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ABSTRACT. In the present paper we develop both ideas of [1] and the categor-
ical approach to multipliers from [9], [13], [14] for the introduction and study
of left multipliers of Hilbert C∗-modules. Some properties and, in particular,
the property of maximality among all strict essential extensions of a Hilbert
C∗-module for left multipliers are proved. Also relations between left essen-
tial and left strict essential extensions in different contexts are obtained. Left
essential and left strict essential extensions of matrix algebras are considered.
In the final paragraph the topological approach to the left multiplier theory of
Hilbert C∗-modules is worked out.
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1. INTRODUCTION

There are a lot of ways to include a non-unital C∗-algebra as an (essential)
ideal into unital ones. Among those extensions there is a maximal extension,
the algebra of multipliers. This object can be considered from different points of
view. Historically the first definition of this algebra arose in the context of central-
izers in [2]. There exists another definition of multipliers given via the universal
representations of C∗-algebras. This approach may be generalized for arbitrary
non-degenerated faithful representations of C∗-algebras on Hilbert C∗-modules,
cf. [9]. Besides this we can understand algebras of multipliers as the set of all ad-
jointable maps from a C∗-algebra to itself. Indeed, the latter approach is the most
suitable for a generalization of these constructions to Hilbert C∗-modules. In [1]
multipliers of Hilbert C∗-modules were introduced and their universal property
was obtained. In [16] these notions were significantly used both for a generaliza-
tion of the Kasparov stabilization theorem to the non-unital case and for an exten-
sion of the concept of module frames in Hilbert C∗-modules over non-unital C∗-
algebras as a continuation of ideas on module frame concepts explained in [4], [5].
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In the present paper we will continue both the ideas of [1] and the categor-
ical approach to multipliers from [9], [13], [14] for an introduction of a notion
of left multipliers of Hilbert C∗-modules. The text is organized in the follow-
ing way. In Section 2 we include some remarks on Hilbert C∗-modules and on
categorical constructions of (left) multipliers of C∗-algebras. In Section 3 some
properties and, in particular, the property to be a left strictly essential extension
(Theorem 3.8) and the property of maximality (Theorem 3.9) for left multipliers
of Hilbert C∗-modules are obtained. In Section 4 we study differences between
essential and strictly essential extensions both in C∗- and Banach situations. In
Section 5 left essential and left strictly essential extensions of matrix algebras are
studied and the property of their maximality is considered. Finally, Section 6 is
dedicated to the approach to the left multiplier theory considering appropriate
analogs of strict topologies.

2. PRELIMINARIES AND REMINDING

To begin with, let us remind that for a C∗-algebra A a pre-Hilbert A-module
is a (right) A-module V equipped with a semi-linear map 〈·, ·〉 : V ×V → A such
that

(i) 〈x, x〉 > 0 for all x ∈ V;
(ii) 〈x, x〉 = 0 if and only if x = 0;

(iii) 〈x, y〉∗ = 〈y, x〉 for all x, y ∈ V;
(iv) 〈x, ya〉 = 〈x, y〉a for all x, y ∈ V, a ∈ A.

The map 〈·, ·〉 is called an A-valued inner product. A norm can be defined for
any pre-Hilbert module V by the formula

‖x‖ = ‖〈x, x〉‖1/2, x ∈ V.

A pre-Hilbert A-module is a Hilbert A-module if it is complete with respect to this
norm.

Let V1, V2 be Hilbert A-modules. Then by HomA(V1, V2) we will denote the
set of all A-linear bounded operators from V1 to V2. When V1 = V2 = V we will
write EndA(V) instead of HomA(V, V).

An operator T ∈ HomA(V1, V2) admits an adjoint operator if there exists an
element T∗ ∈ HomA(V2, V1) such that

〈Tx, y〉 = 〈x, T∗y〉 for all x ∈ V1, y ∈ V2.

By End∗A(V) we denote the subset of EndA(V) consisting of operators which pos-
sess adjoint ones.

