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ABSTRACT. In this paper, we study similarity, unitary equivalence and re-
ducing subspace problems of multiplication operators with symbols of finite
Blaschke products on the Bergman space L2

a(D). By using Rudin’s method,
we establish a representation theorem of L2

a-functions related to a given finite
Blaschke product. As an immediate consequence, one sees that for two finite
Blaschke products B1, B2, MB1 is similar to MB2 if and only if deg B1 = deg B2.
By a different method, this similarity result also was independently obtained
by Jiang and Li. Then we turn to the study of reducing subspaces of mul-
tiplication operators. It is shown that if B is a finite Blaschke product with
deg B 6 6, then the number of minimal reducing subspaces of MB is at most
deg B. The best previous known results were for the cases of deg B = 2, 3, 4.
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1. INTRODUCTION

Let D be the open unit disk in the complex plane C and let dA denote the
normalized area measure on D. Denote by L2

a(D) the Bergman space, consist-
ing of analytic functions on D which are squarely integrable with respect to the
measure dA. For each bounded analytic function h on D, we denote by Mh the
multiplication operator on L2

a(D) with the symbol h.
Recall that in a Hilbert space H, a (closed) subspace M is called invariant

for an operator T if TM ⊆ M. If in addition T∗M ⊆ M, then M is called a
reducing subspace of T. And a nontrivial reducing subspace M is called minimal
if the only reducing subspaces contained in M are M and 0. Below, for a Hilbert
space of functions analytic on D, by an invariant (respectively, reducing) subspace
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we mean a closed invariant (respectively, reducing) subspace of the coordinate
operator Mz.

There are many motivations to study the reducing subspaces of multipli-
cation operators on the Bergman space. One is from the equivalence of the In-
variant Subspace Problem and the problem of the invariant subspace lattice of
the Bergman space. Precisely, the Invariant Subspace Problem asks that, if T is a
bounded linear operator on a separable Hilbert space H and dim H = ∞, then
must T have a proper invariant subspace? It is well known that this problem is
equivalent to the following: if M and N are invariant subspaces of L2

a(D) such
that N j M and dim M 	 N = ∞, then is there another invariant subspace L
satisfying N $ L $ M? [5]. So it is interesting and important to get some deep in-
formation of the invariant space lattice in L2

a(D). However, the case of the Hardy
space is quite different. By the Beurling Theorem [13], the invariant subspaces in
the Hardy space are completely determined by inner functions.

Another motivation is consideration of the multiplication operators on the
Hardy space H2(T). As pointed out in [11], for each inner function φ which is not
a Mobius map, the reducing subspaces of Mφ are in one to one corresponding
with the closed subspaces of H2(T)	 φH2(T) [7],[12]. For details, one may refer
to [3], [4] and [16].

For the coordinate operator Mz, there is no nontrivial reducing subspace
either on the Hardy space or on the Bergman space. But as for the multiplication
operator Mzn (n > 2), there are exactly n different minimal reducing subspaces on
the Bergman space [18], [25], which is quite different from the case in the Hardy
space. In [25], it is shown that for each Blaschke product B of degree 2, MB has
precisely two different minimal reducing subspaces. Zhu [25] conjectured that
for a finite Blaschke product B of degree n, there are always n different minimal
reducing subspaces. But it is proved that this conjecture fails when n = 3 [11].
And then Zhu’s conjecture is modified as follows:

CONJECTURE 1.1 ([11]). Let B be a finite Blaschke product of degree n, then
MB has at most n minimal reducing subspaces.

In fact, it is shown in [11] and [23] that, if B is a Blaschke product of degree
3 or 4, then the number of minimal reducing subspaces of MB is not larger than
deg B, the degree of B. In these papers, the minimal reducing subspaces are nicely
described.

Now we turn to the question of similarity of multiplication operators on
the Bergman space L2

a(D). Observe that Mzn on L2
a(D) is similar to Mz ⊗ In on

L2
a(D)⊗Cn. This result raises an interesting question which is related to the pro-

gram mentioned above.

QUESTION 1.2 ([10]). Is MB on L2
a(D) similar to Mz ⊗ In on L2

a(D) ⊗ Cn

(equivalently, similar to Mzn on L2
a(D)), where n is the degree of the finite Blaschke

product B?
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The answer to this question is yes, which was proved in [15]. Below, by
using Rudin’s method ([17], Chapter 7) we will establish a representation theorem
of L2

a(D)-functions, which is of independent interest, and from which one would
have an immediate answer to the similarity problem.

THEOREM 1.3. Suppose B is a finite Blaschke product of degree n, then there are
bounded operators τi from L2

a(D) to L2
a(D) such that

f (z) =
n

∑
i=1

τi f (B(z))zi−1, z ∈ D.

The representation is unique; that is, if there are f1, . . . , fn in L2
a(D) satisfying

f (z) =
n

∑
i=1

fi(B(z))zi−1, z ∈ D,

then fi = τi f for i = 1, . . . , n.

Applying the above theorem immediately gives the following similarity
theorem.

THEOREM 1.4 ([15]). Given two finite Blaschke products B1 and B2, then MB1 is
similar to MB2 on the Bergman space if and only if deg B1 = deg B2.

