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1. INTRODUCTION

The crossed product A o X of a C∗-algebra A by a Hilbert C∗-bimodule X
was introduced in [2] and shown to be a generalization of the crossed product
by an automorphism. There is an obvious generalization of the dual action to
this context, which raises the question of whether there is an analog of Takai
duality [12]. We show in this work that when X is an A-A Morita equivalence
bimodule, that is, when it is a full Hilbert C∗-module both on the left and the
right, then the double crossed product A o X oδ Z is Morita equivalent to the
C∗-algebra A. Namely, if EX denotes the right Hilbert C∗-module over A defined
by EX =

⊕
n∈Z

X⊗n, then we identify A o X oδ Z with K(EX), the C∗-algebra of

compact operators on EX , and we describe the double dual action onK(EX). Our
proof heavily relies on the universal properties of the crossed products by an
automorphism and by a Hilbert C∗-bimodule, much as in [10].

This work is organized as follows. After establishing some preliminary re-
sults and notation in Section 2, we introduce in Section 3 representations on the
crossed product A o X induced by representations on A. Section 4 is devoted to
the discussion of certain actions of amenable locally compact groups on A o X
that leave A and X invariant. We show that the crossed product of A o X by
an action of this kind can be written as the crossed product of a C∗-algebra by a



20 BEATRIZ ABADIE

Hilbert C∗-bimodule. These results enable us to represent, in Section 5, the dou-
ble crossed product A o X oδ Z as adjointable operators on EX . When X is a
Morita equivalence bimodule this representation turns out to be an isomorphism
onto K(EX). This yields the Morita equivalence between A o X oδ Z and A.

2. PRELIMINARIES

We next establish our basic notation concerning Hilbert C∗-modules and
bimodules. We refer the reader to [8] for further details.

Let X and Y be right Hilbert C∗-modules over a C∗-algebra A. We denote by
L(X, Y) the space of adjointable maps from X to Y and by K(X, Y) the space of
compact operators, that is, the closed subspace spanned by {θy,x : x ∈ X, y ∈ Y},
where θy,x : X → Y is given by θy,x(z) = y〈x, z〉. We will also use the nota-
tion above when X and Y are Hilbert C∗-bimodules, thus viewing them as right
Hilbert modules. Undecorated inner products will always denote right inner
products.

Throughout this work we consider Hilbert C∗-bimodules in the sense of
[4]. That is, a Hilbert C∗-bimodule X over a C∗-algebra A consists of a vector
space X which is both a right and a left Hilbert C∗-module over A and satisfies
〈x, y〉Lz = x〈y, z〉R and (ax)b = a(xb), for all x, y, z ∈ X and a, b ∈ A. Note that
then both the left and the right action of A on X are adjointable. In fact, for all
x, y, z ∈ X and a ∈ A we have:

〈xa, y〉Lz = xa〈y, z〉R = x〈ya∗, z〉R = 〈x, ya∗〉Lz,

and analogously for the action on the left. This shows that Hilbert C∗-bimodules
are Hilbert bimodules as those discussed in [9] or [7].

Let X and Y be Hilbert C∗-bimodules over the C∗-algebras A and B, respec-
tively. A morphism of Hilbert C∗-bimodules

(φA, φX) : (A, X)→ (B, Y)

consists of a ∗-homomorphism φA : A → B and a linear map φX : X → Y such
that, for all x, y ∈ X and a ∈ A,

φX(ax) = φA(a)φX(x), φX(xa) = φX(x)φA(a),

〈φX(x), φX(y)〉L = φA(〈x, y〉L), and 〈φX(x), φX(y)〉R = φA(〈x, y〉R).

REMARK 2.1. The map φX is norm decreasing, and it is isometric when φA
is, since

‖φX(x)‖2 = ‖〈φX(x), φX(x)〉‖ = ‖φA(〈x, x〉)‖ 6 ‖〈x, x〉‖ = ‖x‖2.

A representation of (A, X) on a C∗-algebra B consists of a morphism

(φA, φX) : (A, X) −→ (B, B)

where B is viewed as a Hilbert C∗-bimodule over itself in the usual way.
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The crossed product A o X is ([2]) the universal C∗-algebra carrying a rep-
resentation (iA, iX) of (A, X). Besides, the maps iA and iX are isometric ([2], 2.10),
and A o X is generated as a C∗-algebra by the images of iA and iX . The crossed
product A o X carries an action of S1, called the dual action, which is the identity
on iA(A) and is given by iX(x) 7→ λiX(x) for x ∈ X and λ ∈ S1. Moreover, iA(A)
and iX(X) are the fixed-point subalgebra and the first spectral subspace of the
dual action, respectively (see 3 of [2]). A discussion of the connections between
A o X and the Cuntz–Pimsner C∗-algebra OX defined in [9] can be found in [3].

REMARK 2.2. Let (φA, φX) : (A, X) −→ (B, Y) be a morphism of Hilbert
C∗-bimodules. Then there is a unique ∗-homomorphism

φA o φX : A o X −→ B o Y

such that the diagram

A o X
φAoφX−−−−→ B o Y

(iA ,iX)
x x(iB ,iY)

(A, X)
(φA ,φX)−−−−→ (B, Y)

commutes. The map φA o φX is injective when φA is, and it is surjective if φA and
φX are.