Any C∗-algebra A can be considered as a right Hilbert A-module over itself
with the inner product 〈a, b〉 = a∗b. Then the C∗-algebra M(A) of multipliers
of A can be defined as M(A) = End∗A(A) and the Banach algebra LM(A) of left
multipliers of A can be defined as LM(A) = EndA(A), cf. [6], [8], [10].
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In [13], [14] this definition has been extended to rather more general situa-
tions. Let us briefly remind these notions and results, because we will need them
later. Let B be a Banach algebra and suppose the existence of a C∗-subalgebra
A ⊆ B which is a left ideal of B.

DEFINITION 2.1. A is said to be a left essential ideal of B if one of the follow-
ing equivalent conditions holds:

(i) any non-zero two-sided ideal of B has a non-trivial intersection with A;
(ii) there does not exist any non-zero element b ∈ B such that ba = 0 for all

a ∈ A, i.e. the two-sided ideal B0 := {b ∈ B : ba = 0 for all a ∈ A} of B equals to
zero.

DEFINITION 2.2. A is said to be a left strictly essential ideal of B (and B is said
to be a left strictly essential extension of A) if the following condition holds:

(2.1) ‖b‖ = sup{‖ba‖ : a ∈ A, ‖a‖ 6 1} for all b ∈ B.

Any left strictly essential ideal is a left essential one, because the equal-
ity (2.1) implies the second condition of Definition 2.1. But the inverse statement
is not true, i.e. a left essential ideal of a Banach algebra might not be a left strictly
essential one in contradistinction to the case when B is a C∗-algebra, because in
the C∗-case both these properties of ideals coincide (see Lemma 7 of [13]). To give
an example of a Banach algebra Bwith a C∗-algebra A as a left essential ideal such
that A is not a left strictly essential ideal of B consider any non-unital C∗-algebra
A and its algebraic unitization B = A + Ce setting the norm of the identity e to a
fixed positive integer α greater than one and the norm of composite elements of
B to the sum of the norms of their two components. Then

‖e‖ = α > 1 = sup{‖ea‖ : a ∈ A, ‖a‖ 6 1}

because ‖ea‖ = ‖a‖ for any a ∈ A.
Let us remark that a Banach algebra B may contain not only the fixed C∗-

algebra A, but its isomorphic copy too as a left essential or strictly essential ideal.
In such situations we also will call B as either a left essential or a left strictly essential
extension of A.

Let A be a C∗-algebra and B be an algebra with an involution containing A
as a left essential ideal. Then the map

‖ · ‖ : B → [0, ∞)

introduced by the formula (2.1) defines a norm on B such that A is a left strictly
essential ideal of B with respect to it. But, in general, we do not require B to be
complete with respect to that norm. Let us discuss this point a bit more thor-
oughly.

THEOREM 2.3. Let A be a C∗-algebra, let B be an algebra with an involution
containing A as a left essential ideal. Then the following conditions are equivalent:

(i) B admits a structure of a C∗-algebra such that A ⊂ B is a C∗-subalgebra;
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(ii) B is complete with respect to the norm (2.1).

Proof. To start with, let us verify that (i) implies (ii). Consider the map

β : B → End∗A(A), β(b) = ba (b ∈ B, a ∈ A).

Then under our assumptions β is injective. Consequently, the map β is an isome-
try, cf. Theorem 3.1.5 of [12]. Therefore, the norm(2.1) coinsides with the C∗-norm
on B.

The inverse statement is clear.

LEMMA 2.4 ([13]). Let A, C be C∗-algebras, B be a Banach algebra, A ⊂ B be a
left ideal, E be a Hilbert C-module and ρ : A→ End∗C(E) be a non-degenerate represen-
tation of A in E. Then there is a unique extension of ρ to a morphism ρ̃ : B → EndC(E)
of Banach algebras. If in addition A is a left strictly essential ideal and ρ is injective, then
ρ̃ is an isometry.

DEFINITION 2.5. Let A, C be C∗-algebras, E be a Hilbert C-module and
ρ : A → End∗C(E) be a faithful non-degenerate representation of A in E. Then
(E, C, ρ) is an admissible for A triple.