Now let us turn back to the reducing subspace problem. Before continuing,
let us have a look at the reducing subspaces from the von Neumann algebra’s
view. A basic argument shows that a reducing subspace of MB is the range of
an orthogonal projection commuting with MB. For the Bergman space L2

a(D), we
consider the commutant CB of {MB, M∗B}, where B is a finite Blaschke product of
degree n. Notice that CB is a von Neumann algebra spanned by its projections.
Therefore, characterizing minimal reducing subspaces is equivalent to character-
izing minimal projections in CB. This means that Conjecture 1.1 says that CB has
at most n minimal projections. In fact, one has the following conclusion.

PROPOSITION 1.5. Let B be a finite Blaschke product of degree n. Then the fol-
lowing are equivalent:

(i) Conjecture 1.1 holds.
(ii) CB is abelian.

(iii) All minimal projections in CB are orthogonal.

Though it is hard to prove Conjecture 1.1, we have dim CB 6 n, as will be see later
in Section 4.

In this paper, B always denotes a finite Blaschke product, if there is no other
explanation. For two reducing subspaces M and N of MB, if there exists a unitary
operator U from M onto N and U commutes with MB, then M is called to be
unitarily equivalent to N. If so, then we can extend U to Ũ such that Ũ|M = U
and Ũ|M⊥ = 0. It follows that Ũ commutes with both MB and M∗B. If we write
p (respectively q) for the orthogonal projection from L2

a(D) onto M (respectively
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N), then we get p = Ũ∗Ũ and q = ŨŨ∗. That is, the two projections p and
q are equivalent in CB. In this way, one sees that the unitary equivalence between
reducing subspaces is identified with the equivalence between projections in CB. It is
shown in [11] that Conjecture 1.1 is equivalent to that any two different minimal
reducing subspaces are never unitarily equivalent, and hence equivalent to that
two different minimal projections in CB are never equivalent. Now write CB,j (1 6
j 6 n) for the set consisting of all such minimal reducing subspaces M satisfying
dim M	 BM = j; and then Conjecture 1.1 is reduced to ask for each 1 6 j 6 n,
whether any two minimal reducing subspaces in CB,j are not unitarily equivalent.
For j = 1, this is true, which is the following theorem.

THEOREM 1.6. For two different minimal reducing subspaces M and N, if dim M
	BM = dim N 	 BN = 1, then M ⊥ N, and they are not unitarily equivalent.

As an application of Theorem 1.6, we give a quite different proof of the
following result.

COROLLARY 1.7 ([25],[11],[23]). Let B be a Blaschke product of degree n with
n 6 4, then MB has at most n minimal reducing subspaces.

Furthermore, a straightforward consequence of Theorem 1.6 is Theorem 27
in [11], which states that any minimal reducing subspace different from M0 must
be orthogonal to M0, where M0 is the distinguished subspace. Precisely, if B(0) =
0, then M0 is the Bergman subspace spanned by {B′Bm : m ∈ Z+} [19].

Our main theorem in this paper is as follows.

THEOREM 1.8. Let B be a finite Blaschke product of degree n = 5, 6, then MB has
at most n minimal reducing subspaces.

The paper is organized as follows.
In Section 2 by using Rudin’s method ([17], Chapter 7) we establish a rep-

resentation theorem of L2
a(D)-functions, which is of independent interest. From

this theorem, one easily sees that if B1 and B2 are two finite Blaschke products,
then MB1 is similar to MB2 if and only if deg B1 = deg B2. This was independently
obtained in [15], by a different method.

In Section 3 we study the reducing subspace problem. It is shown that for a
given finite Blaschke product B, among all minimal reducing subspaces M of MB
satisfying dim M	 BM = 1, any two of them are orthogonal. As an immediate
consequence, this leads to a simpler proof of Corollary 1.7.

In Section 4 we give the proof of Theorem 1.8. Furthermore, it is shown
dim CB 6 n, where n = deg B. Applying representation of finite dimensional
C∗-algebras gives a shorter proof of Corollary 1.7.
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2. SIMILARITY

The reducing subspace problem is of great interest in the study of Hilbert
spaces of analytic functions. A lot of fruitful and deep results in this field have
been got. We refer the reader to the references [4], [3], [7], [16], [18], [19], [11],
[23], [22], [25]. As pointed out by R. Douglas [10], a related natural question is: Is
MB on L2

a(D) similar to Mz ⊗ In on L2
a(D)⊗Cn, where n = deg B? The answer to

this question is yes, which was proved in [15]. Below, by using Rudin’s method
([17], Chapter 7) we will establish a representation theorem of L2

a(D)-functions,
which is of independent interest, and from which one would have an immediate
answer to the similarity problem. We state it as follows.

THEOREM 2.1. Suppose B is a finite Blaschke product of degree n, then there are
bounded operators τi from L2

a(D) to L2
a(D) such that

f (z) =
n

∑
i=1

τi f (B(z))zi−1, f ∈ L2
a(D).

