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DORIN ERVIN DUTKAY and PALLE E.T. JORGENSEN

Communicated by Şerban Strătilă

ABSTRACT. We establish a spectral duality for certain unbounded operators
in Hilbert space. The class of operators includes discrete graph Laplacians
arising from infinite weighted graphs. The problem in this context is to es-
tablish a practical approximation of infinite models with suitable sequences of
finite models which in turn allow (relatively) easy computations.

Let X be an infinite set and let H be a Hilbert space of functions on X with
inner product 〈·, ·〉 = 〈·, ·〉H. We will be assuming that the Dirac masses δx,
for x ∈ X, are contained inH. And we then define an associated operator ∆ in
H given by

(∆v)(x) := 〈δx, v〉H.
Similarly, for every finite subset F ⊂ X, we get an operator ∆F.

If F1 ⊂ F2 ⊂ · · · is an ascending sequence of finite subsets such that⋃
k∈N

Fk = X, we are interested in the following two problems:

(a) obtaining an approximation formula lim
k→∞

∆Fk = ∆;

(b) establish a computational spectral analysis for the truncated operators
∆F in (a).
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1. INTRODUCTION

The purpose of this paper is twofold: first to prove that certain linear oper-
ators associated with discrete reproducing kernel-Hilbert spaces exhibit spectral
duality. This is motivated by more traditional Green’s function techniques for
second order elliptic differential operators. Secondly we explore applications of
the duality theorem to discrete Laplace operators in weighted (infinite) graphs.
In particular we show (for the discrete case) that the Green’s function may be
realized as an infinite matrix with entries counting length of paths of edges in a
graph.
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There has been a recent increase in the interplay between discrete analysis
and various continuous limits. While each topic in its own right has been studied
for generations, the interconnections are of a more recent vintage, and they in turn
have inspired a multitude of exciting new research trends. The motivations for
this are manifold, coming in part from numerical analysis, but also more recently
from analysis on fractals, see e.g., [9], [8], [5], [35], [36], from stochastic processes,
from potential theory, Dirichlet forms [34], and discrete Laplacians on weighted
graphs [26], [10], [11]. These topics interact with mathematical physics, see e.g.,
[26], [10], [32], [29], and with signal processing [9], [7], [21]. But independently
of applications, the same themes have an operator theoretic dimension of interest
in its own right, see e.g., [15], [19] ; as well as spectral theory [20]. A common
thread for this is the use of positive definite functions and reproducing kernel
Hilbert spaces [4], [22], [23], [30], [31].

In a variety of studies, the authors have used special subclasses of repro-
ducing kernel Hilbert spaces (RKHSs), and each case appears in isolation; for
example, the authors of [6] use RKHSs in a systematic study of Fredholm oper-
ators, [12] in potential theory, [13], [14], [16] in physics, [17], [16], [14] in signal
processing, [33] in statistics, and [37], [38] in harmonic analysis. One aim of the
present paper is to unify these approaches.

In this paper we take up two themes, one we call spectral reciprocity, and the
other is a computational approximation scheme (Sections 5 and 6). Both themes
interact with the various related developments covered in the above cited papers.

The paper is organized as follows: In Section 2 we introduce the Hilbert
spaces which admit spectral duality. Let X be an infinite set, and let H be a
Hilbert space of functions on X. The crucial restriction on the pair X,H is that the
δ point masses are assumed to lie in the Hilbert spaceH, (Definition 2.1).

The distinction between the discrete and continuous models is illustrated
with examples from the theory of stochastic processes. In Section 3 we show that
the framework of graph Laplacians is included in the setup. Section 4 offers a
way of diagonalizing these operators. The idea is analogous to a method used
by Karhunen–Loeve (see e.g., [27]), but different in that it creates finite matrix
approximations to the operator in a global ambient Hilbert space. In Section 5 we
study approximation: An ascending system of finite subsets in X is chosen with
union equal to X; and we then show that the corresponding sequence of finite
truncations converges. The last theorem identifies a rigorous Green’s function
for graph Laplacians.

Thus there are two interesting and interdisciplinary links to operators in
symmetric Hilbert spaces (Definition 2.1). It is via operators in these Hilbert
spaces built on infinite discrete spaces.

Iterated function systems (abbreviated IFS, [18]) serve in two ways as a link
between analysis on discrete systems on one side and operator theory on the
other.
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Recall that IFSs generate fractal images arising in numerous applications:
For example, some IFS-fractals may be built as limits of iterated backwards tra-
jectories of a dynamical system associated to a fixed endomorphism T : X → X.
The generation of the fractals is via recursive procedures applied to branches of
a choice of inverse mappings for T. As attractors, we then get limit fractal-sets
and fractal measures µ. So in this way the Hilbert space L2(µ) arises as a limit of
Hilbert spaces; starting with a graph and passing to the limit.

On the discrete side, the graph G has vertices G0 and edges G1. The first
approach (see e.g., [26]) is to model IFSs with infinite vertex sets G0, and asso-
ciated Hilbert spaces of functions on G0. In the second approach (e.g., [28]) one
starts with an IFS, and then there is an associated graph G with vertex G0 set a
singleton, but instead with edges made up of an infinite set G1 of self-loops.

2. HILBERT SPACES OF FUNCTIONS

We show that Hilbert spaces of functions which contain the corresponding
δ point masses induce operators arising as graph Laplacians of weighted graphs.

The general setup in our paper is as follows: An infinite set X is given, and
we consider Hilbert spaces of functions on X. One of the Hilbert spaces will be
simply l2(X). By this we mean the Hilbert space of all functions u : X→C such that

(2.1) ∑
x∈X
|u(x)|2 < ∞.

If u, v ∈ l2(X), the inner product will be denoted

(2.2) 〈u, v〉2 := ∑
x∈X

u(x)v(x).

Let F be the set of all finite subsets F ⊂ X. Then the expression in (2.1) is by
definition

(2.3) sup
F∈F

∑
x∈F
|u(x)|2.

However because of applications, to be outlined later, for a fixed set X, it will be
necessary for us to consider other Hilbert spacesH of functions on X.

DEFINITION 2.1. Let H be a Hilbert space of functions on some set X. We
say thatH is symmetric if the Dirac functions δx are inH, where

(2.4) δx(y) =
{

1 if y = x,
0 if y ∈ X \ {x}.

For practical computations we offer in Section 4 a method of finite reduc-
tion. As an application we give in Corollary 4.7 a necessary and sufficient condi-
tion for a Hilbert space of functions to contain its Dirac delta-functions (Defini-
tion 2.1).
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We will primarily be interested in the case when the set X is countably infi-
nite; see especially Section 3 below where we will take X to be the set of vertices
in a given weighted graph. Because of applications to electrical networks, see
[26] and the references cited there, every weighted graph comes with an associ-
ated Hilbert space HE. In the applications, HE will denote a space of functions on
the vertices of the graph, representing a voltage distribution; and, if u ∈ HE, then
‖u‖2

HE
will be the energy of the configuration represented by u.

The following example is different and applies to continuous models; for
example models of stochastic processes.