DEFINITION 2.6. Let (E, C, ρ) be an admissible for A triple. Then the set of
left (E, C, ρ)-multipliers of A is defined as

LM(E,C,ρ)(A) = {T ∈ EndC(E) : Tρ(A) ⊂ ρ(A)}.

The standard definition of the left multipliers LM(A) of a C∗-algebra A is a
special case of Definition 2.6 corresponding to the triple (A, A, α), where

α : A→ End∗A(A), α(a)b = ab (a, b ∈ A).

DEFINITION 2.7. A left strictly essential extension B̂ of A is maximal if for
any other left strictly essential extension B of A there is an isometrical homomor-
phism from B to B̂, which acts identically on the two copies of A.

THEOREM 2.8 ([13]). For any admissible for A triple (E, C, ρ) the algebra of the
left (E, C, ρ)-multipliers is a maximal left strictly essential extension of A.

THEOREM 2.9 ([13]). The Banach algebras of left (E, C, ρ)-multipliers are isomor-
phic for all admissible for A triples (E, C, ρ), and these isomorphisms act as the identity
map on the embedded copies of A.

3. LEFT MULTIPLIERS OF HILBERT C∗-MODULES

In this section we introduce the notion of left multipliers of Hilbert C∗-
modules as a particular form of a strict essential extension of the respective Hil-
bert C∗-module. We prove the generic maximality for the left multipliers of a
Hilbert C∗-module among all of its strict essential extensions.
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DEFINITION 3.1. Let A be a C∗-algebra, let V be a Hilbert A-module. A
Banach extension of V is a triple (W,B, Φ), where:

(i) B is a Banach algebra, A ⊂ B is a left ideal;
(ii) W is a Banach B-module;

(iii) Φ : V →W is an A-linear isometric map;
(iv) ImΦ = WA := spanA{y : y ∈W}.

REMARK 3.2. The fourth condition of Definition 3.1 is an analogue of the
requirement to the representation ρ from Definition 2.6 to be non-degenerate.

DEFINITION 3.3. The Banach extension (W,B, Φ) of A is a strictly essential
one if A ⊂ B is a left strictly essential ideal and the following condition holds

(3.1) ‖y‖ = sup{‖ya‖ : a ∈ A, ‖a‖ 6 1} for all y ∈W.

EXAMPLE 3.4. For any Hilbert A-module V the triple (V, A, idV), where
idV : V → V is an identical map, is (an identical) strictly essential Banach exten-
sion of V, because for any approximative unit {eα} of A and for any x ∈ V the
net xeα converges with respect to the norm to x (see Lemma 1.3.8 of [11]). In par-
ticular, the triple (A, A, idA) is a strictly essential Banach extension of the Hilbert
A-module A.

EXAMPLE 3.5. Let A ⊂ B be a left strictly essential ideal and let us denote
this embedding by i. Let us consider B as a Banach module over itself and A as a
Hilbert module over itself. Then the triple (B,B, i) is a strictly essential extension
of A.

DEFINITION 3.6. A Banach strictly essential extension (Ŵ, B̂, Φ̂) of a Hilbert
A-module V is maximal if for any other Banach strictly essential extension
(W,B, Φ) there are an isometrical homomorphism λ : B → B̂ which is identical
on A and an isometrical linear map Λ : W → Ŵ such that it is a λ-homomorphism,
i.e.

Λ(yb) = Λ(y)λ(b) for all y ∈W, b ∈ B,

and the following diagram

W Ŵ

V

-Λ

���Φ̂@
@I
Φ

is commutative.

As a consequence Λ maps Φ(V) onto Φ̂(V) identifying both the copies of
V. If we consider only Banach algebras B which are both modules over them-
selves and left strict essential extensions of A, i.e. only Banach strictly essential
extensions of kind (B,B, i), where i denotes the embedding of A into B, then
apparently Definition 3.6 coincides with Definition 2.7.
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DEFINITION 3.7. Let V be a Hilbert module over a C∗-algebra A. Then the
set of left multipliers LM(V) of V is defined by

LM(V) := HomA(A, V).