The representation is unique; that is, if there are f1, . . . , fn in L2
a(D) satisfying

(2.1) f (z) =
n

∑
i=1

fi(B(z))zi−1, z ∈ D,

then fi = τi f for i = 1, . . . , n.

Proof. Before the proof, let us make an observation.
Since the derivative of a finite Blaschke product never vanishes on T, there

exists an r ∈ (0, 1) such that B′ never vanishes on Ar, where

Ar = {z ∈ C : r < |z| < 1}.
It is easy to check that there is an r′ (r < r′ < 1) satisfying

(2.2) B−1(Ar′) ⊆ Ar.

We first prove uniqueness. It suffices to show that if there are f1, . . . , fn in
L2

a(D) satisfying

(2.3)
n

∑
i=1

fi(B(z))zi−1 = 0, z ∈ D,

then fi ≡ 0 for all i.
In fact, from the above observation we can pick an r0 (r′ < r0 < 1). By (2.2),

for each w ∈ r0T,
B−1(w) ⊆ B−1(Ar′) ⊆ Ar.

Notice also that B′ never vanishes on Ar, so for each w ∈ r0T, B−1(w) consists of
exactly n different points, denoted by β1(w), . . . , βn(w). Thus by (2.3),

n

∑
i=1

fi(w)β j(w)i−1 = 0, w ∈ r0T and 1 6 j 6 n.
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Since for each w ∈ r0T, (β j(w)i−1) is just the Vandermonde matrix and hence the
above equations force

f1(w) = · · · = fn(w) = 0, w ∈ r0T.

So fi ≡ 0 for 1 6 i 6 n, as desired.
The proof for the existence. By a similar argument as above, for any w ∈ Ar′ ,

there exist n distinct points β j(w) ∈ Ar satisfying

(2.4) B(β j(w)) = w, j = 1, . . . , n.

Moreover, since B′(β j(w)) 6= 0, there is an δw > 0 such that B maps O(β j(w), δw)
biholomorphically onto some neighborhood of w. This gives the following fact.

FACT 2.2. For any w ∈ Ar′ , there exists an εw > 0, and n different func-
tions β1, . . . , βn which are holomorphic and injective on O(w, εw) such that each
of them satisfies (2.4), and βi(z) 6= β j(z) for z ∈ O(w, εw), i 6= j. Moreover, the
derivative of each β−1

j are bounded on O(w, εw).

By Chapter 7 of [17], for each polynomial P, there are rational maps Ri in
A(D) such that

(2.5) P(z) =
n

∑
i=1

Ri(B(z))zi−1.

As done in the proof of Theorem 7.4.1 in [17], first we can define τi on poly-
nomials and τi are well defined and linear. Precisely, from (2.5), τiP = Ri. In
what follows we will use the fact to prove that τi are bounded with respect to the
Bergman norm.

Now rewrite (2.5) by

P(β j(w)) =
n

∑
i=1

Ri(w)β j(w)i−1, 1 6 j 6 n and w ∈ Ar′ .

By Cramer’s rule, we have for each k(1 6 k 6 n),

(2.6) Rk(w) =
det Vk(P)(w)

det(β j(w)i−1)
, w ∈ Ar′ ,

where Vk(P)(w) denotes the matrix (β j(w)i−1) whose k-th column is replaced
with (P(β1(w)), . . . , P(βn(w)))T. The above discussion shows that the Vander-
monde determinant det(β j(w)i−1) is continuous on Ar′ and has no zero point. So
by (2.6), there is a constant C > 0 such that

(2.7)
∫

Ar′

|Rk(w)|2dA(w) 6 C
∫

Ar′

n

∑
j=1
|P(β j(w))|2dA(w).
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Since all neighborhoods O(w, εw) of w ∈ Ar′ consist of an open cover of Ar′ , then
we can pick finite of them

O(w1, ε1), . . . , O(wN , εN),

whose union contains Ar′ . Then by (2.7),∫
Ar′

|Rk(w)|2dA(w) 6 C
∫

⋃N
l=1 O(wl ,ε l)∩D

n

∑
j=1
|P(β j(w))|2dA(w)

6 C
N

∑
l=1

n

∑
j=1

∫
β j(O(wl ,ε l)∩D)

|P(z)|2|(β−1
j )′(z)|2dA(z)

6 CN
∫
D

nM|P(z)|2dA(z) = CnNM
∫
D

|P(z)|2dA(z),

where

M = sup {|(β−1
j )′(z)|2 : z ∈ O(wl , ε l), 1 6 j 6 n, 1 6 l 6 N} < ∞.

On the other hand, there is a numerical constant C′ satisfying∫
D

| f (w)|2dA(w) 6 C′
∫

Ar′

| f (w)|2dA(w), f ∈ L2
a(D),

and hence
∫
D
|Rk(w)|2dA(w) 6 C′

∫
Ar′

|Rk(w)|2dA(w). Combining this inequality

with the the above arguments shows that

(2.8) ‖τkP‖2 = ‖Rk‖2 6 K‖P‖2,

where K = nMNCC′ < ∞ depends only on B.
Since every Bergman function f is a limit of polynomials {pm} in the

Bergman norm. And by boundedness of τk (1 6 k 6 n), see (2.8), {τk pm}m
has uniformly bounded Bergman norm, and hence {τk pm}m is a normal family.
Then it follows that there is a subsequence {pml} such that {τk pml}l converges
to some holomorphic function fk (in the Bergman space) uniformly on compact
subsets of D. And it is easy to check such fk satisfy

f (z) =
n

∑
k=1

fk(B(z))zk−1, z ∈ D.

