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ABSTRACT. Let T be the generator of a positive contraction semigroup on
L1(Ω, µ), and let B : D(T) → L1(Ω, µ) be a positive linear operator such that∫
(T f + B f ) 6 0 for all f ∈ D(T)+. It is known that there exists a minimal

positive contraction semigroup generated by some operator K ⊇ T + B. This
paper deals mainly with the total mass carried by trajectories (etK f ; t > 0)
with non-negative initial data f . In particular, our analysis covers the prob-
lem of whether K = T + B or K ) T + B and the related problem of the
stochasticity or lack of stochasticity of “formally conservative” perturbed pos-
itive semigroups in L1-spaces.
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INTRODUCTION

Let (Ω, µ) be a measure space and X := L1(Ω, µ). A substochastic opera-
tor A on X is a positive contraction on X. The operator A is called stochastic if
additionally A is norm-preserving on the positive cone X+ (consisting of the non-
negative functions of X). Let (U(t); t > 0) be a substochastic C0-semigroup on X
(i.e., U(t) is substochastic for all t > 0) with generator T, and let B : D(T)→ X be
such that

B f ∈ X+ for all f ∈ D(T)+ := D(T) ∩ X+

and ∫
Ω

(T f + B f )dµ 6 0 for all f ∈ D(T)+.

Then there exists a minimal substochastic semigroup (V(t); t > 0) generated by
an extension K of T + B; in particular, T + B is closable.

This result goes back to the seminal paper by T. Kato [16] on Kolmogorov’s
differential equations, revisited later ([23], [1], [2], [6]) in view of transport theory.
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More recently, essentially from the beginning of the 2000’s, this abstract frame-
work found a new life in the context of kinetic theory of dilute gases, semicon-
ductor theory, fragmentation equations, birth-and-death problems etc. ([3], [4],
[5], [6], [7], [8], [10], [11], [15]); we refer to the monograph [9] for more informa-
tion.

By the Miyadera perturbation theorem, for each r ∈ [0, 1), the operator T +
rB generates a substochastic semigroup (Ur(t); t > 0) on X such that Ur(t) 6
Ur′(t) (in the lattice sense) for r < r′ < 1, and then (V(t); t > 0) is obtained as
a strong limit of (Ur(t); t > 0) as r → 1−. (We refer to [23] for this procedure, to
[20] for more recent developments, and to [21] and Section III.3.b of [13] for the
Miyadera perturbation theorem.)

The discussion whether D(T) is a core for K is an important issue of the
theory. In particular, in the case

(0.1)
∫
Ω

(T f + B f )dµ = 0 for all f ∈ D(T)

which we refer to as the “conservative” case, (V(t); t > 0) is norm-preserving
on the positive cone if and only if the closure property K = T + B holds (cf. Re-
mark 1.7(iii) in combination with Remark 2.3(iii)). Thus, an expected property of
the model fails to hold if K ) T + B, i.e., a mass loss occurs. The closure prop-
erty was investigated by different techniques in [16], [23], [9]. More generally,
intuition suggests that the functional

(0.2) c : f ∈ D(T) 7→ −
∫

(T + B) f dµ

should be responsible for the mass loss along trajectories. This is because, for
f ∈ D(K)+, one has

d
dt
‖V(t) f ‖ =

∫
KV(t) f dµ (t > 0),

and the latter is equal to −c(V(t) f ) if V(t) f ∈ D(T). We will define a “minimal”
extension of c to D(K) (again denoted by c), and a trajectory will considered to be
“honest” (i.e., “well-behaved”) if c(V(t) f ) = −

∫
KV(t) f dµ holds for all t > 0;

cf. Section 2 for the precise definition.
In this work, we improve and extend recent work on the subject ([3] and

Chapter 6 of [9]). Our paper is an improved version of [18].
In Section 1 we analyse the functional c defined in (0.2) and two distin-

guished extensions c 6 ĉ of this functional to D(K). The main result of this sec-
tion is that an element f ∈ D(K)+ belongs to D(T + B) if and only if c( f ) = ĉ( f )
(Proposition 1.6). In [3] and Chapter 6 of [9], related results are shown for the case
that c is of a special form; cf. Remark 1.2.

In Section 2 we introduce and investigate the concept of honesty of trajecto-
ries (etK f ; t > 0) on subintervals of [0, ∞), for f ∈ L1(µ)+. This is in the spirit of
Section 6.2 of [9]; cf. in particular Remark 6.16 of [9]. A fundamental fact observed
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in this section is the result that the set of initial values giving rise to an honest
trajectory is the positive cone of a closed invariant ideal; cf. Remark 2.1(iii) and
Proposition 2.4. In addition, this section contains characterisations and sufficient
conditions for honesty.

In Section 3 we present some examples illustrating the notions introduced
previously. In particular it becomes clear from these examples that, in general,
not much can be said concerning the band disjoint to the functions giving rise to
honest trajectories.

