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ABSTRACT. Two unital dual operator algebras A,B are called ∆-equivalent
if there exists an equivalence functor F : AM → BM which “extends" to
a ∗-functor implementing an equivalence between the categories ADM and
BDM. Here AM denotes the category of normal representations of A and
ADM denotes the category with the same objects as AM and ∆(A)-module
maps as morphisms (∆(A) = A∩A∗). We prove that any such functor maps
completely isometric representations to completely isometric representations,
“respects" the lattices of the algebras and maps reflexive algebras to reflexive
algebras. We present applications to the class of CSL algebras.
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INTRODUCTION

The Morita equivalence of rings has been extended to many settings. In
particular, Rieffel developed the appropriate notion and theory for C∗-algebras
and w∗-algebras ([10], [11]). Blecher, Muhly and Paulsen generalized Rieffel’s C∗-
algebraic version to nonselfadjoint operator algebras [3]. In [5], [6] we obtained
a generalization of Rieffel’s concept of Morita equivalence of w∗-algebras to the
class of (not necessarily selfadjoint) unital dual operator algebras. The purpose of
the present work is to apply this theory to the case of reflexive algebras, especially
to CSL algebras. As we know this is the first connection between Morita theory
and nonselfadjoint reflexive algebras in literature.

We say that two unital dual operator algebras are ∆-equivalent if there is an
equivalence functor between their categories of normal representations which not
only preserves intertwiners of representations of the algebras, but also preserves
intertwiners of their restrictions to the diagonals (see Definition 1.6). This reduces
to Rieffel’s definition in the selfadjoint case. In Section 2 we study properties of



4 G.K. ELEFTHERAKIS

∆-equivalence functors. We show that every such functor maps completely iso-
metric representations to completely isometric ones. Furthermore, every equiv-
alence functor sends the invariant projection lattice of a representation onto the
invariant projection lattice of the corresponding representation, and maps reflex-
ive algebras to reflexive algebras.

In Section 3 we give examples of ∆-equivalent algebras and of ∆-inequivalent
algebras. We show that two CSL algebras A,B are ∆-equivalent if and only if
there exists a ternary ring of operatorsM such that A = [M∗BM]−w∗ and B =
[MAM∗]−w∗ (see Definition 1.2.) It follows from [5] that two separably acting
CSL algebras with either continuous or totally atomic invariant projection lattices
are ∆-equivalent if and only if they have isomorphic lattices. We show however
that isomorphism of the invariant projection lattices does not always imply ∆-
equivalence of the algebras, even in the case of multiplicity free nests and iso-
morphic diagonals. Nevertheless, if there exists an order isomorphism between
two nests, preserving the dimensions of intervals (equivalently, if the nests are
similar), there always exists an equivalence functor between the categories of nor-
mal, completely contractive representations of the nest algebras, which is normal
and completely isometric.

We inform the reader that in another paper [7], written after the research
reported in this paper was completed, we proved jointly with Vern Paulsen that
two unital dual operator algebras A,B are ∆-equivalent if and only if they are
stably isomorphic, i.e. if there exists a Hilbert space H such that the algebras
A⊗B(H) and B⊗B(H) (where ⊗ denotes the normal spatial tensor product [2])
are isomorphic as dual operator algebras.

1. PRELIMINARIES

We present some symbols used below. If A is an operator algebra ([2], [9]),
we denote its diagonal A∩A∗ by ∆(A). The symbol [S ] denotes the linear span
of S . The commutant of a set L of bounded operators on a Hilbert space H is
denoted L′. If U is a linear space and n, m ∈ N we denote by Mn,m(U ) the space
of n×m matrices with entries from U and by Mn(U ) the space Mn,n(U ). If U ,V
are linear spaces, α is a linear map from U to V and n, m ∈ N we denote the linear
map

Mn,m(U )→ Mn,m(V) : (Aij)i,j → (α(Aij))i,j

again by α. If U is a subspace of B(H, K) for H, K Hilbert spaces we equip Mn,m(U ),
n, m ∈ N with the norm inherited from the embedding Mn,m(U ) ⊂ B(Hm, Kn).
If (X , ‖ · ‖) is a normed space we denote by Ball(X ) the unit ball of X : {X ∈
X : ‖X‖ 6 1}. If x1, . . . , xn are in a vector space V , we write (x1, . . . , xn)t for the
column vector in Mn,1(V).

A C∗-algebra which is a dual Banach space is called a w∗-algebra. A dual
operator algebra is an abstract operator algebra which is the operator dual of an



MORITA TYPE EQUIVALENCES AND REFLEXIVE ALGEBRAS 5

operator space. Every w∗-algebra is a dual operator algebra. For every dual op-
erator algebraA there exists a Hilbert space H0 and an algebraic homomorphism
α0 : A → B(H0) which is a complete isometry and a w∗-continuous map [2].

