A CHARACTERIZATION OF SCATTERED C*-ALGEBRAS AND ITS APPLICATION TO C*-CROSSED PRODUCTS

MASAHARU KUSUDA

Communicated by Kenneth R. Davidson

ABSTRACT. It is well known that any scattered C^* -algebra is of type I and AF. We give conditions for C^* -algebras being of type I or AF to be scattered. In particular, it is shown that a C^* -algebra *A* is scattered if and only if *A* is a type I C^* -algebra satisfying that the center of *A* is scattered. As an application to a C^* -dynamical system (A, G, α) with a compact abelian group *G*, it is shown that the fixed point algebra A^{α} of *A* under the action α is scattered if and only if so is the C^* -crossed product $A \times_{\alpha} G$.

KEYWORDS: Scattered C*-algebra, AF C*-algebra, C*-crossed product.

MSC (2000): 46L05.

1. INTRODUCTION

Recall that a topological space is called *scattered* (or dispersed) if every nonempty subset necessarily contains an isolated point. For a compact Hausdorff space Ω , it is shown in [12] that Ω is scattered if and only if every Radon measure on Ω is atomic. As a non-commutative generalization of a scattered compact Hausdorff space, the notion of a scattered C*-algebra was introduced independently by Jensen [7] and Rothwell [13]. We say that a C^* -algebra A is scattered if every positive linear functional on A is the countable sum of pure positive linear functionals on A, or equivalently, A is of type I and the spectrum \hat{A} of A is a scattered topological space equipped with the Jacobson topology ([8], Corollary 3 and [13], Theorem 3.8). The reader is referred to [2], [6], [7], [8], [13] for other equivalent conditions on scattered C^* -algebras. On the other hand, any scattered C^* algebra is AF ([10], Lemma 5.1). Thus we have reached the question of whether every AF C*-algebra of type I is scattered. But there are AF C*-algebras of type I which are not scattered. For example, the C^* -algebra $C(2^{\omega})$ of all continuous functions on the Cantor set 2^{ω} is one of such C*-algebras. In fact, $C(2^{\omega})$ is AF because 2^{ω} is totally disconnected. But the Cantor set, which is identified with the spectrum of $C(2^{\omega})$, is not scattered as a topological space. The purpose of this paper is to study conditions for C^* -algebras being of type I or AF to be scattered.

In Section 2, we will give conditions for an AF C^* -algebra of type I to be scattered in terms of the center of the C^* -algebra considered. More precisely, we prove that a C^* -algebra A is scattered if and only if A is a type I C^* -algebra satisfying that the center Z(A) of A is scattered, or equivalently, A is an AF C^* algebra of type I satisfying that the center Z(A) of A is AF and that $C(2^{\omega})$ can not be embedded into $Z(A_1)$ as a C^* -algebra, where A_1 denotes the C^* -algebra obtained from A by adjunction of an identity.

In Section 3, we consider the problem of when the C^* -crossed product of a scattered C^* -algebra becomes scattered. Let (A, G, α) be a C^* -dynamical system. We suppose that *G* is a compact abelian group. In [3], Chu showed that if a C^* -algebra *A* is scattered, then so is also the C^* -crossed product $A \times_{\alpha} G$. We remark that conversely, the scatteredness of $A \times_{\alpha} G$ does not necessarily imply that of *A* in general (see the last paragraph in Section 3). In Section 3, we elaborate Chu's result above, that is, we will show that the fixed point algebra A^{α} of *A* under the action α is scattered if and only if so is the C^* -crossed product $A \times_{\alpha} G$. Thus scatteredness of the C^* -crossed product can be completely characterized by the fixed point algebra. If *A* is scattered, then it is obvious that A^{α} is scattered C^* -algebra by a compact abelian group is scattered, and our main theorem in Section 3 could be considered to be a crucial result for the question of when the C^* -crossed product of a C^* -algebra by a compact abelian group is scattered.

2. A CHARACTERIZATION OF SCATTERED C*-ALGEBRAS

In this section, the term AF C^* -algebra has a slightly wider sense than the usual one which is assumed to be separable and to have identity. We will ease those restrictions. In fact, we say that a C^* -algebra A is an *approximately finite-dimensional* C^* -algebra (or simply AF) if A is a C^* -algebra in which any finite set of elements in A can be approximated arbitrarily closely in norm by elements of a finite-dimensional C^* -algebra. In this definition, any scattered C^* -algebra is AF ([10], Lemma 5.1).

