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ABSTRACT. In this paper we present a new extension of the theory of well-
bounded operators to cover operators with complex spectrum. In previous
work a new concept of the class of absolutely continuous functions on a non-
empty compact subset σ of the plane, denoted AC(σ), was introduced. An
AC(σ) operator is one which admits a functional calculus for this algebra of
functions. The class of AC(σ) operators includes all of the well-bounded oper-
ators and trigonometrically well-bounded operators, as well as all scalar-type
spectral operators, but is strictly smaller than Berkson and Gillespie’s class of
AC operators. This paper develops the spectral properties of AC(σ) operators
and surveys some of the problems which remain in extending results from the
theory of well-bounded operators.
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1. INTRODUCTION

A Banach space operator is said to be well-bounded if it admits a functional
calculus for AC(J), the algebra of absolutely continuous functions on some com-
pact interval J ⊆ R. The motivation for the introduction of this class was to
provide a theory which extended the spectral representation results which apply
to self-adjoint operators to Banach space operators which may possess a condi-
tionally rather than unconditionally convergent spectral expansion. Smart and
Ringrose [27], [29], [30] showed that well-bounded operators always have an in-
tegral representation with respect to a family of projections known as a decom-
position of the identity. The usefulness of this most general form of the theory
is somewhat restricted however since the decomposition of the identity acts on
the dual of the underlying Banach space and is in general not unique (see [18] for
examples of this non-uniqueness).

In [8] a subclass of the well-bounded operators, the well-bounded opera-
tors of type (B), were introduced. The type (B) well-bounded operators, which
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include those well-bounded operators acting on reflexive spaces, possess a the-
ory of integration with respect to a family of projections which act on the original
space. This family of projections, known as the spectral family, is uniquely deter-
mined by the operator. The integration theory provides an extension of the AC(J)
functional calculus to a BV(J) functional calculus where BV(J) is the algebra of
functions of bounded variation on the interval J.

As is the case for a self-adjoint operator, the spectrum of a well-bounded
operator must lie in the real line. The main obstacle to overcome if one wishes to
extend the theory of well-bounded operators to cover operators whose spectrum
may not lie in the real line, is that of obtaining a suitable concept of bounded vari-
ation for functions defined on a subset of the plane. Many such concepts exist in
the literature. In [9], Berkson and Gillespie used a notion of variation ascribed
to Hardy and Krause to define the AC operators. These are the operators which
have an ACHK(J × K) functional calculus where ACHK(J × K) is the algebra of
absolutely continuous functions in the sense of Hardy and Krause defined on
a rectangle J × K ⊂ R2 ∼= C. They showed ([9], Theorem 5) that an operator
T ∈ B(X) is an AC operator if and only if T = R + iS where R and S are commut-
ing well-bounded operators. In [7] it is shown that this splitting is not necessarily
unique. Furthermore even if T is an AC operator on a Hilbert space H, it does not
necessarily follow that αT is an AC operator for all α ∈ C. On the positive side,
the AC operators include the trigonometrically well-bounded operators which
have found important applications in harmonic analysis and differential equa-
tions (see [10] and [11]). An operator T ∈ B(X) is said to be trigonometrically
well-bounded if there exists a type (B) well-bounded operator A ∈ B(X) such
that T = exp(iA).

One of the problems in the theory well-bounded and AC operators is that
the functional calculus of these operators is based on an algebra of functions
whose domain is either an interval in the real axis or a rectangle in the plane.
From an operator theory point of view, a much more natural domain is the spec-
trum, or at least a neighbourhood of the spectrum. Secondly, as we have al-
ready mentioned, the class of AC operators is not closed under multiplication
by scalars. This is also undesirable, since if one has structural information about
an operator T, this clearly gives similar information about αT. To overcome these
problems, in [3] we defined AC(σ), the Banach algebra of absolutely continuous
functions whose domain is some compact set σ in the plane. In this paper we
look at those operators which have an AC(σ) functional calculus, which we call
AC(σ) operators.

Section 2 summarizes some of the main results from [3] concerning the func-
tion algebras BV(σ) and AC(σ). The question as to how one may patch together
absolutely continuous functions defined on different domains is addressed in Sec-
tion 3. These results will be needed in order to show that AC(σ) operators are
decomposable in the sense of [16].
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In Section 4 we give some results which illustrate the extent of the class of
AC(σ) operators. In particular, we note that this class contains all scalar-type
spectral operators, all well-bounded operators and all trigonometrically well-
bounded operators.

In Section 5 we develop some of the main spectral properties of AC(σ) op-
erators. Here we show that the AC(σ) operators form a proper subclass of the
AC operators and hence such operators have a splitting into real and imaginary
well-bounded parts. The natural conjecture that every AC(σ) operator is in fact
an AC(σ(T)) operator remains open. Resolving this question depends on being
able to answer some difficult questions about the relationships between AC(σ1)
and AC(σ2) for different compact sets σ1 and σ2. These issues are discussed in
Section 6.

In Section 7 we examine the case where the AC(σ) functional calculus for T
is weakly compact. In this case one can construct a family of spectral projections
associated with T which is rich enough to recover T via an integration process.
This ‘half-plane spectral family’ is a generalization of the spectral family associ-
ated with a well-bounded operator of type (B). A full integration theory for this
class of operators is, however, yet to be developed. In particular, it is not known
whether one can always extend a weakly compact AC(σ) functional calculus to a
BV(σ) functional calculus. The final section discusses some of the progress that
has been obtained in pursuing such a theory, and lists some of the major obstacles
that remain.

Throughout this paper let σ ⊂ C be compact and non-empty. For a Banach
space X we shall denote the bounded linear operators on X by B(X) and the
bounded linear projections on X by Proj(X). Given T ∈ B(X) with the single
valued extension property (see [19]) and x ∈ X we denote the local spectrum of
x (for T) by σT(x). We shall write λ for the identity function λ : σ→ C, z 7→ z.

2. BV(σ) AND AC(σ)

We shall briefly look at BV(σ) and AC(σ). In particular we look at how two
dimensional variation is defined. More details may be found in [3].

To define two dimensional variation we first need to look at variation along
curves. Let Γ = C([0, 1],C) be the set of curves in the plane. Let ΓL ⊂ Γ be
the curves which are piecewise line segments. Let S = {zi}n

i=1 ⊂ C. We write
Π(S) ∈ ΓL for the (uniform speed) curve consisting of line segments joining the
vertices at z1, z2, . . . , zn (in the given order). For γ ∈ Γ we say that {si}n

i=1 ⊂ σ is
a partition of γ over σ if there exists a partition {ti}n

i=1 of [0, 1] such that t1 6 t2 6
· · · 6 tn and such that si = γ(ti) for all i. We shall denote the partitions of γ over
σ by Λ(γ, σ). For γ ∈ Γ and S ∈ Λ(γ, σ) we denote by γS the curve Π(S) ∈ ΓL.
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The variation along γ ∈ Γ for a function f : σ→ C is defined as

(2.1) cvar( f , γ) = sup
{si}n

i=1∈Λ(γ,σ)

n−1

∑
i=1
| f (si+1)− f (si)|.

To each curve γ ∈ Γ we define a weight factor ρ. For γ ∈ Γ and a line l we
let vf(γ, l) denote the number of times that γ crosses l (for a precise definition of
a crossing see Section 3.1 of [3]). Set vf(γ) to be the supremum of vf(γ, l) over all
lines l. We set ρ(γ) = 1

vf(γ) . Here we take the convention that if vf(γ) = ∞ then
ρ(γ) = 0. We can extend the definition of ρ to include functions in C[a, b] in the
obvious way.

The two dimensional variation of a function f : σ→ C is defined to be

(2.2) var( f , σ) = sup
γ∈Γ

ρ(γ) cvar( f , γ).

The following properties of two dimensional variation which were shown in [3].

PROPOSITION 2.1. Let σ ⊆ C be compact, and suppose that f : σ→ C. Then

var( f , σ)= sup
γ∈ΓL

ρ(γ) cvar( f , γ)=sup
{

ρ(γS)
n−1

∑
i=1
| f (si+1)− f (si)| : S={si}n

i=1⊆σ
}

.