Besides, the correspondence (A, X)7→AoX, (φA, φX)7→φAoφX is functorial.

Proof. Since (iB ◦ φA, iY ◦ φX) is a representation of (A, X) on B o Y, the exis-
tence and the uniqueness of φA o φX : A o X −→ B o Y follow from the universal
property of A o X.

The map φA o φX is covariant for the dual actions of S1 on A o X and B o Y
respectively, so it is injective if and only if it is injective when restricted to the
fixed-point algebra ([5], 2.9), that is, when φA is injective. When φA and φX are
surjective, the image of φA o φX contains B and Y, so it is all of B o Y. The last
statement is apparent.

When X and Y are Hilbert C∗-bimodules over A and x ∈ X, we denote by
Tx ∈ L(Y, X⊗Y) the creation operator defined by Tx(y) = x⊗ y, for y ∈ Y.

The following facts are well known and easy to check, for a ∈ A, x, x0, x1 ∈
X and y ∈ Y:

Tax(y) = aTx(y), Txa(y) = Tx(ay);(2.1)

‖Tx‖ 6 ‖x‖, T∗x0
(x⊗ y) = 〈x0, x〉Ry;(2.2)

Tx0 T∗x1
(x⊗ y) = 〈x0, x1〉Lx⊗ y and T∗x0

Tx1(y) = 〈x0, x1〉Ry.(2.3)

DEFINITION 2.3. Let X be a Hilbert C∗-bimodule over the C∗-algebra A,
x ∈ X, and let n be a non-negative integer. We denote by Tn

x the map Tn
x ∈

L(X⊗n, X⊗n+1) described above, where X and X ⊗ A are identified in the usual
way when n = 0.
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When n < 0, X⊗n denotes (X̃)⊗−n, X̃ being the dual bimodule of X as
defined in [11]. That is, X̃ is the conjugate vector space of X and carries the A-
Hilbert C∗-bimodule structure given by

a · x̃ = x̃a∗, x̃ · a = ã∗x, 〈x̃, ỹ〉L = 〈x, y〉R, 〈x̃, ỹ〉R = 〈x, y〉L,

where x̃ denotes the element x ∈ X viewed as an element of the dual bimodule
X̃. For negative values of n we define

Tn
x := (T−n−1

x̃ )∗.(2.4)

Thus, for n < 0,

Tn
x (x̃1 ⊗ x̃2 ⊗ · · · ⊗ x̃−n) = 〈x, x1〉L x̃2 ⊗ · · · ⊗ x̃−n,(2.5)

(Tn
x )∗(x̃1 ⊗ x̃2 ⊗ · · · ⊗ x̃−n−1) = x̃⊗ x̃1 ⊗ x̃2 ⊗ · · · ⊗ x̃−n−1.(2.6)

Let Ln denote the left action of A on X⊗n for n ∈ Z. It follows from equations
(2.1)–(2.3) for n > 0, and from some straightforward maneuvering and equations
(2.5) and (2.6) for n < 0, that, for all n ∈ Z, a ∈ A, and x, y ∈ X,

Tn
ax = Ln+1

a Tn
x , Tn

xa = Tn
x Ln

a ;(2.7)

(Tn
x )(Tn

y )∗ = Ln+1
〈x,y〉L

, (Tn
x )∗(Tn

y ) = Ln
〈x,y〉R .(2.8)

Throughout this work we will denote by EX the right A-Hilbert C∗-module

defined by EX =
+∞⊕
−∞

X⊗n.

REMARK 2.4. We will often viewL(X⊗n, X⊗m) as a closed subspace ofL(EX)
by means of the isometric linear map in,m : L(X⊗n, X⊗m) → L(EX) given by the
following, for T ∈ L(X⊗n, X⊗m), η ∈ EX , and k ∈ Z:

[(in,mT)(η)](k) = δm(k)T(η(n)).

Note that

in,m(T)∗ = im,n(T∗), and im,p(S) ◦ in,m(T) = in,p(S ◦ T).

Besides,
in,m(θu,v) = θuδm ,vδn ,

so under this identification K(X⊗n, X⊗m) ⊂ K(EX).

3. INDUCED REPRESENTATIONS ON CROSSED PRODUCTS

We discuss in this section certain representations of A o X that are induced
from representations of A.

Let X be a Hilbert C∗-bimodule over A, and let EX be the right Hilbert C∗-
module defined at the end of Section 2.
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We define (ΛA, ΛX) : (A, X) → L(EX) by the following, for a ∈ A, x ∈ X,
η ∈ EX , and T(n)

x as in Definition 2.3:

[ΛA(a)(η)](n) = Ln
a (η(n)), [ΛX(x)(η)](n) = T(n−1)

x (η(n− 1)).(3.1)

It is easily checked that (ΛX(x)∗(η))(n) = (Tn
x )∗(η(n + 1)). It follows from

equations (2.7) and (2.8) that (ΛA, ΛX) is a representation on L(EX) and induces
the following ∗-homomorphism as in Remark 2.2:

Λ := ΛA ×ΛX : A o X −→ L(EX).