EXAMPLE 2.2. Let X = [0, 1). We will be considering functions on X mod-
ulo constants. Hence the constant function 1 on X will be identified with 0. If
f is a function on [0, 1), the derivative f ′ = d

dx f is understood in the sense of
distributions. Set

H := { f : f ′ ∈ L2(0, 1)},

‖ f ‖2
H :=

1∫
0

| f ′(x)|2 dx; and(2.5)

〈 f1, f2〉H :=
1∫

0

f ′1(x) f ′2(x)dx, for f1, f2 ∈ H.(2.6)

Note that if f ∈ H, then f ′ ∈ L2 and

(2.7) F(x) :=
x∫

0

f ′(t)dt

is well defined. Moreover, the derivative d
dx F exists pointwise a.e. on [0, 1). As

distributions, d
dx F and f ′ agree.

On [0, 1), consider the following family of functions {vx} indexed by x ∈ X.
Set

(2.8) vx(y) =


y if 0 6 y 6 x,
0 if y < 0,
x if x < y.

Writing in the sense of distributions we arrive at the following formula:
For every f ∈ H,

(2.9) 〈vx, f 〉
by(2.6)

=

1∫
0

v′x(y) f ′(y)dy
by(2.8)

=

x∫
0

f ′(y)dy
by(2.7)

= f (x).

Hence vx ∈ H, and

(2.10) 〈vx1 , vx2〉 = min(x1, x2) = x1 ∧ x2 for all x1, x2 ∈ X.
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PROPOSITION 2.3. H is not a symmetric Hilbert space; i.e., if x ∈ [0, 1] then δx
is not inH.

Proof. The claim is that there is not a vector f ∈ H such that

(2.11) ϕ′′(x) = 〈 f , ϕ〉H =

1∫
0

f ′(y)ϕ′(y)dy

for all twice differentiable functions ϕ ∈ C2[0, 1). To see that (2.11) is a restate-
ment of δx ∈ H, note that v′′x = −δx holds in the sense of distributions. But note
that (2.11) implies that there is a finite constant Cx such that

|ϕ′′(x)|2 6 Cx

1∫
0

|ϕ′(y)|2 dy, (ϕ ∈ C2);

which is clearly impossible.

REMARK 2.4 (See Definition 2.1 the general case). The condition that δx is
in H for all x ∈ X does not imply that l2(X) is contained in H. So there are
symmetric Hilbert spaces which do not contain l2(X).

DEFINITION 2.5. If X is given, andH is a symmetric Hilbert space, we set

(2.12) (∆v)(x) := 〈δx, v〉H, (v ∈ H, x ∈ X).

Let Fun(X) = the vector space of all functions X → C. Then ∆ is a linear
operator fromH into Fun(X).

We set

(2.13) dom(∆) = domain of ∆ = {v ∈ H : ∆v ∈ H},
and we say that ∆ is densely defined if dom(∆) is dense inH.

Let Fin = Fin(X) = all finite linear combinations of {δx : x ∈ X}, i.e., all
finitely supported functions on X.

DEFINITION 2.6. Let X and H be as in the previous definition. A pair of
functions: X 3 x 7→ vx ∈ H and X 3 x 7→ wx ∈ Fin is said to be a dual pair if

(2.14) 〈vx, u〉H = 〈wx, u〉2, (x ∈ X, u ∈ H)

and if the linear span of {vx : x ∈ X} is dense inH.
A dual pair is said to be symmetric if and only if

(2.15) wx(y) = wy(x), (x, y ∈ X).

THEOREM 2.7. Let X,H be as above, and let (vx)x∈X , (wx)x∈X be a dual pair.
Let ∆ be the operator defined in (2.13), and set V := span{vx : x ∈ X} = all finite
linear combinations.

Then V ⊂ dom(∆) and ∆ is Hermitian on its domain V , i.e.,

(2.16) 〈∆u, v〉H = 〈u, ∆v〉H (u, v ∈ V).
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Moreover

(2.17) ∆vx = wx, x ∈ X.

Proof. We have for x, y ∈ X,

(∆vx)(y) = 〈δy, vx〉H
by (2.14)

= 〈δy, wx〉2 = wx(y).

Thus ∆vx = wx ∈ H so vx ∈ dom(∆), and therefore V ⊂ dom(∆).
If u ∈ dom(∆), then

(2.18) 〈vx, ∆u〉H = 〈wx, u〉H, (x ∈ X).

Indeed,

〈vx, ∆u〉H= 〈wx, ∆u〉2=∑
y∈X

wx(y)〈δy, ∆u〉2
by (2.12)

= ∑
y∈X

wx(y)〈δy, u〉H= 〈wx, u〉H.

So if x1, x2 ∈ X, then

〈vx1 , ∆vx2〉H= 〈wx1 , vx2〉H= 〈wx1 , wx2〉2
by (2.14)

= 〈vx1 , wx2〉H
by (2.18)

= 〈∆vx1 , vx2〉H.

Since V = span{vx : x ∈ X} the desired conclusion (2.16) holds.

3. GRAPH LAPLACIANS

We show that every weighted graph G induces a Laplace operator and an
energy Hilbert space of functions on the vertices of G; and moreover that this
setup is included in that of Section 2. This is then used in obtaining solutions to a
potential theory problem on G.

DEFINITION 3.1 (Weighted graph). Let G0 be a set. Let G1 ⊂ G0 × G0 be a
subset such that (x, x) 6∈ G1 if x ∈ G0. For x ∈ G0, set

(3.1) Nbh(x) := {y ∈ G0 : (xy) ∈ G1}.

We say that (xy) is an edge if (xy) ∈ G1; and the points in G0 are called vertices.
Further we shall use the notation

(xy) ∈ G1 ⇔ x ∼ y.

Further assume

(3.2) (xy) ∈ G1 ⇔ (yx) ∈ G1.

Let µ : G1 → R+ be a function such that

(3.3) µ(x) := ∑
y,y∼x

µxy < ∞, for all x ∈ G0.

Further assume µxy = µyx for all (xy) ∈ G1.
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We will assume that G = (G0, G1) is connected, i.e., for every pair x, y ∈ G0

there is a finite subset {e0, e1, . . . , en} ⊂ G1, depending on x and y such that ei =
(xixi+1) , x0 = x and xn+1 = y.

DEFINITION 3.2 (The energy Hilbert space HE). For functions u and v on
G0, set

(3.4) 〈u, v〉E :=
1
2 ∑

x,y x∼y
µxy(u(x)− u(y))(v(x)− v(y)).

More precisely, we will work with functions on G0 modulo the constants.
We say that u ∈ HE if and only if

(3.5) ‖u‖2
HE

:=
1
2 ∑

x,y x∼y
µxy|u(x)− u(y)|2 < ∞.

DEFINITION 3.3 (The graph Laplacian). Let (G, µ) be a weighted graph. We
define the graph Laplacian ∆ = ∆(G,µ) initially on all functions on G0 as follows

(3.6) (∆u)(x) := ∑
y∼x

µxy(u(x)− u(y)) = µ(x)u(x)− ∑
y∼x

µxyu(y).

In Section 2 we started with a symmetric Hilbert space (Definition 2.1), and
we derived an associated family of operators ∆ from the Hilbert space setup. In
this section, the point of view is reversed: we begin with a graph Laplacian ∆
and an associated energy Hilbert space. It turns out that the class of operators in
Section 2 includes all the graph Laplacians.