Let us define the action of LM(A) on LM(V) by the formula

(3.2) (yb)(a) = y(b(a)), y ∈ LM(V), b ∈ LM(A), a ∈ A,

which turns the set LM(V) into a right LM(A)-module. Furthermore, define the
map Γ : V → LM(V) in the following way

(3.3) (Γ(x))(a) = xa, x ∈ V, a ∈ A.

If V = A, then, obviously, Definition 3.7 coincides with the standard definition of
the left multipliers of the C∗-algebra A. The map Γ is an isometric embedding of
V into LM(V) as a Banach A-submodule.

THEOREM 3.8. Let V be a Hilbert module over a C∗-algebra A. For LM(V)
being the set of left multipliers of V the triple (LM(V), LM(A), Γ) is a strictly essential
Banach extension of a Hilbert A-module V.

Proof. It is clear that LM(V) is a Banach LM(A)-module with respect to
the action (3.2). Beside this, A is a left strictly essential ideal in LM(A) by The-
orem 2.8. Moreover, it is a straightforward verification that the map (3.3) is an
A-module isometry and that the equality (3.1) holds. So it remains only to check
the fourth condition of Definition 3.1.

Let us choose any approximative identity {eα} in A. Then for any x ∈ V we
can write

Γ(x) = lim
α

Γ(xeα) = lim
α

Γ(x)eα

and, consequently, ImΓ ⊂ LM(V)A. To obtain the inverse inclusion let us take
any T ∈ LM(V), a ∈ A, then for all b ∈ A we have

(Ta)(b) = T(ab) = T(a)b = Γ(T(a))b,

so Ta = Γ(T(a)) and we have got the desired set coincidence ImΓ = LM(V)A.

THEOREM 3.9. Let V be a Hilbert module over a C∗-algebra A. The strictly es-
sential Banach extension (LM(V), LM(A), Γ) of any Hilbert A-module V is maximal.

Proof. Consider any other strictly essential Banach extension (W,B, Φ) of
V. An isometrical homomorphism λ : B → LM(A) which is identical on A
exists by Theorem 2.8, and, moreover, the uniqueness of this homomorphism
(cf. Lemma 2.4) is the reason why the equality λ(b)(a) = ba has to hold for all
b ∈ B, a ∈ A.

Now let us define the map Λ : W → LM(V) by the formula

Λ(y)(a) := Γ(Φ−1(y))(a) = Φ−1(ya), y ∈W, a ∈ A.
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This definition is correct because ya ∈ ImΦ and Φ is an isometry. Further, for any
y ∈W the following equalities hold due to (3.1):

‖Λy‖ = sup{‖Λ(y)(a)‖ : a ∈ A, ‖a‖ 6 1} = sup{‖ya‖ : a ∈ A, ‖a‖ 6 1} = ‖y‖.

Consequently, Λ is an isometry. The properties of Λ to be a λ-homomorphism
and to fulfil the equality ΛΦ = Γ can be derived by obvious computations.

4. ESSENTIAL AND STRICT ESSENTIAL EXTENSIONS OF HILBERT C∗-MODULES

The left strict extensions of Hilbert C∗-modules are Banach module exten-
sions over Banach algebras, in general. So a wide variety of them might occur
in particular situations in difference to the quite canonical situations appearing
in the case of multiplier modules and (two-sided) strict extensions, cf. [1]. We
start the investigation of characteristic situations with the known definition of
(two-sided) essential extensions of Hilbert C∗-modules for the situation of C∗-
extensions of the C∗-algebra of coefficients.

DEFINITION 4.1 ([1]). Let V be a Hilbert A-module over a C∗-algebra A. An
extension of V is a triple (W, B, Φ) such that:

(i) B is a C∗-algebra, A ⊂ B is an ideal;
(ii) W is a Hilbert B-module;

(iii) Φ : V →W is a map satisfying 〈Φx, Φy〉 = 〈x, y〉 for all x, y ∈ V;
(iv) ImΦ = WA.