PROPOSITION 3.1. Let A, X and Λ : A o X −→ L(EX) be as above. For λ ∈ S1,
let Uλ be the unitary operator on EX defined by

(Uλη)(n) = λnη(n),

for η ∈ EX , n ∈ Z. Then:
(i) Conjugation by Uλ defines a strongly continuous action β of S1 on the image of Λ.

(ii) The map Λ is injective and covariant for the dual action and β.

Proof. It is easily checked that the map λ 7→ Uλ is a group homomorphism
from S1 to the unitary group of L(EX) and that, for all x ∈ X and a ∈ A,

UλΛA(a)U∗λ = ΛA(a), UλΛX(x)U∗λ = λΛX(x).(3.2)

On the other hand, the set

{T ∈ L(EX) : λ 7→ UλTU∗λ is continuous on S1}

is a C∗-algebra of L(EX). Therefore, since A o X is generated as a C∗-algebra by
iA(A) and iX(X), conjugation by Uλ defines a strongly continuous action β of S1

on the image of Λ. An analogous reasoning, together with equation (3.2), shows
that Λ is covariant for β and the dual action on A o X. Finally, since the restriction
ΛA of Λ to the fixed-point subalgebra is injective, so is Λ by 2.9 of [5].

REMARK 3.2. If A o X is viewed as the cross-sectional C∗-algebra of a Fell
bundle as in 2.9 of [2], then Λ is, in the terminology of [6], the left regular repre-
sentation and its injectivity follows from [6] and the amenability of Z.

DEFINITION 3.3. Let X be a Hilbert C∗-bimodule over a C∗-algebra A. A
non-degenerate representation π of A on a Hilbert space H gives rise to the rep-
resentation Λ⊗ idH of A o X on the Hilbert space EX ⊗π H. We will refer to
Λ⊗ idH as the representation of A o X induced by π.

REMARK 3.4. For α ∈ Aut(A) let Aα be the A-Hilbert C∗-bimodule consist-
ing of A as a vector space with structure defined by

a · x = ax, x · a = xα(a), 〈x, y〉L = xy∗ and 〈x, y〉R = α−1(x∗y),
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for a ∈ A and x, y ∈ Aα. It was shown in 3.2 of [2] that there is an isomorphism
J : A o Aα → A oα Z given by

J(iA(a)) = aδ0 ∈ Cc(Z, A) and J(iX(x)) = xδ1 ∈ Cc(Z, A),(3.3)

for a ∈ A and x ∈ Aα. Denote by In : (Aα)⊗n → A, n ∈ Z the map defined by
In(a1 ⊗ · · · ⊗ an) = α−n(a1)α−n+1(a2) · · · α−1(an) for n > 0;
In = idA, for n = 0;
In(ã1 ⊗ · · · ⊗ ã−n) = α−n−1(a∗1)α−n−2(a∗2) · · · α(a∗−n), for n > 0.

Straightforward computations show that In is a homomorphism of right Hilbert
C∗-modules over A and that, for all a ∈ A, x ∈ Aα and c ∈ (Aα)⊗n,

In(Ln(a)(c)) = α−n(a)In(c),(3.4)

In+1(Tn
x (c)) = α−(n+1)(x)In(c).(3.5)

Now, given a non-degenerate representation π of A on a Hilbert space H,
we define U : EX ⊗π H → l2(Z, H) by

[U(η ⊗ h)](n) = π[In(η(n))](h),

for X = Aα, η ∈ EX , h ∈ H, and n ∈ Z. Note that U extends to a unitary operator
because, for ηi, ξ j ∈ EX and hi, k j ∈ H,〈

U
( p

∑
i=1

ηi⊗hi

)
, U
( q

∑
j=1

ξ j⊗k j

)〉
=∑

i,j,n
〈π[In(ηi(n))](hi), π[In(ξ j(n))](k j)〉

=∑
i,j
〈hi, π(〈ηi, ξ j〉R)(k j)〉=

〈
∑

i
ηi⊗hi, ∑

j
ξ j⊗k j

〉
.

Let now πα × λ denote the representation of A oα Z on l2(Z, H) induced by
π. That is, πα × λ is the integrated form of the covariant pair (πα, λ) defined by

[(πα(a))(ξ)](n) = [π(α−n(a))](ξ(n)), (λkξ)(n) = ξ(n− k),

for ξ ∈ l2(Z, H). Then the following diagram commutes for all φ ∈ A o Aα and J
as in equation (3.3):

EX ⊗π H U−−−−→ l2(Z, H)

(Λ⊗idH)(φ)
y y(πα×λ)J(φ)

EX ⊗π H U−−−−→ l2(Z, H) .
It suffices to check this statement for φ = iA(a) and φ = iX(x), for a ∈ A

and x ∈ Aα, which follows from equations (3.4) and (3.5) above.