LEMMA 3.4. The energy Hilbert space HE associated with a weighted graph (G, µ)
is symmetric, i.e., for all x ∈ G0, we have δx ∈ HE. Moreover

‖δx‖2
HE

= µ(x);(3.7)

〈δx, δy〉E =

{
−µxy if x ∼ y,
0 if x 6= y and (xy) 6∈ G1;

(3.8)

(∆u)(x) = 〈δx, u〉E.(3.9)

Proof. Let x0 ∈ G0. Then

‖δx0‖2
HE

=
1
2 ∑

x,y,x∼y
µxy(δx0(x)− δx0(y))

2 =
1
2

(
∑

y∼x0

µx0y + ∑
y∼x0

µyx0

)
by (3.2)

= ∑
y∼x0

µx0y
by (3.3)

= µ(x0) < ∞.

Let (x0y0) ∈ G1. Then

〈δx0 , δy0〉E
by (3.4)

=
1
2 ∑

x∼y
µxy(δx0(x)− δx0(y))(δy0(x)− δy0(y))
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= −1
2
(µx0y0 + µy0x0)

by (3.2)
= −µx0y0 .

It is clear that 〈δx0 , δy0〉 = 0 if x0 6= y0 and (x0y0) 6∈ G1.
We finally prove (3.9). Let x0 ∈ G0, and let u ∈ HE. Then

(∆u)(x0)
by (3.6)

= ∑
y∼x0

µx0y(u(x0)− u(y))

=
1
2

(
∑

y∼x0

µx0y(1− 0)(u(x0)− u(y)) + ∑
y∼x0

µyx0(0− 1)(u(y)− u(x0))
)

=
1
2 ∑

x∼y
µxy(δx0(x)− δx0(y))(u(x)− u(y))

by (3.4)
= 〈δx0 , u〉E.

THEOREM 3.5. Let (G, µ) be a weighted graph; let ∆ be the corresponding graph
Laplacian, and let HE be the energy Hilbert space. Let w : G0 → C be a function on the
vertices satisfying:

(i) w ∈ Fin (= finite linear span of {δx : x ∈ G0});
(ii) ∑

x∈G0
wx = 0.

Then there is a v ∈ HE such that

(3.10) ∆v = w.

REMARK 3.6. Before proving the theorem, we show by a simple example
that neither of the two restrictions (i) or (ii) on the function w may be dropped.
We will give examples when some function w does not satisfy one of the two
conditions. While there will always be a function v : G0 → C which satisfies
(3.10), the point is that none of the solutions v will be in HE, i.e., the solutions v
will have infinite energy, i.e., ‖v‖2

HE
= ∞.

EXAMPLE 3.7. Let (G, µ) = (Z, 1). By this we mean that G = (G0, G1) has

(3.11)


G0 = Z;
G1 = {(n, n + 1) : n ∈ Z};
µ(n,n+1) = 1, (n ∈ Z).

It follows from (3.6) that

(∆u)(x) = 2u(x)− u(x− 1)− u(x + 1), (x ∈ Z).

The following facts are from [26]:
Fact 1. The only solutions v to the equation

(3.12) ∆v = 0 on Z

have the form v(x) = Ax + a, where A and a, are constants.
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Fact 2. On Z set

v+(x) =
{

x if x > 0,
0 if x < 0;

(3.13)

v−(x) =
{

0 if x > 0,
−x if x 6 0.

(3.14)

Then v± 6∈ HE, i.e., ‖v±‖2
HE

= ∞, and

(3.15) ∆v+ = ∆v− = −δ0.

Combining the two facts, we see immediately that the equation

(3.16) ∆v = δ0

has no solutions in HE. Note that δ0 ∈ Fin, but does not satisfy condition (ii) in
the theorem.

The equation

(3.17) ∆u = v+ − v−(= x)

on Z does not have any solutions in HE. Note that the function v+ − v− on the
right hand side in (3.17) does satisfy (ii), but v+ − v− is not in Fin.

We now turn to the proof of Theorem 3.5. The following lemma is helpful:

LEMMA 3.8. Let (G, µ) be a weighted graph, and let W denote the linear space
of functions w : G0 → C satisfying conditions (i)–(ii) in the statement of Theorem 3.5.
Then

W =
{

w ∈ Fin : ∑
x∈G0

wx = 0
}
= span{δx − δy : x, y ∈ G0}.

Proof. Induction on #{x : wx 6= 0}.

Proof of Theorem 3.5. By the lemma, it is enough to show that for any pair
x, y ∈ G0, x 6= y, the equation

(3.18) ∆v = δx − δy

has a solution v ∈ HE.
Now fix x and y in G0. Using Riesz’ lemma, we first prove that there is a

unique v ∈ HE such that

(3.19) 〈v, u〉E = u(x)− u(y), (u ∈ HE).

Since G is connected, there is a finite subset {e0, . . . , en} ⊂ G such that ei =
(xi, xi+1) ∈ G1, x0 = x and xn+1 = y. Then

|u(x)− u(y)|2 =
∣∣∣ n

∑
i=0

(u(xi)− u(xi+1))
∣∣∣2 6

n

∑
i=0

µ−1
ei

n

∑
i=0

µei |u(xi)− u(xi+1)|2

by (3.5)
6 Cxy‖u‖2

HE
.
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Hence the existence of a solution v in (3.19) follows from Riesz’ lemma ap-
plied to HE.

We note that v satisfies (3.18). Indeed, for all z ∈ G0, we have

(∆v)(z)
by (3.9)

= 〈δz, v〉E
by (3.19)

= δz(x)− δz(y) = δx(z)− δy(z).

Hence the two sides in equation (3.18) agree as functions on G0, and the proof is
complete.

DEFINITION 3.9. Let X be a set. Set

D := Fin = all finitely supported functions on X(3.20)

= {c : X → C : #{x ∈ X : cx 6= 0} < ∞}.

A function M : X×M→ C is said to be positive semidefinite if and only if

(3.21) ∑
x,y

cx M(x, y)cy > 0, (x ∈ D).

THEOREM 3.10 (Parthasarathy–Schmidt [31]). (i) Let M : X × X → C be a
function. Then the following conditions are equivalent:

(a) M is positive semidefinite.
(b) There is a Hilbert spaceH and a function v : X → H such that

(3.22) M(x, y) = 〈vx, vy〉H, (x, y ∈ H).

(ii) We say that two systems v : X → H, v′ : X → H′ in (a) are unitarily equivalent
if there is a unitary isomorphism W : H → H′ such that

(3.23) Wvx = v′x, (x ∈ X).

(iii) If v : X → H and v′ : X → H′ are two systems both satisfying (3.22) then v and
v′ are unitarily equivalent if and only if

(3.24) span{vx : x ∈ X} = H, and span{v′x : x ∈ X} = H′.

COROLLARY 3.11. Let (G, µ) be a weighted graph satisfying the conditions in
Theorem 3.5. Let HE be the energy Hilbert space and ∆ the graph Laplacian.

(i) For every x, y ∈ G0 let vxy be the unique solution in HE to equation (3.18).
Then for a fixed y, the function G0 × G0 → C, (x1, x2) 7→ 〈vx1y, vx2y〉E is positive
semidefinite. Moreover, the function (G0 × G0) × (G0 × G0) → C, (x1y1, x2y2) 7→
〈vx1y1 , vx2y2〉E is positive semidefinite.

