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ABSTRACT. Let A be a C∗-algebra and I a closed two-sided ideal of A. We
use the Hilbert C∗-modules picture of the Cuntz semigroup to investigate the
relations between the Cuntz semigroups of I, A and A/I. We obtain a rela-
tion on two elements of the Cuntz semigroup of A that characterizes when
they are equal in the Cuntz semigroup of A/I. As a corollary, we show that
the Cuntz semigroup functor is exact. Replacing the Cuntz equivalence rela-
tion of Hilbert modules by their isomorphism, we obtain a generalization of
Kasparov’s Stabilization theorem.
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1. INTRODUCTION

In recent years the Cuntz semigroup has emerged as a powerful invariant
in the classification of C∗-algebras, simple and nonsimple (e.g., [1], [2], [13], [15]).
In [15] Andrew Toms provides examples of simple AH C∗-algebras that cannot
be distinguished by their standard Elliott invariant (K-theory and traces) but that
have different Cuntz semigroups. The first author and G.A. Elliott show in [2]
that in the nonsimple case, the Cuntz semigroup is a classifying invariant for
all AI C∗-algebras (their approach relies on Thomsen’s classification of AI C∗-
algebras; see [14]).

Here we define the Cuntz semigroup in terms of countably generated Hilbert
C∗-modules over the algebra, following the approach introduced by K. Coward,
G.A. Elliott and C. Ivanescu in [3]. This construction of the Cuntz semigroup is
analogous to the description of K0 in terms of finitely generated projective mod-
ules, and is based on an appropriate translation of the notion of Cuntz equiva-
lence of positive elements to the context of Hilbert C∗-modules. Our investiga-
tion is initially motivated by the following question: is the Cuntz semigroup of
a quotient of a C∗-algebra implicitly determined by the Cuntz semigroup of the
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algebra? We deduce a satisfactory answer from the inequality in Theorem 1.1
below, of interest in its own right.

Given a countably generated right Hilbert C∗-module M over A, let us de-
note by [M] the element that it defines in Cu(A), the Cuntz semigroup of A. We
denote by W(A) the subsemigroup of Cu(A) consisting of the elements [M] that
satisfy M ⊆ An for some n. The semigroup W(A) can also be described in terms
of positive elements of A (and Mn(A)) and it is often referred to as the Cuntz
semigroup of A. However, in this paper we use this name for the semigroup
Cu(A). Let I be a σ-unital ideal of A. Then MI is a countably generated right
Hilbert C∗-module over I. We will see that [MI] only depends on the equivalence
class of M. Therefore we write [M]I := [MI].

THEOREM 1.1. Let I be a σ-unital, closed, two-sided ideal of the C∗-algebra A
and let π : A → A/I denote the quotient homomorphism. Let M and N be countably
generated right Hilbert C∗-modules over A. Then Cu(π)([M]) 6 Cu(π)([N]) if and
only if

[M] + [N]I 6 [N] + [M]I.

It follows from Theorem 1.1 that Cu(π)([M]) = Cu(π)([N]) if and only if
[M] + [N]I = [N] + [M]I. Adding [l2(I)] on both sides and using Kasparov’s
stabilization theorem we get that

(1.1) Cu(π)([M]) = Cu(π)([N])⇐⇒ [M] + [l2(I)] = [N] + [l2(I)].

We will show that the map Cu(π) : Cu(A)→ Cu(A/I) is surjective. We conclude
that the restriction of Cu(π) to Cu(A) + [l2(I)] is an isomorphism onto Cu(A/I).

In a similar way, the semigroup W(A/I) is obtained as the quotient of W(A)
by the equivalence relation: [M] ∼I [N] if [M] 6 [N] + [C1] and [N] 6 [M] + [C2]
for some C1 and C2, Hilbert C∗-modules over I. Here the assumption that the
ideal I is σ-unital is not needed. This result, which we prove in this paper, was
first obtained by Francesc Perera in an unpublished work. It can also be deduced
from Lemma 4.12 of [7].

A suitable notion of exactness of sequences of ordered semigroups can be
defined such that the isomorphism between Cu(A) + [l2(I)] and Cu(A/I), im-
plemented by Cu(π), implies the exactness in the middle of the sequence

0 −→ Cu(I)
Cu(ι)−→ Cu(A)

Cu(π)−→ Cu(A/I) −→ 0.

In Theorem 4.1 we will show that this is a short exact sequence of ordered semi-
groups, with splittings of the maps Cu(ι) and Cu(π).

We can express (1.1) more directly as follows: M/MI and N/NI are Cuntz
equivalent as A/I-Hilbert C∗-modules if and only if M⊕ l2(I) and N ⊕ l2(I) are
also Cuntz equivalent. In Section 5 we obtain an improvement of this result, with
isomorphism of Hilbert C∗-modules instead of Cuntz equivalence. We prove the
following theorem.
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THEOREM 1.2. Let A be a C∗-algebra and I a σ-unital, closed, two-sided ideal of
A. Let M and N be countably generated right Hilbert C∗-modules over A and suppose
that φ : M/MI → N/NI is an isomorphism of A/I-Hilbert C∗-modules. Then there is
an isomorphism of Hilbert C∗-modules Φ : M⊕ l2(I)→ N ⊕ l2(I) that induces φ after
passing to the quotient.