A set of projections on a Hilbert space will be called a lattice if contains the
zero and identity operators and is closed under arbitrary suprema and infima. If
A is a subalgebra of B(H) for some Hilbert space H, the set

Lat(A) = {L ∈ pr(B(H)) : L⊥AL = 0}

is a lattice. Dually if L is a lattice the space

Alg(L) = {A ∈ B(H) : L⊥AL = 0 ∀ L ∈ L}

is an algebra. The reflexive hull of a unital algebra A is the algebra

Ref(A) ≡ Alg(Lat(A)).

Whenever A = Ref(A) we call A a reflexive algebra.
A subspace M of B(H1, H2) where H1, H2 are Hilbert spaces, is called a

ternary ring of operators (TRO) if

MM∗M⊂M.

In this case the spaces [M∗M], [MM∗] are selfadjoint algebras. We call M es-
sential if the algebras [M∗M]−w∗ , [MM∗]−w∗ contain the identity operators. The
following lemma is known. See for example 8.5.32 of [2] or Lemma 3.1 of [5].

LEMMA 1.1. Let C, E be von Neumann algebras acting on Hilbert spaces H1 and
H2 respectively, θ : C → E be a ∗-isomorphism and

M = {T ∈ B(H1, H2) : TA = θ(A)T for all A ∈ C}.

The spaceM is an essential TRO.

DEFINITION 1.2 ([5]). Let A,B be w∗-closed algebras acting on Hilbert
spaces H1 and H2 respectively. If there exists a TRO M ⊂ B(H1, H2) such that

A = [M∗BM]−w∗ and B = [MAM∗]−w∗ we write A M∼ B. We say that the

algebras A,B are TRO equivalent if there exists a TROM such that A M∼ B.

We also need the following main result of [5].

THEOREM 1.3. Two unital reflexive algebrasA,B are TRO equivalent if and only
if there exists a ∗-isomorphism θ : ∆(A)′ → ∆(B)′ such that θ(Lat(A)) = Lat(B). If θ

is as above andM = {T : TA = θ(A)T for all A ∈ ∆(A)′} then A M∼ B.

We now define the category AM for a unital dual operator algebra A [2].
An object of AM is a Hilbert space H for which there exists a unital algebraic ho-
momorphism α : A → B(H) which is completely contractive and w∗-continuous.
We shall call such a map a normal representation of A. Throughout this work we
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denote this object by H or (H, α). If (Hi, αi), i = 1, 2 are objects of AM the space
of homomorphisms HomA(H1, H2) is the following:

HomA(H1, H2) = {T ∈ B(H1, H2) : Tα1(A) = α2(A)T for all A ∈ A}.

Observe that the map αi|∆(A) is a ∗-homomorphism since αi is a contraction, [2].
We also define the category ADM which has the same objects as AM but for every
pair of objects (Hi, αi), i = 1, 2 the space of homomorphisms Hom D

A(H1, H2) is the
following:

Hom D
A(H1, H2) = {T ∈ B(H1, H2) : Tα1(A) = α2(A)T for all A ∈ ∆(A)}.

If the algebra A is a w∗-algebra the categories AM and ADM are the same. Also
observe that HomA(H1, H2) ⊂ Hom D

A(H1, H2).

DEFINITION 1.4 ([6]). Let A,B be unital dual operator algebras and F :
AM → BM be a functor. We say that the functor F has a ∆-extension if there
exists a functor G : ADM→ BDM such that the following diagram is commuta-
tive:

AM ↪→ ADM

F ↓ G ↓
BM ↪→ BDM

.

The following extends Rieffel’s definition [10]:

DEFINITION 1.5 ([6]). Let A,B be unital dual operator algebras and F :
ADM → BDM be a functor. We say that F is a ∗-functor if for every pair of
objects H1, H2 of ADM every operator F ∈ Hom D

A(H1, H2) satisfies

F (F∗) = F (F)∗ ∈ Hom D
B(F (H2),F (H1)).

DEFINITION 1.6 ([6]). Let A,B be unital dual operator algebras. If there
exists an equivalence functor F : AM → BM which has a ∆-extension as a ∗-
functor implementing an equivalence between the categories ADM, BDM, then
A,B are called ∆-equivalent algebras.

The main theorem in [6] which is a generalization of the main theorem of
Rieffel [10], is the following:

THEOREM 1.7. Two unital dual operator algebras A,B are ∆-equivalent if and
only if they have completely isometric normal representations α, β on Hilbert spaces such
that the algebras α(A), β(B) are TRO equivalent.