(ii) Let G = (G0, G1) be as in (a), and let µ : G1 → R+ be a function satisfying the
conditions in Definition 3.1. Let M = Mµ : G0 × G0 → C be

M(x, y) =


µ(x) if x = y,
−µxy if (xy) ∈ G1,
0 if x 6= y and (xy) 6∈ G1.

Then Mµ is positive semidefinite.
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4. DIAGONALIZING SUBSYSTEMS

It is known that positive semidefinite functions define reproducing kernel
Hilbert spaces. In this section we identify which of these Hilbert spaces are sym-
metric (Definition2.1). And we solve the problem of diagonalizing finite subsys-
tems.

Let X be a set, and let M : X × X → C be a positive semidefinite function.
We will consider solutions v : X → H to condition (3.22), i.e.,

(4.1) M(x, y) = 〈vx, vy〉H, (x, y ∈ X).

The next result shows that when restricting to finite subsystems, {vx : x ∈ F},
F ⊂ X finite, we may assume that the set (vx)x∈F is linearly independent inH.

DEFINITION 4.1. Let M : X × X → C be positive semidefinite. Let L be the
space of all finite linear combinations

(4.2) fc(·) = ∑
x∈X

cx M(·, x).

Set

〈 fa, fb〉H := ∑
x,y

ax M(x, y)by for fa, fb ∈ L.(4.3)

Set the kernel of M:

(4.4) K :=
{

fc ∈ L : ∑
x,y

cx M(x, y)cy = 0
}

.

Now set

(4.5) L → L/K → Hilbert completion =: HM,

Set

vx := M(·, x)→ classM(·, x) ∈ HM.

Then vx = fδx , i.e., vx = fc with c = δx; and

(4.6) 〈vx, f 〉 = f (x), ( f ∈ HM).

Indeed

〈vx0 , fc〉 = ∑
x,y

δx0(x)M(x, y)c(y) = ∑
y

M(x0, y)c(y) = fc(x0).

We refer to [3] for the general theory of reproducing kernels.
In the analysis below, the idea is to select finite subsets F of a fixed ambient

infinite set X; and it is assumed that H is a symmetric Hilbert space of functions
on X. This method of finite reduction is motivated by computations, in that infi-
nite sequences do not admit representations in computer registers.
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LEMMA 4.2. Let M : X×X → C be a positive semidefinite function, and letHM
be the Hilbert space in Definition 4.1. Let F ⊂ X be a finite subset, and let MF be the
#F× #F matrix

(4.7) (M(x, y))x,y∈F.

Then if 0 is in the spectrum of MF with eigenvector (cx)x∈F, then fc in (4.2) represents
the zero vector inHM.

Proof. Follows from Definition 4.1 and (4.5): if (cx)x∈F is an eigenvector for
MF with eigenvalue 0, i.e., MF(cx)X∈F = then ∑

y∈X
M(x, y)cy = 0 for all x ∈ F so

∑
x,y∈F

cx M(x, y)cy = 0, i.e., ‖ fc‖2
HM

= 0.

REMARK 4.3. Since every positive semidefinite function M induces a repro-
ducing kernel Hilbert space M → HM via Definition 4.1, it is important to note
that the class of Hilbert spaces in Definition 2.1 is restricted in two ways: a sym-
metric Hilbert space H is a space of functions on a given set X and δx ∈ H for all
x ∈ X.

The following example shows that HM may be obtained from a positive
semidefinite function M : X × X → C, even though HM is not a space of func-
tions on X.

EXAMPLE 4.4 ([1], [2], [25], [24]). Let X = [0, 1), and set M(x, y) = 1
1−xy .

Then M is positive semidefinite on [0, 1). Moreover the resulting Hilbert space
(Definition 4.1)HM contains δx for all x ∈ [0, 1).

Let u and v be compactly supported distributions, and u⊗ v the tensor prod-
uct (u⊗ v)(x, y) := u(x)v(y) where the right-hand side is evaluation on C∞(R2),
written 〈u(·)v(·), ψ(·, ·)〉, ψ ∈ C∞(R2). TheHM-inner product is defined by

〈u, v〉HM :=
〈

u⊗ v,
1

1− xy

〉
where the right-hand side now denotes application of the distribution u ⊗ v to
ψ(x, y) = 1

1−xy .

If δ
(n)
0 =

( d
dx
)n

δ0, n ∈ N0, are the distribution derivatives, then

(4.8) un :=
(−1)n

n!
δ
(n)
0 , (n ∈ N0)

is an orthonormal basis in HM. Indeed, if ϕ ∈ C∞(−ε, 1) for some ε ∈ R+ then
ϕ ∈ HM, and the {un} expansion inHM is as follows

ϕ =
∞

∑
n=0
〈un, ϕ〉HM un;
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and for x ∈ (0, 1), we have

ϕ(x) = 〈δx, ϕ〉HM =
∞

∑
n=0

xn

n!
ϕ(n)(0),

i.e., the Taylor expansion.

REMARK 4.5. Because of Lemma 4.2, we will assume in the sequel that
when M and MF are as described then 0 is not in specl2(MF).

THEOREM 4.6. Let M : X × X → C be a positive semidefinite function, and let
HM be the Hilbert space in Definition 4.1. Let F ⊂ X be a finite subset, and set

ΛF := spectruml2(F)MF,(4.9)

HM(F) = span
HM

{vx : x ∈ F}.(4.10)

Let (ξλ)λ∈ΛF be an ONB in l2(F) satisfying

(4.11) MFξλ = λξλ on F.

For λ ∈ ΛF, set

(4.12) uλ(·) :=
1√
λ

∑
x∈F

ξλ(x)vx(·).

Then (uλ)λ∈ΛF is an ONB inHM(F), and

(4.13) vx = ∑
λ∈ΛF

√
λ ξλ(x)uλ for all x ∈ F.

Proof. We first show that the system (uλ)λ∈ΛF in (4.12) is orthonormal in
HM. Let λ, λ′ ∈ ΛF. Then

〈uλ, uλ′〉HM =
1√
λλ′

∑
x,y∈F

ξλ(x)ξλ′(y)〈vx, vy〉 =
1√
λλ′

∑
x∈F

ξλ(x)(MFξλ′)(x)

by (4.11)
=

1√
λλ′

∑
x∈F

ξλ(x)λ′ξλ′(x) =

√
λ′

λ ∑
x∈F

ξλ(x)ξλ′(x)

=

√
λ′

λ
〈ξλ, ξλ′〉l2(F) =

√
λ′

λ
δλ,λ′ = δλ,λ′ .

By Lemma 4.2 we see that (uλ)λ∈ΛF is indeed an ONB forHM(F) and that

(4.14) PF := ∑
λ∈ΛF

|uλ〉〈uλ|

is the orthogonal projection onto HM(F). Note that we use Dirac’s “ket-bra”
notation on the right hand side of (4.14).
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We now prove (4.13). For x ∈ F we have

vx = PFvx
by (4.14)

= ∑
λ∈ΛF

〈uλ, vx〉uλ = ∑
λ∈ΛF

1√
λ

∑
y∈F

ξλ(y)〈vy, vx〉uλ

by (4.11)
= ∑

λ∈ΛF

1√
λ

λξλ(x)uλ = ∑
λ∈ΛF

√
λ ξλ(x)uλ

which is the desired formula (4.13).