REMARK 3.5. Let X be a Hilbert C∗-bimodule over A, and let π be a non-
degenerate representation of A on a Hilbert space H. Denote by V : A⊗π H →
H the unitary operator defined by V(a ⊗ h) = π(a)(h). Let i be the isometric
embedding of A ⊗π H into EX ⊗π H given by i(a ⊗ h) = aδ0 ⊗ h, and let S :
H −→ EX ⊗π H be the isometry defined by S = i ◦V∗.
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Then the following diagram commutes for all a ∈ A:

H S−−−−→ EX ⊗π H

π(a)
y y(Λ⊗idH)(iA(a))

H S−−−−→ EX ⊗π H .
Proof. Straightforward computations prove the statement.

PROPOSITION 3.6. Let X be a Hilbert C∗-bimodule over A, and let π be a faithful
non-degenerate representation of A on a Hilbert space H. Then the induced representa-
tion Λ⊗ idH on EX ⊗π H is faithful.

Proof. Let β denote the strongly continuous action of S1 on the image of Λ

defined in Proposition 3.1. Then β⊗ id is a strongly continuous action of S1 on
the image of Λ⊗ idH . Besides, by Proposition 3.1 (ii), Λ⊗ idH is covariant for the
dual action δ and β⊗ id.

Thus, by 2.9 of [5], it suffices to show that Λ⊗ id is injective on the fixed-
point subalgebra iA(A). This last fact follows from Remark 3.5 and the injectivity
of π.

4. COVARIANT ACTIONS ON CROSSED PRODUCTS

Throughout this section all integrals over groups are taken with respect to
Haar measure.

DEFINITION 4.1. Let G be a locally compact group, and let X be a Hilbert
C∗-bimodule over a C∗-algebra A. A strongly continuous covariant action (αA, αX)
of G on (A, X) consists of a strongly continuous action αA of G on A and a group
homomorphism αX from G to the group of invertible linear maps on X such that:

(i) The map t −→ (αX)t(x) is continuous on G for all x ∈ X.
(ii) The pair ((αA)t, (αX)t) is an isomorphism of Hilbert C∗-bimodules for all

t ∈ G.

REMARK 4.2. For (αA, αX) as above, the maps (αX)t in Definition 4.1 are
isometric for all t ∈ G, by Remark 2.1.

REMARK 4.3. Let X be a Hilbert C∗-bimodule over a C∗-algebra A and let
(αA, αX) be a strongly continuous action of a locally compact group G on (A, X).
Then αt := (αA)t o (αX)t defines a strongly continuous action α of G on A o X.

Proof. It follows from Remark 2.2 that t 7→ αt is a group homomorphism
from G to Aut(A o X). Since ‖αt‖ = 1 for all t ∈ G, the set {c ∈ A o X : t 7→
αt(c) is continuous} is a C∗-subalgebra of A o X containing iA(A) and iX(X),
which shows that α is strongly continuous.
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REMARK 4.4. Let f be in Cc(G, X) for a locally compact group G and a
Hilbert C∗-bimodule X over a C∗-algebra A. By identifying X with its isomet-
ric copy iX(X) in A o X, we view f as an A o X-valued map. Thus the integral∫
G

f dµ has its usual meaning. Notice that this integral belongs to iX(X), since it

can be approximated by sums
n
∑
1

ci f (ti), for ci ∈ C and ti ∈ G. This is the way we

will view
∫
G

f dµ as an element of X throughout this work.

The same procedure could be followed in order to view A-valued functions
as being A o X-valued. The integral does not depend on the approach, since the
restriction to A of a non-degenerate faithful representation of A o X is again a
non-degenerate faithful representation.

PROPOSITION 4.5. Let X be a Hilbert C∗-bimodule over A, and let α be the
strongly continuous action on A o X induced by a covariant action (αA, αX) of an
amenable locally compact group G on (A, X).

Let iA and iX be the embeddings of A and X, respectively, in A o X. Then the map
that sends φ ∈ Cc(G, iA(A)) to i−1

A ◦ φ and f ∈ Cc(G, iX(X)) to i−1
X ◦ f extends to an

isomorphism from (A o X) oα G to (A oαA G) o Y, where Y is the Hilbert C∗-bimodule
over A oαA G consisting of the completion of Cc(G, X) with the structure defined by

(φ f )(t) =
∫
G

φ(u)(αX)u[ f (u−1t)]du, ( f φ)(t) =
∫
G

f (u)(αA)u[φ(u−1t)]du,

〈 f , g〉L(t) =
∫
G

∆(t−1u)〈 f (u), (αX)t[g(t−1u)]〉Ldu and

〈 f , g〉R(t) =
∫
G

(αA)u−1〈 f (u), g(ut)〉Rdu,

where f , g ∈ Cc(G, X), φ ∈ Cc(G, A), and ∆ denotes the modular function on G.

Proof. Let σ denote the dual action of S1 on A o X. Note that σ and α com-
mute, since so do their restrictions to the images of iA and iX . Therefore ([1],
1.2) σ induces an action γ of S1 on (A o X) oα G given by the following, for
φ ∈ Cc(G, A o X), t ∈ G, and λ ∈ S1:

[γλ(φ)](t) = σλ[φ(t)].