2. PROPERTIES OF THE EQUIVALENCE FUNCTORS

In this section we fix unital dual operator algebras A,B and a functor F
implementing the equivalence of Theorem 1.7. We are going to investigate prop-
erties of the functor F , especially in case the algebras are reflexive.
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In [6], Section 1, we proved that there exists (H0, α0) ∈ AM with corre-
sponding object (F (H0), β0) ∈ BM such that α0, β0 are complete isometries and

there exists an essential w∗-closed TROM ⊂ B(H0,F (H0)) such that α0(A) M∼
β0(B). In what follows we identifyAwith α0(A) and Bwith β0(B). We denote by
U and V the spaces U = [MA]−w∗ ,V = [AM∗]−w∗ which satisfy the following
relations:

BUA ⊂ U , AVB ⊂ V , [VU ]−w∗ = A, [UV ]−w∗ = B.

Let us briefly recall from [6], Section 2, the definition of a functor FU : AM →
BM and its ∆-extension to a ∗-functor FU : ADM→ BDM denoted by the same
symbol.

For every (H, α) ∈ AM the Hilbert space FU (H) is the Hausdorff comple-
tion of the algebraic tensor product U ⊗ H with respect to the following semi-
norm: ∥∥∥ m

∑
j=1

Tj ⊗ xj

∥∥∥
FU (H)

= sup
S∈Ball(Mn,1(V)),n∈N

∥∥∥ m

∑
j=1

α(STj)(xj)
∥∥∥

Hn
.

The representation F (α) is defined by the formula

β = F (α) : B → B(FU (H)) : β(B)(T ⊗ x) = BT ⊗ x

where B ∈ B, T ∈ U , x ∈ H and T ⊗ x is identified with its image in the quotient.
Also for every H1, H2 ∈ AM we define a map

FU : Hom D
A(H1, H2)→ Hom D

B(FU (H1),FU (H2))

by the formula

FU (F)(M⊗ x) = M⊗ F(x) for all F ∈ Hom D
A(H1, H2), M ∈ M, x ∈ H1.

The map FU (F) is well defined by this formula because M⊗ H1 is dense in
FU (H1), ([6], Corollary 2.5).

We will need the following theorem in [6]:

THEOREM 2.1. The functors F ,FU are equivalent as functors between the cate-
gories AM, BM and their ∆-extensions are equivalent as ∗-functors between the cate-
gories ADM, BDM.

We now come to the concepts which will occupy us in this work.

DEFINITION 2.2. Let A1,B1 be unital dual operator algebras.
(i) A functor G : A1M→ B1M is called completely isometric (respectively normal)

if for every pair of objects H1, H2 the map

G : HomA1(H1, H2)→ Hom B1(G(H1),G(H2))

is a complete isometry (respectively w∗-continuous).
(ii) We say that the functor G : A1M → B1M respects isometries if whenever

(H, α) ∈ A1M is such that the map α : A1 → B(H) is a complete isometry the
corresponding map G(α) : B1 → B(G(H)) is a complete isometry too.
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(iii) We say that the functor G : A1M → B1M respects reflexivity if whenever
(H, α) ∈ A1M is such that the map α : A1 → B(H) is a complete isometry and
the algebra α(A1) is reflexive, the map β : B1 → B(G(H)) is a complete isometry
and the algebra β(B1) is reflexive, where (G(H), β) is the corresponding object of
B1M.

(iv) A functor G : A1DM → B1DM is called a lattice respecting functor if for
every object (H, α) of A1M

G(Lat(α(A1))) = Lat(β(B1))

where (G(H), β) is the corresponding object of the category B1M. (Observe that
Lat(α(A1)) ⊂ Hom D

A1
(H, H) and Lat(β(B1)) ⊂ Hom D

B1
(G(H),G(H)).

The following lemma is essentially due to Paschke; see for example 8.5.23
of [2].

LEMMA 2.3. There exist partial isometries {Wk, k ∈ J} ⊂ M({Vk, k ∈ I} ⊂
M) such that W∗k Wk ⊥ W∗mWm(VkV∗k ⊥ VmV∗m) for k 6= m and IH0 = ∑

k

⊕
W∗k Wk

(IF (H0) = ∑
k

⊕
VkV∗k ).

LEMMA 2.4. The functor FU : AM→ BM respects isometries.

Proof. Let (H, α) ∈ AM be such that the representation α is a complete isom-
etry. Suppose that (FU (H), β) is the corresponding object. We shall prove that the
representation β is a complete isometry too.

