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ABSTRACT. In this note, we prove that an operator between reproducing ker-
nel Hilbert spaces is a multiplication operator if and only if it leaves invari-
ant zero sets. To be more precise, it is shown that an operator T between
reproducing kernel Hilbert spaces is a multiplication operator if and only if
(T f )(z) = 0 holds for all f and z satisfying f (z) = 0. As possible applications,
we deduce a general reflexivity result for multiplier algebras, and furthermore
prove fully vector-valued generalizations of multiplier lifting results of Beat-
rous and Burbea.
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1. INTRODUCTION

Following common terminology, a Hilbert space H consisting of functions
defined on some set X with values in a Hilbert space E is called reproducing kernel
Hilbert space if all point evaluations

δ(z) : H → E , f 7→ f (z) (z ∈ X)

are continuous. Equivalently, there exists a function K : X× X → B(E) such that
all functions of the form K(·, z)x : X → E belong to H and, moreover, satisfy the
equality

〈 f , K(·, z)x〉 = 〈 f (z), x〉 ( f ∈ H , x ∈ E , z ∈ X).

The function K is easily seen to be unique with these properties and is usually
called the reproducing kernel ofH.

An operator-valued function φ : X → B(E1, E2) is called a multiplier between
two reproducing kernel Hilbert spaces H1 ⊂ EX

1 and H2 ⊂ EX
2 if the pointwise

product φ · f belongs toH2 for every f ∈ H1. The collection of all such multipliers
M(H1,H2) obviously is a linear space. For every multiplier φ ∈ M(H1,H2) we



236 CHRISTOPH BARBIAN

can define the associated multiplication operator Mφ : H1 → H2 , f 7→ φ · f ,
which is easily seen to be continuous by the closed graph theorem.

It is more than obvious that every multiplication operator Mφ has the prop-
erty that (Mφ f )(z) = 0 holds whenever f (z) = 0. It is the main result (Theo-
rem 2.1) of this note that the converse of this statement is surprisingly true —
at least if the space H1 is non-degenerate in an appropriate sense. This result
can be regarded as a purely algebraic characterization of multiplication opera-
tors. As an application of this result, we prove (Corollary 2.2) that the space
MS (H1,H2), consisting of all multiplication operators Mφ given by S -valued
multipliers φ, is a reflexive subspace of B(H1,H2) whenever S is a reflexive
subspace of B(E1, E2). In particular, the space M(H1,H2) of all multiplication
operators is always reflexive and therefore weakly closed in B(H1,H2).

As a second consequence of our main result, we obtain an alternative proof
of the following interpolation result proved by Beatrous and Burbea (cf. [3], The-
orem 3.5): WheneverH is a holomorphic reproducing kernel Hilbert space without com-
mon zeroes on a domain D ⊂ Cd, and E ⊂ D is a set of uniqueness forO(D), then every
multiplier ψ on the restricted space H|E can be lifted uniquely to a multiplier φ on the
whole space without increasing the multiplier norm. The advantage of the approach
presented in this paper is that it works in the vector-valued setting as well.

2. ABSTRACT REPRESENTATION OF MULTIPLICATION OPERATORS

In the sequel, a reproducing kernel Hilbert space H ⊂ EX is called non-
degenerate if each point evaluation δ(z) : H → E is either onto or zero. One can
easily show that this is fulfilled precisely if K(z, z) = δ(z)δ(z)∗ is either invertible
or zero for all z ∈ X. It is clear that scalar spaces H (here, scalar means that
E = C) or, more generally, spaces whose reproducing kernel is of the form K · 1E
with a scalar kernel K, are always non-degenerate.

THEOREM 2.1. Suppose that E1, E2 are Hilbert spaces, and that H1 ⊂ EX
1 and

H2 ⊂ EX
2 are reproducing kernel Hilbert spaces, H1 non-degenerate. Then, for T ∈

B(H1,H2), the following assertions are equivalent:
(i) (T f )(z) = 0 holds for all f ∈ H1 and z ∈ X with f (z) = 0.

(ii) There exists φ ∈ M(H1,H2) such that T = Mφ.

Proof. Throughout the proof, the point evaluations on H1 and H2 are de-
noted by δ1(z) and δ2(z), respectively. The fact that H1 is non-degenerate im-
plies in particular that the mappings δ1(z)∗ have closed range for all z ∈ X.
We infer that (i) is equivalent to T∗ ran δ2(z)∗ ⊂ ran δ1(z)∗ for all z ∈ X. This
allows us to fix, for every y ∈ E2 and z ∈ X, an element xz,y ∈ E1 such that
T∗δ2(z)∗y = δ1(z)∗xz,y.