For a C*-algebra A, we always denote by Z(A) the center of A, and by A_1 the C*-algebra obtained from A by adjunction of an identity. Let \hat{A} be the spectrum of A which is the set of all equivalence classes of nonzero irreducible representations equipped with the Jacobson topology. As is well known, \hat{A} is locally compact, but it is not necessarily a Hausdorff space. If A is unital, \hat{A} is compact. If I is a closed ideal of A, then \hat{I} is regarded as an open subset of \hat{A} . The reader is referred to [11] for background material on the spectra of C^* -algebras.

We will repeatedly use the result that if an abelian \hat{C}^* -algebra is AF in our sense above, then its spectrum with the Jacobson topology is totally disconnected

([1], Proposition 3.1). Although such a result is given in [1] for separable C^* -algebras, the separability is not needed in order to obtain the result. In fact, the result follows from the fact that the projections in an abelian C^* -algebra correspond to the open-closed subsets in its spectrum and every AF C^* -algebra is generated by the projections.

For a locally compact space Ω , we denote by $C_0(\Omega)$ the C^* -algebra of all continuous functions on Ω vanishing at infinity. If Ω is compact, we denote by $C(\Omega)$ the C^* -algebra of all continuous functions on Ω . Throughout this section, we denote by 2^{ω} the Cantor set. Note that the Cantor set 2^{ω} is totally disconnected and is not scattered. Hence $C(2^{\omega})$ is AF, but it is not scattered.

Here we recall that a topological space *X* is called 0-*dimensional* if each point of *X* has a neighborhood base consisting of open-closed sets. Equivalently, *X* is 0-dimensional if and only if for each point $x \in X$ and each closed set *F* not containing *x*, there is an open and closed set containing *x* and not meeting *F*.

For a C^* -algebra A, we denote by A'' the enveloping von Neumann algebra of A, which is identified with the second dual of A as a Banach space. The following lemma is known for von Neumann algebras.

LEMMA 2.1. Let A be a C*-algebra and let e be a projection in the center Z(A'') of A''. Then we have

$$Z(Ae) = Z(A)e.$$

Proof. We may assume that *A* is universally represented on the universal Hilbert space. Since it is obvious that $Z(Ae) \supset Z(A)e$, we will prove that $Z(Ae) \subset Z(A)e$. For this, we take any $ze \in Z(Ae)$ with $z \in A$. We have only to show that $z \in A'$.

For any $a \in A$, we see that (z(1-e))(ae) = za(1-e)e = 0 and (ae)(z(1-e)) = aze(1-e) = 0, so that (z(1-e))(ae) = (ae)(z(1-e)). Hence $z(1-e) \in (Ae)' = A'e$. (It is known that the last equality (Ae)' = A'e holds if A is a *-algebra on the Hilbert space.) Since we have

$$z = ze + z(1-e) \in Z(Ae) + (Ae)' \subset (Ae)' = A'e,$$

we see that *z* has the form of z = a'e with some $a' \in A'$, so that $z \in A'$.

A local characterization of a scattered C^* -algebra A is that each self-adjoint element $h \in A$ has a scattered spectrum $\text{Sp}_A(h)$ in A ([6]). We will use this characterization to prove the implication $(v) \Rightarrow$ (i) in the following theorem. Furthermore, it follows from the local characterization of a scattered C^* -algebra or from Theorem 1 and Theorem 3 of [2] that every C^* -subalgebra of a scattered C^* algebra is also scattered. This result will also be used repeatedly in the proof of the next theorem.

Now we are in a position to give the main theorem in this section.

THEOREM 2.2. Let A be a C^* -algebra. Then the following conditions (i)–(v) are equivalent:

(i) A is scattered.

(ii) A is an AF C^{*}-algebra of type I, the center Z(A) of A is AF, and $C(2^{\omega})$ can not be embedded into the center $Z(A_1)$ of A_1 as a C^{*}-algebra.

(iii) *A* is a type I C^* -algebra and the center Z(A) of *A* is scattered.

(iv) Every abelian C*-subalgebra B of A is AF and $C(2^{\omega})$ can not be embedded into B_1 as a C*-algebra.