Let n ∈ N. Fix a vector y = (y1, . . . , yn)t ∈ Ball(F (H0)n) and a matrix
(Bij) ∈ Mn(B). We recall from Lemma 2.3 the partial isometries {Vk, k ∈ I} ⊂ M.
For ε > 0 there exists a subset {i1, . . . , iN} ⊂ I such that

‖(Bij)(y)‖2 − ε =
n

∑
i=1

∥∥∥ n

∑
k=1

Bik(yk)
∥∥∥2
− ε 6

n

∑
i=1

∥∥∥ n

∑
k=1

Bik

N

∑
l=1

Vil V
∗
il (yk)

∥∥∥2
− ε

2
.

Using again Lemma 2.3 there exists a subset {j1, . . . , jm} ⊂ I such that
n

∑
i=1

∥∥∥ n

∑
k=1

Bik

N

∑
l=1

Vil V
∗
il (yk)

∥∥∥2
− ε

2
6

n

∑
i=1

∥∥∥ m

∑
t=1

Vjt V
∗
jt

( n

∑
k=1

Bik

N

∑
l=1

Vil V
∗
il (yk)

)∥∥∥2
− ε

4
.

Since the projections (Vjt V
∗
jt ) are mutually orthogonal it follows that

‖(Bij)(y)‖2 − ε 6
n

∑
i=1

m

∑
t=1

∥∥∥V∗jt
( n

∑
k=1

Bik

N

∑
l=1

Vil V
∗
il (yk)

)∥∥∥2
− ε

4

= ‖(V∗ ⊕ · · · ⊕V∗)(Bij)(U ⊕ · · · ⊕U)(z)‖2 − ε

4
,

where

z = (V∗i1(y1), . . . , V∗iN
(y1), V∗i1(y2), . . . , V∗iN

(y2), . . . , V∗iN
(yn))t,

V = (Vj1 , . . . , Vjm), U = (Vi1 , . . . , ViN ).
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Observe that

‖z‖2 =
n

∑
l=1

N

∑
k=1
‖V∗ik (yl)‖2 =

n

∑
l=1

N

∑
k=1
‖Vik V∗ik (yl)‖2

=
n

∑
l=1

∥∥∥ N

∑
k=1

Vik V∗ik (yl)
∥∥∥2

6
n

∑
l=1
‖yl‖2 = ‖y‖2 6 1.

It follows that

‖(Bij)(y)‖2 − ε 6 ‖(V∗ ⊕ · · · ⊕V∗)(Bij)(U ⊕ · · · ⊕U)‖2 − ε

4

= ‖α((V∗ ⊕ · · · ⊕V∗)(Bij)(U ⊕ · · · ⊕U))‖2 − ε

4

(the last equality holds because the map α is a complete isometry). We can find
vectors xlk ∈ H such that the vector

x = (x11, . . . , xN1, x12, . . . , xN2, . . . , xNn)t ∈ HNn

has norm one and

‖(Bij)(y)‖2 − ε 6 ‖α((V∗ ⊕ · · · ⊕V∗)(Bij)(U ⊕ · · · ⊕U))(x)‖2.

Thus

(2.1) ‖(Bij)(y)‖2 − ε 6
n

∑
s=1

m

∑
r=1

∥∥∥ n

∑
k=1

N

∑
l=1

α(V∗jr BskVil )(xlk)
∥∥∥2

.

Let

ωk =
N

∑
l=1

Vil ⊗ xlk ∈ FU (H), k = 1, . . . , n.

We have

n

∑
k=1
‖ωk‖2

FU (H) =
n

∑
k=1

sup
S∈Ball(Mp,1(V)),p∈N

∥∥∥ N

∑
l=1

α(SVil )(xlk)
∥∥∥2

=
n

∑
k=1

sup
S∈Ball(Mp,1(V)),p∈N

∥∥∥∥∥∥∥α(S(Vi1 · · ·ViN ))

 x1k
...

xNk


∥∥∥∥∥∥∥

2

6
n

∑
k=1

∥∥∥∥∥∥∥
 x1k

...
xNk


∥∥∥∥∥∥∥

2

6 1.

The inequality is a consequence of the fact that ‖(Vi1 · · ·ViN )‖ = 1 and the map α
is a complete isometry.
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It follows that

‖β((Bij))‖2 > ‖β((Bij))(ω1 · · ·ωn)t‖2

=
n

∑
s=1

∥∥∥ n

∑
k=1

β(Bsk)(ωk)
∥∥∥2

FU (H)
=

n

∑
s=1

∥∥∥ n

∑
k=1

N

∑
l=1

BskVil ⊗ xlk

∥∥∥2

FU (H)

=
n

∑
s=1

sup
S∈Ball(Mt,1(V)),t∈N

∥∥∥ n

∑
k=1

N

∑
l=1

α(SBskVil )(xlk)
∥∥∥2

.