If in addition A is an essential ideal of B, then the extension (W, B, Φ) is
called essential.

THEOREM 4.2. Let (W, B, Φ) be an essential extension of a Hilbert A-module V.
Then the mentioned extension is automatically strictly essential, i.e. the conditions (2.1),
(3.1) hold for it.

Proof. The following equalities can be established for any y ∈W, a ∈ A:

‖ya‖2 = ‖〈ya, ya〉‖ = ‖a∗〈y, y〉a‖ = ‖〈y, y〉1/2a‖2.

Any essential ideal is automatically strictly essential in the C∗-case , i.e. the prop-
erty (2.1) holds (see Lemma 7 of [13]). Therefore,

sup{‖〈y, y〉1/2a‖ : a ∈ A, ‖a‖ 6 1} = ‖〈y, y〉1/2‖ = ‖y‖

and, consequently, the desired property is obtained.

At the contrary, the results in the situation of Banach extensions of Hilbert
A-modules are completely different from the one mentioned above as the next
statement shows.
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THEOREM 4.3. For any non-unital C∗-algebra A there exists a Hilbert A-module
V and a Banach extension (W,B, Φ) of V such that A is a strictly essential ideal of B,
but the condition (3.1) does not hold.

Proof. Let us take into consideration any non-unital C∗-algebra A and put
V = A, B = A. Further let us choose W = Ã, where Ã is the C∗-algebra with an
adjoint unit equipped with the (Banach, but not C∗-) norm

‖(a, λ)‖ = ‖a‖+ |λ|, a ∈ A, λ ∈ C.

Then A will be a left essential, but not left strictly essential ideal of Ã (see Lemma 8
of [13]). Let us choose the map Φ = i to be the canonical embedding of A into Ã.
Then the condition (3.1) does not hold for the Banach extension (Ã, A, i).

Let (W,B, Φ) be a Banach extension of a Hilbert A-module V. Let us define
a closed B-submodule W0 of W by the formula

(4.1) W0 = {y ∈W : ya = 0 for all a ∈ A}.
Then the assertion W0 = {0} would be a reasonable analogue to the condition
(ii) of Definition 2.1. Let us remark in addition that W0 = {0} holds for any strict
essential Banach extensions.

REMARK 4.4. We can a bit strengthen the result of Theorem 4.3. More pre-
cisely, the example (Ã, A, i) of a Banach extension with a non-unital C∗-algebra
A from the proof of Theorem 4.3 shows that there are a Hilbert A-module V and
its Banach extension (W,B, Φ) such that A is a strictly essential ideal of B and
W0 = 0, but the condition (3.1) does not hold.

Finally, let us discuss one question, which was formulated by D. Bakić. In [1]
the set of multipliers of a Hilbert A-module V was defined as the Hilbert M(A)-
module Vd = M(V) := Hom∗(A, V). Then the question was raised whether there
exists an admissible situation, when Hilbert modules V1 and V2 over a non-unital
C∗-algebra are not isomorphic, but their modules of multipliers are isomorphic.
Let us demonstrate by example that the answer on this question is affirmative.

EXAMPLE 4.5. Let A be the C∗-algebra K(H) of all compact operators on a
separable Hilbert space H, and let B be the C∗-algebra B(H) of all bounded linear
operators on H. Consider the C∗-algebra C and two Hilbert C-modules V1 and V2
defined by

C =
(

A 0
0 B

)
, V1 =

(
A 0
0 B

)
, V2 =

(
A 0
0 A

)
.