1. ON SOME FUNCTIONALS

In the remainder of the paper, we assume that the measure space (Ω, µ), the
operators T, B, K, and the C0-semigroups (U(t); t > 0) and (V(t); t > 0) are as in
the introduction. Unless otherwise stated, the various integrals appearing in this
paper refer to the measure µ.

The substochasticity of (V(t); t > 0) implies

(1.1)
∫

K f 6 0 ( f ∈ D(K)+ = D(K) ∩ X+).

Define the functional

ĉ : f ∈ D(K) 7→ −
∫

K f ∈ R.

Due to (1.1), this functional is positive, i.e., ĉ( f ) > 0 for all f ∈ D(K)+. We note
that the definition of ĉ implies that ĉ : DK → R is a continuous linear functional,
where we denote by DK the domain of K, equipped with the graph norm. We
denote by c the restriction of ĉ to D(T),

c : f ∈ D(T) 7→ ĉ( f ) = −
∫

(T + B) f .

Let λ > 0. The strong and monotone convergence of the C0-semigroups Ur
to V, as r → 1−, implies the strong and monotone convergence of the resolvents,
(λ− T − rB)−1 → (λ− K)−1 (r → 1−), which in turn implies the existence of

cλ((λ− K)−1 f ) := lim
r→1−

c((λ− T − rB)−1 f )

for all f ∈ X+, and therefore also for all f ∈ X = X+ − X+.
In order to get another expression for cλ we note the identity

(1.2) (λ− T − rB)−1 =
∞

∑
n=0

rn(λ− T)−1(B(λ− T)−1)n,

valid for r ∈ [0, 1) because of ‖B(λ− T)−1‖ 6 1. The series is convergent in DT ,
and because of (λ− T)−1 6 (λ− K)−1 the embedding DT ↪→ DK is continuous.
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This implies

c((λ− T − rB)−1 f ) =
∞

∑
n=0

rnc((λ− T)−1(B(λ− T)−1)n f )

for all f ∈ X. For r → 1− we obtain

cλ((λ− K)−1 f ) =
∞

∑
n=0

c((λ− T)−1(B(λ− T)−1)n f ),

first for f ∈ X+, but again this carries over to all f ∈ X = X+ − X+.
By construction

(1.3) 0 6 cλ((λ− K)−1 f ) 6 ĉ((λ− K)−1 f ) ( f ∈ X+).

PROPOSITION 1.1. Let 0 < λ < µ. Then:
(i) cλ D(T) = c.

(ii) cµ = cλ.
(iii) The extension of c to D(K), defined by c := cλ is continuous with respect to the

graph norm of K, c D(T+B) = ĉ D(T+B), and 0 6 c( f ) 6 ĉ( f ) for all f ∈ D(K)+.

Proof. (i) Let f ∈ X, g := (λ− K)−1 f ∈ D(T). Then

cλ(g) =
∞

∑
n=0

c((λ− T)−1(B(λ− T)−1)n f )

=
∞

∑
n=0

c(((λ− T)−1B)n(λ− T)−1(λ− T − B)g)

=
∞

∑
n=0

c(((λ− T)−1B)ng)− cλ((λ− K)−1Bg)

= c(g) + cλ((λ− K)−1Bg)− cλ((λ− K)−1Bg) = c(g).

(ii) Let f , g ∈ X, f > 0, (λ− K)−1 f = (µ− K)−1g. Then

g = (µ− K)(λ− K)−1 f = f + (µ− λ)(λ− K)−1 f > f > 0.

We obtain (using the resolvent equation in the second equality)

cµ((µ− K)−1g)− cλ((λ− K)−1 f )

= lim
r→1−

c((µ− T − rB)−1g− (λ− T − rB)−1 f )

= lim
r→1−

c((µ−T−rB)−1(( f +(µ−λ)(λ−K)−1 f )−(I+(µ−λ)(λ−T−rB)−1) f ))

=(µ− λ) lim
r→1−

c((µ− T − rB)−1((λ− K)−1 f − (λ− T − rB)−1 f )).

In the last expression we know that (λ− K)−1 f − (λ− T− rB)−1 f > 0 for all r ∈
[0, 1), and therefore cµ((µ− K)−1g)− cλ((λ− K)−1 f ) > 0. In order to estimate
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from above we note that

c((µ− T − rB)−1((λ− K)−1 f − (λ− T − rB)−1 f ))

6 ĉ((µ− K)−1((λ− K)−1 f − (λ− T − rB)−1 f ))

for all r ∈ [0, 1). Further (λ − K)−1 f − (λ − T − rB)−1 f → 0, and therefore
(µ− K)−1((λ− K)−1 f − (λ− T − rB)−1 f )→ 0 in DK, which implies

lim
r→1−

ĉ((µ− K)−1((λ− K)−1 f − (λ− T − rB)−1 f )) = 0.