PROPOSITION 2.2. Let σ1 ⊂ σ ⊂ C both be compact. Let f , g : σ → C, k ∈ C.
Then

(i) var( f + g, σ) 6 var( f , σ) + var(g, σ);
(ii) var( f g, σ) 6 ‖ f ‖∞ var(g, σ) + ‖g‖∞ var( f , σ);

(iii) var(k f , σ) = |k| var( f , σ);
(iv) var( f , σ1) 6 var( f , σ).

For f : σ→ C set

(2.3) ‖ f ‖BV(σ) = ‖ f ‖∞ + var( f , σ).

The functions of bounded variation with domain σ are defined to be

BV(σ) = { f : σ 7→ C : ‖ f ‖BV(σ) < ∞}.

To aid the reader we list here some of the main results from [3] and [4]. The
affine invariance of these algebras (Theorem 2.5 and Proposition 2.8) is one of the
main features of this theory and will be used regularly without comment.

PROPOSITION 2.3. If σ = [a, b] is an interval then the above definition of varia-
tion agrees with the usual definition of variation. Hence the above definition of BV(σ)
agrees with the usual definition of BV[a, b] when σ = [a, b].

THEOREM 2.4. Let σ ⊂ C be compact. Then BV(σ) is a Banach algebra using the
norm given in equation (2.3).

THEOREM 2.5. Let α, β ∈ C with α 6= 0. Then BV(σ) ∼= BV(ασ + β).
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LEMMA 2.6. Let f : σ → C be a Lipschitz function with Lipschitz constant

L( f ) = sup
z,w∈σ

∣∣∣ f (z)− f (w)
z−w

∣∣∣. Then var( f , σ) 6 L( f ) var(λ, σ). Hence f ∈ BV(σ).

We define AC(σ) as being the subalgebra BV(σ) generated by the functions
1, λ and λ. (Note that λ and λ are always in BV(σ).) We call functions in AC(σ)
the absolutely continuous functions with respect to σ. By Proposition 2.3 this coin-
cides with the usual notion of absolute continuity if σ = [a, b] ⊂ R is an interval.
In [3] the following properties of AC(σ) are shown.

PROPOSITION 2.7. Let σ = [a, b] be a compact interval. Let g ∈ BV(σ) ∩ C(σ).
Suppose that ρ(g) > 0. Then ‖ f ◦ g‖BV(σ) 6

1
ρ(g)‖ f ‖BV(g(σ)) for all f ∈ BV(g(σ)).

PROPOSITION 2.8. Let α, β ∈ C with α 6= 0. Then AC(σ) ∼= AC(ασ + β).

PROPOSITION 2.9. If f ∈ AC(σ) and f (z) 6= 0 on σ then 1
f ∈ AC(σ). Indeed,

if M = inf
z∈σ
| f (z)|, then

∥∥∥ 1
f

∥∥∥
AC(σ)

6
1
M

+
var( f , σ)

M2 .

We shall also need some properties of AC(σ) and BV(σ) which were not
included in [3].

PROPOSITION 2.10. BV(σ) is a lattice. If f , g ∈ BV(σ), then

‖ f ∨ g‖BV(σ)6‖ f ‖BV(σ)+‖g‖BV(σ) and ‖ f ∧ g‖BV(σ)6‖ f ‖BV(σ)+‖g‖BV(σ).

Proof. Suppose that γ ∈ Γ and that {si}n
i=1 ∈ Λ(γ, σ). Note that for any

a, a′, b, b′,

|(a∨a′)−(b∨b′)| 6 |(a∨b)−(a′∨b)|+|(a′∨b)−(a′∨b′)|6 |a−a′|+|b−b′|(2.4)

and so
n−1

∑
i=1
|( f ∨ g)(si+1)− ( f ∨ g)(si)| 6

n−1

∑
i=1
| f (si+1)− f (si)|+ |g(si+1)− g(si)|.

Thus cvar( f ∨ g, γ) 6 cvar( f , γ) + cvar(g, γ) and so

‖ f ∨ g‖BV(σ) = ‖ f ∨ g‖∞ + sup
γ

cvar( f ∨ g, γ)

6 ‖ f ‖∞ + ‖g‖∞ + sup
γ
{cvar( f , γ) + cvar(g, γ)}

6 ‖ f ‖∞ + sup
γ

cvar( f , γ) + ‖g‖∞ + sup
γ

cvar(g, γ)

= ‖ f ‖BV(σ) + ‖g‖BV(σ).

The proof for f ∧ g is almost identical.

Note that BV(σ) is not a Banach lattice, even in the case σ = [0, 1].
The set CTPP(σ) of functions on σ which are continuous and piecewise tri-

angularly planar relative to σ was introduced in [3]. It is easy to see that CTPP(σ)
is a sublattice of BV(σ).
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COROLLARY 2.11. AC(σ) is a sublattice of BV(σ).

Proof. It suffices to show that if f , g ∈ AC(σ), then f ∨ g ∈ AC(σ). Suppose
then that f , g ∈ AC(σ). Then there exist sequences { fn}, {gn} ⊆ CTPP(σ) such
that fn → f and gn → g in BV(σ). As CTPP(σ) is a lattice, fn ∨ gn ∈ CTPP(σ)
for each n and, using (2.4), one can see that ( fn ∨ gn)→ ( f ∨ g). This implies that
f ∨ g lies in the closure of CTPP(σ), namely AC(σ).

If one wishes to apply the results of local spectral theory, it is important that
AC(σ) forms an admissible algebra of functions in the sense of Colojoarǎ and
Foiaş [16]. The first step is to show that AC(σ) admits partitions of unity.

LEMMA 2.12. Let σ ⊂ C be compact. Then AC(σ) is a normal algebra. That is,
given any finite open cover {Ui}n

i=1 of σ, there exist functions { fi}n
i=1 ⊆ AC(σ) such

that:
(i) fi(σ) ⊂ [0, 1], for all 1 6 i 6 n;

(ii) supp fi ⊆ Ui for all 1 6 i 6 n;

(iii)
n
∑

i=1
fi = 1 on σ.

Proof. This follows from the fact that C∞(σ) ⊆ AC(σ) (see Proposition 4.7

of [3]). More precisely, let {Ui}n
i=1 be a finite open cover of σ and let U =

n⋃
i=1

Ui.

Choose an open set V with σ ⊆ V ⊆ V ⊆ U. Then there exist non-negative

f1, . . . , fn ∈ C∞(V) such that
n
∑

i=1
fi = 1 on V (and hence on σ), and supp fi ⊆ Ui

for all 1 6 i 6 n (see page 44 of [22]).

For f ∈ AC(σ) and ξ 6∈ supp f , define

fξ(z) =

{
f (z)
z−ξ z ∈ σ \ {ξ},
0 z ∈ σ ∩ {ξ}.

Recall that an algebraA of functions (defined on some subset of C) is admissible if
it contains the polynomials, is normal, and fξ ∈ A for all f ∈ A and all ξ 6∈ supp f .

PROPOSITION 2.13. Let σ ⊂ C be compact. Then AC(σ) is an admissible inverse-
closed algebra.

Proof. All that remains is to show that the last property hold in AC(σ). Sup-
pose then that f ∈ AC(σ) and ξ 6∈ supp f . Given that supp f is compact, there
exists h ∈ C∞(C) such that h(z) = (z − ξ)−1 on supp f and h(z) ≡ 0 on some
neighbourhood of ξ. Again using Proposition 4.7 in [3] we have that h|σ ∈ AC(σ)
and hence that fξ = f h ∈ AC(σ).
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3. PATCHING THEOREMS

The relationship between var( f , σ1), var( f , σ2) and var( f , σ1 ∪ σ2) is in gen-
eral rather complicated. The following theorem will allow us to patch together
functions defined on different sets.

THEOREM 3.1. Suppose that σ1, σ2 ⊆ C are nonempty compact sets which are
disjoint except at their boundaries. Suppose that σ = σ1 ∪ σ2 is convex. If f : σ → C,
then

max{var( f , σ1), var( f , σ2)} 6 var( f , σ) 6 var( f , σ1) + var( f , σ2)

and hence

max{‖ f ‖BV(σ1)
, ‖ f ‖BV(σ2)

} 6 ‖ f ‖BV(σ) 6 ‖ f ‖BV(σ1)
+ ‖ f ‖BV(σ2)

.

Thus, if f |σ1 ∈ BV(σ1) and f |σ2 ∈ BV(σ2), then f ∈ BV(σ).