COROLLARY 4.7. Let M : X × X → C be a positive semidefinite function, and
let HM be the Hilbert space in Definition 4.1. Choose the system {vx}x∈X ⊂ HM as in
(4.5)–(4.6). For every finite subset F ⊂ X, let

(4.15) (ξF
λ(x))λ∈ΛF ,x∈F

be the unitary #F × #F matrix from the construction in Theorem 4.6. Then HM is a
symmetric Hilbert space (Definition 2.1) if and only if

(4.16) sup
F∈F

∑
λ∈ΛF

|ξF
λ(x)|2

λ
< ∞.

Proof. RecallHM is a symmetric Hilbert space if and only if δx ∈ HM for all
x ∈ X. Assume this condition holds; and let F ∈ F = the set of all finite subsets
of X, and let x0 ∈ X.

From (4.14), recall the formula for the projection ontoHM(F):

PF = ∑
λ∈ΛF

|uF
λ〉〈uF

λ|.

Since δx0 ∈ HM, we have

PFδx0 = ∑
λ∈ΛF

〈uF
λ, δx0〉uF

λ = ∑
λ∈ΛF

1√
λ

∑
x∈F

ξF
λ(x)〈vx, δx0〉HM uF

λ

by (4.6)
= ∑

λ∈ΛF

1√
λ

∑
x∈F

ξF
λ(x)δx0(x)uF

λ = ∑
λ∈ΛF

1√
λ

ξF
λ(x0)uF

λ.

Since (uF
λ)λ∈ΛF is an ONB inHM(F) by the theorem, we get

‖PFδx0‖2
HM

= ∑
λ∈ΛF

|ξF
λ(x0)|2

λ
6 ‖δx0‖2

HM
< ∞.

Taking supremum over F , the desired conclusion (4.16) now follows.
Conversely, suppose (4.16) is satisfied for some vertex x0. To prove that

δx0 ∈ H, we shall need the following observations which may be of independent
interest.
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OBSERVATION 4.8. Let F and F′ be two finite sets, and assume F ⊂ F′. Then
HM(F) ⊂ HM(F′); see (4.10); and therefore

(4.17) PF ⊂ PF′ ,

or equivalently

(4.18) PF = PF′PF = PFPF′ .

For the corresponding two eigenvalue sets ΛF and ΛF′ in (4.9) we have

min{λ′ ∈ ΛF′} 6 min{λ ∈ ΛF};(4.19)

max{λ ∈ ΛF} 6 max{λ′ ∈ ΛF′}.(4.20)

(Note that (4.19)–(4.20) follow from the min-max principle in spectral theory.)

OBSERVATION 4.9. If w ∈ HM, and F ⊂ F′, then

‖PFw‖2
H 6 ‖PF′w‖2

H 6 ‖w‖2
H;(4.21)

‖PFw‖2
H = ∑

λ∈ΛF

|〈uF
λ, w〉H|2; and(4.22)

|〈uF
λ, w〉H|2 =

1
λ

∣∣∣ ∑
x∈F

ξF
λ(x)〈vx, w〉H

∣∣∣2 =
1
λ

∣∣∣ ∑
x∈F

ξF
λ(x)(w(x)− w(0))

∣∣∣2.

(In the application above, we used this principle to w = δx0 .) The proof details
here are based on Theorem 4.6 (i).

OBSERVATION 4.10. Suppose there is a w ∈ HM such that

(4.23) 〈uF
λ, w〉H =

1√
λ

ξF
λ(x0)

for all F ∈ F , and all λ ∈ ΛF; then w = δx0 .

OBSERVATION 4.11. Assume (4.16); then for all F ∈ F , there exist some
vector δF

x0
∈ HM(F) such that

(4.24) 〈uF
λ, δF

x0
〉H =

1√
λ

ξF
λ(x0), (λ ∈ ΛF).

OBSERVATION 4.12. For every (Fk) ⊂ F , F1 ⊂ F2 ⊂ · · · such that
⋃
k

Fk =

X, we have

(4.25) lim
k→∞

∑
λ∈ΛFk

1
λ
|ξFk

λ (x0)|2 = sup
F∈F

∑
λ∈ΛF

|ξF
λ(x)|2

λ
(see (4.16)).

OBSERVATION 4.13. Let (Fk)k∈N be a system in F as in Observation 4.12;
and choose vectors δ

Fk
x0 ∈ HM as in Observation 4.11. Then

lim
k,l→∞

‖δFk
x0 − δ

Fl
x0‖H = 0,
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and so there exists a unique wx0 ∈ H such that

lim
k→∞
‖δFk

x0 − wx0‖H = 0.

OBSERVATION 4.14. An application of Observation 4.10 shows that wx0 =
δx0 ; i.e., that as functions on X, wx0 and δx0 coincide.

To see this, note that the existence of wx0 ∈ H is from Observation 4.13; and
that its properties follow from a combination of all the preceding observations.

We conclude this section with two examples: both will be needed later, both
are discrete analogues of Example 2.2; and both yield energy Hilbert spaces HE =
HM which are symmetric Hilbert spaces. This means that condition (4.16) of
Corollary 4.7 is satisfied in both examples.

EXAMPLE 4.15 (Example 3.7 revisited). As in Example 3.7, we take (G, µ) =
(Z, 1); i.e., the graph with vertices G0 = Z, and edges represented by nearest
neighbors.

The argument in Example 3.7 shows that for each x ∈ G0 = Z, the equation

(4.26) ∆vx = δx − δ0

has a unique solution vx ∈ HE, and the graph of vx is represented in Figure 1; for
the cases x ∈ Z+, x ∈ Z− respectively.

-

6

�
�
�

vx x ∈ Z+

Z
-

6

@
@
@

vx x ∈ Z−

Z
FIGURE 1. vx for x ∈ Z+ and for x ∈ Z−

If x ∈ Z+ then

(4.27) vx(y) =


0 if y 6 0,
y if 0 6 y 6 x,
x if x < y.

If x ∈ Z−, then

(4.28) vx(y) =


−x if y < x,
−y if x 6 y 6 0,
0 if 0 6 y.
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An application of (3.4) in Definition 3.2 now yields

(4.29) 〈vx1 , vx2〉E =


min(x1, x2) = x1 ∧ x2, if x1, x2 ∈ Z+,
|x1| ∧ |x2| if x1, x2 ∈ Z−,
0 if x1 ∈ Z+ and x2 ∈ Z−.

Hence a typical submatrix MF constructed by restriction to F× F from

(4.30) M(x, y) = 〈vx, vy〉E

see Lemma 4.2, has the form

(4.31)



1 1 1 · · · 1 1
1 2 2 · · · 2 2
1 2 3 · · · 3 3
...

...
...

. . .
...

...
1 2 3 · · · n− 1 n− 1
1 2 3 · · · n n


or a submatrix thereof.