(iii) For f ∈ D(K) we estimate

|c( f )|6 cλ((λ− K)−1|(λ− K) f |)

6 ĉ((λ− K)−1|(λ− K) f |) = −
∫

K(λ− K)−1|(λ− K) f |

=‖(λ− K) f ‖ − λ‖(λ− K)−1|(λ− K) f |‖ 6 λ‖ f ‖+ ‖K f ‖ − λ‖ f ‖ = ‖K f ‖,

which shows the continuity of c with respect to the graph norm of K.
The functionals c and ĉ coincide on D(T), are continuous with respect to the

graph norm of K, and D(T + B) is the closure of D(T) in DK. Therefore c and ĉ
coincide on D(T + B).

Let f ∈ D(K)+. Inequality (1.3) implies that 0 6 c(λ(λ−K)−1 f ) 6 ĉ(λ(λ−
K)−1 f ) for all λ > 0. Since lim

λ→∞
λ(λ− K)−1 f = f in DK we obtain 0 6 c( f ) 6

ĉ( f ).

In the following remark we establish the connection between our definitions
and the construction proposed in Sections 6.2 and 10.4 of [9].

REMARK 1.2. Assume that there exist a measure space (Λ, ν) and a positive
linear operator Z : D(T)→ L1(ν) such that

−
∫
Ω

(T + B) f dµ =
∫
Λ

Z f dν ( f ∈ D(T)).

(This assumption should be regarded as an interpretation of the somewhat im-
precisely formulated hypothesis in relation (6.8) of [9].) Then the definition

(1.4) Z(((λ−K)−1) f ) := lim
r→1−

Z((λ−T−rB)−1 f ) :=
∞

∑
n=0

Z((λ−T)−1(B(λ−T)−1)n f )

for f ∈ X, λ > 0, yields a (well-defined) positive K-bounded extension of Z to
D(K). The existence of the limits in (1.4), for f ∈ X+, is a consequence of the
monotone convergence theorem. The proof of the other properties of the exten-
sion Z is analogous to the proof of Proposition 1.1. It then follows that

c( f ) =
∫
Λ

Z f dν ( f ∈ D(K)).



136 MUSTAPHA MOKHTAR-KHARROUBI AND JÜRGEN VOIGT

Assume now that Z̃ : D(K) → L1(ν) is an extension of Z D(T) “respecting
monotone convergence”, i.e., whenever ( fn) ⊆ D(K) is a monotone sequence
converging in X to f ∈ D(K), then Z̃ fn → Z̃ f in L1(ν). Then (1.4) implies Z̃ = Z.
(The requirement of such a property for Z̃ appears in Remark 6.2 of [9] and is
used in the proof of Theorem 6.8 of [9].)

We note that there may be other K-bounded positive extensions of Z D(T);
cf. Example 3.1.

REMARK 1.3. Letting r → 1− in (1.2) one obtains

(λ− K)−1 =
∞

∑
n=0

(λ− T)−1(B(λ− T)−1)n,

with strong and monotone convergence of the series (cf. [2], [6]).

For λ > 0 we define the functional βλ ∈ X′+ by

βλ( f ) := ĉ((λ− K)−1 f )− c((λ− K)−1 f ) ( f ∈ X).

The following lemma can be considered as a variant of Theorem 6.8, p. 163 of [9].
The existence and importance of the first expression in the following lemma was
already recognised and exploited in Kato’s paper [16].

LEMMA 1.4. Let λ > 0, f ∈ X. Then

βλ( f ) = lim
n→∞

∫
(B(λ− T)−1)n f = lim

r→1−
(1− r)

∫
B(λ− T − rB)−1 f .

Proof. We compute

c((λ− K)−1 f ) =
∞

∑
n=0

c((λ− T)−1(B(λ− T)−1)n f )

=
∞

∑
n=0

∫
(λ− T − B− λ)(λ− T)−1(B(λ− T)−1)n f

=
∞

∑
n=0

( ∫
(B(λ− T)−1)n f −

∫
(B(λ− T)−1)n+1 f

)
− λ

∫ ∞

∑
n=0

(λ− T)−1(B(λ− T)−1)n f

=
∫

f − lim
n→∞

∫
(B(λ− T)−1)n f − λ

∫
(λ− K)−1 f

= ĉ((λ− K)−1 f )− lim
n→∞

∫
(B(λ− T)−1)n f ,

and

c((λ− K)−1 f ) = lim
r→1−

∫
(λ− T − rB− λ− (1− r)B)(λ− T − rB)−1 f

=
∫

f − λ
∫

(λ− K)−1 f − lim
r→1−

(1− r)
∫

B(λ− T − rB)−1 f
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= ĉ((λ− K)−1 f )− lim
r→1−

(1− r)
∫

B(λ− T − rB)−1 f .

It is known ([15]) that βλ is an eigenvector of (B(λ− T)−1)′ associated with
the eigenvalue 1,

(B(λ− T)−1)′βλ = βλ.