Proof. The left-hand inequalities are obvious.
Note that given any points z ∈ σ1 \ σ2 and w ∈ σ2 \ σ1 there exists a point u

on the line joining z and w with u in σ1 ∩ σ2. To see this, let α(t) = (1− t)z + tw
and let t0 = inf{t ∈ [0, 1] : α(t) ∈ σ2}. By the convexity of σ, α(t) ∈ σ1 for all
0 6 t < t0. The closedness of the subsets then implies that u = α(t0) ∈ σ1 ∩ σ2.

Suppose then that S = {z0, z1, . . . , zn} ⊆ σ. For any j for which zj and zj+1
lie in different subsets, using the above remark, expand S to add an extra vertex
on the line joining zj and zj+1 which lies in both σ1 and σ2. (Note that the addition
of these extra vertices does not change the value of ρ(γS) and can only increase
the variation of f between the vertices.) Write the vertices of γ which lie in σ1 as
S1 = {z1

0, z1
1, . . . , z1

k1
} and those which lie in σ2 as S2 = {z2

0, z2
1, . . . , z2

k2
}, preserving

the original ordering. Note that for every j, {zj, zj+1} is a subset of at least one of
the sets S1 and S2. Thus

n

∑
j=1
| f (zj)− f (zj−1)| 6

2

∑
i=1

ki

∑
j=1
| f (zi

j)− f (zi
j−1)|

where an empty sum is interpreted as having value 0. Recall that if S′ ⊆ S then
ρ(γS′) > ρ(γS). Thus

ρ(γS)
n

∑
j=1
| f (zj)− f (zj−1)| 6

2

∑
i=1

ρ(γSi )
ki

∑
j=1
| f (zi

j)− f (zi
j−1)|

6
2

∑
i=1

ρ(γSi ) cvar( f , σi) 6
2

∑
i=1

var( f , σi).

The results follows on taking a supremum over finite S ⊆ σ.

Note that the convexity of σ is vital in Theorem 3.1. Without this condition it
is easy to construct examples where var( f , σ1) + var( f , σ2) = 0 for a nonconstant
function f .
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Later, we will need to show that we can patch two absolutely continuous
functions together. For notational simplicity, the following lemma is stated in
terms of specific sets σ1 and σ2, but the affine invariance result (Proposition 2.8)
implies that this immediately also applies to any two rectangles that meet along
an edge.

LEMMA 3.2. Suppose that σ1 = [0, 1]× [0, 1], that σ2 = [1, 2]× [0, 1] and that
σ = σ1 ∪ σ2. Suppose that f : σ→ C and that fi = f |σi (i = 1, 2). If f1 ∈ AC(σ1) and
f2 ∈ AC(σ2), then f ∈ AC(σ) and

‖ f ‖BV(σ) 6 ‖ f1‖BV(σ1)
+ ‖ f2‖BV(σ2)

.

Proof. By replacing f with the function (x, y) → f (x, y) − f (1, y) we may
assume that f |(σ1 ∩ σ2) = 0. (Note that (x, y)→ f (1, y) is always in AC(σ).)

Suppose first that f2 = 0. Fix ε > 0. As f1 ∈ AC(σ1) there exists p ∈
CTPP(σ1) with ‖ f1 − p‖BV(σ1)

< ε
4 . By the definition of CTPP(σ1) there is a tri-

angulation {Ai}n
i=1 of σ1 such that p|Ai is planar (see Section 4 of [3]). Note

that b(y) = p(1, y) is a piecewise linear function on [0, 1] with ‖b‖BV[0,1] = ‖ f1 −
p‖BV(σ1∩σ2)

< ε
4 . Extend p to σ2 by setting p(x, y) = b(y). Note that p∈ CTPP(σ)

and by Proposition 4.4 in [3], ‖p|σ2‖BV(σ2)
< ε

4 . Thus, using Theorem 3.1,

‖ f − p‖BV(σ) 6 ‖ f − p‖BV(σ1)
+ ‖ f − p‖BV(σ2)

<
ε

2
.

For arbitrary f2, the same argument will produce a function q ∈ CTPP(σ)
which approximates to within ε

2 the function which is f2 on σ2 and zero on σ1.
Thus the piecewise planar function p + q approximates f to within ε on σ. It
follows that f ∈ AC(σ). The norm estimate is given by Theorem 3.1.

The conditions on σ1 and σ2 in Lemma 3.2 could be relaxed considerably.
Since we will not need this greater generality in this paper, we have not attempted
to determine the most general conditions on these sets for which the above proof
works. It is worth noting that one does need some conditions on σ1 and σ2 or else
the pasted function need not even be of bounded variation.

A major issue in much of this paper will be whether one can always extend
an AC(σ) function to a larger domain.

QUESTION 3.3. Suppose that σ1 ⊆ σ2 are nonempty compact sets. Does
there exist C = C(σ1, σ2) such that for every f ∈ AC(σ1) there exists f̃ ∈ AC(σ2)

such that f̃ |σ1 = f and ‖ f̃ ‖BV(σ2)
6 C‖ f ‖BV(σ1)

?

The following special case will be needed in Section 5 to show that AC(σ)
operators are decomposable.

THEOREM 3.4. Let σ denote the closed square [0, 1]× [0, 1], and let ∂σ denote the
boundary of σ. Suppose that b ∈ AC(∂σ). Then there exists f ∈ AC(σ) such that
f |∂σ = b and ‖ f ‖BV(σ) 6 28‖b‖BV(∂σ).
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Proof. Recall that by Proposition 4.4 in [3], if h ∈ AC[0, 1] is any absolutely
continuous function of one variable, then its extension to the square, ĥ(x, y) =

h(x), is in AC(σ) with ‖ĥ‖ = ‖h‖BV[0,1].
Define fs : σ→ C by fs(x, y) = (1− y) b(x, 0). Since fs is the product of AC

functions of one variable, it is absolutely continuous on σ and

‖ fs‖BV(σ) 6 2‖b(·, 0)‖BV[0,1] 6 2‖b‖BV(∂σ).

Similarly, we define

fe(x, y) = (1− x) b(0, y), fn(x, y) = y b(x, 1), fw(x, y) = x b(1, y).

Let g = fs + fe + fn + fw. Then g ∈ AC(σ) and ‖g‖BV(σ) 6 8‖b‖BV(∂σ).
Let ∆l = {(x, y) : 0 6 y 6 x 6 1} and ∆u = {(x, y) : 0 6 x 6 y 6 1} de-

note the lower and upper closed triangles inside σ. Now let pl be the affine func-
tion determined by the condition that it agrees with b− g at the points (0, 0), (1, 0)
and (1, 1). Similarly, let pu be the affine function which agrees with b− g at the
points (0, 0), (0, 1) and (1, 1). Note that pl(x, x) = pu(x, x) for all x. Let

p(x, y) =

{
pl(x, y) (x, y) ∈ ∆l,
pu(x, y) (x, y) ∈ ∆u.

Then p ∈ CTPP(σ) ⊆ AC(σ). Now (using the facts about AC(σ) functions which
only vary in one direction)

var(p, ∆l) 6 max{|p(0, 0)− p(1, 0)|, |p(0, 0)− p(1, 1)|, |p(1, 0)− p(1, 1)|}.

Note that

|p(0, 0)− p(1, 0)| 6 |b(0, 0)− b(1, 0)|+ |g(0, 0)− g(1, 0)|
6 var(b, ∂σ) + var(g, σ) 6 9‖b‖BV(∂σ).

This bound also holds for the other terms and hence ‖p‖BV(∆l)
6 10‖b‖BV(∂σ).

Applying the same argument in the upper triangle, and then using Theorem 3.1
gives that ‖p‖BV(σ) 6 20‖b‖BV(∂σ).

Let f = g + p. Clearly f ∈ AC(σ) and ‖ f ‖BV(σ) 6 28‖b‖BV(∂σ). Note
that fe(x, 0), fn(x, 0), fw(x, 0) and p(x, 0) are all affine functions of x, and hence
f (x, 0) − b(x, 0) is an affine function. But f (0, 0) = g(0, 0) + b(0, 0) − g(0, 0) =
b(0, 0) and f (1, 0) = b(1, 0) and so it follows that f (x, 0) = b(x, 0) for all x ∈
[0, 1]. Similar arguments hold for the remaining three sides and so f |∂σ = b as
required.