(v) Every separable abelian C^{*}-subalgebra B of A is AF and $C(2^{\omega})$ can not be embedded into B_1 as a C^{*}-algebra.

Proof. (i) \Rightarrow (ii) Since *A* is scattered, it is of type I and AF. Since every *C*^{*}-subalgebra of a scattered *C*^{*}-algebra is scattered, so is *Z*(*A*). In particular, *Z*(*A*) is AF. Since *A* is scattered, we easily see that *A*₁ is also scattered. In particular, *Z*(*A*₁) is scattered. Since *C*(2^{*ω*}) is not scattered, it can not be embedded into *Z*(*A*₁) because every *C*^{*}-subalgebra of a scattered *C*^{*}-algebra is scattered.

(ii) \Rightarrow (iii) Since Z(A) is AF and $Z(A_1) = Z(A) + \mathbb{C} \cdot 1$, $Z(A_1)$ is also AF. Hence its spectrum $\widehat{Z(A_1)}$ is a compact Hausdorff and totally disconnected space ([1]). Here recall that a locally compact Hausdorff space is 0-dimensional as a topological space if and only if it is totally disconnected. Hence $\widehat{Z(A_1)}$ is 0-dimensional. On the other hand, $Z(A_1)$ is isomorphic to $C(\widehat{Z(A_1)})$. If there exists a surjective continuous map π from $\widehat{Z(A_1)}$ onto 2^{ω} , then π induces the injective homomorphism from $C(2^{\omega})$ into $C(\widehat{Z(A_1)})$ in a usual way. But this contradicts the assumption. Thus there is no surjective continuous map from $\widehat{Z(A_1)}$ onto 2^{ω} , from which it follows that $\widehat{Z(A_1)}$ is scattered (see 2.Main Theorem of [12]). Thus we see that $\widehat{Z(A)}$ is also scattered.

(iii) \Rightarrow (i) Assume condition (iii). Then A_1 is of type I and $Z(A_1)$ is also scattered. If A_1 is scattered, then so is A. Hence without loss of generality we may assume that A is unital.

Since *A* is of type I, *A* has a series (so-called a composition series) of closed ideals $I_0 = \{0\} \subset I_1 \subset I_2 \subset \cdots \subset I_{\alpha} \subset \cdots \subset I_{\beta} = A$ such that $I_{\alpha+1}/I_{\alpha}$ has continuous trace for each α and $I_{\alpha} = \bigcup_{\substack{\gamma < \alpha \\ \gamma < \alpha}} I_{\gamma}$ for each limit ordinal α (see 6.2.11 of

[11]). We may assume that the composition series $\{I_{\alpha}\}$ consists of uncountably many ideals. To show (i), we have only to show that every I_{α} is scattered (see Proposition 2.5 or Proposition 2.6 of [7] or Proposition 3.6 of [13]). To do this, we use transfinite induction on α .

First we show that I_1 is scattered. Recall that Z(A) is isomorphic to $C(\widehat{A})$ by the Dauns–Hofmann Theorem ([11], 4.4.8). Hence $C(\widehat{A})$ is scattered. Here we remark that \widehat{A} is not necessarily a Hausdorff space, that is, the spectrum of $C(\widehat{A})$ may not be \widehat{A} . Since I_1 has continuous trace, it is a liminary C^* -algebra with Hausdorff spectrum. Since \widehat{I}_1 is identified with an open subset of \widehat{A} and \widehat{A} is compact, $C_0(\widehat{I}_1)$ is isomorphic to a closed ideal of $C(\widehat{A})$ (which is a scattered

 C^* -algebra) in a canonical way. Hence $C_0(\hat{I}_1)$ is scattered, which means that \hat{I}_1 is scattered because it is a locally compact Hausdorff space. Since I_1 is of type I, it is scattered.