Now let us define X0 = {z ∈ X : δ1(z) is onto}. Equivalently, X\X0 is
the set of common zeroes of H1. For all z ∈ X0, we can choose operators i(z) ∈
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B(E1,H1) such that δ1(z)i(z) = 1E1 . We show that the function

φ : X → B(E1, E2), φ(z) =
{

δ2(z)Ti(z) z ∈ X0,
0 z /∈ X0,

has all desired properties. To this end, fix f ∈ H1. Then the equality

〈φ(z) f (z), y〉 = 〈i(z) f (z), T∗δ2(z)∗y〉 = 〈i(z) f (z), δ1(z)∗xz,y〉
= 〈 f (z), xz,y〉 = 〈 f , δ1(z)∗xz,y〉 = 〈 f , T∗δ2(z)∗y〉
= 〈(T f )(z), y〉

holds for all y ∈ E2 and z ∈ X0 (and trivially for all remaining points z ∈ X).
Hence T f = φ · f , which completes the proof.

As one of many possible applications, we present the following reflexivity
result for multiplier spaces which may be known in special cases. Recall that a
linear space S ⊂ B(H1, H2) of operators is called reflexive (following the notions
of [7]) if it coincides with its reflexive closure, that is,

S = {T ∈ B(H1, H2) : Tx ∈ S x for all x ∈ H1}.

Clearly, this definition generalizes the usual definition of reflexive algebras
(cf. [8]).

COROLLARY 2.2. Suppose that, in the situation of Theorem 2.1, S is a reflexive
subspace of B(E1, E2). Then the space

MS (H1,H2) = {Mφ : φ ∈ M(H1,H2) and φ(z) ∈ S for all z ∈ X}

is a reflexive subspace of B(H1,H2) and, in particular, weakly closed.

Proof. Let us consider T ∈ B(H1,H2) such that T f ∈ MS (H1,H2) f holds
for all f ∈ H1. Fix f ∈ H1 and z ∈ X with f (z) = 0. Then there exists a sequence
(φn)n inM(H1,H2) such that lim Mφn f = T f holds. The continuity of the point
evaluations clearly implies that (T f )(z) = lim

n
φn(z) f (z) = 0, which yields by

Theorem 2.1 that T = Mψ for an appropriate ψ ∈ M(H1,H2). It remains to
show that ψ takes values in S . Without loss of generality, we can assume that
ψ(z) = 0 holds for all z ∈ X\X0, where as before X0 = {z ∈ X : δ1(z) is onto}.
In particular, ψ(z) ∈ S for these z. On the other hand, for z ∈ X0 and x ∈ E1,
we can choose a function f ∈ H1 such that f (z) = x. As above, there exists a
sequence (φn)n of S -valued multipliers such that T f = lim

n
Mφn f . From this, we

easily obtain ψ(z)x = (Mψ f )(z) = (T f )(z) = lim
n
(Mφn f )(z) = lim

n
φn(z)x ∈ S x.

The reflexivity of S now shows that ψ(z) ∈ S for all z ∈ X, which means that
ψ ∈ MS (H1,H2).
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3. APPLICATION TO HOLOMORPHIC SPACES

In this section, we aim to show that the statement of Theorem 2.1 can be
strengthened remarkably if the underlying reproducing kernel Hilbert spaces
consist of holomorphic functions. So throughout this section, let D denote an
open subset of Cd and recall that, for every reproducing kernel Hilbert space
H ⊂ O(D, E), the function δ : D → B(H, E) , δ(z) f = f (z) is weakly holomor-
phic, and hence holomorphic. The space H is called analytically non-degenerate if
there is an analytic function i : D → B(E ,H) such that δ(z)i(z) = 1E for all z ∈ D.
The following example shows that most reproducing kernel Hilbert spaces aris-
ing in applications are analytically non-degenerate.

EXAMPLE 3.1. Suppose that H ⊂ O(D, E) is a reproducing kernel Hilbert
space satisfying at least one of the following conditions:

(i)H contains the constant functions;
(ii) there exists z0 ∈ D such that K(z, z0) is invertible for all z ∈ D;

(iii) δ(z) is onto for all z and D is a domain of holomorphy.
Then H is analytically non-degenerate. In fact, in the first case, one checks

that the analytic function i : D → B(E ,H) , i(z)x = x (here, x denotes the con-
stant function with value x) is a well defined (by the closed graph theorem) point-
wise right inverse for δ. In the second case, one can choose i(z) = δ∗z0

K(z, z0)
−1,

and in the third case, the claim follows from a result of Allan [1] and Leiterer [6]
(cf. Section 4.6 in [5])

The improved version of Theorem 2.1 now reads as follows.