At the expense of lengthening the reasoning, one could reduce the constant
28 in the above theorem. It would be interesting to know the optimal constant; it
seems unlikely that the above construction would provide this.

In building up AC functions in Section 6, we shall need to make use of the
following straightforward extension lemma.
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LEMMA 3.5. Let σ denote the boundary of the square [0, 1] × [0, 1]. Denote the
four edges of the square as {σi}4

i=1. Let J be a nonempty subset of {1, 2, 3, 4} and let
σJ =

⋃
i∈J

σi. Then given any b ∈ AC(σJ) there exists b̂ ∈ AC(σ) with b̂|σJ = b and

‖b̂‖BV(σ) 6 4‖b‖BV(σJ)
.

Proof. Let T denote the circle passing through the 4 vertices of σ, and let
π denote the map from σ to T defined by projecting along the rays coming out
of the centre of σ. Consider a finite list of points S = {z1, . . . , zn} ⊆ σ with
corresponding path γS = Π(z1, . . . , zn). Choose a line ` in C for which γS has
vf(γS) entry points on `. Note that you can always do this with ` passing through
the interior of σ and hence ` is determined by two points w1, w2 ∈ σ. Let `π

denote the line through π(w1) and π(w2). Since the projection π preserves which
side of a line points lie on, γπ(S) has vf(γS) entry points on `π . Conversely, if

γπ(S) has vf(γπ(S)) entry points on a line `, then γ must have at least
vf(γπ(S))

2
entry points on the inverse image of ` under π. (The factor of 1

2 comes from the
fact the inverse image of ` may lie along one of the edges of σ.) It follows then
that

(3.1)
1
2

ρ(γS) 6 ρ(γπ(S)) 6 ρ(γS).

Suppose then that f ∈ BV(σ). Let fπ : T → C be fπ = f ◦ π−1. From (3.1)
it is clear that

1
2

var( fπ , T) 6 var( f , σ) 6 var( fπ , T)

and so fπ ∈ BV(T). The same estimate holds when comparing the variation of
f ∈ BV(σJ) and that of fπ on the corresponding subset TJ of T. But, by Corol-
lary 5.6 in [4], BV(T) is 2-isomorphic to the subset of BV[0, 1] consisting of func-
tions which agree at the endpoints. In this final space, one can extend an AC
function from a finite collection of subintervals K to the whole of [0, 1] by linear
interpolation, without increasing the norm. Note that absolute continuity is pre-
served by the isomorphisms between these function spaces. The factor 4 comes
from collecting together the norms along the following composition of maps

AC(σJ) AC(σ)

2
yπ 1

xπ−1

AC(TJ) AC(T)

2
y 1

x
AC(K) 1−−−−−→

extend
AC[0, 1].

Note that if σJ consists of either one side, or else 2 contiguous sides, then
one may extend b to all of σ without increasing of norm using Proposition 4.4 of
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[3]. We do not know whether this is true if, for example, σJ consists of 2 opposite
sides of the square.

4. AC(σ) OPERATORS: DEFINITIONS AND EXAMPLES

DEFINITION 4.1. Suppose that σ ⊆ C is a nonempty compact set and that T
is a bounded operator on a Banach space X. We say that T is an AC(σ) operator if
T admits a bounded AC(σ) functional calculus. That is, T is an AC(σ) operator if
there exists a bounded unital Banach algebra homomorphism ψ : AC(σ)→ B(X)
for which ψ(λ) = T.

Where there seems little room for confusion we shall often say that T is an
AC(σ) operator where one should more properly say that T is an AC(σ) operator
for some σ.

Before proceeding to give some of the general properties of AC(σ) opera-
tors, it is appropriate to give the reader some idea of how this class is related to
other standard classes of operators which arise in spectral theory.

EXAMPLE 4.2. Let H be a Hilbert space and let T ∈ B(H) be normal. Then T
has a C(σ(T)) functional calculus ψ. Then ψ|AC(σ(T)) is a linear homomorphism
from AC(σ(T)) into B(X). Furthermore ‖ψ( f )‖ 6 ‖ψ‖‖ f ‖∞ 6 ‖ψ‖‖ f ‖BV(σ(T))
for all f ∈ AC(σ) and so ψ|AC(σ(T)) is continuous from AC(σ(T)) into B(H).
Hence T is an AC(σ(T)) operator. Indeed, by the same argument any scalar type
spectral operator (or even scalar-type prespectral operator) T on a Banach space
X is also an AC(σ(T)) operator. (See [18] for the definitions of these latter classes
of operators.)

The operators in the previous example are associated with spectral expan-
sions which are of an unconditional nature. The motivation for the present theory
is of course to cover operators such as well-bounded operators, which admit less
constrained types of spectral expansion.

LEMMA 4.3. Let T ∈ B(X) be an AC(σ) operator. Suppose that σ ⊂ σ′ where
σ′ ⊂ C is compact. Then T is an AC(σ′) operator.

Proof. Let ψ be a AC(σ) functional calculus for T. Define ψσ′ : AC(σ′) →
B(X) : f 7→ ψ( f |σ). Then ψσ′ is a unital linear homomorphism. Furthermore
ψσ′(λ) = ψ(λ|σ) = T. Finally we note from the inequality ‖ f |σ‖BV(σ) 6 ‖ f ‖BV(σ′)

that ψσ′ is continuous. Hence ψσ′ is an AC(σ′) functional calculus for T.

The following result was announced in Section 2 of [3].

PROPOSITION 4.4. Let T ∈ B(X). The following are equivalent:
(i) T is well-bounded.

(ii) T is an AC(σ) operator for some σ ⊂ R.
(iii) σ(T) ⊂ R and T is an AC(σ(T)) operator.
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Proof. Trivially (iii) implies (ii). Lemma 4.3 shows that (ii) implies (i). Say
T is well-bounded with functional calculus ψ : AC(J) → B(X) for some in-
terval J. In [3] we define a linear isometry ι : AC(σ(T)) → AC(J). Define
ψσ(T) : AC(σ(T)) → B(X) : f 7→ ψ(ι( f )). We show that ψσ(T) is an AC(σ(T))
functional calculus for T which will complete the proof. Clearly ψσ(T) is linear
and continuous. Furthermore, since ι(λ|σ(T)) = λ, we have that ψσ(T)(λ) = T.
To see that ψσ(T) is a homomorphism we note that if f , g ∈ AC(σ(T)) then
(ι( f g) − ι( f )ι(g))(σ(T)) = {0}. Theorem 4.4.4 of [1] says we can find a se-
quence {hn}∞

n=1 ⊂ AC(J) such that lim
n
‖hn − (ι( f g) − ι( f )ι(g))‖BV(J) = 0 and

such that for each n, hn is zero on a neighbourhood of σ(T). This last con-
dition, by Proposition 3.1.12 of [15], implies that ψ(hn) = 0 for all n. Hence
ψ(ι( f g)− ι( f )ι(g)) = lim

n
ψ(hn) = 0, which shows that ψσ(T) is a homomorphism

as claimed.

As a result of the last proposition we prefer to use the term “real AC(σ)
operator” rather than the term well-bounded operator. As well as being less de-
scriptive, the term well-bounded operator also suffers from the fact that it is used
for quite a different concept in the local theory of Banach spaces (see [24] for ex-
ample). We shall however stick with the traditional term for the remainder of this
paper.

The next theorem shows that some important classes of AC operators are
also AC(σ) operators.

THEOREM 4.5. Let A ∈ B(X) be well-bounded with functional calculus ψ :
AC(J) → B(X) for some interval J. Let f ∈ AC(J) be such that ρ( f ) > 0. Then
ψ( f ) is an AC( f (J)) operator.

Proof. Define ψ f : AC( f (J))→ B(X) : g 7→ ψ(g ◦ f ). Then ψ f is a unital lin-
ear homomorphism and ψ f (λ) = ψ( f ). By Proposition 2.7, ψ f is continuous.

COROLLARY 4.6. Let A ∈ B(X) be well-bounded and p be a polynomial of one
variable. Then p(A) is an AC(p(σ(A))) operator.

COROLLARY 4.7. Let A ∈ B(X) be a well-bounded operator. Then exp(iA) is an
AC(i exp(σ(A))) operator.

