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A CHARACTERIZATION OF SCATTERED C*-ALGEBRAS
AND ITS APPLICATION TO C*-CROSSED PRODUCTS
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ABSTRACT. Itis well known that any scattered C*-algebra is of type I and AF.
We give conditions for C*-algebras being of type I or AF to be scattered. In
particular, it is shown that a C*-algebra A is scattered if and only if A is a type I
C*-algebra satisfying that the center of A is scattered. As an application to a
C*-dynamical system (A, G,a) with a compact abelian group G, it is shown
that the fixed point algebra A* of A under the action « is scattered if and only
if so is the C*-crossed product A x, G.
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1. INTRODUCTION

Recall that a topological space is called scattered (or dispersed) if every non-
empty subset necessarily contains an isolated point. For a compact Hausdorff
space (2, it is shown in [12] that (2 is scattered if and only if every Radon measure
on (2 is atomic. As a non-commutative generalization of a scattered compact
Hausdorff space, the notion of a scattered C*-algebra was introduced indepen-
dently by Jensen [7] and Rothwell [13]. We say that a C*-algebra A is scattered if
every positive linear functional on A is the countable sum of pure positive linear
functionals on A, or equivalently, A is of type I and the spectrum A of A is a scat-
tered topological space equipped with the Jacobson topology ([8], Corollary 3 and
[13], Theorem 3.8). The reader is referred to [2], [6], [7], [8], [13] for other equiv-
alent conditions on scattered C*-algebras. On the other hand, any scattered C*-
algebra is AF ([10], Lemma 5.1). Thus we have reached the question of whether
every AF C*-algebra of type I is scattered. But there are AF C*-algebras of type I
which are not scattered. For example, the C*-algebra C(2¢) of all continuous
functions on the Cantor set 2¢ is one of such C*-algebras. In fact, C(2%) is AF
because 2¢ is totally disconnected. But the Cantor set, which is identified with
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the spectrum of C(2), is not scattered as a topological space. The purpose of this
paper is to study conditions for C*-algebras being of type I or AF to be scattered.

In Section 2, we will give conditions for an AF C*-algebra of type I to be
scattered in terms of the center of the C*-algebra considered. More precisely,
we prove that a C*-algebra A is scattered if and only if A is a type I C*-algebra
satisfying that the center Z(A) of A is scattered, or equivalently, A is an AF C*-
algebra of type I satisfying that the center Z(A) of A is AF and that C(2%) can
not be embedded into Z(A;) as a C*-algebra, where A; denotes the C*-algebra
obtained from A by adjunction of an identity.

In Section 3, we consider the problem of when the C*-crossed product of a
scattered C*-algebra becomes scattered. Let (A, G, a) be a C*-dynamical system.
We suppose that G is a compact abelian group. In [3], Chu showed that if a C*-
algebra A is scattered, then so is also the C*-crossed product A x, G. We remark
that conversely, the scatteredness of A x, G does not necessarily imply that of
A in general (see the last paragraph in Section 3). In Section 3, we elaborate
Chu’s result above, that is, we will show that the fixed point algebra A* of A
under the action « is scattered if and only if so is the C*-crossed product A x, G.
Thus scatteredness of the C*-crossed product can be completely characterized by
the fixed point algebra. If A is scattered, then it is obvious that A* is scattered.
Hence our result refines Chu's result that the C*-crossed product of a scattered
C*-algebra by a compact abelian group is scattered, and our main theorem in
Section 3 could be considered to be a crucial result for the question of when the
C*-crossed product of a C*-algebra by a compact abelian group is scattered.

2. A CHARACTERIZATION OF SCATTERED C*-ALGEBRAS

In this section, the term AF C*-algebra has a slightly wider sense than the
usual one which is assumed to be separable and to have identity. We will ease
those restrictions. In fact, we say that a C*-algebra A is an approximately finite-
dimensional C*-algebra (or simply AF) if A is a C*-algebra in which any finite set
of elements in A can be approximated arbitrarily closely in norm by elements of
a finite-dimensional C*-algebra. In this definition, any scattered C*-algebra is AF
([10], Lemma 5.1).

For a C*-algebra A, we always denote by Z(A) the center of A, and by
A; the C*-algebra obtained from A by adjunction of an identity. Let A be the
spectrum of A which is the set of all equivalence classes of nonzero irreducible
representations equipped with the Jacobson topology. As is well known, A is
locally compact, but it is not necessarily a Hausdorff space. If A is unital, A is
compact. If I is a closed ideal of A, then T is regarded as an open subset of A. The
reader is referred to [11] for background material on the spectra of C*-algebras.