Then by uniqueness of the representation, such fk are independent of the choices
of {pm} and its subsequence. Put τk f = fk and the proof is complete.
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REMARK 2.3. The above theorem remains true if the Bergman space is re-
placed with the weighted Bergman spaces and Hardy spaces Hp(D)(p > 1), and
the proof is similar.

Then we have the following corollary.

COROLLARY 2.4 ([15]). Let B be a finite Blaschke product of degree n, then there
is a bounded invertible operator S from L2

a(D) to L2
a(D)⊗Cn satisfying

SMB = (Mz ⊗ In)S.

Consequently, for two finite Blaschke product B1 and B2, MB1 is similar to MB2 on the
Bergman space if and only if deg B1 = deg B2.

Proof. Assume the operators τ1, . . . , τn are defined as in Theorem 2.1 and set
S f = (τ1 f , . . . , τn f ) for each f ∈ L2

a(D). By Theorem 2.1, it is easy to check that S
is invertible.

Moreover, we have SMB = (Mz ⊗ In)S. In fact, for each f ∈ L2
a(D),

MB f = B
n

∑
i=1

τi f (B)zi−1 =
n

∑
i=1

(zτi f )(B)zi−1,

and hence by uniqueness,

SMB f = (zτ1 f , . . . , zτn f ) = (Mz ⊗ In)S f .

That is, SMB = (Mz ⊗ In)S.
As a direct result, we see that for two finite Blaschke products B1 and MB1

is similar to MB2 on the Bergman space if and only if B1 and B2 have the same
degree.

3. REDUCING SUBSPACE PROBLEM

In this section, we will study the reducing subspace problem. Some lemmas
will be established to prove our main theorem in this section, Theorem 3.1. As an
application, we will give a short proof of Corollary 1.7 [11], [23]. And at the end
of this section, we will give a proof of Proposition 1.5.

First we state our main theorem in this section as follows.

THEOREM 3.1. For two different minimal reducing subspaces M and N, if one of
the following holds:

(i) dim M	 BM = dim N 	 BN = 1,
(ii) dim M	 BM 6= dim N 	 BN,

then M ⊥ N, and they are not unitarily equivalent.

It is well known that there is a unique distinguished minimal reducing sub-
space M0 satisfying dim M0 	 BM0 = 1 [14]. Precisely, if B(0) = 0, then M0 is
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the Bergman subspace spanned by {B′Bm : m ∈ Z+} [19]. So Theorem 3.1 im-
plies that any minimal reducing subspace different from M0 must be orthogonal
to M0, also see Theorem 27 of [11].

Furthermore, as an application of Theorem 3.1, we will give a quite differ-
ent and simpler proof for Corollary 1.7. Also in the end of Section 4, we will use
representation of finite dimensional C∗-algebras to give a shorter proof of Corol-
lary 1.7. We restate it here.

COROLLARY 3.2 ([25], [11], [23]). Let B be a finite Blaschke product of degree n
with n 6 4, then MB has at most n minimal reducing subspaces.

Proof. Once Theorem 3.1 has been proved, then we can give the proof of
Corollary 3.2 as follows. It suffices to consider the following three cases: deg B =
2, deg B = 3 and deg B = 4.

Case I. deg B = 2. Let M0 be the distinguished minimal reducing subspace.
Clearly M⊥0 is a reducing subspace, and since dim M⊥0 	 BM⊥0 = 1, M⊥0 is mini-
mal. But as mentioned above, all minimal reducing subspaces other than M0 are
contained in M⊥0 . This implies that there is no other minimal reducing subspace
other than M0 and M⊥0 .

Case II. deg B = 3. Notice that all minimal reducing subspaces other than
M0 are contained in M⊥0 , and dim M⊥0 	 BM⊥0 = 2, so either M⊥0 is minimal or
all minimal reducing subspaces N satisfy dim N	 BN = 1. It suffices to consider
the latter case. Now assume all minimal reducing subspaces N satisfy dim N 	
BN = 1, then by Theorem 3.1, any two different minimal reducing subspaces are
orthogonal to each other, and hence there exist no more than 3 minimal reducing
subspaces.

Case III. deg B = 4. A similar argument as in Case II shows that if all min-
imal reducing subspaces N satisfy dim N 	 BN = 1, then the number of mini-
mal reducing subspaces is not larger than 4; and if there is a minimal reducing
subspace M1 satisfying dim M1 	 BM1 = 3, then MB has no minimal reducing
subspace other than M0 and M1. So it remains to deal with the case when there
is a minimal reducing subspace M1 satisfying dim M1 	 BM1 = 2.