Taking I = A we get Kasparov’s Stabilization Theorem ([6], Theorem 2.1).
The module M⊕ l2(I)/MI⊕ l2(I) is canonically isomorphic to M/MI. It is using
this identification, applied also to N, that Φ induces φ. Theorem 1.2 is proved by
an adaptation of the proof given by Mingo and Phillips in [11] of Kasparov’s
Stabilization Theorem.

In the last two sections we apply Theorem 1.2 in the context of multiplier
algebras and we prove an equivariant version of Theorem 1.2 assuming that the
group is compact.

2. PRELIMINARIES ON HILBERT C∗-MODULES

Let M and N be right Hilbert C∗-modules over a C∗-algebra A. We shall
denote by K(M, N) the norm closure of the space spanned by the A-module maps
θu,v : M → N, given by θu,v(x) := v〈u, x〉, u ∈ M, v ∈ N. We shall denote by
B(M, N) the space of adjointable operators from M to N. If T ∈ B(M, N), ker T
and im T will denote the kernel and the image of T respectively. When M = N
the spaces K(M, N) and B(M, N) are C∗-algebras that we shall denote by K(M)
and B(M) respectively. The elements of B(M, N) will often be referred to simply
as operators, while the elements of K(M, N) will be called compact operators.
Sometimes we will drop the prefix C∗ and refer to Hilbert C∗-modules as Hilbert
modules. The C∗-algebra will always act on the right of the Hilbert C∗-modules.

Given a Hilbert C∗-module M, the Hilbert C∗-module l2(M) is defined as
the sequences (mi)i∈N, mi ∈ M, with the property that ∑

i
〈mi, mi〉 converges in

norm. This module is endowed with the inner product 〈(m1
i ), (m2

i )〉 :=∑
i
〈m1

i , m2
i 〉.

Let I be a closed two-sided ideal of A. By MI we denote the span of the el-
ements of the form m · i, with m ∈ M, i ∈ I. By Cohen’s Theorem (see Lemma 4.4
of [9]), this set is a closed submodule of M consisting of all the vectors z of M for
which 〈z, z〉 ∈ I. The quotient M/MI is a right A/I-Hilbert C∗-module module
with inner product 〈x + MI, y + MI〉 := 〈x, y〉+ I.

The submodule MI is invariant by any operator T ∈ B(M). More generally,
if T ∈ B(M, N), then T(MI) ⊆ NI. In this way every operator T induces an
operator π̃(T) ∈ B(M/MI, N/NI).

We say that a Hilbert C∗-module M is countably generated if there is a
countable set {vi}∞

i=1 ⊂ M with dense span in M. We will make use of the fol-
lowing two theorems on countably generated Hilbert modules.
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THEOREM 2.1 (Noncommutative Tietze extension Theorem for Hilbert C∗-
modules). Let M and N be countably generated Hilbert C∗-modules and φ ∈
B(M/MI, N/NI). Then there is Φ ∈ B(M, N) that induces φ in the quotient.

Proof. Let H = M ⊕ N. We have H/HI ' M/MI ⊕ N/NI. Using this
isomorphism, we define ψ : H/HI → H/HI, adjointable operator, by the matrix

ψ :=
(

0 φ∗

φ 0

)
.

The homomorphism π̃ : B(H) → B(H/HI) maps θu,v to θπ(u),π(v) (here π : H →
H/HI is the quotient map). Thus, K(H) is mapped surjectively onto K(H/HI)
by π̃. Since H is countably generated, K(H) is σ-unital. Thus, by the noncom-
mutative Tiezte extension Theorem ([16], Theorem 2.3.9 ), π̃ is also surjective. Let
Ψ ∈ B(H) be a selfadjoint preimage of ψ given by the matrix

Ψ =
(

A Φ∗

Φ B

)
.

Then the operator Φ is a lift of φ.

The following theorem is due to Michael Frank ([5], Theorem 4.1).

THEOREM 2.2. Let M and N be Hilbert C∗-modules, M countably generated. Let
T : M → N be a module morphism that is bounded and bounded from below (but not
necessarily adjointable). Then M is isomorphic to im T as Hilbert C∗-modules.

3. CUNTZ SEMIGROUPS

Let A be a C∗-algebra. Let us briefly review the construction of Cu(A) and
W(A) in terms of countably generated Hilbert C∗-modules over A. We refer to
[3] for further details.