We noted earlier that the trigonometrically well-bounded operators are the
operators which can be expressed in the form exp(iA) where A ∈ B(X) is a well-
bounded operator of type (B). (Indeed one can also insist that σ(A) ⊂ [0, 2π].) As
usual, we denote the unit circle in C by T.

COROLLARY 4.8 (Theorem 6.2 in [4]). If T ∈ B(X) is trigonometrically well-
bounded then T is an AC(T) operator. Indeed, if X is reflexive, then T is trigonometri-
cally well-bounded operator if and only if it is an AC(T) operator.

We end this section with a more concrete example.
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EXAMPLE 4.9. Suppose that 1 < p < ∞ and that X is the usual Hardy space
Hp(D) of analytic functions on the unit disk. Consider the unbounded operator
A f (z) = z f ′(z), f ∈ Hp(D) (with natural domain { f : A f ∈ Hp(D)}). This
operator arises, for example, as the analytic generator of a semigroup of compo-
sition operators, Tt f (z) = f (e−tz); see [26], which includes a summary of many
of the spectral properties of A. The spectrum of A is σ(A) = N = {0, 1, 2, . . . }
with the corresponding spectral projections Pk(∑ anzn) = akzk (k ∈ N) giving just
the usual Fourier components. Suppose then that µ 6∈ σ(A). The resolvent op-
erator R(µ, A) = (µI − A)−1 is a compact operator with spectrum σ(R(µ, A)) ={

1
µ−k

}∞

k=0
∪ {0}. Using Theorem 3.3 in [14] it follows easily from the properties

of Fourier series that if x ∈ R \ N, then R(x, A) is well-bounded. If we fix such
an x and take µ 6∈ R, then R(µ, A) = f (R(x, A)) where f (t) = t

1+(µ−x)t is a
Möbius transformation. If J is any compact interval containing σ(R(x, A)) then
ρ( f (J)) = 1

2 . Thus R(µ, A) is an AC( f (J)) operator. Thus, all the resolvents of
A are compact AC(σ) operators (for some σ). Note that none of the resolvents is
scalar-type spectral unless p = 2.

5. PROPERTIES OF AC(σ) OPERATORS

All AC(σ) operators belong to the larger class of decomposable operators
(in the sense of [16]). This will follow immediately from the requirement that the
functional calculus map ψ : AC(σ)→ B(X) be what Colojoarǎ and Foiaş term an
AC(σ)-spectral function. Recall that by Proposition 2.13, AC(σ) is an admissible
algebra.

Suppose that f ∈ AC(σ). Let Ω f ⊆ C be the open set C \ supp f . By
Proposition 2.13, Φ f (ξ) = fξ is a well-defined map from Ω f to AC(σ).

Following Section 3.1 of [16], the functional calculus map ψ : AC(σ) →
B(X) is an AC(σ)-spectral function if, for all f ∈ AC(σ), the map ψ ◦ Φ f : Ω f →
B(X) is analytic on Ω f .

Since ψ is linear, it suffices to show that the map Φ f is differentiable at each
point ξ0 ∈ Ω f . To establish this we shall need a technical lemma.

As in [5], let |x + iy|∞ = max(|x|, |y|). For ξ0 ∈ C and δ > 0 let

B∞(ξ0, δ) = {z ∈ C : |ξ0 − z|∞ < δ}.

LEMMA 5.1. Suppose that f ∈ AC(σ), ξ0 ∈ Ω f and that δ > 0 is chosen so that
B∞(ξ0, 3δ) ⊆ Ω f . Then there exists a constant C(δ, σ) such that for all ξ ∈ B∞(ξ0, δ),
there exists rξ ∈ AC(σ) which satisfies:

(i) rξ(z) = 1
ξ−z for all z ∈ σ \ B∞(ξ0, 2δ), and

(ii) ‖rξ‖AC(σ) 6 C(δ, σ).
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Proof. Suppose first that ξ0 ∈ σ. (The case where ξ0 6∈ σ is similar, but with
slightly different norm bounds. The details are left to the reader.)

Let σ0 denote the smallest closed square (with sides parallel to the axes)
containing σ and B∞(ξ0, 3δ). Let σ1 denote the B∞(ξ0, 2δ) and let σ2 denote σ0 \
B∞(ξ0, 2δ).

Suppose that ξ ∈ B∞(ξ0, δ). The function z 7→ ξ− z is absolutely continuous
on σ2 with variation equal to d = d(σ, δ), the length of the diagonal of σ0. Since
|ξ − z| > δ on σ2, Lemma 2.9 implies that rξ : σ2 → C, z 7→ (ξ − z)−1 is in AC(σ2)
with

‖rξ‖AC(σ2)
6

1
δ
+

d
δ2 .

Clearly ∂σ1 ⊆ σ2 so by Lemmas 3.9 and 4.5 in [3], rξ |∂σ1 ∈ AC(∂σ1). Using
Theorem 3.4, we can extend rξ to σ1 so that rξ |σ1 ∈ AC(σ1) and ‖rξ‖AC(σ1)

6
28‖rξ‖AC(∂σ1)

6 28‖rξ‖AC(σ2)
.

By splitting σ0 into 9 smaller rectangles and then using Lemma 3.2 repeat-
edly, one can deduce that rξ ∈ AC(σ0), and that one has a bound on ‖rξ‖AC(σ0)

which depends only on σ and δ. Taking the restriction of this function to the
original domain σ completes the construction.

PROPOSITION 5.2. The functional calculus map φ for an AC(σ) operator T ∈
B(X) is an AC(σ)-spectral function.

Proof. Fix f ∈ AC(σ), ξ0 ∈ Ω f and δ > 0 so that B∞(ξ0, 3δ) ⊆ Ω f . Using
Lemma 5.1, choose a family of functions rξ for ξ ∈ B∞(ξ0, δ). Note that Φ f (ξ) =
rξ f ∈ AC(σ). Thus

Φ f (ξ)−Φ f (ξ0)

ξ − ξ0
=

(rξ − rξ0) f
ξ − ξ0

= −rξrξ0 f = −r2
ξ0

f + rξ0(rξ0 − rξ) f

= −r2
ξ0

f + rξ0(ξ − ξ0)rξrξ0 f → −r2
ξ0

f

as ξ → ξ0, by the uniform bound on the norms of the functions rξ . Composing
Φ f with the linear map ψ preserves differentiability so ψ ◦ Φ f : Ω f → B(X) is
analytic.

PROPOSITION 5.3. Let T ∈ B(X) be an AC(σ) operator. Then
(i) σ(T) ⊆ σ.

(ii) T is decomposable.

This follows from Proposition 5.2 using Theorems 3.1.6 and 3.1.16 in [16].
In general it is easy to pass between spectral properties of an operator T and

those of affine translations of T. One of the main motivations for developing this
theory was to provide a suitably broad class of operators which is closed under
such transformations. From Theorem 2.8 we get the following.

THEOREM 5.4. Let T ∈ B(X) be an AC(σ) operator. Let α, β ∈ C. Then αT + βI
is an AC(ασ + β) operator.



AC(σ) OPERATORS 269

Proof. Let θ : AC(σ) → AC(ασ + β) be the isomorphism of Theorem 2.8.
Let ψ be the AC(σ) functional calculus for T. Then it is routine to check that the
map ψα,β : AC(ασ + β) → B(X) : f 7→ ψ(θ−1( f )) is an AC(ασ + β) functional
calculus for αT + βI.

THEOREM 5.5. Let T ∈ B(X) be an AC(σ) operator. Then T = R + iS where
R, S are commuting well-bounded operators. Further, σ(R) = Re(σ(T)) and σ(S) =
Im(σ(T)).

Proof. Let ψ be an AC(σ) functional calculus for T. Proposition 5.4 in [3]
shows that the map u : AC(Re(σ)) → AC(σ) defined by u( f )(z) = f (Re(z)) is
a norm-decreasing linear homomorphism. Then the map ψRe(σ) : AC(Re(σ)) →
B(X) : f 7→ ψ(u( f )) is a continuous linear unital homomorphism. Hence R :=
ψRe(σ)(λ|Re(σ)) = ψ(Re(λ)) is well-bounded. Similarly S := ψ(Im(λ)) is well-
bounded. Then T = ψ(λ) = ψ(Re(λ) + i Im(λ)) = R + iS. Finally we note that R
and S commute since AC(σ) is a commutative algebra and ψ is a homomorphism.