Observe that
S = (V∗j1 · · ·V

∗
jm)t ∈ Ball(Mm,1(V))

so we have

‖β((Bij))‖2 >
n

∑
s=1

∥∥∥ n

∑
k=1

N

∑
l=1

α((V∗j1 · · ·V
∗
jm)tBskVil )(xlk)

∥∥∥2

=
n

∑
s=1

m

∑
r=1

∥∥∥ n

∑
k=1

N

∑
l=1

α(V∗jr BskVil )(xlk)
∥∥∥2

.

From inequality (2.1) it follows that ‖(Bij)(y)‖2 − ε 6 ‖β((Bij))‖2, hence
‖(Bij)‖ 6 ‖β((Bij))‖. Since β is a complete contraction we have equality:

‖(Bij)‖ = ‖β((Bij))‖.
Combining this lemma and Theorem 2.1 we obtain the next theorem.

THEOREM 2.5. Every functor implementing the equivalence of Theorem 1.7 re-
spects isometries.

LEMMA 2.6. Let (H, α) ∈ AM and (FU (H), β) be the corresponding object.
Then

FU (Lat(α(A))) ⊂ Lat(β(B)).

Proof. Suppose that L is a projection of the lattice of α(A). We shall prove
that FU (L) ∈ Lat(β(B)). The operator FU (L) is a projection because FU is a ∗-
functor ([6], Theorem 2.10). If B ∈ B, M ∈ M and x ∈ H then

β(B)FU (L)(M⊗ x) = β(B)(M⊗ L(x)) = BM⊗ L(x).

By Lemma 2.4 of [6] we have

BM⊗ L(x) ∈ [N ⊗ L(y) : N ∈ M, y ∈ H]− = [FU (L)(N ⊗ y) : N ∈ M, y ∈ H]−.

It follows that
β(B)FU (L)(M⊗ x) ∈ FU (L)(FU (H)).

Since the spaceM⊗ H is dense in FU (H), ([6], Corollary 2.5), we obtain

β(B)FU (L)(z) ∈ FU (L)(FU (H)) for all z ∈ FU (H), B ∈ B.

This shows that FU (L) ∈ Lat(β(B)). We proved that

FU (Lat(α(A))) ⊂ Lat(β(B)).
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THEOREM 2.7. Every functor implementing the equivalence of Theorem 1.7 is a
lattice respecting functor.

Proof. Let (H, α) ∈ AM and (F (H),F (α)) ∈ BM be the corresponding
object. Since the functor F is equivalent to FU it follows from the last lemma that

F (Lat(α(A))) ⊂ Lat(F (α)(B)).

Suppose that G is the inverse functor of F which maps (F (H),F (α)) ∈ BM to
(GF (H),GF (α)) ∈ AM. By the same argument

G(Lat(F (α)(B))) ⊂ Lat(GF (α)(A)).

If F (Lat(α(A))) is strictly contained in Lat(F (α)(B)) then GF (Lat(α(A))) is
strictly contained in Lat(GF (α)(A)). The functor GF is equivalent to the iden-
tity functor of the category AM. So there exists a unitary U ∈ HomA(GF (H), H)
satisfying U∗FU = GF (F) for all F ∈ Hom D

A(H, H). So

GF (Lat(α(A))) = U∗Lat(α(A))U = Lat(GF (α)(A)).

This is a contradiction, and hence we have the equality

F (Lat(α(A))) = Lat(F (α)(B)).

THEOREM 2.8. Let (H, α) ∈ AM be such that α is a complete isometry. If
(F (H), β) ∈ BM is the corresponding object then β is a complete isometry and the
algebras α(A), β(B) are TRO equivalent.

Proof. By Theorem 2.5, β is a complete isometry. We denote by σ the map

F : Hom D
A(H, H) = α(∆(A))′ → β(∆(B))′ = Hom D

B(F (H),F (H))

which is a ∗-isomorphism. By Lemma 1.1 the space

Y = {N ∈ B(H,F (H)) : NA = σ(A)N for all A ∈ α(∆(A))′}
is an essential TRO. In the sequel, if K is a Hilbert space, T is an operator on K
and C ⊂ B(K) we denote by K∞ the countably infinite direct sum K⊕ K⊕ · · · , by
T∞ ∈ B(K∞) the operator T ⊕ T ⊕ · · · , and by C∞ the set {C∞ : C ∈ C}.