We give a proof of this property which provides us with the additional infor-
mation that βλ is the maximal nonnegative eigenvector 6 1 associated with the
eigenvalue 1.

COROLLARY 1.5. If βλ 6= 0, then 1 is an eigenvalue of (B(λ− T)−1)′, and βλ is
the maximal eigenvector 6 1.

Proof. Lemma 1.4 implies that, for all f ∈ X,

〈[(B(λ− T)−1)′]n1, f 〉 =
∫

(B(λ− T)−1)n f → βλ( f )

(n → ∞), i.e., the sequence ([(B(λ − T)−1)′]n1)n is weak∗-convergent to βλ in
L1(µ)′+. The equation

(B(λ− T)−1)′[(B(λ− T)−1)′]n1 = [(B(λ− T)−1)′]n+11

together with the weak∗-continuity of (B(λ− T)−1)′ implies that βλ is an eigen-
vector of (B(λ− T)−1)′ for the eigenvalue 1.

Let ψ ∈ L1(µ)′+, ψ 6 1, be such that (B(λ− T)−1)′ψ = ψ. Then

ψ = [(B(λ− T)−1)′]nψ 6 [(B(λ− T)−1)′]n1

(n ∈ N), and thus ψ 6 βλ.

The following result is an improvement of one of the assertions in Proposi-
tion 1.1(iii).

PROPOSITION 1.6. Let f ∈ D(K)+. Then one has c( f ) = ĉ( f ) if and only if
f ∈ D(T + B).

Proof. In view of Proposition 1.1(iii), we only have to show necessity. Thus,
let f ∈ D(K)+, (ĉ− c)( f ) = 0. Then fλ := λ(λ− K)−1 f → f (λ→ ∞) in DK, and
this implies that λβλ( f ) = (ĉ− c)( fλ)→ (ĉ− c)( f ) = 0.

Let ε > 0. There exists λ > 0 such that ‖ fλ − f ‖ 6 ε and ‖K fλ − K f ‖ 6 ε,
i.e., ( fλ, K fλ) is ε-close to ( f , K f ) in X× X, and such that λβλ( f ) < ε.

We define

un :=
n−1

∑
j=0

(λ− T)−1(B(λ− T)−1)j(λ f ).

Then un ∈ D(T) = D(T + B) (n ∈ N),

un → (λ− K)−1(λ f ) = fλ (n→ ∞),
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and therefore (λ ∨ 1)‖un − fλ‖ 6 ε for large n. Moreover

(λ− T − B)un = λ f − (B(λ− T)−1)n(λ f ) = (λ− K) fλ − λ(B(λ− T)−1)n f ,

and Lemma 1.4 implies that

‖(λ− T − B)un − (λ− K) fλ‖ = λ‖(B(λ− T)−1)n f ‖ 6 ε

and hence ‖(T + B)un − K fλ‖ 6 2ε, for large n. This shows that ( fλ, K fλ) is
2ε-close to the graph of T + B, and hence ( f , K f ) is 3ε-close to the graph of T + B.

Thus we obtain that ( f , K f ) belongs to the closure of the graph of T + B,
and therefore f ∈ D(T + B).

REMARKS 1.7. (i) If f ∈ D(T + B)+, g ∈ D(K)+, g 6 f , then g ∈ D(T + B).
This “ideal property” of D(T + B) is a consequence of Proposition 1.6 and the
positivity of ĉ− c : D(K)→ R.

(ii) Let λ > 0, f ∈ X+. Proposition 1.6 implies that βλ( f ) = 0 (i.e., (ĉ− c)((λ−
K)−1 f ) = 0) if and only if (λ− K)−1 f ∈ D(T + B).

(iii) Proposition 1.6 implies that K = T + B if and only if c = ĉ, and by part (ii)
above this holds if and only if βλ = 0 for some (or equivalently all) λ > 0. Part
of this result is contained in Theorem 6.11 combined with Theorem 6.13 of [9], for
the case considered there.

2. HONESTY

Let f ∈ X+. Recall that then
t∫

s
erK f dr ∈ D(K), for all t > s > 0, and

etK f − esK f = K
t∫

s

erK f dr.

By integration we obtain

(2.1) ‖etK f ‖ = ‖esK f ‖ − ĉ
( t∫

s

erK f dr
)

.

Let J ⊆ [0, ∞) be an interval. We will call the trajectory (etK f ; t > 0) honest
on J if

‖etK f ‖ = ‖esK f ‖ − c
( t∫

s

erK f dr
)

(or equivalently, c
( t∫

s
erK f dr

)
= ĉ

( t∫
s

erK f dr
)

) for all s, t ∈ J, s 6 t. The trajec-

tory will be called honest if it is honest on [0, ∞). We will use the notation

HJ := { f ∈ X+; (etK f ; t > 0) honest on J},
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and H := H[0,∞) will denote the set of f ∈ X+ with honest trajectories. The
semigroup (etK; t > 0) will be called honest if all trajectories are honest, i.e., if
H = X+.