Let M be a Hilbert C∗-module over A. A submodule F of M is said to be
compactly contained in M if there is T ∈ K(M)+ such that T restricted to F is the
identity of F. In this case we write F ⊆⊆ M. Given two Hilbert C∗-modules M
and N we say that M is Cuntz smaller than N, denoted by M � N, if for all F,
F ⊆⊆ M, there is F′, F′ ⊆⊆ N, isomorphic to F. This relation defines a preorder
relation on the isomorphism classes of Hilbert modules over A. Let us say that M
is Cuntz equivalent to N if M � N and N � M. Let [M] denote the equivalence
class of all the modules Cuntz equivalent to a given module M. Then the relation
[M] 6 [N] if M � N defines an order on the Cuntz equivalence classes of right
Hilbert modules over A.

Following [3], the Cuntz semigroup is defined as the ordered set of Cuntz
equivalence classes of countably generated Hilbert modules over A endowed
with the addition opperation [M] + [N] := [M ⊕ N]. We denote this ordered
semigroup by Cu(A). It is shown in the appendix of [3] that the subsemigroup
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of Cu(A) formed by the Cuntz equivalence classes [M] of A-Hilbert modules
M such that M ⊆ An for some n > 1 coincides with the ordered semigroup
defined by Cuntz in [4]. The latter semigroup, denoted by W(A) in [13], is de-

fined in terms of positive elements of
∞⋃

n=1
Mn(A). It was also shown in [3] that

Cu(A) = W(A⊗ K). Furthermore, we can define functors Cu(·) and W(·) from
the category of C∗-algebras to the category of ordered semigroups. By choosing
a suitable subcategory of the category of ordered semigroups, Coward, Elliott
and Ivanescu were able to show in [3] that the functor Cu(·) is continuous with
respect to inductive limits.

Let I be a σ-unital closed two-sided ideal of A. If M is a countably generated
Hilbert module over A then MI is also countably generated. Let us see that if
[M] 6 [N] then [MI] 6 [NI]. Suppose that F ⊆⊆ MI. Then there is F′ ⊆⊆ N
isomorphic to it. Since F and F′ are isomorphic and FI = F, we must have F′ I =
F′. So F′ ⊆ NI. Hence [F] = [F′] 6 [NI]. Taking supremum over F ⊆⊆ MI we
get that [MI] 6 [NI]. In particular, if M and M′ are Cuntz equivalent then MI
and M′ I are also Cuntz equivalent. This justifies writing [MI] := [M]I. We have
seen already that the map [M] 7→ [M]I is order preserving. Since (M ⊕ N)I =
MI ⊕ NI, it is also additive. Notice that M = MI (i.e., M is a Hilbert I-module) if
and only if [M]I = [M]. If M ⊆ An then MI ⊆ An, so the map [M] 7→ [M]I sends
elements in W(A) to elements in W(A).

Let ι : I → A and π : A→ A/I denote the inclusion and quotient homomor-
phisms. The morphisms of ordered semigroups Cu(ι) and Cu(π) are given by

Cu(ι)([H]) := [H ⊗ι A] = [H],

Cu(π)([M]) := [M⊗π A/I] = [M/MI].

The restrictions of Cu(ι) and Cu(π) to W(I) and W(A) respectively, give W(ι)
and W(π).

Proof of Theorem 1.1. The hypothesis Cu(π)([M]) 6 Cu(π)([N]) says that
M/MI is Cuntz smaller than N/NI as A/I-Hilbert C∗-modules. We will first
show that if M/MI is isomorphic to a submodule of N/NI then we have [M] +
[N]I 6 [N] + [M]I.

Let φ : M/MI → N′/N′ I be an isomorphism of M/MI into N′/N′ I, a sub-
module of N/NI. Let C : M/MI → M/MI be an arbitrary positive compact
operator with dense range. This operator exists because M is countably gener-
ated. Then φ′ = φ ◦ C is compact and satisfies that im φ′∗φ′ is dense in M/MI.
Since φ′ is compact, it is also a compact operator after composing it with the in-
clusion of N′/N′ I into N/NI. Let us consider φ′ as a compact operator having
codomain N/NI. Let T : M → N be a compact operator that lifts φ′. We have a
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commutative diagram

M
T //

��

N

��
M/MI

φ′ // N/NI.

Since im φ′∗φ′ is dense in M/MI, we have that im(T∗T) + MI is dense in M.
Let D1 : M→ M be positive and with im D1 dense in MI. The operator D1 exists
because MI is countably generated (here we use that I is σ-unital). Then T∗T + D1
has dense range in M, that is, it is strictly positive. Let {Fn}∞

n=1 be an increasing
sequence of submodules of M such that T∗T + D1 is bounded from below on
Fn and

⋃
n

Fn is dense in M (e.g., Fn = im φn(T∗T + D1), where φn ∈ C0(R+)

has compact support and φn(t) ↑ 1). Let G be compactly contained in NI. We
claim that Fn ⊕ G is isomorphic to a submodule on N ⊕MI. By Theorem 2.2, in
order to prove this it is enough to find an operator (not necessarily adjointable)
Φ : M ⊕ NI → N ⊕ MI that is bounded from below when restricted to Fn ⊕ G.
Let us take

Φ :=
(

T −ιNI,N
D1 T∗

)
,

where ιNI,I is the inclusion map of NI in N. In order to show that Φ is bounded
from below it is enough to show that Φ′Φ is bounded from below, where Φ′ is
some bounded, possibly nonadjointable, operator. Let us choose Φ′ : N ⊕MI →
M⊕ NI as follows:

Φ′ :=
(

T∗ ιMI,M
−D2 T

)
,

where D2 : N → N has image in NI and is bounded from below on G. Then Φ′Φ
has the form

Φ′Φ =
(

T∗T + D1 0
∗ TT∗ + D2

)
.

