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ABSTRACT. Let L be a separable infinite-dimensional Hilbert spaceB := B(L).
A contractive right B-module X is called semi-Ruan module, if for every u, v ∈
X and mutually orthogonal projections P, Q ∈ B we have ‖u · P + v · Q‖ 6
(‖u · P‖2 + ‖v · Q‖2)1/2. For an arbitrary Hilbert space H we consider the
Hilbert tensor product L⊗ H as a left B-module with the outer multiplication
a · ζ := (a⊗ 1H)ζ; a ∈ B, ζ ∈ L⊗ H. We prove that for every isometric morphism
α : Y → Z of right semi-Ruan modules the operator α ⊗B 1L⊗H is also isometric.
As corollaries, we obtain several theorems on extensions of morphisms with
the preservation of their norms and a new proof of the Arveson–Wittstock
Extension Theorem in operator theory.
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We show in this paper that a certain class of normed modules over the alge-
bra of all bounded operators on a Hilbert space possesses a homological property
which is a kind of a functional-analytic version of the standard algebraic property
of flatness. We mean the preservation, under projective tensor multiplication of
modules, of the property of a given morphism to be isometric. As an applica-
tion, we obtain several extension theorems for different types of modules, called
Arveson–Wittstock type theorems. These, in their turn, have, as a straight corol-
lary, the “genuine” Arveson–Wittstock Theorem in its non-matricial presentation.
We recall that the latter theorem plays the role of a “quantum” version of the clas-
sical Hahn–Banach theorem on the extension of bounded linear functionals. It
was originally proved in [16], and a crucial preparatory step was done in [1]. As
to the monographical presentation, see the textbooks [3], [12].



172 A.YA. HELEMSKII

1. PRELIMINARIES

Throughout the paper we shall denote by B(E, F) the space of all bounded
operators acting between normed spaces E and F, always equipped with the op-
erator norm. We shall denote by F (E, F) the subspace of this space consisting of
the finite-rank operators. As usual, we set B(E) := B(E, E) andF (E) := F (E, E).

The identity operator on E is denoted by 1E.
The inner product in Hilbert spaces is denoted by 〈 · , · 〉. The complex-

conjugate Hilbert space of a Hilbert space H is denoted by Hc.
In our future arguments we shall come across some tuples of isometric op-

erators between Hilbert spaces, say H and K. Let Sk; k = 1, . . . , n be such a tuple,
and suppose that the final projections Pk := SkS∗k of these operators are pairwise
orthogonal. We recall that in this situation we have the following equalities:

(1.1) Sk = PkSk, S∗k = S∗k Pk and, as a corollary, S∗k Sl = 0 for k 6= l.

Another class of operators we shall need is that of rank-one operators. For
the same H and K as above, and for ξ ∈ K and η ∈ H, we denote by ξ ◦ η the
rank-one operator taking ζ ∈ H to 〈ζ, η〉ξ ∈ K. We recall the equalities

(1.2) (ξ◦η)(ξ ′◦η′)= 〈ξ ′, η〉ξ◦η′, a(ξ◦η)=(aξ)◦η and (ξ◦η)a = ξ◦(a∗η),

that are valid whenever their ingredients make sense.
As usual, the symbol “⊗” denotes the algebraic tensor product of linear

spaces and operators. Further, we use the symbol “
�
⊗” for the Hilbert tensor

product of Hilbert spaces as well as for the Hilbert tensor product of operators
acting between these spaces. Finally, the symbol “⊗p” denotes the non-completed
projective tensor product of normed spaces.

Further, we choose a separable infinite-dimensional Hilbert space, denote
it by L, and fix it throughout the whole paper. Sometimes in what follows this
Hilbert space will be referred as the “canonical” one. (Our experience shows
that, as a whole, it is more convenient to make an “abstract” choice, and not be
tied to, say, l2 or L2( · ).) For brevity, we denote the operator algebras B(L) and
F (L) by B and F , respectively.

Throughout the paper, the terms left module, right module and bimodule (= two-
sided module) always mean a unital module of the relevant type over the operator algebra
B; we shall never consider other basic algebras. The respective outer (= module)
multiplications will be denoted by a dot: “ � ”. The words (bi)module morphism
always mean a morphism of the B-(bi)modules in question.

Let X be a left (respectively, right) module. A left (respectively, right) support
of the element u ∈ X is, by definition, each projection P ∈ B such that P · u = u
(respectively, u · P = u). If we have a bimodule, and P is both a left and right
support of the element u, then we say that P is (just) a support of u.

Let X be a left module and simultaneously a normed space. We recall that
X is called a contractive left module if we have ‖a · u‖ 6 ‖a‖‖u‖ for all a ∈ B
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and u ∈ X. Similarly, the condition ‖u · a‖ 6 ‖a‖‖u‖ leads to the notion of a
contractive right module, and the two mentioned conditions together lead to the
notion of a contractive bimodule.

If X and Y are two contractive left modules, we denote the space of all
bounded (as operators) morphisms between X and Y by Bh(X, Y). The relevant
spaces for the cases of right modules and bimodules will be denoted by hB(X, Y)
and BhB(X, Y), respectively. We equip these spaces with the operator norm, that
is, we consider them as normed subspaces of B(X, Y).

Let X be a contractive left module. Then the complex conjugate normed
space Xc becomes a contractive right module with the outer multiplication x · a,
defined as the former a∗ · x. Similarly, a right outer multiplication on X gives
rise to a left one on Xc, defined by a · x := x · a∗. We call Xc, equipped with
the relevant structure of the contractive right or left module, the complex conjugate
module of X. Obviously, every bounded morphism ϕ : X → Y of contractive
left (respectively, right) modules, being considered as a map from Xc into Yc,
becomes a morphism of right (respectively, left) modules with the same norm.