EXAMPLE 4.16 ([10], [26]). We take (G, µ) = (tree, 1); i.e., the graph with
vertices G0 = the dyadic tree, see Figure 2.

uuuuuuuuuuuuuuuuuu
∅

IIIIIIIIIIIIIIIIII

0

1

ooooooooooo

OOOOOOOOOOO

ooooooooooo

OOOOOOOOOOO

00

01

10

11

kkkkkkkkkk

SSSSSSSSSS

kkkkkkkkkk

SSSSSSSSSS

kkkkkkkkkk

SSSSSSSSSS

kkkkkkkkkk

SSSSSSSSSS

000

001
010

011

111

110
101

100

FIGURE 2. G0 = the dyadic tree.
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The empty word ∅ has two neighbors 0 and 1; and all other finite words
x = (ω1ω2 · · ·ωk), ωi ∈ {0, 1} have three neighbors

(4.32) (ω1ω2 · · ·ωk−1), (ω1ω2 · · ·ωk0) and (ω1ω2 · · ·ωk1)

written x∗, (x0) and (x1).
With µ ≡ 1, the Laplace operator ∆ is (see (3.6))

(∆u)(∅) = 2u(∅)− u(0)− u(1),

and

(4.33) (∆u)(x) = 3u(x)− u(x∗)− u(x0)− u(x1).

For x ∈ G0 \ {∅}, the equation

(4.34) 〈vx, u〉E = u(x)− u(∅)

has the unique solution vx ∈ HE given as follows: There is a unique path P(x) of
edges leading from ∅ to x: (∅, ω1), (ω1, ω1ω2), . . . , (ω1 · · ·ωk−2, x∗), (x∗, x); see
Figure 3.

�
�
�

•∅

@
@
@

•
ω1

�
�
�
�
�
�

•
ω1ω2

•
ω1ω2ω3

•··········•
ω1 · · ·ωk−2

�
��
•x
∗
HHH•

x

FIGURE 3. P(x)

Then vx(y) = the length of the path common to P(x) and P(y), so

vx(y) = #(P(x) ∩ P(y)).

For the positive definite function M in (4.1) we now get

(4.35) M(x, y) = 〈vx, vy〉E = #(P(x) ∩ P(y)), (x, y ∈ G0 \ {∅});

i.e., the length of the path common to P(x) and P(y).
Hence a typical submatrix MF constructed from (4.35) by restriction to F× F

has the following form: Figure 4.

REMARK 4.17. The spectral theory of MF appears to be difficult in general,
but if

F = Fk = {x ∈ G0 : l(x) = k} = {x : x = (ω1 · · ·ωk), ωi ∈ {0, 1}}

then Mk := MF may be generated recursively.
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0 1 00 01 10 11 000 001 010 011 100 101 110 111
0 1 0 1 1 0 0 1 1 1 1 0 0 0 0
1 0 1 0 0 1 1 0 0 0 0 1 1 1 1

00 1 0 2 1 0 0 2 2 1 1 0 0 0 0
01 1 0 1 2 0 0 1 1 2 2 0 0 0 0
10 0 1 0 0 2 1 0 0 0 0 2 2 1 1
11 0 1 0 0 1 2 0 0 0 0 1 1 1 2

000 1 0 2 1 0 0 3 2 1 1 0 0 0 0
001 1 0 2 1 0 0 2 3 1 1 0 0 0 0
010 1 0 1 2 0 0 1 1 3 2 0 0 0 0
011 1 0 1 2 0 0 1 1 2 3 0 0 0 0
100 0 1 0 0 2 1 0 0 0 0 3 2 1 1
101 0 1 0 0 2 1 0 0 0 0 2 3 1 1
110 0 1 0 0 1 2 0 0 0 0 1 1 3 2
111 0 1 0 0 1 2 0 0 0 0 1 1 2 3

FIGURE 4. MF for F = {0, 1, 00, . . . , 111}

Let A = (ai,j) be an n× n matrix and set τ(A)i,j := ai,j + 1. Then

Mk+1 =

(
τ(Mk) 0

0 τ(Mk)

)
, and

M1 =

(
1 0
0 1

)
, M2 =


2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2

 , etc; see Figure 4.(4.36)

Set Λk = spectruml2(Mk); then

(4.37) min Λk = 1, and max Λk = 2k − 1.

OBSERVATION 4.18. Denoting the vertices in G0 as in Figure 2, we get the
following relations for the two systems of vectors {δx : x∈G0} and {vx : x∈G0}:

δ∅ = −v0 − v1, ‖δ∅‖2
HE

= 2,(4.38)

‖PFk δ∅‖2
HE

=
2k

2k − 1
(→ 1).(4.39)

Proof. From (4.36), we see that λk := max ΛFk = 2k − 1 has multiplicity 2 for
all k ∈ N. We may pick two normalized eigenvectors ξ

Fk
λ ∈ l2(Fk):

ξ
Fk
λ+
=

1√
2k−1

( 1, 1, . . . , 1, 0, 0, . . . , 0 )t, and ξ
Fk
λ−
=

1√
2k−1

( 0, 0, . . . , 0, 1, 1, . . . , 1 )t.

The other eigenvectors ξ
Fk
λ ∈ l2(Fk) corresponding to λ<2k−1 satisfy 〈ξλ, χFk 〉l2= 0.
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By Theorem 4.6 and the observations following Corollary 4.7 we get

‖PFk δ∅‖2
HE

= ∑
λ∈ΛFk

|〈uFk
λ , δ∅〉|2 =

2k

2k − 1
.

Indeed by (4.14), we have

PFk δ∅ = −

√
2k−1

2k − 1
(uFk

λ+
+ uFk

λ−
);

see (4.12), and (4.39) follows.

5. THE TRUNCATED OPERATORS PF∆PF

In the general framework of Section 2 and 3 we introduced symmetric
Hilbert spaces H and associated operators ∆. We proved (Theorem 3.5) that the
setup includes the most general class of graph Laplacians for weighted graphs
(G, µ). In the latter case, the symmetric Hilbert space is H = HE = the energy
Hilbert space of Definition 3.2. In all cases, we show that the Hilbert space under
consideration is associated with a positive definite function

(5.1) M(x, y) = 〈vx, vy〉H
where {vx : x ∈ X} is a system of vectors in H, and H = span{vx : x ∈ X}; see
Theorem 3.10. Further we show that it is possible to choose the family (vx)x∈X
such that each vx is in the domain of ∆, i.e., vx ∈ dom(∆) for all x ∈ X; see
Theorem 3.5 and Lemma 3.8.

In Section 4, we reduced the study of operators ∆ in H to its finite trunca-
tions. Specifically, for each finite subset F ⊂ X, we introduced in Theorem 4.6 the
orthogonal projection PF onto

(5.2) H(F) := span
H
{vx : x ∈ F}.

When F is given, let {uF
λ : λ ∈ ΛF} be the ONB in H(F) introduced in (4.12).

Then with Dirac’s notation, we have

(5.3) PF = ∑
λ∈ΛF

|uF
λ〉〈uF

λ|.

It follows from (4.12) that each uF
λ is in dom(∆); and as a result that the finite-rank

truncations

(5.4) PF∆PF

are well defined. For fixed F, the matrix with respect to the ONB {uF
λ : λ∈ΛF} is

(5.5) 〈uF
λ, ∆uF

λ′〉H
where λ is a row-index, and λ′ a column index.
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The purpose of this section is to approximate ∆ with its finite truncations
PF∆PF. To do this use some chosen nested system

(5.6) F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ · · · ⊂ X

such that

(5.7)
⋃

k∈N
Fk = X.