For the comparison of our definition of honesty with the definition given
in [9] we refer to Definition 6.4, Proposition 6.9, Remark 6.16 of [9]; see also Re-
mark 1.2.

REMARKS 2.1. (i) Let f ∈ X+. It is obvious from the definition that f ∈ H if
and only if

‖etK f ‖ = ‖ f ‖ − c
( t∫

0

esK f ds
)

,

for all t > 0. Also, if 0 6 a < b < ∞ and

‖ebK f ‖ = ‖eaK f ‖ − c
( b∫

a

erK f dr
)

,

then Proposition 1.1(iii) together with (2.1) implies that f ∈ H[a,b].
(ii) Let f ∈ X+, let J1, J2 ⊆ R be intervals, J1 ∩ J2 6= ∅, and assume that

f ∈ HJ1 ∩ HJ2 . It is immediate that then f ∈ HJ1∪J2 .
(iii) Let f ∈ X+, 0 6 a < b 6 ∞, and assume that f ∈ H[a,b). If s > 0, then

it is clear from the definition that the trajectory starting from esK f is honest on
[(a− s) ∨ 0, (b− s) ∨ 0).

If b = ∞, then we conclude that H[a,∞) is invariant under (etK; t > 0). In
particular, the set H = H[0,∞) is invariant under (etK; t > 0).

(iv) Let f ∈ X+, 0 6 a < b 6 ∞, s > 0, and assume that esK f ∈ H[a,b). Then
obviously f ∈ H[a+s,b+s).

For the special case described in Remark 1.2, the following result is con-
tained in Theorem 6.11, p. 166 of [9].

THEOREM 2.2. Let f ∈ X+. Then f ∈ H = H[0,∞) if and only if βλ( f ) = 0 for
some (or equivalently all) λ > 0.

Proof. We recall the formula

(2.2) (λ− K)−1 f =
∞∫

0

e−λtetK f dt = λ

∞∫
0

e−λt
( t∫

0

esK f ds
)

dt.

The function t 7→
t∫

0
esK f ds is continuous and linearly bounded as a DK-valued

function, and therefore the outer integral in the last expression in (2.2) can be
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considered as an integral in DK. This implies that

ĉ((λ− K)−1 f ) = λ

∞∫
0

e−λt ĉ
( t∫

0

esK f ds
)

dt

and

c((λ− K)−1 f ) = λ

∞∫
0

e−λt c
( t∫

0

esK f ds
)

dt.

Recalling Proposition 1.1(iii) we obtain that f ∈ H, i.e.,

c
( t∫

0

esK f ds
)

= ĉ
( t∫

0

esK f ds
)

for all t > 0, if and only if c((λ− K)−1 f ) = ĉ((λ− K)−1 f ).

REMARKS 2.3. (i) Combining Remark 1.7(ii) with Theorem 2.2 we obtain
that f ∈ H if and only if f ∈ X+ and (λ − K)−1 f ∈ D(T + B) for some (or
equivalently all) λ > 0.

(ii) Let f ∈ H be quasi-interior, i.e., the lattice ideal generated by f is dense in
X. Then H = X+.

Indeed, Theorem 2.2 implies that β1( f ) = 0. The positivity of β1 implies
that β1 vanishes on the closed ideal generated by f , i.e. β1 = 0. Now Theorem 2.2
shows H = X+.

In Corollary 2.9 we will obtain a stronger version of the result stated above.
(iii) Assuming the “conservativity condition” (0.1) we have c = 0, and for f ∈

X+ we obtain that

‖etK f ‖ = ‖ f ‖ (t > 0)

if and only if βλ( f ) = 0 for some (or equivalently all) λ > 0. This equivalence is
already contained in Corollary of Theorem 2 of [16].

PROPOSITION 2.4. Let J ⊆ [0, ∞) be a subinterval. Then ĤJ := lin HJ = HJ −
HJ is a closed lattice ideal (i.e., a band, since X = L1), and HJ = (ĤJ)+.

Proof. It is clear that HJ is stable under formation of linear combinations
with positive scalars, which immediately implies lin HJ = HJ − HJ .

Let f ∈ HJ , and let 0 6 g 6 f . Let s, t ∈ J, s < t. Then (ĉ− c)
( t∫

s
erK f dr

)
=

0. From the positivity of ĉ− c on D(K) (see Proposition 1.1(iii)) and the inequality

0 6
t∫

s
erKg dr 6

t∫
s

erK f dr we conclude that (ĉ− c)
( t∫

s
erKg dr

)
= 0. This shows

g ∈ HJ .
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Let s, t ∈ J, s < t. Then the mapping X 3 f 7→
t∫

s
erK f dr ∈ DK is contin-

uous, and therefore the functional X 3 f 7→ (ĉ − c)
( t∫

s
erK f dr

)
is continuous.