Let B0 and B1 be the closures in (A o X) oα G of the sets of functions in
Cc(G, A o X) whose image lies, respectively, in iA(A) and iX(X). We next show
that B0 and B1 are the fixed-point subalgebra and the first spectral subspace, re-
spectively, for the action γ. We will then prove that the action γ is semi-saturated
and that (B0, B1) and (A oαA G, Y) are isomorphic as Hilbert C∗-bimodules. At
this point the statement will follow from 3.1 of [2].
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Let Pn denote the nth spectral projection for the action γ, that is,

Pn(c) =
∫
S1

λ−nγλ(c)dλ.

The nth spectral subspace of (A o X) oα G is the image of Pn, so we will show
that Im Pi = Bi, for i = 0, 1. It is clear that the restriction of Pi to Bi is the identity
map, so Im Pi ⊃ Bi, for i = 0, 1.

Let φ ∈ Cc(G, A o X) be such that for some n > 1

φ(t) = iX(x1(t))iX(x2(t)) · · · iX(xn(t)),

where xi(t) ∈ X for all t ∈ supp φ. Then γλ(φ) = λnφ, and Pi(φ) = 0, for i = 0, 1.
Analogously, Pi(φ) = 0 for i = 0, 1 if φ ∈ Cc(G, A o X) is such that for some
n > 0 we have the following (for all t ∈ supp φ):

φ(t) = iX(x1(t))∗iX(x2(t))∗ · · · iX(xn(t))∗.

Let C denote the dense ∗-subalgebra of A o X generated by {iA(A), iX(X)}.
Given φ ∈ Cc(G, A o X) and ε > 0, let U be a precompact open set containing
supp φ, and let ε′ = ε/µ(U), µ being Haar measure.

For each t ∈ supp φ choose ct ∈ C and a neighborhood Nt ⊂ U of t such
that ‖φ(s)− ct‖ < ε′ for all s ∈ Nt. Let {Nti} be a finite subcovering of supp φ

and {hi} a partition of unity subordinate to it. Then
∥∥∥φ − ∑

i
hicti

∥∥∥
(AoX)oαG

6∥∥∥φ−∑
i

hicti

∥∥∥
L1(G,AoX)

< ε.

Therefore Pi(φ) ∈ Bi, and (for i = 0, 1)

Pi((A o X) oα G) ⊂ Pi(Cc(G, A o X)) ⊂ Bi.

We next show that γ is semi-saturated, i.e. that (A o X) oα G is generated
as a C∗-algebra by B0 and B1. As above, any function in Cc(G, A o X) can be
approximated by finite sums ∑ fi, where either fi or f ∗i is of the form

f (t) = h(t)iA(x0)iX(x1)iX(x2) · · · iX(xn),

for h ∈ Cc(G), n > 0, x0 ∈ A, and x1, x2, . . . , xn ∈ X. Therefore it suffices to show
that these maps belong to C∗(B0, B1). We show this by induction on n. Note that
the result holds for n = 0, 1.

Given ε > 0 and f as above for n > 1, let V be a neighborhood of e in G
such that ‖h(t)xn − h(s−1t)(αX)s(xn)‖ < ε for all t ∈ supp h and s ∈ V. Let
λ ∈ Cc(G) be a positive function such that supp λ ⊂ V and

∫
G

λ = 1. We now set

k(t) = h(t)iX(xn) and g(t) = λ(t)y, where y = iA(x0)iX(x1)iX(x2) · · · iX(xn−1),
so that g, k ∈ C∗(B0, B1).

Then

‖ f (t)− (gk)(t)‖=
∥∥∥ ∫

G

λ(s)y[h(t)iX(xn)− h(s−1t)iX((αX)s(xn)]ds
∥∥∥<‖y‖ε.
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Thus Cc(G, A o X) ⊂ C∗(B0, B1), and γ is semi-saturated.
We now show that B0 is isomorphic to A oαA G. Let jAoX and jG denote the

canonical inclusions of A o X and G in the multiplier algebra of (A o X) oα G,
respectively. The non-degenerate ∗-homomorphism jAoX ◦ iA is non-degenerate
and the pair

(jAoX ◦ iA, jG) : (A, G) −→ M((A o X) oα G)

is covariant for the system (A, G, αA). Therefore it induces, as in Proposition 2
of [10], a ∗-homomorphism J : A oαA G −→ (A o X) oα G such that (Jφ)(t) =
iA(φ(t)) for all φ ∈ Cc(G, A). This shows that the image of J is B0, and it remains
to prove that J is one-to-one.

Let π be a non-degenerate faithful representation of A on a Hilbert space
H, and let π̃ := Λ⊗ idH be the representation of A o X on EX ⊗π H induced
by π as in Definition 3.3. Denote by θ the representation of (A o X) oα G on
L2(G, EX ⊗π H) induced by π̃.

Let V be the unitary operator from A ⊗π H to H defined in Remark 3.5.
Note that A⊗π H ⊂ EX ⊗π H is invariant under π̃(iA(a)) for all a ∈ A and that

Vπ̃(iA(a))V∗ = π(a) for all a ∈ A,

because for a, b ∈ A and h ∈ H

Vπ̃(iA(a))V∗(π(b)h) = V(ab⊗ h) = π(a)(π(b)h).