Next we will show that for any α , I_{α} is scattered. Assume that I_{γ} is scattered for all $\gamma < \alpha$. If α is not a limit ordinal, $I_{\alpha}/I_{\alpha-1}$ has continuous trace. Let p be the open projection in Z(A'') satisfying that $I_{\alpha-1} = A''p \cap A$. Then $A/I_{\alpha-1} \cong A(1-p)$, and it follows from Lemma 2.1 that

$$Z(A/I_{\alpha-1}) \cong Z(A(1-p)) = Z(A)(1-p) \cong Z(A)/(Z(A) \cap I_{\alpha-1}).$$

Thus $Z(A/I_{\alpha-1})$ is scattered, since it is a quotient of a scattered C^* -algebra Z(A) (see Proposition 2.4 of [7] or Proposition 3.6 of [13]). Since $I_{\alpha}/I_{\alpha-1}$ is a closed ideal with continuous trace of $A/I_{\alpha-1}$, with I_1 replaced by $I_{\alpha}/I_{\alpha-1}$ and with A by $A/I_{\alpha-1}$ in the discussion of the preceding paragraph it follows from the same discussion as in the paragraph that $I_{\alpha}/I_{\alpha-1}$ is scattered. Then scatteredness of both $I_{\alpha-1}$ and $I_{\alpha}/I_{\alpha-1}$ implies that I_{α} is scattered ([7], Proposition 2.4). If α is a limit ordinal, I_{α} is the norm closure of $\bigcup_{\gamma < \alpha} I_{\gamma}$. Since I_{γ} is scattered for all $\gamma < \alpha$, it

follows from Proposition 2.5 of [7] that I_{α} is scattered.

(i) \Rightarrow (iv) Since *A* is scattered, every abelian *C**-subalgebra *B* of *A* is also scattered, hence AF. Since every *C**-subalgebra of a scattered *C**-algebra is scattered and $C(2^{\omega})$ is not scattered, $C(2^{\omega})$ can not be embedded into *B*₁ which is also scattered.

(iv) \Rightarrow (v) This is trivial.

 $(v) \Rightarrow (i)$ By adjunction of an identity to A if necessary, we may assume that A is unital. Take any self-adjoint element h from A. In order to show (i), it suffices to show that the spectrum $\operatorname{Sp}_A(h)$ of h in A is scattered. Consider the C^* -algebra $C^*(h)$ generated by h and 1. Then $\widehat{C^*(h)}$ is homeomorphic to $\operatorname{Sp}_A(h)$. Hence we have only to show that $\widehat{C^*(h)}$ is a scattered topological space.

Since $C^*(h)$ is an abelian C^* -subalgebra of A, by assumption it is AF. Hence $\widehat{C^*(h)}$ is a compact Hausdorff and totally disconnected space. Then $\widehat{C^*(h)}$ is 0-dimensional as a topological space. On the other hand, we see from the assumption that $C(2^{\omega})$ can not be embedded into $C(\widehat{C^*(h)})$. Hence there is no surjective continuous map from $\widehat{C^*(h)}$ onto 2^{ω} . Thus it follows from 2.Main Theorem of [12] that $\widehat{C^*(h)}$ is scattered.

REMARK 2.3. We remark that every abelian C^* -subalgebra of an AF C^* algebra is not necessarily AF. A well-known example is as follows (cf. III6, p. 95 in [4]). Consider $C(2^{\omega})$ as an AF C^* -algebra. Then the abelian C^* -algebra C([0,1])consisting of all continuous functions on the closed interval [0,1] can be embedded into $C(2^{\omega})$. Thus we regard C([0,1]) as an abelian C^* -subalgebra of $C(2^{\omega})$. But, C([0,1]) is not AF because [0,1] is not totally disconnected.

3. AN APPLICATION TO C*-CROSSED PRODUCTS

Let (A, G, α) be a C^* -dynamical system, that is, a triple (A, G, α) consisting of a C^* -algebra A, a locally compact group G with left invariant Haar measure dt and a group homomorphism α from G into the automorphism group of Asuch that $G \ni t \to \alpha_t(x)$ is continuous for each x in A in the norm topology. Denote by K(A, G) the linear space of all continuous functions from G into A with compact support and by $L^1(A, G)$ the completion of K(A, G) by the L^1 -norm (see 7.6 of [11] for the Banach*-algebra structure of $L^1(A, G)$). Then the C^* -crossed product $A \times_{\alpha} G$ of A by G is the enveloping C^* -algebra of $L^1(A, G)$. We denote by $Z(A \times_{\alpha} G)$ the center of $A \times_{\alpha} G$, and by $M(A \times_{\alpha} G)$ the multiplier algebra of $A \times_{\alpha} G$.