We recall several standard constructions. Let X be a left contractive module.
Then its dual space X∗ is a right contractive module with the outer multiplication
defined by

[ f · a](x) := f (a · x) a ∈ A, x ∈ X, f ∈ X∗ .

Similarly, the dual to a right contractive module becomes a left contractive mod-
ule with the help of the equality [a · f ](x) := f (x · a), and the dual to a contractive
bimodule becomes itself a contractive bimodule with the help of both of these
equalities. If X and Y are two left contractive modules, then the normed space
B(X, Y) is a contractive bimodule with outer multiplications defined by

[a · ϕ](x) := a · (ϕ(x)) and [ϕ · a](x) := ϕ(a · x) ;

here ϕ ∈ B(X, Y), etc. Finally, if X is a left and Y is a right contractive module,
then the normed space X ⊗p Y is a contractive bimodule with the outer multipli-
cations uniquely defined by

a · (x⊗ y) := (a · x)⊗ y and (x⊗ y) · a := x⊗ (y · a) .

We shall also need the notion of the module and bimodule tensor products,
in their projective non-completed version. Suppose that either X is a right and Y
is a left contractive modules, or both of X and Y are contractive bimodules. The
normed spaces X ⊗B Y in the first case, and X ⊗B−B Y in the second one, called
respectively the module and bimodule tensor product of X and Y, are defined in terms
of the universal property with respect to the class of balanced, bounded, bilinear
operators from X × Y into normed spaces; cf., e.g., [4]. Namely, in the one-sided
case a bounded bilinear operator R : X × Y → E, where E is a normed space,
is called balanced if R(x · a, y) = R(x, a · y) for all a ∈ B, x ∈ X, and y ∈ Y. In
the two-sided case such a bilinear operator is called balanced, if, in addition to the
indicated equalities, we also haveR(a · x, y) = R(x, y · a).
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As to explicit constructions, the spaces X ⊗B Y and X ⊗B−B Y can be
realized as the normed quotient spaces of X ⊗p Y, the projective tensor product
of the underlying normed spaces of our (bi)modules. Namely,

X ⊗B Y = X ⊗p Y/N1 ,

where N1 is the closure of

span{x · a⊗ y− x⊗ a · y : a ∈ B, x ∈ X, y ∈ Y} ,

whereas
X ⊗B−B Y = X ⊗p Y/N2 ,

where N2 is the closure of

span{a · x⊗ y− x⊗ y · a, x · a⊗ y− x⊗ a · y : a ∈ B, x ∈ X, y ∈ Y} .

Consequently, for the elementary tensors in X ⊗B Y and X ⊗B−B Y, that is,
cosets x ⊗B y := x⊗ y + N1 and x ⊗B−B y := x⊗ y + N2, we have the identities

x · a ⊗B y = x ⊗B a · y, a · x ⊗B−B y = x ⊗B−B y · a,(1.3)

x · a ⊗B−B y = x ⊗B−B a · y.

Finally, the norm of an element u in X ⊗B Y or in X ⊗B−B Y is equal to

(1.4) inf
{ n

∑
k=1
‖xk‖‖yk‖

}
,

where the infimum is taken over all possible representations of u in the form
n
∑

k=1
xk ⊗B yk or, according to the case,

n
∑

k=1
xk ⊗B−B yk.

Note the following attractive property of module tensor products over B.

PROPOSITION 1.1. Let X be a right and Y a left module. Then every u ∈ X ⊗B Y
can be represented as a single elementary tensor. Moreover, if

u =
n

∑
k=1

xk ⊗B yk xk ∈ X, yk ∈ Y ,

and Sk; k = 1, . . . , n is an arbitrary family of isometric operators on L with pairwise
orthogonal final projections Pk := SkS∗k , then such a representation can be taken as u =

x ⊗B y, where x :=
n
∑

k=1
xk · S∗k and y :=

n
∑

k=1
Sk · yk.

Proof. By (1.1) and (1.3), we have

x ⊗B y =
n

∑
k,l=1

xk · S∗k ⊗B Sl · yl =
n

∑
k,l=1

xk · S∗k Sl ⊗B · yl =
n

∑
k=1

xk ⊗B yk = u.

Finally, we recall that the construction of the module tensor product has
functorial properties. Namely, if α : X1 → X2 and β : Y1 → Y2 are bounded
morphisms of contractive right and left modules, respectively, then there exists a
bounded operator α ⊗B β : X1 ⊗B Y1 → X2 ⊗B Y2, uniquely defined by the rule
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x ⊗B y 7→ α(x) ⊗B β(y). Moreover, we have ‖α ⊗B β‖ 6 ‖α‖‖β‖. If we deal
with contractive bimodules and their bimodule morphisms, then there exists a
bounded operator α ⊗B−B β : X1 ⊗B−B Y1 → X2 ⊗B−B Y2, uniquely defined by
the rule x ⊗B−B y 7→ α(x) ⊗B−B β(y), and we have ‖α ⊗B−B β‖ 6 ‖α‖‖β‖.

2. RUAN BIMODULES AND SEMI-RUAN ONE-SIDED MODULES

DEFINITION 2.1 (cf. the definition of an “abstract operator space” in p. 20 of
[3] or p. 180–181 of [12]). A contractive bimodule Y is called a Ruan bimodule if it
satisfies the following condition (the Ruan axiom):

(R) for all u, v ∈ X with orthogonal supports, we have

‖u + v‖ = max{‖u‖, ‖v‖}.