Now set M2 = L2
a(D)	 (M0 ⊕M1). Then M2 is reducing. Moreover, since

dim M2 	 BM2 = 1, M2 is minimal. We claim that there is no other minimal
reducing subspace expect M0, M1 and M2. To this end, assume conversely that
there is another minimal reducing space N (N 6= Mi, i = 0, 1, 2). Then either
dim N 	 BN = 2 or dim N 	 BN = 1. If dim N 	 BN = 2, then by Theorem 3.1,
N is orthogonal to M0 and M2. Therefore N ⊆ M1, and by minimality, N =
M1. This is a contradiction. If dim N 	 BN = 1, then by Theorem 3.1, N ⊥
Mi (i = 0, 1, 2). So N ⊥ L2

a(D), which is impossible. The proof of Corollary 3.2 is
complete.

Before proving Theorem 3.1, let us state a theorem which comes from The-
orem 3 in and Theorem 31 [11]. But we include a similar but abbreviated proof.
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THEOREM 3.3 ([11]). Let M and N be two minimal reducing subspaces of MB. If
M and N are not orthogonal, then M is unitarily equivalent to N.

Proof. Let P denote the orthogonal projection from L2
a(D) onto N and put

p = P|M.

Claim. The operator p : M → N is injective and Range p = N. Moreover, p
commutes with both MB and M∗B.

To this end, we first prove that p commutes with both MB and M∗B. In fact,
we have for each f ∈ M,

B f = pB f + (1− p)B f , and B f = Bp f + B(1− p) f .

Comparing the above two identities, and noting that N and N⊥ are both reduc-
ing, we get pB f = Bp f , f ∈ M. That is, p commutes with MB. Similarly, p
commutes with M∗B.

Next we will show that p is injective. To reach a contradiction, assume there
is an f0 ∈ M ( f0 6= 0) such that p f0 = 0. That is, f0 ⊥ N. Since N is reducing, it
follows that the reducing subspace [ f0] generated by f0 is orthogonal to N. Since
M is minimal, M = [ f0], and hence M ⊥ N, which is a contradiction to our
assumption.

Since p commutes with both MB and M∗B, it follows that Range p is a reduc-
ing subspace contained in N. Notice also that Range p 6= 0 since p is injective, so
by the minimality of N, Range p = N, completing the proof of the claim.

Now let p = u|p| be the polar decomposition of p, where |p| =
√

p∗p and u
is a partial isometry from M to N satisfying

(3.1) u : |p| f 7→ p f , f ∈ M.

Below, we will see that u is a unitary operator from M onto N. In fact, by the
claim p commutes with both MB and M∗B, and hence |p| commutes with both
MB and M∗B. This means that |p|M is a reducing subspace contained in M, and
by minimality of M, |p|M = M. Therefore by (3.1), u is an isometry and thus
has closed range. On the other hand, (3.1) gives Range p j Range u. Noting
Range p = N, we have Range u = N, which implies that u is a unitary operator
from M onto N. Then it is easy to check that u commutes with both MB and M∗B,
completing the proof.

Before continuing, let us make an observation. It is well known that the
reducing subspaces of MB are the same as those of Mϕa(B)(a ∈ D), where

ϕa(z) =
a− z

1− az
, z ∈ D.

It follows from a simple calculation that, if a is not in the finite set

{z : there exists z′ such that B′(z′) = 0 and B(z′) = B(z)},
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then ϕa(B) has only simple zeros. Thus, when studying the reducing subspaces of
MB, we can reduce to the case that B has only simple zeros.

Below, we always assume B, B1 and B2 are finite Blaschke products which
have only simple zeros, if there is no other explanation.

Next we will establish a proposition, which plays an important role in the
proof of Theorem 3.1. Given two Blaschke products B1 and B2 with deg B1 =

deg B2 = n, let β1, . . . , βn (respectively, γ1, . . . , γn) be n branches of B−1
1 (respec-

tively, B−1
2 ). Take ∆ to be some connected domain such that all βi and γi are

(single valued) analytic on some neighborhood of ∆. In particular, since B1 and
B2 have only simple zeros, we can choose ∆ to be an open disk containing 0. Then
we have the following proposition, whose special form is shown in the proof of
Lemma 1 in [21].

PROPOSITION 3.4. If Mi is a closed subspace of L2
a(D) which is invariant under

MBi (i = 1, 2), and if U : M1 → M2 is a unitary operator such that UMB1 = MB2U,
then there exists an n× n numerical unitary matrix W such that

W

 f (β1(w))β′1(w)
...

f (βn(w))β′n(w)

 =

 g(γ1(w))γ′1(w)
...

g(γn(w))γ′n(w)

 , w ∈ ∆,

where f ∈ M1 and g = U f .

To prove the above proposition, we need the following, which is of inde-
pendent interest.

LEMMA 3.5. Let H be a Hilbert space and suppose ek
λ, f k

µ (1 6 k 6 n and λ, µ ∈
Λ) are vectors in H satisfying

n

∑
k=1

ek
λ ⊗ ek

µ =
n

∑
k=1

f k
λ ⊗ f k

µ, λ, µ ∈ Λ,

then there is an n× n numerical unitary matrix W such that

W

 e1
λ
...

en
λ

 =

 f 1
λ
...

f n
λ

 , λ ∈ Λ.