Then V1 and V2 are not isomorphic as Hilbert C-modules, because the first one is
a full Hilbert C-module, but the second one is not. At the same time both their
sets of (two-sided, left) multipliers can be described by the Hilbert M(C)-module

M(V1) = M(V2) = LM(V1) = LM(V2) =
(

B 0
0 B

)
.
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5. ESSENTIAL AND STRICT ESSENTIAL EXTENSIONS OF MATRIX ALGEBRAS

The aim of the present section is to check to which extent an essential exten-
sion of a C∗-algebra A to a ∗-algebra B preserves the property of B to be Banach
with respect to the induced norm (2.1) for any of its finite matricial extensions
Mn(B), n > 2, with Mn(A) ⊆ Mn(B) being an essential extension of Mn(A), and
vice versa. Note, that Definition 2.1 of a left essential ideal is formulated for alge-
braic representations of the ∗-algebra A in ∗-algebras B without any reference to
topologies on both these algebras.

LEMMA 5.1. Let A be a C∗-algebra and B be a Banach algebra. Then the following
conditions are equivalent:

(i) A is a left essential ideal of B;
(ii) Mn(A) is a left essential ideal of Mn(B) for any integer n > 2.

Proof. Observe that Mn(B0) = Mn(B)0 for any integer n > 2 under the
notations of Definition 2.1. Consequently, the assertion holds.

THEOREM 5.2. Let A be a C∗-algebra and B be a normed algebra containing A as
a left essential ideal. Then the following conditions are equivalent:

(i) The algebra B is Banach with respect to the induced by the essential extension of
A norm (2.1).

(ii) The algebra Mn(B) is Banach with respect to the induced by the essential exten-
sion of Mn(A) norm (2.1) for any integer n > 2.

Proof. We will denote by ‖ · ‖ the norm (2.1) for elements either from B or
from Mn(B). For the convenience of the reader let us remind the following well
known inequalities (cf. Remark 3.4.1 of [12])

(5.1) ‖ai,j‖ 6 ‖a‖ (i, j = 1, . . . , n), ‖a‖ 6
n

∑
i,j=1
‖ai,j‖,

which hold for any a = (ai,j) ∈ Mn(A).
To begin with, let us prove that (i) implies (ii). For b = (bi,j) from Mn(B) we

have the following estimates:

‖b‖ > sup
{∥∥∥ n

∑
k=1

bi,kak,r

∥∥∥ : ‖(ai,j)‖ 6 1, (ai,j) ∈ Mn(A)
}

(5.2)

> sup{‖bi,jaj,r‖ : ‖aj,r‖ 6 1, aj,r ∈ A} = ‖bi,j‖

for all 1 6 i, j 6 n by (5.1). Therefore, any Cauchy sequence {b(N) = (b(N)
i,j ) :

N ∈ N} from Mn(B) generates Cauchy sequences {b(N)
i,j } from B for any pair

(i, j) with 1 6 i, j 6 n. Let us denote the limits of the sequences {b(N)
i,j : N ∈ N}
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in B by bi,j for any pair (i, j), i.e.

lim
N→∞

sup{‖(b(N)
i,j − bi,j)a‖ : ‖a‖ 6 1, a ∈ A} = 0,

and let b = (bi,j) denote a corresponding matrix from Mn(B). Then, taking into
consideration (5.1), we deduce

‖b− b(N)‖ 6 sup
{ n

∑
i,j=1

∥∥∥ n

∑
k=1

(bi,k − b(N)
i,k )ak,j

∥∥∥ : ‖(ak,j)‖ 6 1, (ak,j) ∈ Mn(A)
}

6
n

∑
i,j=1

n

∑
k=1

sup{‖(bi,k − b(N)
i,k )ak,j‖ : ‖(ak,j)‖ 6 1, (ak,j) ∈ Mn(A)}(5.3)

=
n

∑
i,j=1

n

∑
k=1

sup{‖(bi,k − b(N)
i,k )ak,j‖ : ‖ak,j‖ 6 1, ak,j ∈ A}

=
n

∑
i,k=1

n‖bi,k − b(N)
i,k ‖.

Therefore the sequence {b(N)} converges to b with respect to the norm and, hence,
the space Mn(B) is complete.