The map α∞ : A → B(H∞) given by α∞(A) = α(A)∞ is a normal represen-
tation so (H∞, α∞) ∈ AM hence (F (H∞),F (α∞)) ∈ BM.

Let U ∈ Hom B(F (H∞),F (H)∞) be a unitary (see Lemma 3.2 of [6]). This
defines a unitary equivalence between the algebras

Hom D
B(F (H∞),F (H∞)) = (F (α∞)(∆(B)))′

and
Hom D

B(F (H)∞,F (H)∞) = (β(∆(B))∞)′.
This equivalence maps the invariant projection lattice of the algebra F (α∞)(B)
onto the lattice of β(B)∞. The functor F defines a ∗-isomorphism between the
spaces

Hom D
A(H∞, H∞) = (α(∆(A))∞)′ and Hom D

B(F (H∞),F (H∞))



12 G.K. ELEFTHERAKIS

which by Theorem 2.7 maps the lattice of the algebra α(A)∞ onto the lattice of the
algebra F (α∞)(B). Composing with the unitary U we obtain a ∗-isomorphism

θ : (α(∆(A))∞)′ → (β(∆(B))∞)′

such that θ(Lat(α(A)∞)) = Lat(β(B)∞) and which satisfies

θ((Fij)i,j) = (σ(Fij))i,j for all (Fij)i,j ∈ (α(∆(A))∞)′.

From this we conclude that the space

X = {(Tij) ∈ B(H∞,F (H)∞) : (Tij)(Fij) = θ((Fij))(Tij)∀(Fij) ∈ (α(∆(A))∞)′},

equals Y∞. Since the algebras α(A)∞, β(B)∞ are reflexive (see for Example A.1.5
of [2]) by Theorem 1.3 we have

α(A)∞ X∼ β(B)∞ ⇒ α(A) Y∼ β(B).

THEOREM 2.9. Every functor implementing the equivalence of Theorem 1.7 re-
spects reflexivity.

Proof. Let (H, α) ∈ AM be such that α is a complete isometry and the al-
gebra α(A) is reflexive. Suppose that (F (H), β) ∈ BM is the corresponding
object. By Theorem 2.5 β is a complete isometry. By the above theorem the al-
gebras α(A), β(B) are TRO equivalent. Since α(A) is reflexive so is β(B) ([5],
Remark 2.7).

3. APPLICATIONS AND EXAMPLES

We present some definitions and concepts used in this section. A commuta-
tive subspace lattice (CSL) is a projection lattice L whose elements commute; the
algebra Alg(L) is called a CSL algebra. In the special case where L is totally or-
dered we call L a nest and the algebra Alg(L) a nest algebra. CSL algebras are
of course reflexive. When A is a CSL algebra there exists a smallest w∗-closed
algebra contained in A, which contains the diagonal ∆(A) and whose reflexive
hull is A [1], [12]. We denote this algebra by Amin. Whenever A = Amin we call
A synthetic. The first example of a nonsynthetic CSL algebra was given in [1].

PROPOSITION 3.1. If A is a CSL algebra which is ∆-equivalent to a unital dual
operator algebra B then there exists a completely isometric normal representation β of B
such that the algebras A and β(B) are TRO equivalent. It follows that the algebra β(B)
is a CSL algebra too.

Proof. Suppose that F : AM → BM is an equivalence functor which has a
∆-extension to an equivalence ∗-functor between the categories ADM and BDM.
Also suppose that A ⊂ B(H) and let (F (H), β) be the object corresponding to
identity representation of A. By Theorem 2.9 β is a complete isometry and the
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algebra β(B) is reflexive. Also by Theorem 2.8 the algebras A, β(B) are TRO
equivalent. Now Theorem 1.3 shows that the lattice Lat(β(B)) is a CSL.

Although ∆-equivalent algebras are not necessarily TRO-equivalent, even
when they are reflexive, in CSL algebras this is indeed the case:

THEOREM 3.2. Two CSL algebras are ∆-equivalent if and only if they are TRO-
equivalent.

Proof. TRO-equivalent algebras are ∆-equivalent (Theorem 1.7). For the
converse, suppose that the CSL algebras A and B are ∆-equivalent. By the pre-
vious proposition there exists a completely isometric normal representation β of
B such that the algebras A and β(B) are TRO equivalent. Since β(B) is a CSL
algebra, as just shown, it is easily checked that β(Lat(B)) = Lat(β(B)) and
β(∆(B)′) = (∆(β(B)))′. It follows (Theorem 1.3) that the algebras B and β(B)
are TRO equivalent. The conclusion is a consequence of the fact that TRO equiv-
alence is an equivalence relation (Theorem 2.3 in [5]).