With that choice

(5.8) lim
k→∞

PFk = IH,

and we wish to study the corresponding limit

(5.9) lim
k→∞

PFk∆PFk .

5.1. GRAPH APPLICATIONS. In view of Lemma 3.8, it is practical to select a base
point 0 ∈ G0, and for each x ∈ G0, choose the unique solution vx ∈ HE to

(5.10) 〈vx, u〉E = u(x)− u(0), (u ∈ HE).

Recall (Theorem 3.5), in this case

(5.11) ∆vx = δx − δ0, (x ∈ G0 \ {0}).

Before turning to the approximation (5.9), we prove the following

LEMMA 5.1. Let (G, µ), ∆, 0 ∈ G0, HE, {vx : x ∈ G0 \ {0}} be as described
above, and let F ⊂ G0 \ {0} be a finite subset. Then

PFδ0 = − ∑
λ∈ΛF

1√
λ
〈ξF

λ, χF〉l2 uF
λ;(5.12)

‖PFδ0‖2
HE

= ∑
λ∈ΛF

|〈ξF
λ, χF〉l2 |2

λ
;(5.13)

and

(5.14) PF∆PF is a rank-1 perturbation of the diagonal operator

(5.15) DF =


λ−1

1 0 · · · 0
0 λ−1

2 · · · 0
...

...
. . .

...
0 0 · · · λ−1

nF


where ΛF = {λ1, λ2, . . . , λnF} with eigenvalues counted with repetition according to
multiplicity.
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Proof. For (5.12)

PFδ0 = ∑
λ∈ΛF

〈uF
λ, δ0〉uF

λ = ∑
λ∈ΛF

1√
λ

∑
x∈F

ξF
λ(x)〈vx, δ0〉EuF

λ

by (5.10)
= − ∑

λ∈ΛF

1√
λ

∑
x∈F

ξF
λ(x)uF

λ = − ∑
λ∈ΛF

1√
λ
〈ξF

λ, χF〉l2 uF
λ,

which is (5.12). Note that (5.13) is immediate from this by Parseval.
For (5.14). We compute the matrix representation (5.5)

〈uF
λ, ∆uF

λ′〉E
by (4.12)

=
1√
λλ′

∑
x,y∈F

ξF
λ(x)ξF

λ′(y)〈vx, ∆vy〉E

by (5.11)
=

1√
λλ′

∑
x,y∈F

ξF
λ(x)ξF

λ′(y)〈vx, δy − δ0〉E

=
1√
λλ′

∑
x,y∈F

ξF
λ(x)ξF

λ′(y)(δx,y + 1)

=
1√
λλ′

((
∑
x∈F

ξF
λ(x)ξF

λ′(x)
)
+ 〈ξF

λ, χF〉l2〈χF, ξF
λ′〉l2

)
by (5.12)

=
1
λ

δλ,λ′ + 〈uF
λ, PFδ0〉〈PFδ0, uF

λ′〉

which is the λ, λ′-coefficient of the operator
λ−1

1 0 · · · 0
0 λ−1

2 · · · 0
...

...
. . .

...
0 0 · · · λ−1

nF

+ |PFδ0〉〈PFδ0|.

REMARK 5.2. The function in (2.10),

(5.16) M(x1, x2) = x1 ∧ x2, x1, x2 ∈ [0, 1)

is the continuous analogue of the discrete version (4.35). And (4.35) in turn is a
special case of (4.1), i.e.,

(5.17) M(x, y) = 〈vx, vy〉H
valid for the most general Hilbert spaceH.

The purpose of Lemma 5.1 is to obtain a discrete version of a Green’s func-
tion for ∆. To see how Lemma 5.1 compares to the classical case, Example 2.2,
note that if ϕ ∈ C2[0, 1] and ϕ′(1) = 0 then

(5.18)
1∫

0

ϕ′′(y)(y ∧ x)dy = ϕ(0)− ϕ(x).
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As is known, the function in (5.16) is the Green’s functions for ∆ = − d2

dx2 ; and
we think equation (5.18) as a continuous variant of our formula (3.18)–(3.19) in
Lemma 3.8.

The idea is that if H = HE from a graph Laplacian ∆ of a weighted graph
(G, µ), then the function M(·, ·) in (5.17) is the Green’s function for ∆.

5.2. BOUNDEDNESS. In this subsection we study an intriguing interrelationship
between the family of matrices MF on the one hand, and the Laplace operator ∆
on the other. The operator ∆ will be considered in the energy Hilbert space HE.
While boundedness may be easily discerned when ∆ is viewed as an operator in
l2, this is not the case when the ambient Hilbert space is HE. The result below is
the assertion that boundedness is equivalent with the presence of a spectral gap
for the system of matrices MF. Note that in Example 4.16, the matrix MF encodes
agreement in the comparison of finite words (a Google matrix), and the result
therefore yields spectral data for the Google matrix as a consequence of operator
theory of ∆.

The information carried in Lemma 5.1 suggests a “spectral reciprocity”. For
each finite subset F ⊂ G0 \ {0}, the operator

DF =


λ−1

1 0 · · · 0
0 λ−1

2 · · · 0
...

...
. . .

...
0 0 · · · λ−1

nF


encodes the numbers {λ−1 : λ ∈ ΛF}. We proved the formula

(5.19) PF∆PF = DF + |PFδ0〉〈PFδ0|,

where PF∆PF is a “matrix-corner” of the infinite dimensional operator ∆. Specifi-
cally, PF∆PF arises from ∆ as

(5.20) ∆ =

(
PF∆PF PF∆P⊥F
P⊥F ∆PF P⊥F ∆P⊥F

)
where P⊥F := IH − PF is the projection onto the orthocomplement

(5.21) H(F)⊥ := H	H(F) = {u ∈ H : 〈u, v〉H = 0 for all v ∈ H(F)}.

The last term in (5.19) is a rank-1 operator, i.e., RF = |uF〉〈uF|, uF := PFδ0. Equiv-
alently

(5.22) RF = ‖uF‖2
HPuF

where PuF = the projection onto CuF = the 1-dimensional space spanned by uF.
Hence, for the operator norm RF : H → H, we have

(5.23) ‖RF‖H→H = sup{‖RFu‖H : ‖u‖H = 1} = ‖uF‖2
H.
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Setting V := span{vx : x ∈ G0 \ {0}} = all finite linear combinations, we get

lim
F→∞

PFδ0 = δ0,(5.24)

lim
F→∞

|uF〉〈uF| = |δ0〉〈δ0|.(5.25)

COROLLARY 5.3. Let F1 ⊂ F2 ⊂ · · · be an ascending family of finite sets satisfy-
ing (5.6)–(5.7). It follows that

(5.26) lim
k→∞

DFk = ∆+ ‖δ0‖2
HPδ0 on V .

Proof. By (5.26) we mean that the following limit is valid for all u, v ∈ V :

(5.27) lim
k→∞
〈u, DFk v〉H = 〈u, ∆v〉H + 〈u, δ0〉〈δ0, v〉.