EXAMPLE 2.2. Consider the Banach space B(L
�
⊗ H, L

�
⊗ K), where H and K

are arbitrary Hilbert spaces (whatever Hilbert dimension, finite or infinite, they
would have). It is easy to check that this space is a Ruan bimodule with respect to

the outer multiplications, defined by a · b̃ := (a
�
⊗ 1K)b̃ and b̃ · a := b̃(a

�
⊗ 1H); a ∈

B, b̃ ∈ B(L
�
⊗ H, L

�
⊗ K).

For Ruan bimodules, the axiom (R) can be strengthened.

PROPOSITION 2.3. Let u1, . . . , un be elements of a Ruan bimodule X with pair-
wise orthogonal left supports, say Pk, and pairwise orthogonal right supports, say Qk; k =
1, . . . , n. Then

‖u1 + · · ·+ un‖ = max{‖u1‖, . . . , ‖un‖}.

Proof. For brevity, set u :=
n
∑

k=1
uk, and take an arbitrary tuple Sk; k = 1, . . . , n

of isometric operators on L with pairwise orthogonal final projections.

At first we compare the norms of the elements u and v :=
n
∑

k=1
Sk · uk · S∗k . Set

also a :=
n
∑

k=1
PkS∗k and b :=

n
∑

k=1
SkQk. Then the equalities (1.1) imply that

a · v · b =
n

∑
k,l,m=1

PkS∗k · (Sl · ul · S∗l ) · SmQm

=
n

∑
k,l,m=1

Pk · (S∗k Sl · ul · S∗l Sm) ·Qm =
n

∑
k=1

Pk · uk ·Qm = u .

Therefore ‖u‖ 6 ‖a‖‖v‖‖b‖. Further, the C∗-identity gives ‖a‖ = ‖aa∗‖1/2 and
‖b‖ = ‖b∗b‖1/2. Again using (1.1), we have

aa∗ =
n

∑
k,l=1

PkS∗k Sl P∗l =
n

∑
k=1

Pk ,
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and similarly b∗b =
n
∑

k=1
Qk. Thus both of these operators are projections, and

hence their norm is 1. Consequently, ‖u‖ 6 ‖v‖.
Now observe that, by the same equalities (1.1), the final projection of Sk is

a support of the element Sk · uk · S∗k ∈ X; k = 1, . . . , n. Since these projections are
pairwise orthogonal, it follows from (R) that

‖v‖ = max{‖S1 · u1 · S∗1‖, . . . , ‖Sn · un · S∗n‖} .

Since X is contractive, and S∗k Sk = 1L, we have, for every k, ‖Sk · uk · S∗k‖ = ‖uk‖.
Therefore ‖v‖ = max{‖u1‖, . . . , ‖un‖}.

Thus ‖u‖ 6 max{‖u1‖, . . . , ‖un‖}. But we obviously have uk = Pk · u · Qk,
and our bimodule is contractive. From this, we have the reverse inequality.

We turn from bimodules to one-sided modules. As experience shows, the
obvious version of the condition (R) for these modules is not very workable. The
following, more “tolerant” definition happens to be more useful.

DEFINITION 2.4. A contractive left module X is a left semi-Ruan module, if it
satisfies the following condition:

(lsR) if u, v ∈ X have orthogonal left supports, then

‖u + v‖ 6 (‖u‖2 + ‖v‖2)1/2.

Similarly, with the obvious modifications, we introduce the notion of a right
semi-Ruan module. The respective condition will be denoted by (rsR). (B. Magajna
in Corollary 2.2 of [10], pursuing different aims, considers a certain class of left
modules over arbitrary C∗-algebras. It is not hard to see that in the case when the
algebra in question is B, this class coincides with the class of Banach semi-Ruan
modules. We are indebted to D. Blecher, who drew our attention to the paper of
Magajna.)

Needless to say, we have a similar estimate for several summands. Namely,
if elements u1, . . . , un of a one-sided semi-Ruan module have respective one-sided pair-
wise orthogonal supports, then ‖u1 + · · ·+ un‖ 6 (‖u1‖2 + · · ·+ ‖un‖2)1/2.

Clearly, every sub-bimodule of a Ruan module is itself a Ruan module, and
similar hereditary property holds for one-sided semi-Ruan modules. Note also
the following obvious observation.

PROPOSITION 2.5. The complex conjugate module (cf. the previous section) of a
semi-Ruan module is itself a semi-Ruan module.

Here is our most important pair of examples.

EXAMPLE 2.6. For an arbitrary Hilbert space H, the Hilbert space L
�
⊗ H is

obviously a left semi-Ruan module with respect to the outer multiplication

a · ζ := (a
�
⊗ 1H)ζ a ∈ B, ζ ∈ L

�
⊗ H .
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Its complex conjugate right semi-Ruan module is, of course, the Hilbert space

Lc �⊗ Hc with the outer multiplication ζ · a := (a∗
�
⊗ 1H)ζ. Note that this latter

module is, by virtue of the Riesz representation theorem, nothing else than the

dual to the left module L
�
⊗ H.

PROPOSITION 2.7 (cf. Proposition 2 of [8]). Every Ruan bimodule, considered
as a left or right module, is a respective one-sided semi-Ruan module.

Proof. Let X be our bimodule, and let u1, u2 ∈ X have, to be definite, pair-
wise orthogonal left supports P1 and P2. Of course, we may suppose that u1, u2 6=
0. Take isometric S1, S2 ∈ B with orthogonal final projections, and set

v :=
1
‖u1‖

u1 · S∗1 +
1
‖u2‖

u2 · S∗2 , P := P1 + P2 , and b := ‖u1‖S1 + ‖u2‖S2 .