REMARK 3.3. (i) Suppose that A and B are separably acting CSL algebras
with totally atomic lattices. By the previous theorem and Theorem 5.3 of [5] they
are ∆-equivalent if and only if they have isomorphic lattices. Two separably
acting nest algebras are ∆-equivalent if and only if their lattices are isomorphic
through a lattice isomorphism which respects the continuous parts of the nests.
This can be concluded from Theorem 5.6 of [5].

(ii) If two nests are isomorphic, their nest algebras are not always ∆-equivalent,
even if they have isomorphic diagonals (see Example 3.7).

PROPOSITION 3.4. If A is a nonsynthetic CSL algebra there exists no isometric
normal representation α : Amin → B(H) such that α(Amin) is a CSL algebra. It follows
from Proposition 3.1 that the algebra Amin cannot be ∆-equivalent to any CSL algebra.

Proof. Let A be a nonsynthetic CSL algebra, H a Hilbert space and α :
Amin → B(H) be a w∗-continuous isometric homomorphism such that B ≡
α(Amin) is a CSL algebra. Since A equals Ref(Amin) and Lat(A) ⊂ Amin we
can check that α(Lat(A)) = Lat(B). From Theorem 4.7 of [5] the algebra B is
not synthetic, so the algebra Bmin is strictly contained in B. Thus the algebra
α−1(Bmin) is strictly contained in Amin. This is a contradiction because ∆(A) ⊂
α−1(Bmin), Lat(A) = Lat(α−1(Bmin)) and the algebra Amin is the smallest w∗-
closed subalgebra of A with these properties ([1], [12]).

We will prove that similar nest algebras [4] have equivalent categories. So
we fix nestsN1,N2 acting on the separable Hilbert spaces H1, H2 respectively and
an order isomorphism θ : N1 → N2 which preserves dimension of intervals. We
say that an invertible operator T ∈ B(H1, H2) implements θ if θ(N) is the projection
onto TN(H1) for all N ∈ N1. Define the spaces

U = {T ∈ B(H1, H2) : θ(N)⊥TN = 0 for all N ∈ N1},
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V = {S ∈ B(H2, H1) : N⊥Sθ(N) = 0 for all N ∈ N1}.

If A = Alg(N1) and B = Alg(N2), one verify easily that

VU ⊂ A, UV ⊂ B, BUA ⊂ U , AVB ⊂ V .

We will need the Similarity Theorem ([4], Theorem 13.20).

THEOREM 3.5 (Davidson). For every ε > 0 there exists an invertible operator T
which implements θ such that ‖T‖ < 1 + ε, ‖T−1‖ < 1 + ε.

PROPOSITION 3.6. There exists an equivalence functor FU : AM→ BM which
is normal and completely isometric.

Proof. Let (H, α) ∈ AM. We define the following seminorm on the algebraic
tensor product U ⊗ H :∥∥∥ n

∑
i=1

Ti ⊗ xi

∥∥∥ = sup
S∈Ball(V)

∥∥∥ n

∑
i=1

α(STi)(xi)
∥∥∥.

This seminorm satisfies the parallelogram identity. LetFU (H) be the correspond-
ing Hausdorff completion of U ⊗ H and identify every T ⊗ x with its image in
FU (H). If B ∈ B, T1, . . . , Tm ∈ U , x1, . . . , xm ∈ H we can check that∥∥∥ m

∑
j=1

BTj ⊗ xj

∥∥∥
FU (H)

6 ‖B‖
∥∥∥ m

∑
j=1

Tj ⊗ xj

∥∥∥
FU (H)

.

The map T ⊗ x → BT ⊗ x, B ∈ B, T ∈ U , x ∈ H extends to a map β(B) ∈
B(FU (H)) and clearly β is a unital algebraic homomorphism. As in Proposi-
tion 2.7 of [6] we can prove that the map β : B → B(FU (H)) is w∗-continuous.
It follows from Corollary 20.17 of [4] that β is a complete contraction and hence
(FU (H), β) ∈ BM. In order to define a functor FU : AM → BM we have to
define the map

FU : HomA(H1, H2)→ Hom B(FU (H1),FU (H2))

for every pair of objects (Hj, αj), j = 1, 2. If F ∈ HomA(H1, H2), then∥∥∥∑
i

Ti ⊗ F(xi)
∥∥∥
FU (H2)

= sup
S∈Ball(V)

∥∥∥∑
i

α2(STi)F(xi)
∥∥∥

= sup
S∈Ball(V)

∥∥∥F ∑
i

α1(STi)(xi)
∥∥∥ 6 ‖F‖

∥∥∥∑
i

Ti ⊗ xi

∥∥∥
FU (H1)

.