To show that the restriction of Φ′Φ to Fn ⊕ G is bounded from below it is enough
to show that the operators on the main diagonal are bounded from below (be-
cause the upper right corner is 0). This is true by our choice of Fn and D2. So
Fn ⊕ G is isomorphic to a submodule of N ⊕MI. Taking supremum over Fn and
G we get that [M] + [NI] 6 [N] + [MI].

Now suppose that M/MI � N/NI. Let F ⊆⊆ M. Then F/FI ⊆⊆ M/MI,
so F/FI is isomorphic to a submodule of N/NI. It follows that [F] + [N]I 6 [N] +
[F]I. Taking supremum over all F, F ⊆⊆ M, we get [M] + [NI] 6 [N] + [MI].

COROLLARY 3.1. Let I and J be σ-unital ideals. Suppose that [M/M(I ∩ J)] =
[N/N(I ∩ J)]. Then

[M]I + [N]J = [M](I + J) + [N](I ∩ J) = [M](I ∩ J) + [N](I + J).
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Proof. We have [M]I + [N]J = [M(I + J)]I + [NJ] = [M(I + J)] + [NJ]I =
[M](I + J) + [N](I ∩ J).

COROLLARY 3.2. The map Cu(π) restricted to Cu(A) + [l2(I)] is an isomor-
phism onto Cu(A/I).

Proof. As remarked in the introduction, it follows from Theorem 1.1 and
Kasparov’s Stabilization Theorem that the map Cu(π) is injective on Cu(A) +
[l2(I)]. The map Cu(π) is surjective, since every A/I-Hilbert module can be
embedded in l2(A/I), and then have its preimage taken by the quotient map
l2(A) → l2(A/I). Cu(π) is also surjective restricted to Cu(A) + [l2(I)], since
adding [l2(I)] does not change the image in Cu(A/I). Hence, Cu(π) sends Cu(A)
+[l2(I)] isomorphically onto Cu(A/I).

The description of Cu(A/I) obtained in Corollary 3.2 assumes that the ideal
I is σ-unital. It is possible to obtain W(A/I) as a quotient of W(A) by a suitable
equivalence relation without assuming that I is σ-unital. Since Cu(A) ' W(A⊗
K), this result can also be applied to the Cuntz semigroup.

Recall that W(A) can be defined as equivalence classes of positive elements
on

⋃
n

Mn(A) (see [13]). Given [a], [b] ∈ W(A) let us say that [a] 6I [b] if there is

c ∈ Mn(I)+ for some n such that [a] 6 [b] + [c]. We say that [a]∼I [b] if [a] 6I [b]
and [b] 6I [a].

PROPOSITION 3.3. The semigroups W(A)/∼I and W(A/I) are isomorphic.

Proof. Let π : A → A/I be, as before, the quotient homomorphism. Let us
show that the map W(π)([a]) = π([a]) induces an isomorphism after passing to
the quotient by ∼I . Since π is surjective, W(π) is also surjective. It only rests to
show that W(π)([a]) 6W(π)([b]) if and only if [a] 6I [b].

Let a and b be positive elements in Mn(A), such that π(a) � π(b). For all k,
there is dk ∈ Mn(A/I) such that ‖π(a)− dkπ(b)d∗k‖ 6 1/k. By Lemma 2.2 of [8],
there is d′k ∈ Mn(A/I) such that (π(a)− 1/k))+ = d′kπ(b)d′∗k . Let fk ∈ Mn(A) be
such that π( fk) = d′k. We have

(a− 1/k)+ = fkb f ∗k + ik 6 fkb f ∗k + i+k ,

for some i+k ∈ Mn(I)+. We get that [(a − 1/k)+] 6 [b] + [i+k ]. Let i ∈ Mn(I)+

be an element such that [i] majorizes the sequence [i+k ] (e.g., i = ∑ i+k /(2k‖i+k ‖)).
Taking supremum over k in [(a− 1/k)+] 6 [b] + [i] we get [a] 6 [b] + [i]. Hence
[a] 6I [b].
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4. EXACTNESS OF THE CUNTZ SEMIGROUP FUNCTOR

Given S and T ordered, abelian semigroups, and φ : S → T an order pre-
serving semigroup map, let us define Ker(φ) and Im(φ) as follows:

Ker(φ) := { (s1, s2) ∈ S× S : φ(s1) 6 φ(s2) },
Im(φ) := { (t1, t2) ∈ T × T : ∃ s ∈ S, t1 6 φ(s) + t2 }.