Then the equalities (1.1) easily imply that

P · v · b = u1 + u2.

Therefore ‖u1 + u2‖ 6 ‖P‖‖v‖‖b‖. But, of course, P is a projection, and the C∗-
identity immediately gives

‖b‖ = (‖u1‖2 + ‖u2‖2)1/2.

Finally, the summands in v obviously have orthogonal left and orthogonal right
supports. Therefore, since X is contractive, Proposition 2.3 gives ‖v‖ = 1. The
rest is clear.

REMARK 2.8. However, a contractive bimodule, which is a left and a right
semi-Ruan module, is not, generally speaking, a Ruan bimodule. One can take,

as a counter-example, L
�
⊗ Lc or L ⊗p Lc.

Note also, that the l2-sum of a family of one-sided semi-Ruan modules is
also a semi-Ruan module of the same type.

PROPOSITION 2.9. Let X be a right semi-Ruan module, Y a left semi-Ruan mod-
ule, and u ∈ X ⊗B Y. Then

‖u‖ = inf{‖x‖‖y‖},

where the infimum is taken over all possible representations of u in the form u = x ⊗B
y; x ∈ X, y ∈ Y. (Such representations exist by Proposition 1.1).

Proof. Denote the indicated infimum by ‖u‖′. It follows from (1.4) that
‖u‖ 6 ‖u‖′. Our task is to establish the reverse inequality.

Take an arbitrary representation of u in the form
n
∑

k=1
xk ⊗B yk. Obviously,

without loss of generality we may suppose that ‖xk‖ = ‖yk‖; k = 1, . . . , n. Let
Sk, Pk; k = 1, . . . , n, x and y be as in Proposition 1.1. The formulae (1.1) imply
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that Pk is the right support of xk · S∗k and the left support of Sk · yk; k = 1, . . . , n.
Therefore the conditions (rsR) and (lsR) imply for our contractive modules that

‖u‖′ 6 ‖x‖‖y‖ 6
( n

∑
k=1
‖xk · S∗k‖

2
)1/2( n

∑
k=1
‖Sk · yk‖2

)1/2

=
( n

∑
k=1
‖xk‖2

)1/2( n

∑
k=1
‖yk‖2

)1/2
=

n

∑
k=1
‖xk‖2 =

n

∑
k=1
‖xk‖‖yk‖.

Taking all possible representations of u as sums of elementary tensors and using
(1.4), we obtain ‖u‖′ 6 ‖u‖.

Let X be a contractive bimodule, and let Y be a contractive left module. We
consider the space X ⊗B Y, where X is considered as a right contractive module.
Recall that in this situation X ⊗B Y has the structure of a contractive left module
with the outer multiplications uniquely defined by a · (x ⊗B y) := (a · x) ⊗B
y. Similarly, if X is a contractive module and Y is a contractive bimodule, then
the space X ⊗B Y, where now Y is considered as a contractive left module, is
a contractive right module with the outer multiplications uniquely defined by
(x ⊗B y) · a := x ⊗B (y · a).

PROPOSITION 2.10. Let X be a Ruan bimodule, and let Y be a left semi-Ruan
module. Then X ⊗B Y is a left semi-Ruan module.

Let X be a right semi-Ruan module, and let Y be a Ruan bimodule. Then X ⊗B Y
is a right semi-Ruan module.

Proof. Since the arguments concerning both assertions are strictly parallel,
we restrict ourselves to the first one. Since X is contractive as a left module, the
equality (1.4) obviously implies that X ⊗B Y is also contractive as a left module.
So we concentrate on the condition (lsR).

Let u1, u2 ∈ X ⊗B Y have orthogonal left supports, say Q1 and Q2. By virtue
of Proposition 1.1, we may suppose that uk = xk ⊗B yk : k = 1, 2. Obviously,
without loss of generality we may also suppose that ‖xk‖ = 1 and xk := Qk ·
xk; k = 1, 2.

Take, for our uk, the operators Sk and Pk; k = 1, 2 as in the just-mentioned
proposition. Then we have

u1 + u2 = (x1 · S∗1 + x2 · S∗2)⊗B(S1 · y1 + S2 · y2) .

Further, the elements xk · S∗k ; k = 1, 2 have orthogonal left supports Qk and or-
thogonal right supports Pk, respectively. Therefore, since X is a contractive bi-
module, Proposition 2.3 implies that

‖x1 · S∗1 + x2 · S∗2‖ = max{‖x1 · S∗1‖, ‖x2 · S∗2‖} = max{‖x1‖, ‖x2‖} = 1 .



EXTREME FLATNESS OF NORMED MODULES AND ARVESON–WITTSTOCK TYPE THEOREMS 179

Consequently, ‖u1 + u2‖ 6 ‖S1 · y1 + S2 · y2‖. But the elements Sk · yk; k = 1, 2
have orthogonal left supports Pk, and Y is contractive and satisfies (lsR). Thus

‖u1 + u2‖ 6 (‖S1 · y1‖2 + ‖S2 · y2‖2)1/2

= (‖y1‖2 + ‖y2‖2)1/2 = ((‖x1‖‖y1‖)2 + (‖x2‖‖y2‖)2)1/2.

It remains to take all possible representations of u1 and u2 as elementary tensors,
and to apply Proposition 2.9.

3. EXTREMELY FLAT AND EXTREMELY INJECTIVE (BI)MODULES

We give the following definition in the spirit of the well-known definitions
of flat and of strictly flat Banach module ([4], Chapter VII, Section 1; [5], Chap-
ter VII, Section 1.3).