THEOREM 3.2. Suppose that E1, E2 are Hilbert spaces, and that H1 ⊂ O(D, E1)
and H2 ⊂ O(D, E2) are reproducing kernel Hilbert spaces such that H1 is analytically
non-degenerate. Furthermore, let E ⊂ D be a set of uniqueness for O(D). Then, for
every T ∈ B(H1,H2), the following assertions are equivalent:

(i) (T f )(z) = 0 holds for all f ∈ H1 and z ∈ E with f (z) = 0.
(ii) There exists φ ∈ M(H1,H2) such that T = Mφ.

Here as usual, E is called a set of uniqueness for O(D) if the restriction map-
ping f 7→ f|E is one-to-one on O(D).

Proof. We choose a holomorphic pointwise right inverse i : D → B(E1,H1)
for δ1. As in the proof of Theorem 2.1, we define φ : D → B(E1, E2) , φ(z) =
δ2(z)Ti(z), which is obviously a holomorphic function. Following the original
proof, for f ∈ H1, we obtain that φ(z) f (z) = (T f )(z) for all z ∈ E. Since E is a
set of uniqueness for O(D, E2) as well, we deduce that φ · f = T f holds on the
whole of D. This clearly completes our proof.

As an application, we obtain the following lifting theorem for multipliers,
which is a vector-valued generalization of results of Szafraniec [9] and of Beatrous
and Burbea [3] (Theorem 3.5). Before we state the result, we briefly recapitulate
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some well-known facts about restrictions of reproducing kernel Hilbert spaces
(see for example [2] for an overview of this topic): Let H ⊂ EX be a reproducing
kernel Hilbert space with kernel K, and let Y be a non-empty subset of X. Then
the linear space H|Y = { f|Y : f ∈ H}, endowed with the quotient norm ‖u‖ =
inf{‖ f ‖ : f|Y = u}, is the reproducing kernel Hilbert space with reproducing
kernel K|Y×Y. The restriction mapping ρ : H → H|Y satisfies (ρ∗u)(z) = u(z) for
all z ∈ Y, and consequently is a coisometry with ker ρ = { f ∈ H : f|Y = 0}.

COROLLARY 3.3. Suppose that, in the situation of Theorem 3.2, ψ is a multiplier
inM(H1|E,H2|E). Then there exists a multiplier φ ∈ M(H1,H2) such that φ|E = ψ

and ‖Mφ‖ = ‖Mψ‖. In other words, the restriction mapping

M(H1,H2)→M(H1|E,H2|E), φ 7→ φ|E,

is an isometric isomorphism.

Proof. We start by observing that the restriction operators ρi : Hi → Hi |E
(i = 1, 2) are unitary, since E is a set of uniqueness for O(D). Now let us define
an operator T = ρ∗2 Mψρ1 ∈ B(H1,H2), and consider f ∈ H1 and z ∈ E with
f (z) = 0. Then

(T f )(z) = (ρ∗2 Mψρ1)(z) = ψ(z)(ρ1 f )(z) = ψ(z) f (z) = 0,

which shows that T = Mφ for some φ ∈ M(H1,H2) by Theorem 3.2. Then
clearly ‖Mφ‖ = ‖T‖ = ‖Mψ‖. To see that φ actually extends ψ, fix z ∈ E and
x ∈ E1. Then, using the fact that H1 is analytically non-degenerate, we choose
f ∈ H1 with f (z) = x (for example f = i(z)x), and observe that

φ(z)x = (Mφ f )(z) = (ρ∗2 Mψρ1 f )(z) = ψ(z)(ρ1 f )(z) = ψ(z) f (z) = ψ(z)x.

To complete the proof, we have to show that the restriction mapping φ 7→ φ|E is
a well-defined contraction betweenM(H1,H2) andM(H1|E,H2|E). To this end
recall that a function φ : X → B(E1, E2) is a multiplier between arbitrary repro-
ducing kernel Hilbert spaces H1 ⊂ EX

1 and H2 ⊂ EX
2 with ‖Mφ‖ 6 1 precisely if

the function

X× X → B(E2) , (z, w) 7→ K2(z, w)− φ(z)K1(z, w)φ(w)∗

is positive definite (where of course, K1 and K2 are the reproducing kernels of
(H1,H2). A proof of this fact can be found in [4]. Since restrictions of positive
definite functions remain positive definite, the claim is proved.
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