We denote by im φ and ker φ the image and the kernel of φ (i.e., the elements
mapped to 0), in the standard sense.

By a short exact sequence of ordered semigroups we mean one which is
exact with respect to the two notions of image and kernel mentioned above.

THEOREM 4.1. Let I be a σ-unital ideal of A. The short exact sequence

0 −→ I ι−→ A π−→ A/I −→ 0,

induces split, short exact sequences of ordered abelian semigroups

0 −→ Cu(I)
r
� Cu(A)

q
� Cu(A/I) −→ 0,(4.1)

0 −→W(I)
r
�W(A) −→W(A/I) −→ 0.(4.2)

These sequences are also exact in the standard sense.
The maps r and q are defined as follows: r([H]) := [HI] and q([M]) := [M′] +

[l2(I)], where [M′] is such that Cu(π)([M′]) = [M].

Proof. We have already shown in Corollary 3.2 that the maps Cu(π) and
W(π) are surjective. The maps Cu(ι) and W(ι) are injective, since if M is Cuntz
smaller than N as I-modules, then the same holds when they are regarded as
A-modules.

Let us prove the exactness of the sequence (4.1) and note that the same proof
works also for the sequence (4.2). Exactness at Cu(I) and Cu(A/I) is easily ver-
ified. To check the exactness in the middle of the sequence (4.1) it suffices to
prove that Ker(Cu(π)) ⊆ Im(Cu(ι)), the other inclusion being obvious. The pair
([M], [N]) belongs to Ker(Cu(π)) precisely when Cu(π)([M]) 6 Cu(π)([N]),
and this is equivalent by Theorem 1.1 with the fact that [M] + [N]I 6 [N] + [M]I.
This shows that ([M], [N]) ∈ Im(Cu(ι)), and hence Ker(Cu(π)) ⊆ Im(Cu(ι)).

It only remains to show that the maps q and r define splittings of Cu(π) and
Cu(ι), respectively. We have already observed that Cu(π) restricted to Cu(A) +
[l2(I)] is an isomorphism of ordered semigroups. Its inverse is q. We have also
noted that M = MI (i.e., M is a Hilbert I-module) if and only if [M]I = [M],
which shows that r is a splitting of Cu(ι).

The restriction of r to W(A) is a splitting of W(ι).

REMARK 4.2. The maps r and q are not necessarily morphisms in the cate-
gory defined by Coward, Elliott and Ivanescu in [3] since they might not preserve
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the relation of compact containment of elements in Cu(A) (see [3] for the defini-
tion of this relation). To see this for r, let I be a σ-unital ideal in a C∗-algebra A
such that [A] is compactly contained in [A], but [I] is not compactly contained
in [I] (e.g., A = C([0, 1]) and I = C0((0, 1])). Then r([A]) = [I], which shows
that the map r does not preserve the compact containment relation. The map q
does not preserve the compact containment relation either. One can see this by
taking the zero element of Cu(A/I), which is always compactly contained in it-
self, and noticing that q maps it into [l2(I)], which is not necessarily compactly
contained in itself (e.g., I equal to the C∗-algebra of compact operators, and A the
unitization of I).

Let us show that the map r preserves directed suprema.

PROPOSITION 4.3. Let {[Hi]}∞
i=1 be an increasing sequence in Cu(A) with supre-

mum [H]. Then [H]I = sup
i

([Hi]I).

Proof. It will be enough to show that [H]I 6 sup
i

([Hi]I), the other inequality

being obvious. Let F be a compactly contained submodule of HI. Then F is
compactly contained in H, hence we conclude that [F] 6 [Hi] for some i (see
Theorem 1 of [3]). This implies that [F] 6 [Hi]I, so [F] 6 sup

i
([Hi]I). Taking

supremum over F, we get that [H]I 6 sup
i

([Hi]I).

5. PROOF OF THEOREM 1.2.

Proof. By Theorem 2.1, there is an operator T ∈ B(M, N) that lifts φ. The
following diagram commutes:

M
T //

��

N

��
M/MI

φ // N/NI.

The operator T in general will not be an isomorphism. However, by the commu-
tativity of this diagram, and the fact that φ∗ = φ−1, we do have that

N = im T + NI and M = im T∗ + MI.

We now follow the ideas of Mingo and Phillips’s proof of the Stabilization Theo-
rem ([11], Theorem 1.4) to find T̃ : M⊕ l2(I)→ N⊕ l2(I) such that T̃ and T̃∗ have
dense range. The desired isomorphism Φ will be obtained by the polar decom-
position of T̃.