Suppose that *G* is abelian. Then the dual action $\hat{\alpha}$ of the dual group \hat{G} of *G* on *A* ×_{α} *G* is defined by

$$\widehat{\alpha}_{\gamma}(x)(t) = \langle t, \gamma \rangle x(t) \text{ for } x \in L^1(A, G),$$

where $\langle t, \gamma \rangle$ denotes the value of γ at *t*.

Here we denote by λ the canonical unitary representation of *G* into $M(A \times_{\alpha} G)$ satisfying $\alpha_t(\cdot) = \lambda_t \cdot \lambda_t^* = \operatorname{Ad} \lambda_t(\cdot)$ for all $t \in G$, and we put

$$\lambda_f = \int\limits_G \lambda_t f(t) dt \quad \text{for } f \in L^1(G).$$

LEMMA 3.1. Let (A, G, α) be a C^{*}-dynamical system. Suppose that G is a locally compact abelian group. Then $Z(A \times_{\alpha} G)$ can be embedded into the C^{*}-tensor product $A^{\alpha} \otimes C_0(\widehat{G})$ as a C^{*}-algebra, where A^{α} is the fixed point algebra of A under α .

Proof. Let \mathcal{B} be the C^* -algebra generated by the set $\{z\lambda_t : z \in Z(A \times_{\alpha} G), t \in G\}$ in $A \times_{\alpha} G$. Since $Z(A \times_{\alpha} G)$ is the center of $A \times_{\alpha} G$, $Z(A \times_{\alpha} G)$ is $\hat{\alpha}$ -invariant. Since $\hat{\alpha}_{\gamma}(\lambda_t) = \langle t, \gamma \rangle \lambda_t$, we see that \mathcal{B} is $\hat{\alpha}$ -invariant. Furthermore, it is easy to verify that \mathcal{B} is a *G*-product (see 7.8.1 of [11] for the definition of a *G*-product). Hence it follows from 7.8.8 of [11] that $\mathcal{B} = B \times_{\alpha} G$ with some α -invariant C^* -subalgebra *B* of *A*. Since any element of $Z(A \times_{\alpha} G)$ commutes with all elements of $M(A \times_{\alpha} G)$ and since $\{\lambda_t : t \in G\} \subset M(A \times_{\alpha} G)$, each element *z* of $Z(A \times_{\alpha} G)$ commutes with any λ_t . Since *G* is abelian, we then see that $\lambda_t(z\lambda_s)\lambda_t^* = z\lambda_s$ for all $s, t \in G$. Hence every element of \mathcal{B} is a fixed point for Ad λ .

Take any $b \in B$. Since *G* is amenable, we identify $A \times_{\alpha} G$ and $B \times_{\alpha} G$ with the reduced *C*^{*}-crossed products $A \times_{\alpha,r} G$ and $B \times_{\alpha,r} G$, respectively. Then $b\lambda_f$ with $f \in L^1(G)$ is an element of $\mathcal{B} = B \times_{\alpha} G$. Since we have

$$\alpha_t(b)\lambda_f = \lambda_t b\lambda_t^*\lambda_f = \lambda_t(b\lambda_f)\lambda_t^* = \mathrm{Ad}\lambda_t(b\lambda_f) = b\lambda_f$$

for all $t \in G$ and all $f \in L^1(G)$, we conclude that $\alpha_t(b) = b$. Thus we see that $B \subset A^{\alpha}$. Since *G* is amenable, we see that $B \times_{\alpha} G \subset A^{\alpha} \times_{\alpha} G$ (this inclusion is

not true in general unless *G* is amenable [9]). On the other hand, we easily see that $A^{\alpha} \times_{\alpha} G$ is isomorphic to $A^{\alpha} \otimes C^*(G) = A^{\alpha} \otimes C_0(\widehat{G})$, since α acts trivially on A^{α} . Since $Z(A \times_{\alpha} G) \subset \mathcal{B}$ by the definition of \mathcal{B} , we see that $Z(A \times_{\alpha} G) \subset A^{\alpha} \otimes C_0(\widehat{G})$.

As an application of Theorem 2.2, now we give the main theorem in this section.

THEOREM 3.2. Let (A, G, α) be a C*-dynamical system. Suppose that G is compact abelian. Then the following conditions are equivalent:

(i) The fixed point algebra A^{α} of A is scattered.

(ii) A^{α} is of type I and the center $Z(A^{\alpha})$ of A^{α} is scattered.