This shows that HJ is closed.
These properties show that ĤJ is a closed ideal and that HJ = (ĤJ)+.

REMARKS 2.5. (i) Combining the statements of Remark 2.1(iii) and Proposi-
tion 2.4 we conclude that the set Ĥ := lin H is a closed lattice ideal in X = L1, and
therefore a projection band, which is invariant under the semigroup (etK; t > 0).
The positive cone of the disjoint complement Ĥd of Ĥ does not contain non-trivial
elements with an honest trajectory. In Section 3 we illustrate that it is not clear
whether more structure can be obtained for the band disjoint to Ĥ.

More generally, for a > 0 the set H[a,∞) is a projection band in X which is
invariant under (etK; t > 0).

(ii) If the measure space (Ω, µ) is localisable, then there exist locally measur-
able subsets Ωh, Ωd ⊆ Ω, Ωh ∩Ωd = ∅, Ωh ∪Ωd = Ω, such that Ĥ = L1(Ωh, µ),
Ĥd = L1(Ωd, µ). For the functional βλ ∈ X′+ = L∞(µ)+, Theorem 2.2 implies
that βλ = 0 on Ωh, βλ(x) > 0 on Ωd locally a.e., for all λ > 0.

We refer to 14M, pp. 128, 129 of [17] and Kap. IV.3 of [12] for the definition
of localisable measure spaces as well as for pertinent properties. (In particular,
σ-finite measure spaces are localisable.)

(iii) Let f ∈ H, λ > 0. Using that Ĥ is a closed, (etK; t > 0)-invariant ideal we
obtain that (λ− K)−1 f =

∫
e−λtetK f dt ∈ H for all λ > 0.

In the following proposition we present sufficient conditions for honesty.

PROPOSITION 2.6. Let λ > 0.
(i) Let f ∈ X+, B(λ− T)−1 f 6 f . Then f ∈ H.

(ii) Let g ∈ D(T)+, (T + B)g 6 λg. Then g ∈ H.

Proof. (i) We start by noting that h ∈ X+, B(λ − T)−1h = h implies that
0 6 λ

∫
(λ− T)−1h 6

∫
(λ− T − B)(λ− T)−1h =

∫
(h− B(λ− T)−1h) = 0, and

thus h = 0.
Because of the positivity of B(λ− T)−1 the hypothesis implies that the se-

quence ((B(λ− T)−1)n f )n in X+ is decreasing, and therefore

h := lim
n→∞

(B(λ− T)−1)n f

exists. As a consequence, B(λ− T)−1h = h, and the initial remark implies h = 0.
Now Lemma 1.4 implies βλ( f ) =

∫
h = 0, and Theorem 2.2 shows f ∈ H.

(ii) The function f := (λ − T)g > Bg > 0 satisfies the hypotheses of (i),
and therefore f ∈ H. Since H is the positive cone of a closed ideal, and g =
(λ− T)−1 f 6 (λ− K)−1 f , we obtain g ∈ H using Remark 2.5(iii).
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REMARK 2.7. The condition used in Proposition 2.6(ii) was used in
Remark 2.2(b) of [23] in connection with sufficient conditions for K = T + B.

PROPOSITION 2.8. Assume that there exists ε > 0 such that H[0,ε) = X+. Then
H = X+ (i.e., the semigroup (etK; t > 0) is honest).

Proof. Let f ∈ X+. For s > 0, the hypothesis implies that the trajectory
(etK(esK f ); t > 0) is honest on [0, ε), i.e., the trajectory (etK f ; t > 0) is honest on
[s, s + ε). Now Remark 2.1(ii) implies that f ∈ H.

The following two corollaries express the so-called “universality of hon-
esty” which has been proved in the concrete situation of birth-and-death prob-
lems or fragmentation equations in [11] (see also Chapters 7 and 9 of [9]). We
mention that, if (Ω, µ) is localisable, then an element f ∈ X+ is quasi-interior if
and only if the set where f vanishes is a local null set.

COROLLARY 2.9. Let ε > 0, and let f ∈ H[0,ε) be a quasi-interior element of X.
Then H = X+.

Proof. Since Ĥ[0,ε) is a band containing f , and X is the smallest band con-
taining f , we conclude that Ĥ[0,ε) ⊇ X, and therefore H[0,ε) = X+. Now Proposi-
tion 2.8 implies the assertion.

COROLLARY 2.10. Let H 6= {0}, and assume that the C0-semigroup (etK; t >
0) is irreducible (i.e., there exists no non-trivial closed ideal which is invariant under
(etK; t > 0)). Then H = X+.

Proof. Let f ∈ H \ {0}. Then g := (1 − K)−1 f ∈ H, by Remark 2.5(iii),
and the irreducibility of (etK; t > 0) implies that g is quasi-interior; cf. C-III,
Definition 3.1 of [19]. Therefore Corollary 2.9 implies the assertion.