Since I is σ-unital, the modules MI and NI are countably generated. Let
{ηk} and {ζk} be infinite sequences of generators of MI and NI respectively, such
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that each generator appears infinitely often. Let us define operators φ1 : l2(I) →
N, φ2 : l2(I)→ l2(I), and φ3 : l2(I)→ M by the formulas

φ1((xk)) := ∑
k

1
2k ζkxk, φ2((xk)) := (

1
4k xk), φ3((xk)) := ∑

k

1
2k ηkxk.(5.1)

Let T̃ : M⊕ l2(I)→ N ⊕ l2(I) be defined by the matrix

T̃ :=
(

T φ1
φ∗3 φ2

)
.

Notice that T̃ is still a lift of φ. We have T̃(0, y) = (φ1y, φ2y), for y ∈ l2(I). It
is argued in the proof of Theorem 1.4 of [11], that this set is dense in NI ⊕ l2(I).
Thus NI ⊕ l2(I) ⊆ im T̃. Also, T̃(x, 0) = (Tx, 0) + (0, φ∗3 x). So, im T ⊕ 0 ⊆ im T̃.
We conclude that im T̃ is dense in N ⊕ l2(I). In the same way we show that T̃∗

has dense range. Thus, the operator T̃ admits a polar decomposition of the form
T̃ = Φ(T̃∗T̃)1/2, with Φ an isomorphism (see Proposition 15.3.7 of [16]). Passing
to the quotients M/MI and N/NI, the operator T̃∗T̃ induces the identity. So Φ
lifts φ.

6. MULTIPLIER ALGEBRAS

Let A be a σ-unital algebra and I a σ-unital closed two-sided ideal of A. In
this section we use Theorem 1.2 to explore the relationship between the multiplier
algebras M(A) and M(A/I).

We shall consider A and I as countably generated right Hilbert modules
over A. We shall identify the algebra K(A) with A, and the algebra B(A) with
M(A). All throughout this section we make the following two assumptions:

(1) the ideal I is stable;
(2) A ' A⊕ I as A-Hilbert modules.

Let us denote by s : M(A)→ M(I) the map given by restriction of the mul-
tipliers of A to the invariant submodule I. Let π̃ : M(A) → M(A/I) be the ex-
tension of the quotient map π : A → A/I by strict continuity. Recall that, by the
noncommutative Tietze extension theorem, π̃ is surjective.

Recall the fact that for p, q ∈ M(A)⊗Mn(C) projections, the modules pAn

and qAn are isomorphic if and only if p and q are Murray–von Neumann equiv-
alent.

LEMMA 6.1. The following statements are equivalent:
(i) The ideal I is a direct summand of A as a right A-Hilbert module.

(ii) There is a projection PI ∈ M(A) such that PI A ⊆ I and s(PI) is Murray–von
Neumann equivalent to the unit of M(I).

Any two projections of M(A) that satisfy (ii) are Murray–von Neumann equiva-
lent in M(A).
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Proof. Suppose we have (i). Let A = I1 ⊕ N1, with I1 ' I as right Hilbert
A-modules. Let PI ∈ M(A) be the projection onto I1. Since I1 is an I-module
I1 I = I1. Hence PI A = (PI A)I = PI I ⊆ I. Since the I-module PI I is isomorphic
to I, it follows that PI , as an I multiplier, is Murray–von Neumann equivalent to
the identity of M(I).

Suppose we have (ii). The I-modules I and PI I are isomorphic. Hence, they
are isomorphic as A-modules. Since PI A ⊆ I, we have PI I = PI A. Hence, PI A is
a direct summand of A isomorphic to I.

If P(1)
I and P(2)

I satisfy (ii) then P(1)
I A = P(1)

I I ' I ' P(2)
I I = P(2)

I A. Thus,

P(1)
I and P(2)

I are Murray–von Neumann equivalent.

PROPOSITION 6.2. Suppose A and I satisfy conditions (i) and (ii) above. The
following propositions are true:

(i) Every unitary of M(A/I) lifts to a unitary of M(A).
(ii) If p and q are projections in M(A) such that π̃(p) and π̃(q) are Murray–von

Neumann equivalent in M(A/I), then p ⊕ PI and q ⊕ PI are Murray–von Neumann
equivalent in M2(M(A)).

(iii) For every projection p0 ∈ M(A/I) there is p ∈ M(A) such that π̃(p) is
Murray–von Neumann equivalent to p0.

Proof. (i) Let Φ : A → A ⊕ I be an A-module isomorphism. This map in-
duces an isomorphism φ : A/I → (A ⊕ I)/(A ⊕ I)I, and composing with the
canonical identification of (A⊕ I)/(A⊕ I)I and A/I, we get a unitary φ′ : A/I →
A/I. By Theorem 1.2, we can lift this unitary to a unitary Φ′ : A ⊕ I → A ⊕ I.
Now the map Φ0 = (Φ′)−1Φ is an isomorphism of the Hilbert modules A and
A⊕ I that induces the identity in the quotient.

Let u ∈ M(A/I) be unitary. By Theorem 1.2, there is a unitary U : A⊕ I →
A⊕ I that lifts u. Then Φ∗0 UΦ0 ∈ M(A) is a unitary that lifts u.

