-subalgebra of a scattered C∗-algebra is scat-
tered and C(2ω) is not scattered, C(2ω) can not be embedded into B1 which is
also scattered.

(iv)⇒ (v) This is trivial.
(v)⇒ (i) By adjunction of an identity to A if necessary, we may assume that

A is unital. Take any self-adjoint element h from A. In order to show (i), it suffices
to show that the spectrum SpA(h) of h in A is scattered. Consider the C∗-algebra

C∗(h) generated by h and 1. Then Ĉ∗(h) is homeomorphic to SpA(h). Hence we

have only to show that Ĉ∗(h) is a scattered topological space.
Since C∗(h) is an abelian C∗-subalgebra of A, by assumption it is AF. Hence

Ĉ∗(h) is a compact Hausdorff and totally disconnected space. Then Ĉ∗(h) is 0-
dimensional as a topological space. On the other hand, we see from the assump-

tion that C(2ω) can not be embedded into C(Ĉ∗(h)). Hence there is no surjective

continuous map from Ĉ∗(h) onto 2ω. Thus it follows from 2.Main Theorem of

[12] that Ĉ∗(h) is scattered.

REMARK 2.3. We remark that every abelian C∗-subalgebra of an AF C∗-
algebra is not necessarily AF. A well-known example is as follows (cf. III6, p. 95
in [4]). Consider C(2ω) as an AF C∗-algebra. Then the abelian C∗-algebra C([0, 1])
consisting of all continuous functions on the closed interval [0, 1] can be embed-
ded into C(2ω). Thus we regard C([0, 1]) as an abelian C∗-subalgebra of C(2ω).
But, C([0, 1]) is not AF because [0, 1] is not totally disconnected.
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3. AN APPLICATION TO C∗-CROSSED PRODUCTS

Let (A, G, α) be a C∗-dynamical system, that is, a triple (A, G, α) consisting
of a C∗-algebra A, a locally compact group G with left invariant Haar measure
dt and a group homomorphism α from G into the automorphism group of A
such that G 3 t → αt(x) is continuous for each x in A in the norm topology.
Denote by K(A, G) the linear space of all continuous functions from G into A with
compact support and by L1(A, G) the completion of K(A, G) by the L1-norm (see
7.6 of [11] for the Banach∗-algebra structure of L1(A, G)). Then the C∗-crossed
product A×α G of A by G is the enveloping C∗-algebra of L1(A, G). We denote
by Z(A×α G) the center of A×α G, and by M(A×α G) the multiplier algebra of
A×α G.

Suppose that G is abelian. Then the dual action α̂ of the dual group Ĝ of G
on A×α G is defined by

α̂γ(x)(t) = 〈t, γ〉x(t) for x ∈ L1(A, G),

where 〈t, γ〉 denotes the value of γ at t.
Here we denote by λ the canonical unitary representation of G into M(A×α

G) satisfying αt(·) = λt · λ∗t = Adλt(·) for all t ∈ G, and we put

λ f =
∫
G

λt f (t)dt for f ∈ L1(G).

LEMMA 3.1. Let (A, G, α) be a C∗-dynamical system. Suppose that G is a locally
compact abelian group. Then Z(A ×α G) can be embedded into the C∗-tensor product
Aα ⊗ C0(Ĝ) as a C∗-algebra, where Aα is the fixed point algebra of A under α.

Proof. Let B be the C∗-algebra generated by the set {zλt : z ∈ Z(A ×α

G), t ∈ G} in A ×α G. Since Z(A ×α G) is the center of A ×α G, Z(A ×α G) is
α̂-invariant. Since α̂γ(λt) = 〈t, γ〉λt, we see that B is α̂-invariant. Furthermore,
it is easy to verify that B is a G-product (see 7.8.1 of [11] for the definition of
a G-product). Hence it follows from 7.8.8 of [11] that B = B ×α G with some
α-invariant C∗-subalgebra B of A. Since any element of Z(A ×α G) commutes
with all elements of M(A×α G) and since {λt : t ∈ G} ⊂ M(A×α G), each ele-
ment z of Z(A×α G) commutes with any λt. Since G is abelian, we then see that
λt(zλs)λt

∗ = zλs for all s, t ∈ G. Hence every element of B is a fixed point for
Adλ.

Take any b ∈ B. Since G is amenable, we identify A×α G and B×α G with
the reduced C∗-crossed products A ×α,r G and B ×α,r G, respectively. Then bλ f

with f ∈ L1(G) is an element of B = B×α G. Since we have

αt(b)λ f = λtbλt
∗λ f = λt(bλ f )λt

∗ = Adλt(bλ f ) = bλ f

for all t ∈ G and all f ∈ L1(G), we conclude that αt(b) = b. Thus we see that
B ⊂ Aα. Since G is amenable, we see that B ×α G ⊂ Aα ×α G (this inclusion is
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not true in general unless G is amenable [9]). On the other hand, we easily see
that Aα ×α G is isomorphic to Aα ⊗ C∗(G) = Aα ⊗ C0(Ĝ), since α acts trivially
on Aα. Since Z(A ×α G) ⊂ B by the definition of B, we see that Z(A ×α G) ⊂
Aα ⊗ C0(Ĝ).

As an application of Theorem 2.2, now we give the main theorem in this
section.

THEOREM 3.2. Let (A, G, α) be a C∗-dynamical system. Suppose that G is com-
pact abelian. Then the following conditions are equivalent:

(i) The fixed point algebra Aα of A is scattered.
(ii) Aα is of type I and the center Z(Aα) of Aα is scattered.

(iii) A×α G is scattered.

Proof. (i)⇒ (ii) This is trivial.
(ii)⇒ (iii) Since G is compact and Aα is of type I, it follows from Theorem 3.2

of [5] that A×α G is of type I. Since Aα is scattered and Ĝ is discrete, Aα⊗C0(Ĝ) is
scattered ([3], Proposition 1). Since Z(A×α G) can be embedded into Aα ⊗C0(Ĝ)
by Lemma 3.1, Z(A×α G) is scattered. Then Theorem 2.2 yields that A×α G is
scattered.

(iii) ⇒ (i) It is well known that Aα is isomorphic to a hereditary C∗-sub-
algebra of A×α G. This shows that Aα is scattered.

With the above notation, if A is scattered, so is Aα. Hence Theorem 3.2
shows that if A is scattered, then A ×α G is also scattered. Thus Theorem 3.2
generalizes Chu’s result. Remark that scatteredness of A ×α G does not imply
that of A. For example, consider the abelian C∗-algebra C(T) of all continuous
functions on the one-dimensional torus group T. Since T is not scattered, C(T)
is not scattered. Consider the group action τ of T on C(T) defined by τs( f )(t) =
f (s−1t) for f ∈ C(T). Then the C∗-crossed product C(T)×τ T is scattered because
we see that C(T)×τ T is isomorphic to the C∗-algebra C(L2(T)) which consists
of all compact operators on the Hilbert space L2(T).
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