In Corollary 6.12 of [9] it is shown that in the case that (etK; t > 0) is not
honest, there are always elements f ∈ X+ such that the trajectory (etK f ; t > 0) is
immediately dishonest, i.e.,

‖etK f ‖ < ‖ f ‖ − c
( t∫

0

esK f ds
)

,

for all t > 0. The following consequence of Proposition 2.8 is another result
concerning immediately dishonest trajectories.

COROLLARY 2.11. Assume that the C0-semigroup (etK; t > 0) is not honest. Let
f ∈ X+ be such that fd := (I − PH) f is a quasi-interior element of Ĥd, where PH
denotes the band projection onto Ĥ. Then the trajectory (etK f ; t > 0) is immediately
dishonest.

Proof. Assume that (etK f ; t > 0) is not immediately dishonest. This implies
that there exists ε > 0 such that (etK f ; t > 0) is honest on [0, ε), i.e. f ∈ H[0,ε). The
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ideal generated by f contains the ideal generated by fd (6 f ), and by hypothesis,
the latter is dense in Ĥd. As H[0,ε) is the positive cone of a closed ideal we con-
clude that Ĥd

+ ⊆ H[0,ε). We trivially have H ⊆ H[0,ε), and so we conclude that
X+ = H + Ĥd

+ ⊆ H[0,ε). Now Proposition 2.8 leads to a contradiction.

3. EXAMPLES

The examples we present will be of the following kind. We start with the
generator S of a stochastic C0-semigroup. We define a measurable function V : Ω

→ [0, ∞) for which s-lim
n→∞

et(S−V∧n) (t > 0) defines a C0-semigroup, and we define

T as the generator of this absorption semigroup, i.e., V is admissible and T =
SV , with the notions introduced in Section 2 of [22]. We note that then D(T) ⊆
D(V) and

∫
(T + V) f 6 0 ( f ∈ D(T)+), by Lemma 4.1 of [22]. With B := V

(maximal multiplication operator) we will describe situations where
∫

(T + B) f =
0 ( f ∈ D(T)) and where the semigroup generated by K is not stochastic. In the
terminology of Section 4 of [22], we have K = S0,V . The semigroup generated by
K is dominated by the semigroup generated by S, and in our examples we will
have K 6= S (i.e., V is not regular in the sense of Definition 2.12 of [22]).

EXAMPLE 3.1. Let S be the generator of the C0-semigroup of left translation
on L1(R), i.e., D(S) = W1

1 (R), S f = f ′, and V(x) := 1
x 1(0,∞)(x). For 0 6 r < 1 we

obtain that T + rB generates the C0-semigroup corresponding to left translation
with absorption by (1− r)V (cf. Proposition 4.2 of [22]), i.e.,

et(T+rB) f (x) = exp
(
−(1− r)

(x+t)∨0∫
x∨0

y−1 dy
)

f (x + t).

Letting r → 1− we see that the C0-semigroup (etK; t > 0) decomposes into left
translation on L1(−∞, 0) (with zero coming in from the right), which is stochastic,
and left translation on L1(0, ∞).

From this description we immediately obtain that K is given by

D(K) = { f ∈W1
1 (R \ {0}); f (0−) = 0}, K f = f ′.

It then follows from Corollary 4.3(a) of [22] that T = K−V, i.e.,

D(T) = D(K) ∩ D(V) = { f ∈W1
1 (R); V f ∈ L1(R)}, T f = f ′ −V f .

Thus we finally obtain that (T + B) f = f ′ for all f ∈ D(T), and therefore

c( f ) = −
∫

(T + B) f = −
∫
R

f ′ = 0.
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(In order to preclude irritations we note that the derivative in the formula K f = f ′

has to be understood as distributional derivative on R \ {0}, and that

ĉ( f ) = −
∫

K f = f (0+) ( f ∈ D(K)).)

We thus obtain that the set H = H[0,∞) (recall the notation from Section 2)
of initial values for an honest trajectory is L1(−∞, 0)+. More general, for 0 6 a <
b 6 ∞, the set H[a,b) is given by { f ∈ L1(R)+; spt f ∩ (a, b) = ∅}.

We define the measure space (Λ, ν) by Λ := {0}, ν the Dirac measure, and
Z : D(T) → L1(ν) (= R) by Z f := f (0+) (= 0). Then, evidently, Z = 0 is
the extension Z : D(K) → L1(ν) described in Remark 1.2. We further note that
Ẑ : D(K) → R, defined by Ẑ( f ) := f (0+) ( f ∈ D(K)) yields a different positive
K-bounded extension of Z D(T). This extension does not “respect monotone con-
vergence” (in the sense expressed in Remark 1.2). The operators Z, Ẑ correspond
to the functionals c, ĉ, respectively.