(ii) Since the A/I-modules π(p)A/I and π(q)A/I are isomorphic, we get
pA⊕ I ' qA⊕ I. We have PI A ' I. Hence, pA⊕ PI A ' qA⊕ PI A. So p⊕ PI is
Murray–von Neumann equivalent to q⊕ PI .

(iii) The A-modules π−1(p0 A/I)⊕π−1((1− p0)A/I) and A are isomorphic
in the quotient (to A/I). Thus π−1(p0 A/I)⊕π−1((1− p0)A/I)⊕ I ' A⊕ I ' A.
So π−1(p0 A/I) is a direct summand of A. Let p ∈ M(A) be such that pA '
π−1(p0 A/I). Then π(p)A/I ' p0 A/I, so π(p) is Murray–von Neumann equiv-
alent to p0.

REMARK 6.3. If A and I satisfy conditions (i) and (ii), then Mn(A) and
Mn(I) satisfy them as well. So Proposition 6.2 applies to the pair (Mn(A), Mn(I)).
If A is stable then A⊕ I ' A (by the Stabilization Theorem), and I is stable. So (i)
and (ii) are verified in this case too. More generally, suppose there is B stable such
that I ⊆ A ⊆ B, and I is an ideal of B. Then there is PI ∈ M(B) that satisfies (ii) of
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Lemma 6.1. The restriction of PI to A is in M(A) and satisfies (ii) of Lemma 6.1.
Hence, in this case the pair A, I satisfies (i) and (ii).

Proposition 6.2 has some implications for the K-theory of the multiplier al-
gebras M(A) and M(A/I). Part (i), applied to the algebras Mn(A), implies that
the map K1(M(A)) → K1(M(A/I)) is surjective. Parts (ii) and (iii) imply that
the map K0(M(A)) → K0(M(A/I)) is an isomorphism. We can improve these
results as follows.

Let B be a unital C∗-algebra. Let A ⊗ B be the minimal tensor product of
A and B. Given H and E, Hilbert modules over A and B respectively, let us
denote by H ⊗ E the external tensor product of H and E (see [9]). This is an
A⊗ B Hilbert module. Given A-Hilbert modules H1 and H2, let B(H1, H2)⊗ B
denote the norm closed subspace of B(H1 ⊗ B, H2 ⊗ B) generated by operators
of the form T ⊗ b, with T ∈ B(H1, H2) and b ∈ B. Note that the composition
of operators in B(H1 ⊗ B, H2 ⊗ B) with operators in B(H2 ⊗ B, H3 ⊗ B) results in
operators in B(H1 ⊗ B, H3 ⊗ B).

Let M(A, I) be the kernel of π̃ : M(A) → M(A/I). We have M(A, I) =
{ x ∈ M(A) : xa, ax ∈ I for all a ∈ A }.

PROPOSITION 6.4. Let B be a unital C∗-algebra and A and I as before. Let p ∈
M(A, I)⊗ B be a projection and P′I = PI ⊗ 1, with PI as in Lemma 6.1(ii). Then p⊕ P′I
is Murray–von Neumann equivalent to 0⊕ P′I .

Proof. The multiplier projection p is an operator from A⊗ B to A⊗ B with
range contained in I ⊗ B. Let p̃ ∈ B(A, I) ⊗ B denote the adjointable operator
obtained by simply restricting the codomain of p to I⊗ B. Let P̃′I ∈ B(A, I)⊗ B be
the corresponding operator for P′I . Notice that p̃∗ p̃ = p, p̃ p̃∗ = s(p) ∈ M(I)⊗ B,
and similarly for P̃′I . By Lemma 16.2 of [16], there is V ∈ M2(M(I)⊗ B), partial
isometry, such that V∗V = s(p)⊕ s(P′I) and VV∗ = 0⊕ s(P′I). Let W be defined as

W :=
(

0 0
0 (P̃′I)

∗

)
V
(

p̃ 0
0 P̃′I

)
.

Then W∗W = p⊕ P′I , WW∗ = 0⊕ P′I , and W ∈ M(A, I)⊗ B.

COROLLARY 6.5. We have, for i = 0, 1,

Ki(M(A, I)) = 0, Ki(M(A)) ' Ki(M(A/I)), Ki(M(A, I)/I) ' K1−i(I).

Proof. From Proposition 6.4 we deduce that K0(M(A, I)) = 0. Taking B =
C(T), we get K1(M(A, I)) = 0. Now by the six term exact sequence associated to
the extension M(A, I)→ M(A)→ M(A/I), we have Ki(M(A)) ' Ki(M(A/I)),
i = 0, 1. Looking at the extension I → M(A, I)→ M(A, I)/I, we get that Ki(I) =
K1−i(M(A, I)/I) for i = 0, 1.
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QUESTION 6.6. Suppose that A and I satisfy the conditions (i) and (ii)
above. Is the unitary group of M(A, I)˜contractible in the norm or strict topolo-
gies?