DEFINITION 3.1. A contractive left module X is extremely flat with respect to
semi-Ruan modules or, for short, ESR-flat, if, for every isometric morphism α : Y →
Z of right semi-Ruan modules, the operator α ⊗B 1X : Y ⊗B X → Z ⊗B X (see
the end of Section 1) is also isometric.

We define similarly the “right-hand” version of this notion.
Finally, a contractive bimodule X is extremely flat with respect to Ruan bimod-

ules or, for short, ER-flat, if, for every isometric morphism α : Y → Z of Ruan
bimodules, the operator α ⊗B−B 1X : Y ⊗B−B X → Z ⊗B−B X is also isometric.

REMARK 3.2. The word “extremely” is chosen because isometric operators
or morphisms are exactly the so-called extreme monomorphisms in some prin-
cipal categories of spaces or (bi)modules in functional analysis (cf., e.g., [2] and
Chapter 0, Section 5 of [7].

As simplest examples, the module B is ESR-flat as a left and as a right con-
tractive module, whereas the bimodule B ⊗p B is an ER-flat contractive bimod-
ule. Of course, this is because tensoring by B in the one-sided case and by B ⊗p B
in the two-sided case does not change a given space. In addition, one can easily
show that B ⊗p l1 and (B ⊗p B) ⊗p l1 are ESR-flat as a one-sided module and
ER-flat as a two-sided module, respectively. Note, that in these examples, tensor-
ing by the respective (bi)module preserve the isometry of morphisms of all given
contractive modules, and not only (semi-)Ruan modules. The properties of the
latter modules will be seen to be indispensable when, very soon, we proceed to
other examples, more important for our aims.

We emphasize that the given definition does not require that our extremely
flat (bi)module is itself a (semi-)Ruan (bi)module. However, in our principal ex-
amples that will be the case.

Let us show that several standard constructions preserve the property of
extreme flatness.
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PROPOSITION 3.3. If a left or right contractive module is ESR-flat, then the same
is true for its complex conjugate module.

Proof. To be definite, consider a left ESR-module X. Our task is to prove
that, for every isometric morphism of left semi-Ruan modules α : Y → Z, the
operator 1Xc ⊗B α : Xc ⊗B Y → Xc ⊗B Z is isometric.

Consider 1Xc ⊗B α as acting between the respective complex conjugate
normed spaces (Xc ⊗B Y)c and (Xc ⊗B Z)c. It is obvious that the first space
coincides with Yc ⊗B X up to an isometric isomorphism, uniquely defined by
taking x⊗ y to y⊗ x, and similarly that the second space coincides with Zc ⊗B X.
Moreover, under such an identification the operator 1Xc ⊗B α transforms to
α ⊗B 1X : Yc ⊗B X → Zc ⊗B X, where α, now being considered as a map
between Yc and Zc, is, of course, an isometric morphism of the respective com-
plex conjugate right modules. But the latter are, by Proposition 2.5, semi-Ruan
modules.

The rest is clear.

PROPOSITION 3.4. Let X be a left and Y a right ESR-flat contractive module.
Suppose that at least one of them is a semi-Ruan module. Then the bimodule X ⊗p Y (cf.
Section 1) is ER-flat.

Proof. To be definite, suppose that Y is a semi-Ruan module. Let α : Z1 →
Z2 be an isometric morphism of Ruan bimodules. Our task is to show that the
operator 1X⊗pY ⊗B−B α : (X ⊗p Y) ⊗B−B Z1 → (X ⊗p Y) ⊗B−B Z2 is also
isometric.

It is known (and easy to verify) that the latter operator is weakly isometri-
cally equivalent to the operator (1Y ⊗B α) ⊗B 1X : (Y ⊗B Z1) ⊗B X → (Y ⊗B
Z2) ⊗B X. Recall (cf., e.g., [7]) that this means that there exists a commutative
diagram

(X ⊗p Y) ⊗B−B Z1
1X⊗pY⊗B−Bα

//

��

(X ⊗p Y) ⊗B−B Z2

��
(Y ⊗B Z1) ⊗B X

(1Y⊗Bα)⊗B1X // (Y ⊗B Z2) ⊗B X

,

where the vertical arrows depict isometric isomorphisms of normed spaces. In
the case that we are considering, these isomorphisms, a kind of “complicated
associativity”, are uniquely defined by taking an elementary tensor (x⊗ y) ⊗B−B
z to (y ⊗B z) ⊗B x; here x ∈ X, y ∈ Y, and z belongs to Z1 or Z2.

We see that it is sufficient to show that the operator (1Y ⊗B α) ⊗B 1X
is isometric. But Y is ESR-flat, and, by Proposition 2.7, α is a morphism of left
semi-Ruan modules. Therefore the operator 1Y ⊗B α : Y ⊗B Z1 → Y ⊗B Z2
is isometric. However, this operator is, of course, a morphism of right modules;
moreover, by Proposition 2.9, it is a morphism of semi-Ruan modules. It remains
to recall that X is also extremely flat.
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The property of extreme flatness which we introduced is intimately con-
nected with the question of the extension of bounded morphisms, descending
from the classical Hahn–Banach Theorem.

DEFINITION 3.5. A contractive left module X is extremely injective with re-
spect to semi-Ruan modules or, for short, ESR-injective, if, for every isometric mor-
phism α : Y → Z of left semi-Ruan modules and an arbitrary bounded morphism
of left modules Φ : Y → X, there exists a bounded morphism of left modules
Ψ : Z → X such that the diagram

Y
α //

Φ
��

Z

Ψ����
��

��
�

X

is commutative and ‖Φ‖ = ‖Ψ‖. In other words, every bounded morphism of
left modules from Y into X can be extended, after the identification of Y with a
submodule of Z, to a morphism from Z to X with the same norm.