In the above example the semigroup (etK; t > 0) is the direct sum of an
honest semigroup and a semigroup without honest trajectories. Our next exam-
ple shows that the band disjoint to H[0,∞) is not necessarily invariant under the
semigroup (etK; t > 0).

EXAMPLE 3.2. The operator S is intended to generate left translation on R
with half of the particles arriving at 1 jumping to 0. This means

D(S) = { f ∈W1
1 (R \ {0, 1}); f (1−) = f (1+)/2, f (0−) = f (0+) + f (1+)/2},

S f = f ′ ( f ∈ D(S)).

(Note that the stochasticity of the generated semigroup corresponds to
∫

f ′ =
f (0−) + ( f (1−)− f (0+))− f (1+) = 0 ( f ∈ D(S)).) As in Example 3.1 we define
V(x) := 1

x 1(0,∞)(x). Without carrying out details (which are similar to Exam-
ple 3.1) we state that the semigroup (etK; t > 0) is left translation on L1(−∞, 0),
L1(0, 1), L1(0, ∞) separately, with the additional requirement that functions ar-
riving at 1 are to equal parts transported to 1 (for the interval (0, 1)) and 0 (for
(−∞, 0)), and that functions arriving at 0 die. We further state that

D(K) = { f ∈W1
1 (R \ {0, 1}); f (1−) = f (0−) = f (1+)/2},

K f = f ′ ( f ∈ D(K)),

D(T)= D(K)∩D(V)={ f ∈W1
1 (R\{0, 1}); f (1−)= f (0−)= f (1+)/2, V f ∈L1(R)},

T f = f ′ −V f ( f ∈ D(T)).

As in Example 3.1 we obtain

c( f ) = −
∫

(T + B) f = −
∫

f ′ = f (1+)− f (1−) + f (0+)− f (0−) = 0.

(Note that V f ∈ L1(R) forces f (0+) = 0.)
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Again we obtain that the set H = H[0,∞) of initial values for an honest tra-
jectory is L1(−∞, 0)+, and that, for 0 6 a < b 6 ∞, the set H[a,b) is given by
{ f ∈ L1(R)+; spt f ∩ (a, b) = ∅}. However, in contrast to Example 3.1, the dis-
joint band to H, i.e. L1(0, ∞), is no longer invariant under (etK; t > 0). (Even
stronger, there exists no decomposition of L1(R) into two complementary bands
which are invariant under (etK; t > 0).)

In both of the above examples, the set
⋃

a>0
H[a,∞) (of elements whose trajec-

tories are eventually honest) is dense in X+. The third example will make it clear
that this is not always the case.

Modifying the above examples by starting with left translation semigroups
on (−∞, a), where a > 0, and otherwise proceeding as above we obtain situations
where even H[a,∞) = X+.

EXAMPLE 3.3. As the starting stochastic C0-semigroup we use the semi-
group associated with the heat equation on L1(0, ∞) with Neumann boundary
condition, i.e.,

D(S) := { f ∈W2
1 (0, ∞); f ′(0) = 0}, S f := f ′′,

and we define V(x) := x−2. As before, we note that for 0 6 r < 1, the semigroup
generated by T + rB is the semigroup obtained as the absorption semigroup with
the absorption rate (1− r)V.

In order to determine T and K we use that the above semigroup is also a
C0-semigroup on L2(0, ∞), generated by a symmetric operator, and that forming
absorption semigroups is consistent in different Lp-spaces; cf. Section 3 of [22].

From Proposition 5.8 and its proof of [22] we obtain that in L2(0, ∞), the
semigroup associated with the absorption (1− r)V is generated by the negative
of the operator associated with the form

sr(u, v) :=
∫

uv + (1− r)
∫

Vuv, D(sr) := {u ∈W1
2 (0, ∞); Vu2 ∈ L1}.

It is easy to see that D(sr) = {u ∈ W1
2,0(0, ∞); Vu2 ∈ L1}. Since C∞

c (0, ∞) is
dense in W1

2,0(0, ∞), a form convergence theorem (together with the consistency
mentioned above) implies that K generates the heat semigroup on L1(0, ∞) with
Dirichlet boundary conditions, i.e.,

D(K) = W1
1,0(0, ∞) ∩W2

1 (0, ∞), K f = f ′′.

And then, as above,

D(T) = D(K) ∩ D(V) = { f ∈W2
1 (0, ∞); f (0) = 0, V f ∈ L1},

T f = f ′′ −V f .
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The inverse quadratic singularity of V at zero forces f ′(0) = 0 for f ∈ D(T), and
therefore

ĉ( f ) = −
∫

K f = −
∫

f ′′ = f ′(0) ( f ∈ D(K)),

c( f ) = 0 ( f ∈ D(T)).

Making use of the explicit representation of etK (in terms of the heat kernel
on R) one obtains that HJ = {0} for any nonempty subinterval J ⊆ [0, ∞).
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