In the case that Λ is a singlet, Lemma 3.5 is known, see Proposition 5.1 of [2] or
Proposition A.1 of [1].

Proof. For each λ ∈ Λ, set

Aλ : Cn → H

(c1, . . . , cn) 7→
n

∑
k=1

ckek
λ,
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and

Bλ : Cn → H

(c1, . . . , cn) 7→
n

∑
k=1

ck f k
λ.

It follows from simple computations that

A∗λ : H → Cn

h 7→ (〈h, e1
λ〉, . . . , 〈h, en

λ〉).

Moreover, for any λ, µ ∈ Λ, we have

Aµ A∗λh =
n

∑
k=1
〈h, ek

λ〉ek
µ =

n

∑
k=1

(ek
µ ⊗ ek

λ)h =
n

∑
k=1

( f k
µ ⊗ f k

λ)h = BµB∗λh, h ∈ H.

So Aµ A∗λ = BµB∗λ, and then it is easy to check that

l

∑
i=1

ci A∗λi
h 7→

l

∑
i=1

ciB∗λi
h, h ∈ H and λi ∈ Λ

is a well defined isometry from some subspace of Cn to another. This isometry
can be extended to a unitary map V∗ : Cn → Cn. By the definition of V∗, we have

V∗A∗λ = B∗λ, λ ∈ Λ,

and hence

(3.2) AλV = Bλ.

Let (3.2) act on (0, . . . , 1, 0, . . . , 0) where 1 is at the k-th coordinate, and denote vk
the k-th column of V, then

vT
k

 e1
λ
...

en
λ

 = f k
λ, λ ∈ Λ,

where vT
k is the transpose of vk. Let W be the transpose VT of V and the above

identities imply that

W

 e1
λ
...

en
λ

 =

 f 1
λ
...

f n
λ

 , λ ∈ Λ.

Proof of Proposition 3.4. Consider M1 as a reproducing function space on D,
and let Kλ be the reproducing kernel of M1 at λ ∈ D, and put Lλ = UKλ (Lλ is
not necessarily the reproducing kernel of M2). Since UMB1 = MB2U, it is easy to
see that for any polynomials P and Q,

〈P(B1)Kλ, Q(B1)Kµ〉 = 〈P(B2)Lλ, Q(B2)Lµ〉, λ, µ ∈ D.
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That is,

(3.3)
∫
D

((PQ) ◦ B1(w)Kλ(w)Kµ(w)− (PQ) ◦ B2(w)Lλ(w)Lµ(w))dA(w) = 0.

Now set
E = span {PQ : P, Q are polynomials}.

By the Weierstrass’s Theorem, any continuous function on D can be uniformly
approximated by functions in E . It follows from (3.3) that

(3.4)
∫
D

( f (B1(w))Kλ(w)Kµ(w)− f (B2(w))Lλ(w)Lµ(w))dA(w)=0, f ∈C(D).

By the Dominated Convergence Theorem, the identity (3.4) holds for any func-
tion f in L∞(D). In particular, for any f ∈ L∞(∆), (3.4) gives that∫

B−1
1 (∆)

f (B1(w))Kλ(w)Kµ(w)dA(w) =
∫

B−1
2 (∆)

f (B2(w))Lλ(w)Lµ(w)dA(w),

and hence by our assumptions of ∆,∫
∆

f (z)
n

∑
k=1

(KλKµ) ◦ βk(z)|β′k(z)|
2dA(z) =

∫
∆

f (z)
n

∑
k=1

(LλLµ) ◦γk(z)|γ′k(z)|
2dA(z).

So

(3.5)
n

∑
k=1

(KλKµ) ◦ βk(z)|β′k(z)|
2 =

n

∑
k=1

(LλLµ) ◦ γk(z)|γ′k(z)|
2, z ∈ ∆.

Next we will apply Lemma 3.5. Let H be the Bergman space over ∆ and
Λ = D. Set

ek
λ = Kλ(βk(z))β′k(z), f k

µ = Lµ(γk(z))γ′k(z), 1 6 k 6 n, λ, µ ∈ D.

By (3.5), the Berezin transforms of
n
∑

k=1
ek

λ⊗ ek
µ and

n
∑

k=1
f k
λ⊗ f k

µ are equal, and hence

n

∑
k=1

ek
λ ⊗ ek

µ =
n

∑
k=1

f k
λ ⊗ f k

µ, λ, µ ∈ D.

Applying Lemma 3.5, we have

W

 Kλ(β1(w))β′1(w)
...

Kλ(βn(w))β′n(w)

 =

 Lλ(γ1(w))γ′1(w)
...

Lλ(γn(w))γ′n(w)

 , w, λ ∈ ∆,

where W is an n × n unitary numerical matrix. This immediately leads to our
conclusion.
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REMARK 3.6. In Proposition 3.4, we will pay special attention to the case
that B1 = B2 and M1 and M2 are reducing for MB1 . In this case, βi = γi for all i.
Notice also that if f ∈ M1 	 B1M1, then g = U f ∈ M2 	 B1M2.