Fix now ξ ∈ L2(G, H) and φ ∈ Cc(G, A) ⊂ A oαA G. Then V∗ ◦ ξ ∈
L2(G, A⊗π H) ⊂ L2(G, EX ⊗π H), and

(θJ(φ)(V∗ ◦ ξ))(r) =
∫
G

π̃[αr−1(J(φ)(t))]V∗[ξ(t−1r)]dt

= V∗
( ∫

G

π[(αA)r−1(φ(t))](ξ(t−1r))
)

dt = [V∗π0(φ)(ξ)](r),

for all r ∈ G, where π0 denotes the representation of A oαA G on L2(G, H) in-
duced by π. Thus,

‖J(φ)‖ = ‖θJ(φ)‖ > ‖π0(φ)‖ = ‖φ‖,

which shows that J is isometric.
Now, B1 carries a natural structure of Hilbert C∗-bimodule over B0, both

the left and the right action consisting of multiplication, and the B0-valued inner
products being given by 〈b, c〉L = bc∗, 〈b, c〉R = b∗c. On the other hand, the map
f 7→ iX ◦ f and the isomorphism J above identify Cc(G, X) with Cc(G, iX(X)) ⊂
B1 and B0 with A oαA G, respectively. It only remains to show that under these
identifications (B0, B1) and (A oαA G, Y) agree as Hilbert C∗-bimodules. For
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f , g ∈ Cc(G, X) we have

iA[〈 f , g〉L(t)] = (iX ◦ f )(iX ◦ g)∗(t) =
∫
G

(iX ◦ f )(u)αu[(iX ◦ g)∗(u−1t)]du

=
∫
G

iX( f (u))[iX(∆(t−1u)(αX)t(g(t−1u)))]∗du

= iA

( ∫
G

∆(t−1u)〈 f (u), (αX)t[g(t−1u)]〉Ldu
)

.

The remaining cases are shown by means of similar computations.

5. THE DUALITY THEOREM

In this section we make use of the results in Proposition 4.5 in order to dis-
cuss the crossed product by the dual action on the crossed product by a Hilbert
C∗-bimodule. We establish in Theorem 5.4 conditions that ensure the Morita
equivalence between A and the double crossed product A o X oδ S1.

PROPOSITION 5.1. Let X be a Hilbert C∗-bimodule over A, and let C0(Z, X) be
the Hilbert C∗-bimodule over C0(Z, A) defined by

(φ f )(n) = φ(n) f (n), ( f φ)(n) = f (n)φ(n− 1),(5.1)

〈 f , g〉L(n) = 〈 f (n), g(n)〉L, 〈 f , g〉R(n) = 〈 f (n + 1), g(n + 1)〉R,(5.2)

for φ ∈ C0(Z, A) and f , g ∈ C0(Z, X).
Let δ denote the dual action of S1 on A o X. Then there is an isomorphism

I : (A o X) oδ S1 −→ C0(Z, A) o C0(Z, X)

such that

(I(φ))(n) =
∫
S1

λni−1
A (φ(λ))dλ and (I( f ))(n) =

∫
S1

λn−1i−1
X ( f (λ))dλ,

for φ ∈ C(S1, iA(A)) and f ∈ C(S1, iX(X)).

Proof. In the notation of Remark 4.3, δ is the action induced by (δA, δX),
where, for λ ∈ S1, (δA)λ is the identity and (δX)λ is multiplication by λ.

It follows from Proposition 4.5 that

(A o X) oδ S1 ' (A oid S1) o Y,

Y being the completion of C(S1, X) with the norm coming from the A oid S1-
Hilbert C∗-bimodule structure given by:

(φ f )(µ) =
∫
S1

λφ(λ) f (λ−1µ)dλ, ( f φ)(µ) =
∫
S1

f (λ)φ(λ−1µ)dλ;(5.3)
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〈 f , g〉L(µ) =
∫
S1

〈 f (λ), µg(µ−1λ)〉Ldλ, 〈 f , g〉R(µ) =
∫
S1

〈 f (λ), g(λµ)〉Rdλ.(5.4)

Let JA denote the isomorphism JA : A oid S1 −→ C0(Z, A) given by

(JAφ)(n) =
∫
S1

λnφ(λ)dλ,

for φ ∈ C(S1, A), and define JY on C(S1, X) by

(5.5) (JY f )(n) =
∫
S1

λn−1 f (λ)dλ.

Note that for f , g ∈ C(S1, X) we have

JA(〈 f , g〉R)(n) =
∫

S1×S1

λn〈 f (µ), g(µλ)〉Rdµ dλ =
∫

S1×S1

µ−nλn〈 f (µ), g(λ)〉Rdµ dλ

= 〈(JY( f ))(n + 1), (JY(g))(n + 1)〉R.