If I = A then A is stable, so the unitary group of M(A) is contractible by
the Kuiper–Mingo Theorem (see Theorem 16.8 of [16]).

7. EQUIVARIANT VERSION OF THEOREM 1.2

Let G be a locally compact Hausdorff group acting on the C∗-algebra A. A
G-A Hilbert C∗-module, or simply a G-A-module, is a right Hilbert C∗-module
endowed with a continuous action of G such that

〈g · v, g · w〉=g(〈v, w〉), g · (va)=(g · v)(g(a)), for all g∈G, v∈M, and a∈ A.

An operator between G-A-modules is equivariant if T(g · v) = gTv. The action
of g on T is defined as (g · T)(v) = gT(g−1v). The operator T is G-continuous if
the map g 7→ g · T is continuous in the norm of operators.

Given a G-A-module M we denote by L2(G, M) the Hilbert C∗-module
L2(G) ⊗ M, where L2(G) is the left regular representation of G. The action of
G on L2(G, M) is defined as g · (λ ⊗ m) = (g · λ ⊗ g · m). The G-A-module
L2(G, M) can also be viewed as the completion of Cc(G, M), the M-valued con-
tinuous functions on G with compact support, with respect to the A-valued inner
product 〈h1, h2〉 =

∫
〈h1(g), h2(g)〉dg.

Let I be a σ-unital, closed, two-sided ideal of A that is invariant by the action
of G. Then we can define a quotient action of G on A/I. More generally, given
a G-A-module M, we can define a natural (quotient) structure of G-A/I-module
on M/MI.

We now state an equivariant version of Theorem 1.2 for compact groups
(Theorem 2.1 of [6] and Theorem 2.5 of [11] in the case I = A).

THEOREM 7.1. Suppose that the group G is compact. Let I be a σ-unital, invari-
ant, closed, two-sided ideal of A. Let M and N be countably generated G-A-modules.
Let φ : M/MI → N/NI be an equivariant isomorphism. Then there is an equivariant
isomorphism Φ : M⊕ L2(G, l2(I))→ N ⊕ L2(G, l2(I)) that induces φ in the quotient.

Proof. The proof is an adaptation of the proof of Theorem 1.2. The equivari-
ant isomorphism φ : M/MI → N/NI can be lifted to an equivariant operator
T : M → N by first lifting it to an arbitrary operator T′, and then averaging over
the group: Tx =

∫
(g · T′)x dg. (This integration is possible because for all x ∈ M,

the function (g · T′)x is continuous in G.)
Next we construct the operator T̃, this time making sure that it is equivari-

ant. For this we need to replace the sequences of vectors {ηk}, {ζk}, generators of
MI and NI, by equivariant operators ηk : L2(G, I) → M, ζk : L2(G, I) → N, such
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that ∑ im ηk is dense in MI and ∑ im ζk is dense in NI. This is guaranteed by the
following lemma.

LEMMA 7.2. Suppose that H is a countably generated G-A-module. Let I be as
before. Then there is a sequence ηk : L2(G, I) → H of G-continuous maps such that
∑ im(ηk) is dense in HI. If G is compact then these maps can be chosen equivariant.

Before proving the lemma, let us proceed with the proof of the theorem. We
define the maps φ1 and φ3 replacing the vectors ηk and ζk for the operators ob-
tained using the lemma. The definition of the map φ2 is unchanged. The resulting
operator T̃ is equivariant. Following the same argument of Mingo and Phillips,
T̃ and T̃∗ have dense range. Since the unitary part of an equivariant operator is
also equivariant, we get the equivariant isomorphism Φ by polar decomposition
of T̃.

Let us prove the lemma. First suppose that G is only locally compact. It is
enough to find a G-continuous operator from l2(L2(G, I)) to H with range dense
in HI. Let C1 : l2(L2(G, I)) → HI be a G-continuous, surjective operator. Its
existence is guaranteed by the Stabilization Theorem. Let C2 : HI → HI be a
compact operator with dense range. Then C2C1 : l2(L2(G, I)) → HI has dense
range, and since it is compact, it is still an adjointable operator after composing
it with the inclusion of HI in H. If G is compact we need to choose C1 and C2
equivariant. The equivariant C1 exists by the Stabilization Theorem. We take
C2 =

∫
(g · C′2)dg, with C′2 ∈ K(HI)+ strictly positive. In this way C2 is strictly

positive, thus it has dense range.

REMARK 7.3. In the case that G is locally compact, Kasparov [6], and Mingo
and Phillips [11], obtain a G-continuous isomorphism of M ⊕ L2(G, l2(A)) and
L2(G, l2(A)). Thus, it would be desirable to have a G-continuous version of The-
orem 1.2. It is possible to obtain a G-continuous lift T of φ. Furthermore, the
construction of the operator T̃ can be carried through. However, the proof breaks
down at the last step, since the unitary part of a G-continuous operator need not
be G-continuous.
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