Now we have to verify that (ii) implies (i). Let us consider any Cauchy
sequence {b(N) : N ∈ N} of B and define a corresponding sequence of matrices
{b̃(N)} of Mn(B) where the element at position (1, 1) of the respectively derived
matrix equals to b(N) and all the other elements of the matrices are equal to zero.
Then inequality (5.3) is the reason why

‖b̃(N)‖ 6 n‖b(N)‖

for any N ∈ N. Denote the limit of the sequence {b̃(N)} in Mn(B) by b̃ = (b̃i,j).
Immediately (5.2) implies that, firstly, b̃i,j = 0 if (i, j) 6= (1, 1) and, secondly, the
sequence {b(N)} converges to b̃1,1.

Finally, considering the particular case of maximal left strict essential exten-
sions of matrix algebras Mn(A) for C∗-algebras A one obtains the identification
LM(Mn(A)) ' Mn(LM(A)) for any integer n > 1. The equality may be verified
using the strict topology approach to left multipliers of C∗-algebras (see [17] for
details).

6. LEFT STRICT TOPOLOGY AND LEFT MULTIPLIERS

Essential left extensions of C∗-algebras are strongly interrelated with some
kind of topological closures of the embedded copy of the extended C∗-algebra,
where these left strict topologies are generated by certain sets of semi-norms. We
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are going to look for analogous sets of semi-norms for essential extensions of C∗-
algebras of bounded C∗-linear operators on Hilbert C∗-modules and for essential
extensions of Hilbert C∗-modules.

Before we discuss an approach to the left multipliers of Hilbert C∗-modules
which is connected with the notion of a certain left strict topology let us intro-
duce the analogue of the one for the left (E, C, ρ)-multipliers of a C∗-algebra A
(see Definition 2.6).

DEFINITION 6.1. Let (E, C, ρ) be an admissible for A triple. The left strict
topology on EndC(E) is defined by the family of semi-norms

(6.1) {νa}a∈A, where νa(T) = ‖Tρ(a)‖, T ∈ EndC(E).

We will denote this topology by l.s.

PROPOSITION 6.2. Let (E, C, ρ) be an admissible for a C∗-algebra A triple and
B be a Banach subalgebra of EndC(E) containing ρ(A) as a left ideal. The following
conditions are equivalent:

(i) the left strict topology on B is Hausdorff;
(ii) ρ(A) is an essential ideal of B.

In particular, the set of left (E, C, ρ)-multipliers of A equipped with the left strict topology
is a Hausdorff space.

Proof. The second condition of Definition 2.1 is, obviously, equivalent to the
requirement that the system (6.1) of semi-norms separates points of B.

PROPOSITION 6.3. The set of all left (E, C, ρ)-multipliers LM(E,C,ρ)(A) of A is a
closed space with respect to the left strict topology.

Proof. Consider any net {Tα} from LM(E,C,ρ)(A) converging to T ∈ EndC(E)
with respect to the left strict topology. It means that the net {Tαρ(a)} from ρ(A)
converges to Tρ(a) with respect to norm for any a ∈ A. Therefore Tρ(a) belongs
to ρ(A) for any a ∈ A and, hence, T belongs to LM(E,C,ρ)(A).

PROPOSITION 6.4. The set of all left (E, C, ρ)-multipliers LM(E,C,ρ)(A) of A co-

incides with the closure ρ(A)
l.s.

of ρ(A) inside EndC(E) with respect to the left strict
topology.

Proof. Because of Proposition 6.3 it remains to check that LM(E,C,ρ)(A) ⊂

ρ(A)
l.s.

. Take an approximative identity {eα} in ρ(A). Then for any left multiplier
T ∈ LM(E,C,ρ)(A) the net {Teα} ∈ ρ(A) converges to T with respect to the left
strict topology. Indeed

lim
α
‖Teαρ(a)− Tρ(a)‖ 6 lim

α
‖T‖‖eαρ(a)− ρ(a)‖ = 0

for any a ∈ A.
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Now let us consider a Banach extension (W,B, Φ) of a Hilbert A-module V.
Then V is isomorphic to Φ(V) and HomA(A, Φ(V)) is a Banach LM(A)-submo-
dule of Hom(A, W) with respect to the action (3.2).