The identification of σ(R) and σ(S) follows immediately from the spectral
mapping theorem (see Theorem 3.2.1 in [16]).

Splittings which arise from an AC(σ) functional calculus we call functional
calculus splittings.

COROLLARY 5.6. The AC(σ) operators are a proper subset of the AC operators of
Berkson and Gillespie.

Proof. We note that not all AC operators are AC(σ) operators. Example 4.1
of [7] shows that the class of AC operators is not closed under multiplication by
scalars even on Hilbert spaces.

Not all splittings into commuting real and imaginary well-bounded parts
arise from an AC(σ) functional calculus. This was shown in the next example
which first appeared in [7].

EXAMPLE 5.7. Let X = L∞[0, 1]⊕ L1[0, 1]. Define A ∈ B(X) by A( f , g) =
(λ f , λg). It is not difficult to see that A is well-bounded and that σ(A) = [0, 1].
Let T = (1 + i)A = A + iA. By Theorem 5.4, T is an AC(σ(T)) operator where
σ(T) is the line segment from 0 to 1 + i.

The operator T has an infinite number splittings. Define Q ∈ B(X) by
Q( f , g) = (0, f ). In [7] it is shown that A + αQ is well-bounded for any α ∈ C.
But then T = A + iA = A + Q + i(A + iQ).

The second splitting cannot come from an AC(σ) functional calculus. Say
T has an AC(σ) functional calculus ψ. Since σ(T) is a line segment we can use
similar reasoning as to that in Proposition 4.4 to conclude that if f ∈ AC(σ)
is such that f (σ(T)) = {0} then ψ( f ) = 0. Hence if g|σ(T) = h|σ(T) then
ψ(g) = ψ(h). In particular since Re(λ)|σ(T) = Im(λ)|σ(T) we can only have
AC(σ) functional calculus splittings of the form T = R + iR.
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We do not know if it is possible to have several splittings each arising from
an AC(σ) functional calculus. The following tells us to what extent we can expect
splittings to be unique.

PROPOSITION 5.8. Let T ∈ B(X) be an AC(σ) operator. Suppose that T = R1 +
iS1 = R2 + iS2 where R1, S1 and R2, S2 are pairs of commuting well-bounded operators.
Then R1 and R2 are quasinilpotent equivalent in the sense of [15] (as are S1 and S2).
Suppose that {R1, S1, R2, S2} is a commuting set. Then (R1 − R2)

2 = (S1 − S2)
2 = 0.

Furthermore suppose that {R1, S1, R2, S2} are all type (B) well-bounded operators. Then
R1 = R2 and S1 = S2.

This is Theorem 3.2.6 of [16] and Theorem 3.7 of [7].

6. THE SUPPORT OF THE FUNCTIONAL CALCULUS

Suppose that ψ : AC(σ) → B(X) is the functional calculus map for an
AC(σ) operator T. The support of ψ is defined as the smallest closed set F ⊆ C
such that if supp f ∩ F = ∅, then ψ( f ) = 0. It follows from Theorem 5.2 and
Theorem 3.1.6 of [16] that the support of ψ is σ(T).

It is natural therefore to ask whether such an operator T must admit an
AC(σ(T)) functional calculus. By Proposition 4.4, this is certainly the case if T is
well-bounded (that is, if σ(T) ⊆ R), but the general case remains open.

We shall now give a partial answer to this question, and show that one may
always at least shrink σ down to be a compact set not much bigger than σ(T).

DEFINITION 6.1. A set G ⊆ C is said to be gridlike if it is a closed polygon
with sides parallel to the axes.

Note that we do not require that a gridlike set be convex, or even simply
connected.

PROPOSITION 6.2. Suppose that V is a gridlike set, that σ is compact and that
V ⊆ σ. Let IV = { f ∈ AC(σ) : f ≡ 0 on V}. Then AC(σ)/IV ∼= AC(V) as Banach
algebras.

Proof. Define Θ : AC(σ)/IV → AC(V) by Θ([ f ]) = f |V. Then clearly

Θ([ f ]) = Θ([g]) ⇐⇒ f |V ≡ g|V ⇐⇒ f − g ∈ IV

and so Θ is well-defined and one-to-one. It is also easy to see that Θ is an algebra
homomorphism. Since

‖Θ([ f ])‖=‖ f |V‖BV(V)= inf
g∈IV
‖ f+g|V‖BV(V)6 inf

g∈IV
‖ f+g‖BV(σ)=‖[ f ]‖AC(σ)/IV

the map Θ is bounded.
The hard part of the proof is to show that Θ is onto. That is, given f ∈

AC(V), there exists F ∈ AC(σ) so that F|V = f .
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Choose then a square J×K containing σ. Extending the edges of V produces
a grid on J × K, determining N closed subrectangles {σk}N

k=1.
Suppose now that f ∈ AC(V). Our aim is to define f̂ ∈ AC(J × K) with

f̂ |V = f and ‖ f̂ ‖BV(J×K) 6 C‖ f ‖BV(V).
Fix an ordering of the rectangles {σk} so that

(i) there exists k0 such that σk ⊆ V if and only if k 6 k0, and
(ii) for all `, σl intersects

⋃
k<`

σk on at least one edge of σl.

Let E0 denote the union of the edges of the rectangles σk for k 6 k0 and let b be
the restriction of f to E0. Note that b is absolutely continuous on E0 and if e is any
edge of any rectangle σk (k 6 k0), then b|e ∈ AC(e) with ‖b|e‖BV(e) 6 ‖b‖BV(E0)

6
‖ f ‖BV(V). Now apply Lemma 3.5 to recursively extend b to the set E of all edges
of rectangles σk, 1 6 k 6 N, so that b ∈ AC(E) and ‖b‖BV(E) 6 CN‖ f ‖BV(V).

For 1 6 k 6 k0, let fk = f |σk, so that fk ∈ AC(σk) and ‖ fk‖BV(σk)
6

‖ f ‖BV(V). Suppose alternatively that k0 < k 6 N. By Theorem 3.4 we can
find fk ∈ AC(σk) with fk|∂σk = b|∂σk and ‖ fk‖BV(σk)

6 28‖b|∂σk‖BV(∂σk)
6

28CN‖ f ‖BV(V).
Define f̂ : J × K → C such that f̂ |σk = fk. That f̂ is in AC(J × K) with

‖ f̂ ‖BV(J×K) 6 28CN N‖ f ‖BV(V) follows from Lemma 3.2 (first patching together
all the rectangles in each row, and then all the rows together). We can now let
F = f̂ |σ.

It follows then that Θ is onto and hence is a Banach algebra isomorphism.

THEOREM 6.3. Let T ∈ B(X) be an AC(σ) operator for some σ ⊂ C. Let U be
an open neighbourhood of σ(T). Then T is an AC(U) operator.

Proof. Suppose that T, σ and U are as stated. Choose a square J × K con-
taining U ∪ σ. By Lemma 4.3, T admits an AC(J × K) functional calculus ψ.

Consider an equispaced grid on J × K, determining n2 subsquares {σk}n2

k=1.
Let V = V(n) be the union of all those σk which intersect σ(T). For n large enough

σ(T) ⊆ int(V) ⊆ V ⊆ U.

For the rest of the proof, fix such an n.
As in Proposition 6.2, let IV = { f ∈ AC(J × K) : f |V ≡ 0}, so that AC(J ×

K)/IV ∼= AC(V) via the isomorphism Θ. Note that IV ⊆ ker(ψ) since if f ∈ IV ,
then supp f ∩ σ(T) = ∅. Thus the map ψ̃ : AC(J × K)/IV → B(X),

ψ̃([ f ]) = ψ( f )

is a well-defined algebra homomorphism with ‖ψ̃‖ 6 ‖ψ‖.
We may therefore define ψ̂ : AC(U) → B(X) by ψ̂( f ) = ψ̃([Θ−1( f |V)]).

Note that ψ̂ is a bounded algebra homomorphism and that, since Θ([λ]) = λ|V,
ψ̂(λ) = ψ(λ) = T. Thus ψ̂ is an AC(U) functional calculus for T.
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COROLLARY 6.4. Let T ∈ B(X) be an AC(σ0) operator for some compact set σ0.
Then

σ(T) =
⋂
{σ : T has an AC(σ) functional calculus}.