Therefore

lim
n
‖JY( f )(n)‖2 = lim

n
‖JA(〈 f , f 〉R)(n)‖ = 0, and

‖ f ‖2 = ‖〈 f , f 〉R‖ = ‖JA(〈 f , f 〉R)‖ = ‖〈JY( f ), JY( f )〉R‖ = ‖JY( f )‖2,

which shows that JY extends to JY : Y → C0(Z, X). In fact, JY(Y) is all of C0(Z, X),
since the Hilbert C∗-bimodule norm in C0(Z, X) is the supremum norm, JY is
linear and isometric, and JY( fx,k) = xδ1−k for x ∈ X, k ∈ Z, fx,k(λ) = λkx.

Routine computations similar to those above show that (JA, JY) is an iso-
morphism of Hilbert C∗-bimodules between (A oid S1, Y), as defined by equa-
tions (5.3) and (5.4), and (C0(Z, A), C0(Z, X))), as defined by equations (5.1) and
(5.2). Finally, it follows from Remark 2.2 that JA o JX is an isomorphism from
(A oid S1) o Y to C0(Z, A) o C0(Z, X); the isomorphism I is obtained by compos-
ing JA o JX with the isomorphism in Proposition 4.5.

PROPOSITION 5.2. Let X be a Hilbert C∗-bimodule over A, and let

(π0, π1) : (C0(Z, A), C0(Z, X)) −→ L(EX)

be defined by

[(π0φ)(η)](n) = φ(n)η(n), [(π1 f )(η)](n) = Tn−1
f (n)(η(n− 1)),

for φ ∈ C0(Z, A) and f ∈ C0(Z, X), where Tn−1
f (n) and EX are as in Definition 2.3. Then

(i) The pair (π0, π1) is a representation, so it induces a ∗-homomorphism

π : C0(Z, A) o C0(Z, X) −→ L(EX),

and Im π is the C∗-subalgebra of L(EX) generated by {Tn
x , Ln

a : n ∈ Z, x ∈ X, a ∈ A},
where Ln

a is as in Definition 2.3, and the set above is viewed as a subset of L(EX) as in
Remark 2.4.



TAKAI DUALITY FOR CROSSED PRODUCTS BY HILBERT C∗ -BIMODULES 31

(ii) The map π is injective if and only if so are the homomorphisms A 7→ L(XA) and
A 7→ L(AX) induced by the left and the right action of A on X, respectively.

(iii) The image of π contains K(EX), and it is K(EX) when X is full both as a left and
a right Hilbert C∗-module over A.

Proof. (i) In what follows φ ∈ C0(Z, A), f , g ∈ C0(Z, X), ξ, η ∈ EX , and
n ∈ Z. By virtue of equations (2.7), (2.8), (5.1), and (5.2), we have

[π1( f φ)(η)](n) = Tn−1
f (n)φ(n−1)(η(n− 1)) = Tn−1

f (n)(φ(n− 1)η(n− 1))

= [(π1 f )(π0φ)(η)](n)].

Note that, since

〈(π1 f )(η), ξ〉 = ∑
n
〈Tn−1

f (n)(η(n− 1)), ξ(n)〉R = ∑
n
〈η(n), (Tn

f (n+1))
∗(ξ(n + 1))〉R,

we have

[(π1 f )∗(ξ)](n) = (Tn
f (n+1))

∗(ξ(n + 1)).(5.6)

Therefore

[π0(〈 f , g〉R)(η)](n) = 〈 f , g〉R(n)η(n) = 〈 f (n + 1), g(n + 1)〉Rη(n)

= [(Tn
f (n+1))

∗Tn
g(n+1)](η(n)) = [((π1 f )∗(π1g))(η)](n).

The remaining properties are checked in a similar fashion. The last statement
follows from the fact that, for a ∈ A, x ∈ X, n ∈ Z,

π0(aδn) = Ln
a , π1(xδn+1) = Tn

x .

(ii) Let Uλ be the unitary operator defined in Proposition 3.1. Conjugation
by Uλ yields, as in Proposition 3.1, a strongly continuous action β of S1 on the
image of π, and π is covariant for the dual action and β.

Therefore, by 2.9 of [5], π is injective if and only if so is π0. Clearly the left
and right actions of A on X must be faithful when π is injective because they
correspond to π0 on maps supported in {1} and {−1}, respectively.

On the other hand, if the left and right actions of A on X are injective, then
so are the left and right actions of A on X⊗n for all n ∈ Z. This is shown by
induction on n for positive values of n, since a(x1 ⊗ · · · ⊗ xn) = 0 for all xi ∈ X
implies that

0 = 〈|ax1|(x2 ⊗ · · · ⊗ xn), |ax1|(x2 ⊗ · · · ⊗ xn)〉R,

for all xi ∈ X, where |ax1| = (〈ax1, ax1〉R)1/2. The equality above implies that
|ax1| = 0 for all x1 ∈ X and, consequently, that a = 0. A similar reasoning with
the left inner product yields the proof for the right action of A. It is apparent that
the statement always holds for n = 0. Finally, the case n < 0 is taken care of by
applying the results above to the dual bimodule X̃.
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Assume now that the left and right actions of A on X are faithful, and let
φ ∈ ker π0. Then

0 = ((π0φ)η) = φ(n)η(n),

for all η ∈ EX and n ∈ Z. It follows from the remarks above that φ = 0.
(iii) First note that K(EX) is generated as a C∗-algebra by the set

{θηδk ,ξδl : k, l ∈ Z, k > l, η = x1 ⊗ · · · ⊗ xk, ξ = y1 ⊗ · · · ⊗ yl}.