If the assumption that B1 and B2 have only simple zeros is dropped, then
Proposition 3.4 still holds, but ∆ will be replaced with some open disk ∆′ not
containing 0. The proof is completely the same.

Before continuing, we need some notations. As mentioned above, B is a
Blaschke product with only simple zeros, and the set ∆ (above Proposition 3.4) is
fixed to be a disk containing 0. Recall that there are n branches of B−1; β1, . . . , βn
which are (single valued) analytic on some neighborhood of ∆. For each reducing
subspace N of MB, put

LN,∆ = span


 h(β1(w))β′1(w)

...
h(βn(w))β′n(w)

 : h ∈ N, w ∈ ∆

 ⊆ Cn.

Now let us make an observation. Let M and M′ be two orthogonal reducing
subspaces of MB, and take any f in M and g in M′. In the proof of Proposition 3.4,
replace Kλ with f and Kµ with g, then we get

〈P(B) f , Q(B)g〉 = 0.

As done in the proof, at last we would have

n

∑
k=1

f (βk)β′k ⊗ g(βk)β′k = 0,

from which we see LM,∆ ⊥ LM′ ,∆. So we conclude that if M and M′ are two orthog-
onal reducing subspaces, then LM,∆ ⊥ LM′ ,∆. Furthermore, we have the following
lemma.

LEMMA 3.7. For each reducing subspace M, we have

dimLM	BM,∆ = dimLM,∆ = dim M	 BM.

Proof. Denote M by M1 and put M2 = M⊥, and then LM1,∆ ⊥ LM2,∆. There-
fore dimLM1,∆ + dimLM2,∆ 6 n, and hence

dimLM1	BM1,∆ + dimLM2	BM2,∆ 6 n.

Notice also that dim M1 	 BM1 + dim M2 	 BM2 = n, so it suffices to show that

dimLMi	BMi ,∆ > dim Mi 	 BMi (i = 1, 2).

To this end, consider M1 and set r = dim M1 	 BM1. Pick r linearly inde-
pendent functions h1, . . . , hr in M1	 BM1, and we will show that there is a w ∈ ∆
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such that the matrix h1(β1(w))β′1(w) · · · hr(β1(w))β′1(w)
...

. . .
...

h1(βn(w))β′n(w) · · · hr(βn(w))β′n(w)


has rank r; equivalently, the matrix h1(β1(w)) · · · hr(β1(w))

...
. . .

...
h1(βn(w)) · · · hr(βn(w))


has rank r. And we denote the above matrix by H(w) for simplicity.

In fact, the matrix H(w) has rank r when w = 0. To see this, assume
conversely that H(0) has rank less than r. Then the columns of H(0) span a
subspace in Cn with dimension less than r, and hence there is a nonzero vector
c = (c1, . . . , cr) in Cr satisfying

r

∑
i=1

cihi(β j(0)) = 0 (1 6 j 6 n).

That is,

(3.6)
〈 r

∑
i=1

cihi, Kβ j(0)

〉
= 0 (1 6 j 6 n).

By our assumption, B has only simple zeros {β j(0)}n
j=1, and thus the set {Kβ j(0) :

1 6 j 6 n} spans L2
a(D)	 BL2

a(D). So (3.6) gives that
r
∑

i=1
cihi ∈ BL2

a(D). On the

other hand,
r

∑
i=1

cihi ∈ M1 	 BM1 ⊆ L2
a(D)	 BL2

a(D),

and hence
r
∑

i=1
cihi = 0, which is a contradiction to the linear independence of

h1, . . . , hr. So
dimLM1	BM1,∆ > dim M1 	 BM1.

A similar argument shows that dimLM2	BM2,∆ > dim M2 	 BM2, as desired.

To prove Theorem 3.1, we also need the following lemma.

LEMMA 3.8. Let B be a finite Blaschke product (B need not have only simple zeros)
and M is a reducing subspace of MB. Then for any Mobius map φ,

dim M	 BM = dim M	 φ(B)M.

Proof. For each a ∈ D, consider the map ϕa(B). Since Mϕa(B) is a Fredholm
operator on the Bergman space and M is a reducing subspace of Mϕa(B), then it
is easy to check that

Mϕa(B)|M : M→ M
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is also a Fredholm operator. Moreover, since a → Mϕa(B)|M is a continuous map
from D to bounded operators on M, then the Index Mϕa(B)|M is a continuous
integer-valued function in a. Then from

Index Mϕa(B)|M = −dim M	 ϕa(B)M,

we get
dim M	 BM = dim M	 ϕa(B)M, a ∈ D.

This immediately leads to our conclusion.

Now we are prepared to prove Theorem 3.1.

Proof of Theorem 3.1. (i) As mentioned above, for a finite Blaschke product
B, there is always a Mobius map φ such that φ(B) has only simple zeros. Notice
also that MB and Mφ(B) have the same (minimal) reducing subspaces. Then by
Lemma 3.8, without loss of generality, we can assume that B is a finite Blaschke
product with only simple zeros, and let M and N be two distinct minimal reduc-
ing subspaces of MB.