We define the “right” version of this notion in the obvious symmetric way,.
Finally, by replacing words “left module” by “bimodule” and also “semi-

Ruan” by “Ruan”, we obtain the definition of a bimodule, extremely injective with
respect to Ruan bimodules or, for short, of an ER-injective bimodule.

PROPOSITION 3.6. (i) Let X be a contractive left or right normed module. Then it
is ESR-flat if and only if its dual right or, respectively, left module X∗ is ESR-injective.

(ii) Let X be a contractive bimodule. Then it is ER-flat if and only if its dual bimodule
X∗ is ER-injective.

Proof. Since the argument is parallel in all three cases, we shall restrict our-
selves to the case of a given left module.

It is obvious that the assertion that X∗ is ESR-injective is equivalent to the
following statement: for every isometric morphism α : Y → Z of right semi-
Ruan modules, the operator α∗ :hB(Z, X∗) →hB(Y, X∗) : β 7→ βα, otherwise, the
relevant restriction operator, is strictly co-isometric. (The latter property means
that our operator maps the closed unit ball in the domain space onto the closed
unit ball in the range space). According to the law of the adjoint associativity, also
called the exponential law (see, e.g., Chapter III, Section 3.8 of [2] or Chapter VI,
Section 3.2 of [4]), the normed space hB(Y, X∗) coincides with the space (Y ⊗B
X)∗ up to the isometric isomorphism, taking a morphism ϕ : Y → X∗ to the
functional f : Y ⊗B X → C, well-defined by f (y ⊗B x) = [ϕ(y)](x). Similarly,
hB(Y, X∗) is identified with (Z ⊗B X)∗. Moreover, one can easily check that we
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have a commutative diagram

hB(Y, X∗)
α∗ //

��

hB(Y, X∗)

��
(Z ⊗B X)∗ α• // (Y ⊗B X)∗

,

where the vertical arrows depict indicated isometric isomorphisms of normed
spaces, and α• is the operator which is adjoint to α ⊗B 1X : Y ⊗B X → Z ⊗B X.
Consequently, the operators α∗ and α• are simultaneously strictly co-isometric
or not. But, as an obvious corollary (in fact, an equivalent formulation) of the
Hahn–Banach theorem, an adjoint operator is strictly co-isometric if and only if
the original operator is isometric. The rest is clear.

As a byproduct, we have the following result.

PROPOSITION 3.7. Suppose that X is a contractive left, right or two-sided module,
and X0 is a dense submodule of the respective type. Then X is ESR- (or, according to the
sense, ER-) flat if and only if the same is true of X0.

Proof. Indeed, the dual (bi)modules of X and X0 coincide, and hence they
are simultaneously extremely injective or not. Then the previous proposition
works.

In what follows, an assertion that (bi)modules of this or that class are ESR-
(or ER-) injective, will be referred as a ”theorem of the Arveson–Wittstock type”.
This is because assertions of that type have their origin in the “genuine” Arveson–
Wittstock theorem of quantum functional analysis (= operator space theory). As
to Proposition 3.6, it suggests a certain way to establish such theorems, reducing
questions about extreme injectivity to those about extreme flatness.

4. EXTREME FLATNESS OF CERTAIN MODULES

Choose, in addition to our canonical Hilbert space L, an arbitrary Hilbert
space H. In this section we shall prove the extreme flatness of some (bi)modules
connected with this space.

At first, take the algebraic tensor product L ⊗ H as a subspace of L
�
⊗ H

with the induced norm. It is obviously a submodule with respect to the outer
multiplication in the latter space, considered in the Example 2.

In what follows, the symbol S( · , · ) denotes the space of Schmidt oper-
ators between two Hilbert spaces, equipped with the Schmidt norm ‖a‖S :=
tr(a∗a)1/2 , whereas FS ( · , · ) denotes its dense normed subspace consisting of
finite-rank operators (that is F ( · , · ), considered with the Schmidt norm). We re-

call that L
�
⊗ H, as a normed space, can be identified with the space S(Hc, L) by



EXTREME FLATNESS OF NORMED MODULES AND ARVESON–WITTSTOCK TYPE THEOREMS 183

means of the isometric isomorphism uniquely defined by taking the elementary
tensor ξ ⊗ η to the rank-one operator ξ ◦ η (cf., e.g., Chapter 3, Section 4.3 of [7]).
Clearly, this isometric isomorphism identifies L⊗ H with FS (Hc, L).

Note that the space S(Hc, L) is a left contractive module with respect to the
usual operator composition: for a ∈ B and b ∈ S(Hc, L), we set a · b := ab. Now,
returning to the mentioned isometric isomorphism, we see that it actually pro-

vides the identification of L
�
⊗ H with S(Hc, L) and of L⊗ H with FS (Hc, L) as

left contractive modules. This can be immediately checked on elementary ten-
sors.

From now on we denote the left module FS (Hc, L) briefly by X . Take an
arbitrary right semi-Ruan module Y. For a time, the main object of our study will
be the normed space Y ⊗B X .

Let c : L→ Hc be a bounded operator. Consider the bilinear operator

T Y
c : Y×X → Y : (y, b) 7→ y · (bc) .

Of course, T Y
c is bounded, and ‖T Y

c ‖ 6 ‖c‖. Furthermore, one can immediately
check that this bilinear operator is balanced. Therefore (see Section 1), it gives
rise to the bounded operator from Y ⊗B X into Y, uniquely defined by

y ⊗
B

b 7→ y · (bc) y ∈ Y, b ∈ X

and having norm 6 ‖c‖. Denote this operator by TY
c .