We will repeatedly use the result that if an abelian C*-algebra is AF in our
sense above, then its spectrum with the Jacobson topology is totally disconnected
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([1], Proposition 3.1). Although such a result is given in [1] for separable C*-
algebras, the separability is not needed in order to obtain the result. In fact, the
result follows from the fact that the projections in an abelian C*-algebra corre-
spond to the open-closed subsets in its spectrum and every AF C*-algebra is gen-
erated by the projections.

For a locally compact space 2, we denote by Cy(Q2) the C*-algebra of all
continuous functions on (2 vanishing at infinity. If (2 is compact, we denote by
C(Q) the C*-algebra of all continuous functions on (2. Throughout this section,
we denote by 2¢ the Cantor set. Note that the Cantor set 2% is totally discon-
nected and is not scattered. Hence C(2%) is AF, but it is not scattered.

Here we recall that a topological space X is called 0-dimensional if each point
of X has a neighborhood base consisting of open-closed sets. Equivalently, X
is 0-dimensional if and only if for each point x € X and each closed set F not
containing x, there is an open and closed set containing x and not meeting F.

For a C*-algebra A, we denote by A” the enveloping von Neumann alge-
bra of A, which is identified with the second dual of A as a Banach space. The
following lemma is known for von Neumann algebras.

LEMMA 2.1. Let A be a C*-algebra and let e be a projection in the center Z(A")

of A". Then we have
Z(Ae) = Z(A)e.

Proof. We may assume that A is universally represented on the universal
Hilbert space. Since itis obvious that Z(Ae) D Z(A)e, we will prove that Z(Ae) C
Z(A)e. For this, we take any ze € Z(Ae) with z € A. We have only to show that
ze A

For any a € A, we see that (z(1 —e¢))(ae) =
e)) = aze(1 —e) = 0, so that (z(1 —e))(ae) = (ae)
(Ae)) = A'e. (It is known that the last equality (A
algebra on the Hilbert space.) Since we have

z=ze+z(l—e) € Z(Ae) + (Ae) C (Ae) = Ale,

(1—e)e = 0and (ae)(z(1 -
)(z(1—e)). Hence z(1 —¢) €

za
(z(
e)) = Ale holds if A is a *-

we see that z has the form of z = a’e with some a’ € A’,sothatz € A’. 1

A local characterization of a scattered C*-algebra A is that each self-adjoint
element & € A has a scattered spectrum Sp 4 () in A ([6]). We will use this char-
acterization to prove the implication (v) = (i) in the following theorem. Fur-
thermore, it follows from the local characterization of a scattered C*-algebra or
from Theorem 1 and Theorem 3 of [2] that every C*-subalgebra of a scattered C*-
algebra is also scattered. This result will also be used repeatedly in the proof of
the next theorem.

Now we are in a position to give the main theorem in this section.

THEOREM 2.2. Let A be a C*-algebra. Then the following conditions (i)—(v) are
equivalent:
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(i) A is scattered.

(ii) A is an AF C*-algebra of type 1, the center Z(A) of A is AF, and C(2%) can not
be embedded into the center Z( A1) of Ay as a C*-algebra.

(iii) A is a type I C*-algebra and the center Z(A) of A is scattered.

(iv) Every abelian C*-subalgebra B of A is AF and C(2%) can not be embedded into
By as a C*-algebra.

(v) Every separable abelian C*-subalgebra B of A is AF and C(2%’) can not be embed-
ded into By as a C*-algebra.

Proof. (i) = (ii) Since A is scattered, it is of type I and AF. Since every C*-
subalgebra of a scattered C*-algebra is scattered, so is Z(A). In particular, Z(A)
is AF. Since A is scattered, we easily see that A; is also scattered. In particular,
Z(Aq) is scattered. Since C(2%) is not scattered, it can not be embedded into
Z(A1) because every C*-subalgebra of a scattered C*-algebra is scattered.

(i) = (iil) Since Z(A) is AF and Z(A1) = Z(A) +C-1, Z(A;) is also AF.

Hence its spectrum Z(A;) is a compact Hausdorff and totally disconnected space
([1]). Here recall that a locally compact Hausdorff space is 0-dimensional as a

—

topological space if and only if it is totally disconnected. Hence Z(A;) is 0-
dimensional. On the other hand, Z(A;) is isomorphic to C(Z(A1)). If there exists

a surjective continuous map 7 from Z(A;) onto 2¢, then 7t induces the injective

—

homomorphism from C(2) into C(Z(A;)) in a usual way. But this contradicts

the assumption. Thus there is no surjective continuous map from Z(A;) onto 2%,

—

from which it follows that Z( A1) is scattered (see 2.Main Theorem of [12]). Thus

we see that Z(A) is also scattered.