Notice also that for a positive integer n, x∈X, u∈X⊗n−1, and η∈EX we have

θ(x⊗u)δn ,η = Tn−1
x θuδn−1,η = π1(xδn)θuδn−1,η .

Similarly, for a positive integer m, ỹ ∈ X̃, η ∈ EX , and v ∈ X̃⊗m−1,

θη,(ỹ⊗v)δ−m = θη,vδ−m+1 π1(ỹδ−m+1).

Finally, since θa,b = π0(ab∗δ0) for all a, b ∈ A, and θη,ξ = θ∗ξ,η for all η, ξ ∈
EX , the inclusion K(EX) ⊂ Im π follows.

When X is full on the left and the right, so are the bimodules X⊗n for all
n ∈ Z, and consequently A acts by compact operators on X⊗n for all n ∈ Z.
Besides, Tn

x is compact for all n ∈ Z and x ∈ X: for n > 0 approximate x by

x′ = x0

N

∑
i=1
〈ui, vi〉AL ,

for appropriate ui, vi ∈ X⊗n. Then Tn
x gets approximated by

Tn
x′ =

N

∑
i=1

θx0⊗ui ,vi ∈ K(X⊗n, X⊗n+1).

Therefore (Tn
x )∗ is compact when n > 0, which shows, by equation (2.4), that so

is Tn
x for negative values of n. It follows from Remark 2.4 that the images of both

π0 and π1, and consequently that of π, are contained in K(EX).

REMARK 5.3. Let A, X, and π be as in Proposition 5.2 and identify (A o
X) oδ S1 and C0(Z, A) o C0(Z, X) through the isomorphism I in Proposition 5.1.
Then, when π is injective, the bidual action of Z on Im π becomes the automor-
phism σ given by

σ(Ln
a ) = Ln−1

a , σ(Tn
x ) = Tn−1

x ,

for all a ∈ A, x ∈ X, and n ∈ Z. (Notice that by part (i) of Proposition 5.2 σ is
determined by the equations above)

Proof. In the notation of Propositions 5.1 and 5.2 we have the following, for
all a ∈ A and n ∈ Z:

Ln
a = π(aδn) = π ◦ I( fn,a), where fn,a(λ) = λ−na.

Then
σ(Ln

a ) = π ◦ I(δ̂( fn,a)) = π ◦ I( fn−1,a) = Ln−1
a .
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Analogously, Tn
x = π ◦ I(gn,x) , for gn,x(λ) = λ−nx, x ∈ X, and n ∈ Z, and

σ(Tn
x ) = Tn−1

x .

THEOREM 5.4. Let X be an A-A Morita equivalence bimodule, that is, a Hilbert
C∗-bimodule over A that is full both on the left and the right. Let δ denote the dual action
of S1 on A o X. Then the crossed product (A o X) oδ S1 is Morita equivalent to A.

Namely, there is an isomorphism between (A o X) oδ S1 and K(EX) through
which the bidual action δ̂ becomes the action induced by the automorphism σ given by

σ(Ln
a ) = Ln−1

a , σ(Tn
a ) = Tn−1

x ,

for all a ∈ A, x ∈ X, and n ∈ Z.

Proof. It suffices to show the second statement, since EX is a Morita equiv-
alence bimodule between K(EX) and A. In view of Proposition 5.1, Proposi-
tion 5.2, and Remark 5.3, it only remains to notice that the left and right actions
of A on X are faithful because X is full.

COROLLARY 5.5. If X is a Morita equivalence bimodule over A, then A o X is
Morita equivalent to the crossed product (by an automorphism) K(EX) oσ Z, where σ is
the automorphism defined in Remark 5.3.

Proof. By Takai duality ([12]), A o X is Morita equivalent to A o X oδ S1 o
δ̂

Z, δ being the dual action on A o X. Now, by Theorem 5.4, A o X oδ S1 o
δ̂
Z is

isomorphic to K(EX) oσ Z.

REMARK 5.6. Let α ∈ Aut(A), so that A oα Z is isomorphic to A o X for
X = Aα as in Remark 3.4. By identifying A⊗n and A through the isomorphism
In in Remark 3.4, we get an isomorphism I of right Hilbert modules from EX to
l2(Z)⊗ A. Namely, (Iη)(n) = In(η(n)).

This isomorphism yields, in turn, an identification between K(EX) and K⊗
A which, by virtue of equations (3.4) and (3.5), maps Ln

a and Tn
x to Enn ⊗ α−n(a)

and En+1,n⊗ α−(n+1)(x), respectively, where, as usual, Eij denotes the matrix hav-
ing a 1 at its ij-entry and all other entries 0. In this setting the automorphism σ in
Theorem 5.4 becomes, as in [12], Adρ⊗ α, ρ being translation by 1.
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