But this conclusion is contained in Lemma 5.1 and the discussion above.

COROLLARY 5.4. Let (G, µ), 0 ∈ G0, ∆ andH = HE be as above. Set

M(x, y) = 〈vx, vy〉H, x, y ∈ G0 \ {0},(5.28)

MF := M|F×F.(5.29)

Then we have the following if and only if ∆ is a bounded operator HE → HE:

(5.30) δ∆ := inf
F∈F

min{λ ∈ ΛF} > 0.

Proof. Suppose δ∆ > 0. Let F ∈ F , and let u ∈ H(F). Then by Lemma 5.1

〈u, ∆u〉H=〈u, DFu〉H+|〈u, PFδ0〉H|26δ−1
∆ ‖u‖

2
H+‖u‖2

H‖PFδ0‖2
H6(δ

−1
∆ +‖δ0‖2

H)‖u‖2
H.

Since ∆ is Hermitian, this implies boundedness; and

(5.31) ‖∆‖H→H = sup
u∈V ,‖u‖H=1

〈u, ∆u〉 6 δ−1
∆ + ‖δ0‖2

H.

Note that (5.31) yields an a priori bound on the norm of ∆.
Conversely, suppose ∆ is a bounded operator. Since the limit (5.27) ex-

ists, and

‖DF‖H→H = max
λ∈ΛF
{λ−1} = 1

min
λ∈ΛF
{λ} ,

we have δ∆ > (‖∆‖H→H)−1 and the conclusion follows.

5.3. APPLICATION. In Example 4.16 we introduced the matrix (4.35) M(x, y) :=
#(P(x) ∩ P(y)), as a measure of agreement of sets of words represented by the
paths to x as compared to y.

One may compute the spectrum of MF for all finite subsets F ⊂ G0 \ {∅},
but it is difficult to directly compute the spectral gap number δ∆ in (5.30) for this
example.

Hence as an application of our spectral representation of ∆ in l2(G), or in
HE from [10], we can show that ‖∆‖HE→HE < ∞.
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THEOREM 5.5 ([10], Theorem 3.26). Let µc be the semicircular measure on [−1, 1]

dµc =
2
π

√
1− x2 dx,

and let µc+p be the measure on [−1, 1] given by

dµc+p =
2
π

√
1− x2

3
2 −
√

2x
dx.

Let Mc+p be the operator of multiplication by 3− 2
√

2x on L2(µc+p), and Mc the opera-
tor of multiplication by 3− 2

√
2x on L2(µc). Then the Laplacian ∆ : l2 → l2 is unitarily

equivalent to the multiplication operator

(5.32) Mc+p ⊕
∞⊕

n=1

Mc on L2(µc+p)⊕
∞⊕

n=1

L2(µc).

So, as an application of Corollary 5.3, we get the following

COROLLARY 5.6. Let (G, µ) = (tree, 1) be the graph in Example 4.16 and let δ∆

be the number (5.30) for this example. Then δ∆ > 0; i.e., there is a spectral gap in the
Google matrix; see Figure 4.

Proof. In view of Corollary 5.4, we must show that ∆ from Example 4.16,
i.e., (G, µ) = (tree, 1) is bounded in HE; that ∆ : HE → HE is a bounded operator.
The boundedness of ∆ : l2 → l2 is contained in the spectral representation (5.32)
in Theorem 5.5. Indeed there is unitary equivalence W : l2 → L2([−1, 1], ν,K)
where ν is the spectral measure and K ≈ l2 is the Hilbert space which accounts
for multiplicity; and W satisfies

(5.33) W∆ = (3− 2
√

2x)W.

It follows that the quadratic form

(5.34) ψ 7→
1∫
−1

(3− 2
√

2x)‖ψ(x)‖2
K dν(x) =: ‖ψ‖2

E,L2(ν)

extends u 7→ ‖u‖2
HE

. Setting Wu = û = ψ, we get

‖∆u‖2
HE

=

1∫
−1

(3− 2
√

2x)‖(3− 2
√

2x)û(·)‖2
K dν(x)

6 32
1∫
−1

(3− 2
√

2x)‖û(x)‖2
K dν(x) = 9‖û‖2

E,L2(ν) = 9‖u‖2
HE

.

Hence, ‖∆‖HE→HE 6 3.
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COROLLARY 5.7. Let (G, µ), 0 ∈ G0, ∆, and H = HE be as in Corollary 5.4. As
an operator ∆ : HE → HE, there is a bounded inverse if and only if

(5.35) σ = sup
F∈F

max{λ ∈ ΛF} < ∞.

Proof. By Lemma 5.1, invertibility of ∆ : HE → HE is decided by the pres-
ence of a global a priori bound on the operators (PF∆PF)

−1 as F ranges over F . If
σ in (5.35) is finite, then

sup
F
‖∆−1

F ‖HE→HE < σ−1

where ∆F := PF∆PF. And conversely.

COROLLARY 5.8. The operator ∆ in Example 4.16 (i.e., (G, µ) = (tree, 1)) and
Corollary 5.6 does not have a bounded inverse.

The proof follows from (4.37) in Remark 4.17.

6. THE GREEN’S FUNCTION

In this section we prove that the semidefinite functions introduced in Sec-
tion 5.3 serve as Green’s functions for graph Laplacians.

We treat the general case of the function

G0 × G0 3 (x, y) 7→ M(x, y) = 〈vx, vy〉E

from (5.28), and we show that it is analogous to the standard Green’s function for
∆ in the continuous case; see Example 2.2 and Remark 5.2

THEOREM 6.1. Consider the function M(·, x) associated with a fixed weighted
graph (G, µ) with graph Laplacian ∆. The action of ∆ on this function will be denoted
∆ ·M(·, x) where the dot represents the action variable. Then

−(∆ ·M(·, x))(y) = δx,y + 1− µ(y)M(y, x).

REMARK 6.2. We have restricted the variables x, y to G0 \ {0} where 0 is a
chosen fixed base point in G0, and where we make the convention vx(0) = 0, for
all x ∈ G0 \ {0}.

Proof of Theorem 6.1. For x, y ∈ G0 \ {0} we have

−(∆ ·M(·, x))(y)
by (3.6)

= ∑
z∼y

µyz(M(z, x)−M(y, x))

by (3.3)
= ∑

z∼y
µyz〈vz, vx〉E − µ(y)M(y, x)
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by (3.19)
= 〈∆vy, vx〉E − µ(y)M(y, x)

by (3.18)
= 〈δy − δ0, vx〉E−µ(y)M(y, x)=δxy+1−µ(y)M(y, x).

In the third step of the computation we used the following lemma.

LEMMA 6.3. For points in G0 \ {0}, we have the following identity

(6.1) ∑
z∼x

µxz(vx − vz) = ∆vx.

Proof. Let y ∈ G0 \ {0} then〈
vy, ∑

z∼x
µxz(vx − vz)

〉
E
= µ(x)vy(x)− ∑

z∼x
µxzvy(z)

= (∆vy)(x) = (δy − δ0)(x)=δxy =(∆vx)(y)= 〈vy, ∆vx〉E.

Since span{vy : y ∈ G0 \ {0}} is dense in HE, the desired conclusion (6.1) fol-
lows.
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