PROPOSITION 4.1. Let u ∈ Y ⊗B X be represented as an elementary tensor
y ⊗B b (cf. Proposition 1.1). Further, let P ∈ F be the projection on Im(b). Then
u = y · P ⊗B b, and there exists an operator c ∈ F (L, Hc) such that TY

c (u) = y · P.

Proof. Since, of course, we have Pb = b, formulae (1.3) give the first of the
desired equalities. Further, it is clear from the fact that dim(Im(b)) < ∞ that
there exists c ∈ F (L, Hc) such that bc = P.

The second desired equality follows immediately.

REMARK 4.2. From this, as a first application, one can easily obtain that our
normed tensor product Y ⊗B X coincides with the algebraic tensor product of Y
and X over B. In other words, the subspace

N1 := span{x · a⊗ y− x⊗ a · y}

is closed in Y ⊗p X (cf. Section 1), and thus the quotient semi-norm on (Y ⊗p
X )/N1 is actually a norm. But we do not need this observation.

Now let α : Y → Z be an arbitrary bounded morphism of contractive right
semi-Ruan modules. Then, by virtue of the functorial properties of the module
tensor product (see Section 1), the operator α ⊗B 1X : Y ⊗B X → Z ⊗B X
appears.
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Note that for every c ∈ B(L, Hc) we have the commutative diagram

(4.1) Y ⊗B X
TY

c //

α⊗B1X
��

Y

α

��
Z ⊗B X

TZ
c // Z .

This can be immediately verified on elementary tensors in Y ⊗B X .

PROPOSITION 4.3. If α is an injective map, then the same is true of α ⊗B 1X .

Proof. Suppose that, for u ∈ Y ⊗B X , we have α ⊗B 1X (u) = 0. Take y, P
and c as in Proposition 4.1. Then the commutative diagram above gives y · P =
TY

c (u) = 0. But this, of course, means that u = 0.

At last, we are ready to prove our main theorem.

THEOREM 4.4. Let H be an arbitrary Hilbert space. Then the left contractive

modules L⊗ H and L
�
⊗ H are ESR-flat.

Proof. Taking into account Proposition 3.7, it is sufficient to show that the
module X := FS (Hc, L), that is, as we remember, L ⊗ H in disguise, have the
desired property.

Let α : Y → Z be an isometric morphism of left modules. Consequently (cf.
Section 1), α ⊗B 1X is a contractive operator. Therefore our task is to prove that,
for every v ∈ Y ⊗B X and u := (α ⊗B 1X )(v), we have ‖v‖ 6 ‖u‖.

Take the representation of u as z ⊗B b, as provided by Proposition 1.1 (with
Z in the role of Y). After this, take the respective P and c, indicated in Proposi-
tion 4.1. Then the commutative diagram (4.1) gives

z · P = TZ
c (u) = TZ

c (α ⊗B 1X )(v) = α(y) ,

where y := TY
c (v) ∈ Y. From this we have that (α ⊗B 1X )(y ⊗B b) = u, and,

because of Proposition 4.3, v = y ⊗B b. Now, remembering that α is an isometric
operator, we obtain the estimate

‖v‖ 6 ‖y‖‖b‖ = ‖z · P‖‖b‖ 6 ‖z‖‖b‖.
Further, L ⊗ H is a semi-Ruan module, and hence the same is true of its “alter
ego” X . It remains to take the infimum of numbers ‖z‖‖b‖ over all possible
representations of u as elementary tensors in the previous estimate, and then to
apply Proposition 2.9.

REMARK 4.5. As a matter of fact, every semi-Ruan module is ESR-flat. This
was shown by the referee of our paper in his report. The argument, which is
much more lengthy and sophisticated than the proof of Theorem 4.4, is suggested
by some results of Lambert [9].

As an immediate corollary of Theorem 4.4, we have the following theorem.
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THEOREM 4.6. Let H and K be arbitrary Hilbert spaces. Then:

(i) the right contractive modules Lc ⊗ H and Lc �⊗ H are ESR-flat;

(ii) the contractive bimodules (L ⊗ H) ⊗p (Lc ⊗ K), (L
�
⊗ H) ⊗p (Lc �⊗ K), and

their completion (L
�
⊗ H)

p
⊗ (Lc �⊗ K) are ER-flat.

Proof. (i) This follows from the previous theorem and Proposition 3.3, being

applied to L⊗ Hc and L
�
⊗ Hc.

(ii) This follows from the previous theorem, combined with the assertion
(i), Proposition 3.4 and also, in the case of the third indicated bimodule, with
Proposition 3.7.

REMARK 4.7. We do not know whether the indicated (bi)modules are ex-
tremely flat in the “absolute” sense. By this, in the case, say, of left modules,
we mean the following property of a given X: the operator α ⊗B 1X is isomet-
ric whenever α is an isometric morphism between arbitrary (and not only semi-
Ruan) right normed modules. It is somehow doubtful that the answer is “yes”.
Anyhow, if we consider the similarly defined “absolute extreme” version of pro-

jectivity, then the module L
�
⊗ H certainly does not possess this stronger property

provided dim H = ∞. As it was shown in [6], such a module is not projective
even in the usual sense of Banach homology.

Now we came to several Arveson–Wittstock type theorems. Here again we
need the law of the adjoint associativity (= exponential law), now in a slightly
different version. Namely, suppose that X is a left and Y is a right contractive
module. In such a context, accordingly to what was said in Section 1, Y∗ becomes
a left contractive module, and B(X, Y∗), X ⊗p Y, and (X ⊗p Y)∗ become con-
tractive bimodules. Then B(X, Y∗) coincides with (X ⊗p Y)∗ up to the isometric
bimodule isomorphism which takes an operator ϕ : X → Y∗ to the functional
f : X ⊗B Y → C, well-defined by the formula f (y ⊗B x) = [ϕ(y)](x).