(iii) $A \times_{\alpha} G$ is scattered.

Proof. (i) \Rightarrow (ii) This is trivial.

(ii) \Rightarrow (iii) Since *G* is compact and A^{α} is of type I, it follows from Theorem 3.2 of [5] that $A \times_{\alpha} G$ is of type I. Since A^{α} is scattered and \widehat{G} is discrete, $A^{\alpha} \otimes C_0(\widehat{G})$ is scattered ([3], Proposition 1). Since $Z(A \times_{\alpha} G)$ can be embedded into $A^{\alpha} \otimes C_0(\widehat{G})$ by Lemma 3.1, $Z(A \times_{\alpha} G)$ is scattered. Then Theorem 2.2 yields that $A \times_{\alpha} G$ is scattered.

(iii) \Rightarrow (i) It is well known that A^{α} is isomorphic to a hereditary C^* -subalgebra of $A \times_{\alpha} G$. This shows that A^{α} is scattered.

With the above notation, if A is scattered, so is A^{α} . Hence Theorem 3.2 shows that if A is scattered, then $A \times_{\alpha} G$ is also scattered. Thus Theorem 3.2 generalizes Chu's result. Remark that scatteredness of $A \times_{\alpha} G$ does not imply that of A. For example, consider the abelian C^* -algebra $C(\mathbb{T})$ of all continuous functions on the one-dimensional torus group \mathbb{T} . Since \mathbb{T} is not scattered, $C(\mathbb{T})$ is not scattered. Consider the group action τ of \mathbb{T} on $C(\mathbb{T})$ defined by $\tau_s(f)(t) =$ $f(s^{-1}t)$ for $f \in C(\mathbb{T})$. Then the C^* -crossed product $C(\mathbb{T}) \times_{\tau} \mathbb{T}$ is scattered because we see that $C(\mathbb{T}) \times_{\tau} \mathbb{T}$ is isomorphic to the C^* -algebra $C(L^2(\mathbb{T}))$ which consists of all compact operators on the Hilbert space $L^2(\mathbb{T})$.

REFERENCES

- O. BRATTELI, Structure spaces of approximately finite-dimensional C*-algebras, J. Funct. Anal. 16(1974), 192–204.
- [2] C.-H. CHU, A note on scattered C*-algebras and the Radon–Nikodým property, J. London Math. Soc. 24(1981), 533–536.
- [3] C.-H. CHU, Crossed products of scattered C*-algebras, J. London Math. Soc. 26(1982), 317–324.
- [4] K.R. DAVIDSON, C*-algebras by Example, Fields Inst. Monographs, vol. 6, Amer. Math. Soc., Providence, RI 1996.

- [5] E.C. GOOTMAN, A.J. LAZAR, Compact group actions on C*-algebras: An application to non-commutative duality, *J. Funct. Anal.* **91**(1990), 237–245.
- [6] T. HURUYA, A spectral characterization of a class of C*-algebras, Sci. Rep. Niigata Univ. Ser. A 15(1978), 21–24.
- [7] H.E. JENSEN, Scattered C*-algebras. I, Math. Scand. 41(1977), 308–314.
- [8] H.E. JENSEN, Scattered C*-algebras. II, Math. Scand. 43(1978), 308–310.
- [9] M. KUSUDA, Hereditary C*-subalgebras of C*-crossed products, Proc. Amer. Math. Soc. 102(1988), 90–94.
- [10] H. LIN, The structure of quasi-multipliers of C*-algebras, Trans. Amer. Math. Soc. 315(1989), 147–172.
- [11] G.K. PEDERSEN, C*-Algebras and their Automorphism Groups, Academic Press, London 1979.
- [12] A. PELCZYŃSKI, Z. SEMADENI, Spaces of continuous functions. III, Studia Math. 18(1959), 211–222.
- [13] M.L. ROTHWELL, Scattered C*-algebras, preprint, 1980.

MASAHARU KUSUDA, DEPARTMENT OF MATHEMATICS, FACULTY OF ENGI-NEERING SCIENCE, KANSAI UNIVERSITY, YAMATE-CHO 3-3-35, SUITA, OSAKA 564-8680, JAPAN.

E-mail address: kusuda@ipcku.kansai-u.ac.jp

Received August 9, 2007.