The proof of Theorem 6.3 depends on two vital facts. The first is that the
map Θ is an isomorphism. The second is that IV ⊆ ker(ψ). To show that every
AC(σ) operator is an AC(σ(T)) operator, it would suffice to show that:

(i) the restriction map AC(σ) → AC(σ(T)), f 7→ f |σ(T) is onto. This is
basically equivalent to answering Question 3.3.

(ii) given any f ∈ AC(σ) with f |σ(T) ≡ 0, there exists a sequence { fn} ⊆
AC(σ) with ‖ f − fn‖BV(σ) → 0 and supp fn ∩ σ(T) = ∅ for all n.

Proving (i) and (ii) when σ(T) is a complicated compact set would appear
to require new ways of estimating the two-dimensional variation used in our
definitions.

If T ∈ B(X) is an AC(σ(T)) operator then T has spectral theorems similar
to those for normal operators. Recall from [19] the definition of the local spec-
trum σT(x) of x ∈ X for an operator T ∈ B(X) with the single-valued extension
property. From [23] if T ∈ B(X) is an AC(σ) operator (and hence decomposable)
then those x ∈ X such that σT(x) = σ(T) are second countable in X.

THEOREM 6.5. Suppose that T ∈ B(X) is an AC(σ(T)) operator with functional
calculus ψ : AC(σ(T))→ B(X). Then ψ is injective. Hence we can identify AC(σ(T))
with a subalgebra of B(X). Furthermore suppose that x ∈ X is such that σT(x) = σ(T).
Then the map AC(σ(T)) → X : f 7→ ψ( f )x is injective, and so we can identify
AC(σ(T)) with a subspace of X.

Proof. Let x ∈ X be such that σT(x) = σ(T). To prove the theorem it suffices
to show that if f ∈ AC(σ(T)) and f 6= 0 then ψ( f )x 6= 0. Let λ0 ∈ σ(T) be such
that f (λ0) 6= 0. Since f is continuous we can find an open neighbourhood V of λ0
such that 0 6∈ f (V). We can choose g ∈ AC(σ(T)) such that ( f g)(V) = {1}. If we
show ψ( f g)x 6= 0 this will imply, since ψ is a homomorphism, that ψ( f )x 6= 0.
Hence we can assume that f (V) = {1}. Let U be an open set such that {U, V} is
an open cover of σ(T) and such that λ0 6∈ U. By Lemma 5.2.3 of [1] we can find
non-zero xu, xV ∈ X such that x = xu + xV and where σT(xu) ⊂ U and σT(xV) ⊂
V. Since σT(x) ⊂ σT(xu) ∪ σT(xV) we have that λ0 ∈ σT(xV) and λ0 6∈ σT(xu).
Assume that ψ( f )x = 0. Then 0 = ψ( f )(xu + xV) = ψ( f )xu + xV since f is one
on V. It follows that σT(xV) = σT(−ψ( f )xu) = σT(ψ(− f )xu) ⊂ σT(xu). Then we
have the contradiction that λ0 ∈ σT(xV) ⊂ σT(xu) 63 λ0. Hence ψ( f )x 6= 0.

Since every AC(σ) operator is also an AC operator, the results of [17] give
a representation theorem for compact AC(σ) operators. Specifically, if T ∈ B(X)
is a compact AC(σ) operator with nonzero eigenvalues {µj} and corresponding
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Riesz projections {Pj}, then

(6.1) T = ∑
j

µjPj

where the sum converges in norm under a particular specified ordering of the
eigenvalues. Given a sequence of real numbers {µj} and disjoint projections
{Pj} ⊆ B(X), necessary and sufficient conditions are known which ensure that
the operator defined via (6.1) is well-bounded (Theorem 3.3 in [14]). At present
an analogous result for compact AC(σ) operators in unknown. These questions
are pursued more fully in [5] where, for example, various sufficient conditions
for (6.1) to define a compact AC(σ) operator are given.

7. SPECTRAL RESOLUTIONS

The theory of well-bounded operators is at its most powerful if one adds
the additional assumption that the functional calculus map for T is ‘weakly com-
pact’. That is, for all x ∈ X, the map ψx : AC(σ(T)) → X, f 7→ ψ( f )x is weakly
compact. In this case T admits an integral representation with respect to a spec-
tral family of projections {E(µ)}µ∈R. The integration theory for spectral families
allows one to define

f (T) = ψ̂( f ) =
∫

σ(T)

⊕
f (µ)dE(µ)

for all f ∈ BV(σ) giving an extended functional calculus map. (This integral is
more usually written as

∫
J

⊕ f (µ)dE(µ), where J is some compact interval con-

taining σ(T). We have written it in the above form to stress that the value of the
integral only depends on the values of f on σ(T).) If ψ is not weakly compact,
then there may be no spectral resolution consisting of projections on X. A suit-
able family of projections on X∗, known as a decomposition of the identity, does
always exist, but the theory here is much less satisfactory.

Obviously extending this theory to cover general AC(σ) operators with a
weakly compact functional calculus is highly desirable. At present a full analogue
of the well-bounded theory has not been found, but we are able to show that each
such operator does admit a nice spectral resolution from which the operator may
be recovered. The following definition extends the definition for well-bounded
operators.

DEFINITION 7.1. Let T ∈ B(X) be an AC(σ) operator with functional cal-
culus map ψ. Then T is said to be of type (B) if for all x ∈ X, the map ψx :
AC(σ(T))→ X, f 7→ ψ( f )x is weakly compact.

Obviously every AC(σ) operator on a reflexive Banach space is of type (B),
as is every scalar-type spectral operator on a general Banach space (see [21]). The
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weak compactness of the functional calculus removes one of the potential com-
plications with studying AC(σ) operators.

LEMMA 7.2. Let T ∈ B(X) have a weakly compact AC(σ) functional calculus.
Then it has a unique splitting T = R + iS where R and S are commuting type (B)
well-bounded operators.

Proof. Recall if we set R = ψ(Re(λ)) and S = ψ(Im(λ)) then R and S are
commuting well-bounded operators. The AC(Re(σ(T))) functional calculus for
R is given by f 7→ ψ(u( f )) and so is clearly weakly compact. Hence R is type (B).
Similarly S is type (B). Uniqueness follows from Proposition 5.8.

If T is a well-bounded operator of type (B) with spectral family {E(µ)}µ∈R,
then, for each µ, E(µ) is the spectral projections for the interval (−∞, µ]. The
natural analogue of this in the AC(σ) operator setting is to index the spectral
resolution by half-planes. Modelling the plane as R2, each closed half-plane is
specified by a unit vector θ ∈ T and a real number µ:

H(θ, µ) = {z ∈ R2 : z · θ 6 µ}.

LetH denote the set of all half-planes in R2. The following provisional definition
contains the minimal conditions one would require of a spectral resolution for an
AC(σ) operator.

DEFINITION 7.3. Let X be a Banach space. A half-plane spectral family on
X is a family of projections {E(H)}H∈H satisfying:

(i) E(H1) E(H2) = E(H2) E(H1) for all H1, H2 ∈ H;
(ii) there exists K such that ‖E(H)‖ 6 K for all H ∈ H;

(iii) for all θ ∈ T, {E(H(θ, µ))}µ∈R forms a spectral family of projections;
(iv) for all θ ∈ T, if µ1 < µ2, then E(H(θ, µ1)) E(H(−θ,−µ2)) = 0.

The radius of {E(H)} is the (possibly infinite) value

r({E(H)}) = inf{r : for all θ, E(H(θ, µ)) = I for all µ > r}.
Suppose that σ ⊂ R2 is a nonempty compact set. Given any unit direction

vector θ, let σθ = {z · θ : z ∈ σ} ⊆ R. Define the subalgebra of all AC(σ) func-
tions which only depend on the component of the argument in the direction θ,

ACθ(σ) = { f ∈ AC(σ) : there exists u ∈ AC(σθ) such that f (z) = u(z · θ)}.

By Proposition 3.9 and Lemma 3.10 of [3], there is a norm 1 isomorphism Uθ :
AC(σθ)→ ACθ(σ).