DEFINITION 6.5. The left strict topology on HomA(A, W) is defined by the
family of semi-norms

(6.2) {νa}a∈A, where νa(S) = ‖Sa‖, S ∈ HomA(A, W).

Here we understand A canonically embedded into LM(A), and Sa means the
result of the action (3.2). We will denote this topology by l.s.

DEFINITION 6.6. Let (W,B, Φ) be a Banach extension of a Hilbert A-module
V. The left (W,B, Φ)-multipliers of V are defined as

LM(W,B,Φ)(V) = HomA(A, Φ(V)).

It is clear that left (W,B, Φ)-multipliers of V are isomorphic for all Banach
extensions (W,B, Φ) of V. Beside this, the previous Definition 3.7 of left multipli-
ers LM(V) of V is a special case of Definition 6.6 corresponding to the identical
Banach extension discussed as Example 3.4.

In the sequel we will need the generalization ΓΦ : Φ(V) → LM(W,B,Φ)(V)
of the map (3.3) which will be defined in the following way

(6.3) (ΓΦ(y))(a) := ya, y ∈ Φ(V), a ∈ A.

This map is an isometric A-linear map.

PROPOSITION 6.7. Let (W,B, Φ) be a Banach extension of a Hilbert A-module
V. The following conditions are equivalent:

(i) the left strict topology on HomA(A, W) is Hausdorff;
(ii) the submodule W0 of W introduced in (4.1) equals to zero.

In particular, the set of all left (W,B, Φ)-multipliers of V equipped with the left strict
topology is a Hausdorff space.

Proof. Obviously, W0 equals zero if and only if the system (6.2) of semi-
norms separates points of HomA(A, W).

THEOREM 6.8. The set of all left (W,B, Φ)-multipliers LM(W,B,Φ)(V) of V is a
closed space with respect to the left strict topology.

Proof. Consider any net {Sα} ∈ LM(W,B,Φ)(V) converging to the element
S ∈ HomA(A, W) with respect to the left strict topology. This means that the
net {Sαa} from HomA(A, Φ(V)) converges to Sa with respect to the norm for any
a ∈ A. Therefore, Sa belongs to HomA(A, Φ(V)) for any a ∈ A and, consequently,
(Sa)(b) = S(ab) belongs to Φ(V) for any a, b ∈ A. The latter implies that the
image of S belongs to Φ(V), i.e. S is an element of LM(W,B,Φ)(V).
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THEOREM 6.9. The set of all left (W,B, Φ)-multipliers LM(W,B,Φ)(V) of V co-

incides with the closure ΓΦ(Φ(V))
l.s.

of the image of the map (6.3) inside HomA(A, W)
with respect to left strict topology.

Proof. Because of Theorem 6.8 it remains to check that LM(W,B,Φ)(V) ⊆

ΓΦ(Φ(V))
l.s.

. Consider an approximative identity {eα} for A. Then for any
S ∈ LM(W,B,Φ)(V) the net {ΓΦ(S(eα))} converges with respect to the left strict
topology to S. Indeed,

lim
α
‖(ΓΦ(S(eα))a)(b)− (Sa)(b)‖ = lim

α
‖(ΓΦ(S(eα)))(ab)− S(ab)‖

= lim
α
‖S(eα)ab− S(ab)‖

= lim
α
‖S(eαab)− S(ab)‖

6 lim
α
‖S‖‖b‖‖eαa− a‖ = 0

for any a, b ∈ A.

As a summary, in the present paper we have extended the results by D. Bakić
and B. Guljaš from [1] about multipliers of Hilbert C∗-modules to the case of left
multipliers of Hilbert C∗-modules. The well known facts about the left multiplier
algebra of a C∗-algebra are particular cases of our results in case a C∗-algebra is
considered as a Hilbert C∗-module over itself. In forthcoming research it would
be interesting to investigate an analogue of quasi-multipliers of C∗-algebras for
Hilbert C∗-modules.
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