THEOREM 4.8. Let H and K be arbitrary Hilbert spaces. Then the left contractive

module L
�
⊗ H and the right contractive module Lc �⊗ H are ESR-injective, whereas the

contractive bimodule B(L
�
⊗ H, L

�
⊗ K) (see Example 2.2) is ER-injective.

Proof. To begin with, it is obvious that, up to an isometric isomorphism of

modules of the relevant type, L
�
⊗ H = (Lc �⊗ Hc)∗ and Lc �⊗ H = (L

�
⊗ Hc)∗.

Furthermore, by virtue of the Riesz representation theorem, the normed

space B(L
�
⊗ H, L

�
⊗ K), that is B(L

�
⊗ H, (Lc �⊗ Kc)c), can be identified with the

normed space B(L
�
⊗ H, (Lc �⊗ Kc)∗). Recalling that the latter space is also a con-

tractive bimodule (of the type B(X, Y∗); cf. above), we immediately see that ac-
tually we have an identification of contractive bimodules. Finally, the bimodule
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B(L
�
⊗ H, (Lc �⊗ Kc)∗) coincides, by the above mentioned law of the adjoint asso-

ciativity, with the module [(L
�
⊗ H) ⊗p (Lc �⊗ Kc)]∗.

Thus all we have to do in all three cases is to combine Theorems 4.4 and 4.6
with Proposition 3.6.

5. THE ARVESON–WITTSTOCK THEOREM

In the concluding part of the paper we recall the Arveson–Wittstock theo-
rem and show that it follows from Theorem 4.8. Being, so to say, in the air, it
must be well known that this theorem can be easily deduced from the extension
theorems for morphisms of bimodules. Nevertheless, for the completeness of the
picture, we shall present some details.

In what follows, we use the principal definitions of quantum functional
analysis (= operator space theory) in the frame-work of the non-coordinate ap-
proach. The main ideas of such an approach can be essentially found in the book
of Pisier [13] and in the unpublished notes of Barry Johnson. The detailed defi-
nitions, in somewhat different form, are given in [8]; these are the amplification
of a linear space and of a linear operator, a quantum space (= abstract operator
space) a concrete quantum space (= concrete operator space), and, above all, a
completely bounded operator and its completely bounded norm ‖ · ‖cb.

THEOREM 5.1 (Arveson–Wittstock Theorem). Let E be a quantum subspace of
a quantum space G, and let H be an arbitrary Hilbert space. Then every completely
bounded operator ϕ from E into the concrete quantum space B(H) can be extended to a
completely bounded operator ψ : G → B(H) such that ‖ψ‖cb = ‖ϕ‖cb.

Proof. Since B(H) is concrete, its amplification F ⊗ B(H) is identified with

a sub-bimodule of B(L
�
⊗ H). Let Φ be a coextension of the amplification ϕ∞ :=

1F ⊗ ϕ of ϕ to a morphism into B(L
�
⊗ H). Then Theorem 4.8, being considered

for Y := F ⊗ E, Z := F ⊗ G, and K := H, provides an extension Ψ of Φ with the
same norm.

Observe that the image of Ψ lies in F ⊗B(H). Indeed, F ⊗ Z =
span{(ξ ◦ η)z; ξ, η ∈ L, z ∈ Z} , and, by the equalities (1.2), we have ξ ◦ η =
(ξ ◦ e)p(e ◦ η) for every e ∈ L; ‖e‖ = 1 and p := e ◦ e. Therefore, taking into
account the fact that Ψ is a morphism of B-bimodules, it is sufficient to show that
Ψ(pz) = p · Ψ(pz) · p belongs to F ⊗ B(H). But it is indeed the case, since it is

well known that, for every ã ∈ B(L
�
⊗ H) we have p · ã · p = p

�
⊗ T for T ∈ B(H),

well defined by e⊗ Tξ = (p
�
⊗ 1H)[ã(e⊗ ξ)]; ξ ∈ H.

Thus Ψ has a well-defined corestriction to F ⊗ B(H). This corestriction,
being a bimodule morphism, obviously has the form ψ∞ := 1F ⊗ ψ for some
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operator ψ : G → B(H). Further, ‖ψ‖cb = ‖ψ∞‖ = ‖Ψ‖ = ‖Φ‖ = ‖ϕ‖cb. Finally,
ψ∞ is an extension of ϕ∞, and this obviously implies that ψ is an extension of ϕ.

REMARK 5.2. We should like to emphasize that we have deduced from The-
orem 4.8 the non-coordinate version of the original Arveson–Wittstock Theorem,
concerning just linear completely bounded operators. What we did not touch,
is the later and more general form of the Arveson–Wittstock Theorem, dealing
with completely bounded morphisms of bimodules over two arbitrary unital C∗-
algebras. Different proofs of such a theorem, formulated in various degrees of
generality, can be found in the papers of Wittstock ([17], Theorem 3.1), Suen [15],
Muhly and Na ([11], Theorem 3.4), Pop ([14], Theorem 2.5). Note that it could be
shown that the respectiveB-bimodule version of the Arveson–Wittstock Theorem
and our Theorem 4.8 are equivalent. This is because, as it was observed by the
referee, there exist isometric functors from the categories of Ruan and semi-Ruan
modules into the categories of operator B-bimodules and operator B-modules,
respectively.
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