Let T ∈ B(X) be an AC(σ) operator of type (B), with functional calculus
map ψ. The algebra homomorphism ψθ : AC(σθ)→ B(X), u 7→ ψ(Uθu) is clearly
bounded and weakly compact. It follows then from the spectral theorem for well-
bounded operators of type (B) (see, for example, [12]) that there exists a spectral
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family {E(H(θ, µ))}µ∈R, with ‖E(H(θ, µ))‖ 6 2‖ψ‖ for all µ. We have thus con-
structed a uniformly bounded family of projections {E(H)}H∈H. To show that
this family is a half-plane spectral family it only remains to verify (i) and (ii).

Suppose then that E1 = E(θ1, µ1) and E2 = E(θ2, µ2). For µ ∈ R and δ > 0,
let gµ,δ : R → R be the function which is 1 on (−∞, µ], is 0 on [µ + δ, ∞) and
which is linear on [µ, µ + δ]. Let hδ = Uθ1(gµ1,δ) and kδ = Uθ2(gµ2,δ). The proof
of the spectral theorem for well-bounded operators shows that E1 = lim

δ→0+
ψ(hδ)

and E2 = lim
δ→0+

ψ(kδ), where the limits are taken in the weak operator topology in

B(X). Thus, if x ∈ X and x∗ ∈ X∗,

〈E1E2x, x∗〉 = lim
δ→0+

〈ψ(hδ)E2x, x∗〉 = lim
δ→0+

〈E2x, ψ(hδ)
∗x∗〉

= lim
δ→0+

(
lim

β→0+
〈ψ(hδ)ψ(kβ)x, x∗〉

)
= lim

δ→0+

(
lim

β→0+
〈ψ(kβ)ψ(hδ)x, x∗〉

)
= lim

δ→0+
〈ψ(hδ)x, E∗2 x∗〉 = 〈E2E1x, x∗〉.

Verifying (iv) is similar. Fix θ ∈ T and µ1 < µ2. Let E1 = E(θ, µ1) and E2 =
E(−θ,−µ2). Let hδ = Uθ(gµ1,δ) and kδ = U−θ(g−µ2,δ) so that E1 = lim

δ→0+
ψ(hδ)

and E2= lim
δ→0+

ψ(kδ). The result follows by noting that for δ small enough, hδkδ =0.

We have shown then that {E(H)}H∈H is a half-plane spectral family.
For notational convenience, we shall identify the direction vector θ ∈ R2

with the corresponding complex number on the unit circle. Thus, for example,
we identify (0, 1) with i.

For θ ∈ T, the spectral family {E(θ, µ)}µ∈R defines a well-bounded operator
of type (B)

(7.1) Tθ =
∫
σθ

µ dE(θ, µ).

Clearly the map λθ = z · θ lies in ACθ(σ) ⊆ AC(σ) and the construction of the
spectral family ensures that ψ(λθ) = Tθ . Since λ = θλθ + iθλiθ we have that

(7.2) T = θTθ + iθ Tiθ .

In particular, using Theorem 5.5 and Theorem 5.8 we have that T has the unique
splitting into real and imaginary parts

(7.3) T = T1 + i Ti.

One consequence of these identities is that T may be recovered from the half-
plane spectral family produced by the above construction.

Note that Theorem 5.5 and the fact that θ−1T = Tθ + iTiθ imply that σ(Tθ) =
Re(σ(θ−1T)). Thus, if r(·) denotes the spectral radius, then r(Tθ) 6 r(θ−1T) =
r(T).

Since there exists θ ∈ T for which r(Tθ) = r(T), we have the following
result.
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PROPOSITION 7.4. With T and {E(H)} as above, r({E(H)}) = r(T).

Note that if we define fθ ∈ AC(σ) by fθ(z) = z · θ, then Tθ = ψ( fθ) = fθ(T).

In particular, if ω =
(

1√
2

, 1√
2

)
, then fω = f1+ fi√

2
, and hence

Tω = ψ( fω) =
T1 + Ti√

2
.

This proves the following proposition. Note that in general the sum of two com-
muting well-bounded operators need not be well-bounded.

PROPOSITION 7.5. Let T be an AC(σ) operator of type (B), with unique splitting
T = R + iS. Then R + S is also well-bounded.

QUESTION 7.6. Suppose that R and S are commuting well-bounded opera-
tors whose sum is well-bounded. Is R + iS an AC(σ) operator?

It is clear that given any half-plane spectral family {E(H)}H∈H with finite
radius, equation (7.3) defines T ∈ B(X) which is an AC operator in the sense of
Berkson and Gillespie. It is not clear however, that T need be an AC(σ) operator.
In particular, if we define Tθ via equation (7.1), then it is not known whether the
identity (7.2) holds.

QUESTION 7.7. Is there a one-to-one correspondence between AC(σ) oper-
ators of type (B) and half-plane spectral families with finite radius? If not, can
one refine Definition 7.3 so that such a correspondence exists?

8. EXTENDING THE FUNCTIONAL CALCULUS

Given a AC(σ) operators of type (B) its associated half-plane spectral family
(as constructed above), it is natural to ask whether one can develop an integration
theory which would enable the functional calculus to be extended to a larger
algebra than AC(σ).

The spectral family associated to a well-bounded operator T of type (B) al-

lows one to associate a bounded projection with any set of the form
n⋃

j=1
σ(T) ∩ Ij,

where I1, . . . , In are disjoint intervals of R. Let σ = σ(T) ⊂ R and let N (σ(T))
denote the algebra of all such sets. It is easy to check the following.

THEOREM 8.1. Let T ∈ B(X) be a type (B) well-bounded operator with func-
tional calculus ψ. Then there is a unique map E : N (σ(T)) → Proj(X) satisfying the
following:

(i) E(∅) = 0, E(σ(T)) = I;
(ii) E(A ∩ B) = E(A)E(B) = E(B)E(A) for all A, B ∈ N (σ(T));

(iii) E(A ∪ B) = E(A) + E(B)− E(A ∩ B) for all A, B ∈ N (σ(T));
(iv) ‖E(A)‖BV(σ) 6 ‖ψ‖‖χA‖BV(J) for all A ∈ N (σ(T));
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(v) if S ∈ B(X) is such that TS = ST then E(A)S = SE(A) for all A ∈ N (σ(T));
(vi) Range(E(A)) = {x ∈ X : σT(x) ⊆ A}.

For general AC(σ) operators, the natural algebra of sets is that generated
by the closed half-planes. This algebra has been studied in various guises, par-
ticularly in the setting of computational geometry. The sets that can be obtained
by starting with closed half-planes and applying a finite number of unions, in-
tersections and set complements are sometimes known as Nef polygons. The set
of Nef polygons in the plane, N , clearly contains all polygons, lines and points
in the plane. For more information about Nef polygons, or more generally their
n-dimensional analogues, Nef polyhedra, we refer the reader to [6], [20] or [25].

Let σ be a nonempty compact subset of C. Define

N (σ) = {A : A = σ ∩ P for some P ∈ N}.

It is clear that given an AC(σ) operator of type (B), one may use the half-plane
spectral family constructed in Section 7 to associate a projection E(A) ∈ B(X)
with each set A ∈ N (σ). The major obstacle in developing a suitable integration
theory in this setting is in providing an analogue of condition (iv) in Theorem 8.1.

Note that if A ∈ N (σ), then χA ∈ BV(σ). Rather than forming E(A) by a
finite combination of algebra operations, one might try to define E(A) directly as
we did when A was a half-plane. That is, one may try to write

E(A) = WOT- lim
α

ψ(hα)

where {hα} is a suitable uniformly bounded net of functions in AC(σ) which
approximates χA pointwise. It is shown in [1] that if A is a closed polygon then
this may be done but only under the bound ‖hα‖ 6 VA . Here VA is a constant
depending on A. This allows one to prove a weaker version of Theorem 8.1,
with condition (iv) replaced by ‖E(A)‖ 6 VA‖ψ‖. It remains an open question
as whether one can do this with VA 6 2‖χA‖. However, if A is a closed convex
polygon contained in the interior of σ, then this is possible.

QUESTION 8.2. Does every AC(σ) operator of type (B) admit a BV(σ) func-
tional calculus?

It might be noted in this regard that all the examples of AC(σ) operators of
type (B) given in Section 4 do admit such a functional calculus extension.
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manuscript.
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