(iii) = (i) Assume condition (iii). Then A; is of type I and Z(A;) is also
scattered. If A; is scattered, then so is A. Hence without loss of generality we
may assume that A is unital.

Since A is of type I, A has a series (so-called a composition series) of closed
ideals Iy = {0} C 1 C I C -+~ C Iy C -+ C Ig = Asuch that I /I, has

continuous trace for each « and I, = U I for each limit ordinal a (see 6.2.11 of
<a

[11]). We may assume that the compgsition series {I,} consists of uncountably

many ideals. To show (i), we have only to show that every I, is scattered (see

Proposition 2.5 or Proposition 2.6 of [7] or Proposition 3.6 of [13]). To do this, we

use transfinite induction on «.

First we show that I; is scattered. Recall that Z(A) is isomorphic to C(ﬁ)
by the Dauns-Hofmann Theorem ([11], 4.4.8). Hence C (A) is scattered. Here
we remark that A is not necessarily a Hausdorff space, that is, the spectrum of
C(A) may not be A. Since I; has continuous trace, it is a liminary C*-algebra
with Hausdorff spectrum. Since I is identified with an open subset of A and A

is compact, Co(Lh) is isomorphic to a closed ideal of C (A\) (which is a scattered
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C*-algebra) in a canonical way. Hence Cy(1;) is scattered, which means that I is
scattered because it is a locally compact Hausdorff space. Since I is of type I, it
is scattered.

Next we will show that for any «, I, is scattered. Assume that I, is scattered
for all ¥ < a. If & is not a limit ordinal, I,/I,_1 has continuous trace. Let p be
the open projection in Z(A”) satisfying that I, 1 = A”’p N A. Then A/, 1 =
A(1— p), and it follows from Lemma 2.1 that

Z(A/Iu1) = Z(A(1 = p)) = Z(A)(1 = p) = Z(A)/(Z(A) N Ix1)-

Thus Z(A/1,_1) is scattered, since it is a quotient of a scattered C*-algebra Z(A)
(see Proposition 2.4 of [7] or Proposition 3.6 of [13]). Since I,/I,_; is a closed
ideal with continuous trace of A/I,_1, with I; replaced by I,/I,_1 and with A
by A/I,_ in the discussion of the preceding paragraph it follows from the same
discussion as in the paragraph that I, /I, is scattered. Then scatteredness of
both I,_1 and I,/I,_1 implies that I, is scattered ([7], Proposition 2.4). If « is a
limit ordinal, I, is the norm closure of U I,. Since I, is scattered for all y < &, it
<a

follows from Proposition 2.5 of [7] thatyl,x is scattered.

(i) = (iv) Since A is scattered, every abelian C*-subalgebra B of A is also
scattered, hence AF. Since every C*-subalgebra of a scattered C*-algebra is scat-
tered and C(2) is not scattered, C(2¥) can not be embedded into B; which is
also scattered.

(iv) = (v) This is trivial.

(v) = (i) By adjunction of an identity to A if necessary, we may assume that
A is unital. Take any self-adjoint element /1 from A. In order to show (i), it suffices
to show that the spectrum Sp 4 (1) of i in A is scattered. Consider the C*-algebra

C*(h) generated by h and 1. Then C*(h) is homeomorphic to Sp , (). Hence we

have only to show that C*(h) is a scattered topological space.
Since C*(h) is an abelian C*-subalgebra of A, by assumption it is AF. Hence

—

C*(h) is a compact Hausdorff and totally disconnected space. Then C/*® is 0-
dimensional as a topological space. On the other hand, we see from the assump-

o —

tion that C(2) can not be embedded into C(C*(h)). Hence there is no surjective
continuous map from C*(h) onto 2. Thus it follows from 2.Main Theorem of
[12] that C*(h) is scattered. 1

REMARK 2.3. We remark that every abelian C*-subalgebra of an AF C*-
algebra is not necessarily AF. A well-known example is as follows (cf. III6, p. 95
in [4]). Consider C(2¢) as an AF C*-algebra. Then the abelian C*-algebra C([0, 1])
consisting of all continuous functions on the closed interval [0,1] can be embed-
ded into C(2¢). Thus we regard C(]0,1]) as an abelian C*-subalgebra of C(2%).
But, C([0,1]) is not AF because [0, 1] is not totally disconnected.
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3. AN APPLICATION TO C*-CROSSED PRODUCTS

Let (A, G, «) be a C*-dynamical system, that is, a triple (A, G, a) consisting
of a C*-algebra A, a locally compact group G with left invariant Haar measure
dt and a group homomorphism & from G into the automorphism group of A
such that G 5 t — a;(x) is continuous for each x in A in the norm topology.
Denote by K(A, G) the linear space of all continuous functions from G into A with
compact support and by L' (A, G) the completion of K(A, G) by the L!-norm (see
7.6 of [11] for the Banach*-algebra structure of L!(A, G)). Then the C*-crossed
product A x, G of A by G is the enveloping C*-algebra of L' (A, G). We denote
by Z(A x4 G) the center of A X, G, and by M(A X, G) the multiplier algebra of
A %, G.