So we can define a map FU (F) ∈ B(FU (H1),FU (H2)) by the formula

FU (F)(T ⊗ x) = T ⊗ F(x), T ∈ U , x ∈ H1.

It is easy to check that FU (F) ∈ Hom B(FU (H1),FU (H2)). The definition of the
functor FU is complete. Symmetrically we can define a functor FV : BM→ AM.
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Now fix (H, α) ∈ AM with corresponding object (FU , β). If Si ∈ V , Ti ∈
U , xi ∈ H, i = 1, . . . , r, then∥∥∥ r

∑
i=1

Si ⊗ (Ti ⊗ xi)
∥∥∥
FVFU (H)

= sup
U∈Ball(U )

∥∥∥ r

∑
i=1

β(USi)(Ti ⊗ xi)
∥∥∥
FU (H)

= sup
U∈Ball(U )

∥∥∥ r

∑
i=1

USiTi ⊗ xi

∥∥∥
FU (H)

= sup
U∈Ball(U )

sup
V∈Ball(V)

∥∥∥ r

∑
i=1

α(VU)α(SiTi)(xi)
∥∥∥

H

6
∥∥∥ r

∑
i=1

α(SiTi)(xi)
∥∥∥

H
.

By Theorem 3.5 for arbitrary ε > 0 we can choose T ∈ U such that T−1 ∈ V and
‖T‖ < 1 + ε, ‖T−1‖ < 1 + ε. By the definition of the norm ‖ · ‖FVFU (H) we have∥∥∥ r

∑
i=1

Si ⊗ (Ti ⊗ xi)
∥∥∥
FVFU (H)

>
∥∥∥ r

∑
i=1

α
( T−1

‖T−1‖
T
‖T‖SiTi

)
(xi)

∥∥∥
>

1
(1 + ε)2

∥∥∥ r

∑
i=1

α(SiTi)(xi)
∥∥∥.

Letting ε→ 0 we obtain∥∥∥ r

∑
i=1

Si ⊗ (Ti ⊗ xi)
∥∥∥
FVFU (H)

>
∥∥∥ r

∑
i=1

α(SiTi)(xi)
∥∥∥

and hence equality holds. It follows that we can define a unitary

UH : FVFU (H)→ H : UH(S⊗ (T ⊗ x)) = α(ST)(x), S ∈ V , T ∈ U , x ∈ H.

One can now easily check that the family of unitary operators {UH : H ∈ AM}
implements the required equivalence. The proofs of the facts that the functor FU
is normal and completely isometric are similar to Lemmas 3.4, 3.5 of [6] so we
omit them.

In spite of the last proposition, we show in the following example that the
similarity of nest algebras does not imply ∆-equivalence even in the case of iso-
morphic diagonals.

EXAMPLE 3.7. In Examples 13.25, 13.22 of [4] there exist similar nestsN1,N2
acting on separable Hilbert spaces H1, H2 respectively, such that the algebra N ′′1
is a totally atomic maximal abelian selfadjoint algebra (masa) and the algebraN ′′2
is a masa with the property that the algebra N ′′2 |N(H2) has nontrivial continuous
part for every nonzero projection N ∈ N2. We define the nests

M1 = {0⊕ N : N ∈ N1} ∪ {N ⊕ H1 : N ∈ N2} ⊂ B(H2 ⊕ H1),

M2 = {0⊕ N : N ∈ N2} ∪ {N ⊕ H2 : N ∈ N1} ⊂ B(H1 ⊕ H2).
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These nests are similar too.
So by the previous proposition if A = Alg(M1),B = Alg(M2) the cate-

gories AM, BM are equivalent. Observe that the diagonals of these algebras are
isomorphic because ∆(A) = N ′′2 ⊕N ′′1 and ∆(B) = N ′′1 ⊕N ′′2 . The algebras A
and B are not ∆-equivalent because if they were by Theorem 3.2 they would be
TRO equivalent. So by Theorem 1.3 there would exist a ∗-isomorphism

π : ∆(A)→ ∆(B) such that π(M1) =M2.

Since the diagonals are masas this map is unitarily implemented ([8],
Theorem 9.3.1). Now there are two possibilities: either π(0⊕ IH1) = 0⊕ N for
some N ∈ N2 in which case the algebras N ′′1 and N ′′2 |N(H2) are unitarily equiva-
lent, or π(0⊕ IH1) = M⊕ IH2 for some M ∈ N1 in which case the algebras N ′′1
and N ′′1 |M(H1) ⊕N

′′
2 are unitarily equivalent. This is a contradiction because in

both cases the first algebra is totally atomic but the second one is not.
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