Suppose that G is abelian. Then the dual action @ of the dual group G of G
on A X, G is defined by

@y (x)(t) = (t,7)x(t) forx € LY(A,G),

where (t,y) denotes the value of 7y at t.
Here we denote by A the canonical unitary representation of G into M (A X,
G) satisfying a¢(-) = A¢ - Af = AdA4(+) for all t € G, and we put

/\f:/)ttf(t)dt for f € L'(G).
G

LEMMA 3.1. Let (A, G, a) be a C*-dynamical system. Suppose that G is a locally
compact abelian group. Then Z(A x4 G) can be embedded into the C*-tensor product

~

A*® Co(G) as a C*-algebra, where A" is the fixed point algebra of A under a.

Proof. Let B be the C*-algebra generated by the set {zA; : z € Z(A x4
G), t € G} in A X, G. Since Z(A x4 G) is the center of A X, G, Z(A X4 G) is
a-invariant. Since ¥, (A;) = (t,7)A+, we see that B is @-invariant. Furthermore,
it is easy to verify that B is a G-product (see 7.8.1 of [11] for the definition of
a G-product). Hence it follows from 7.8.8 of [11] that B = B X, G with some
a-invariant C*-subalgebra B of A. Since any element of Z(A x, G) commutes
with all elements of M(A X, G) and since {A; : t € G} C M(A x4 G), each ele-
ment z of Z(A x, G) commutes with any A;. Since G is abelian, we then see that
At(zAs)Ad™ = zAg for all s,t € G. Hence every element of B is a fixed point for
AdA.

Take any b € B. Since G is amenable, we identify A x, G and B x, G with
the reduced C*-crossed products A x,, G and B X, G, respectively. Then bA 7

with f € L1(G) is an element of B = B x, G. Since we have
at(b))\f = )\tb/\t*/\f = /\t<b)\f>)\t* = Ad)\t(b/\f) = b/\f

forall t € G and all f € L'(G), we conclude that a;(b) = b. Thus we see that
B C A“. Since G is amenable, we see that B x, G C A* X, G (this inclusion is
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not true in general unless G is amenable [9]). On the other hand, we easily see
that A* x, G is isomorphic to A* ® C*(G) = A* ® Cy(G), since w acts trivially
on A*. Since Z(A X, G) C B by the definition of B, we see that Z(A X, G) C

~

A*® Co(G). |

As an application of Theorem 2.2, now we give the main theorem in this
section.

THEOREM 3.2. Let (A, G, ) be a C*-dynamical system. Suppose that G is com-
pact abelian. Then the following conditions are equivalent:
(i) The fixed point algebra A™ of A is scattered.
(ii) A“ is of type 1 and the center Z( A™) of A“ is scattered.
(iii) A x4 G is scattered.

Proof. (i) = (ii) This is trivial.

(if) = (iii) Since G is compact and A* is of type I, it follows from Theorem 3.2
of [5] that A x, G is of type I. Since A* is scattered and G is discrete, A* ® Co(é) is
scattered ([3], Proposition 1). Since Z(A X, G) can be embedded into A% ® Cy(G)
by Lemma 3.1, Z(A X, G) is scattered. Then Theorem 2.2 yields that A x, G is
scattered.

(iif) = (i) It is well known that A* is isomorphic to a hereditary C*-sub-

algebra of A x, G. This shows that A" is scattered. 1

With the above notation, if A is scattered, so is A%*. Hence Theorem 3.2
shows that if A is scattered, then A x, G is also scattered. Thus Theorem 3.2
generalizes Chu’s result. Remark that scatteredness of A x, G does not imply
that of A. For example, consider the abelian C*-algebra C(T) of all continuous
functions on the one-dimensional torus group T. Since T is not scattered, C(T)
is not scattered. Consider the group action 7 of T on C(T) defined by 7;(f)(t) =
f(s~1t) for f € C(T). Then the C*-crossed product C(T) x . T is scattered because
we see that C(T) x. T is isomorphic to the C*-algebra C(L?(T)) which consists
of all compact operators on the Hilbert space L?(T).
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