Now suppose dim M	 BM = dim N	 BN = 1 and assume conversely that
M is unitarily equivalent to N; that is, there exists a unitary operator U : M→ N
such that UMB = MBU. Then by Proposition 3.4 and Remark 3.6, there exists an
open disk ∆ and an n× n numerical unitary matrix W such that

(3.7) W

 f (β1(w))β′1(w)
...

f (βn(w))β′n(w)

 =

 U f (β1(w))β′1(w)
...

U f (βn(w))β′n(w)

 , w ∈ ∆,

where f ∈ M.
Now take f = f0, a nonzero function in M and let g0 = U f0 ∈ N. Since

by Lemma 3.7 dimLM,∆ = dimLN,∆ = 1, then there exist two nonzero vectors c
and d in Cn such that c spans LM,∆ and d spans LN,∆. Moreover, c and d can be
chosen carefully such that f0(β1(w))β′1(w)

...
f0(βn(w))β′n(w)

 = f0(β1(w))β′1(w)c, w ∈ ∆,

 g0(β1(w))β′1(w)
...

g0(βn(w))β′n(w)

 = g0(β1(w))β′1(w)d, w ∈ ∆.

Then by (3.7), we have on ∆

f0(β1)β′1Wc = g0(β1)β′1d,

and hence f0 = cg0 for a constant c 6= 0. So the reducing subspace [ f0] generated
by f0 equals [g0]. Since M is minimal, M = [ f0] and similarly N = [g0], and hence
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M = N, which is a contradiction. So M is not unitarily equivalent to N. Applying
Theorem 3.3 yields M ⊥ N, as desired.

(ii) If dim M	 BM 6= dim N	 BN, then obviously M is not unitarily equiv-
alent to N. Therefore by Theorem 3.3, M ⊥ N. The proof of Theorem 3.1 is com-
plete.

Finally, we will apply Theorem 3.3 to give a proof of Proposition 1.4. We
restate it here.

PROPOSITION 3.9. Let B be a finite Blaschke product of degree n. Then the fol-
lowing are equivalent:

(i) Conjecture 1.1 holds; that is, MB has at most n minimal reducing subspaces.
(ii) CB is abelian.

(iii) All minimal projections in CB are orthogonal.

Proof. (iii) ⇒ (ii) follows from the fact that CB is a von Neumann algebra
spanned by its minimal projections.

(ii)⇒ (iii) follows from a simple fact: if A is an abelian von Neumann alge-
bra andA has a minimal projection, then all minimal projections inA are orthog-
onal.

(iii)⇒ (i) Notice that every minimal reducing subspace is exactly the range
of a minimal projection in CB, so (iii) implies all minimal reducing subspaces are
orthogonal. Thus there are only finite minimal reducing subspaces, denoted by
Mi (0 6 i 6 t), whose direct sum is the Bergman space. Notice that

L2
a(D)	 BL2

a(D) =
t⊕

i=0

Mi 	 BMi,

and hence t 6 n, where n is degree of B, as desired. One can also see [11].
(i) ⇒ (iii) follows from Theorem 31 in [11]. Here we include a similar but

shorter proof.
Suppose conversely that (iii) does not hold, and then there exist two mini-

mal reducing subspaces M and N which are not orthogonal. By Theorem 3.3, M
is unitarily equivalent to N; that is, there is a unitary operator U from M onto N
commuting with MB. Now for each 0 < a < 1, set

Ma = { f + aU f : f ∈ M}.

It is easy to see that each Ma is a reducing subspace and is minimal since M
is minimal. Moreover, it is not difficult to check that if 0 < a < a′ < 1, then
Ma 6= Ma′ . (Or see the proof of Theorem 31 in [11]). This is a contradiction to
(i).
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4. IN THE CASE OF deg B = 5, 6

In this section, we will give the proof of Theorem 1.8, that is restated here.

THEOREM 4.1. Let B be a Blaschke product of degree n with n = 5 or 6, then MB
has at most n minimal reducing subspaces.

Before proving Theorem 4.1, let us recall some preliminary facts. As in Sec-
tion 2 in [23], let B = P

Q be a Blaschke product of order n, where P and Q are two
polynomials of degree n. Let

f (w, z) = P(w)Q(z)− P(z)Q(w),

and the Riemann surface SB equals the locus S f of solutions of the equation
f (w, z) = 0 in D2. For details of this Riemann surface, see [23]. Set

F = {z : there exists z′ such that B′(z′) = 0 and B(z′) = B(z)}

and it is known that F is a finite set contained in D (for example, see Bochner’s
theorem [24]). Suppose P is a polygon drawn through all points in F and a fixed
point on the unit circle such that D− P is simply connected. By Theorem 12.3 in
[6], the n distinct roots w = ρk(z) (1 6 k 6 n) of the equation

f (z, w) = 0 (or equivalently, B(w)− B(z) = 0)

are holomorphic functions in D− P. Then we have the following.

LEMMA 4.2. Suppose B = z2 ϕα ϕβ ϕγ with α, β, γ ∈ D, then all ρk can be ex-
tended analytically to the unit disk if and only if α = β = γ = 0.

Proof. If α = β = γ = 0, then clearly ρk has the form ωkz, where ω = ei2π/5.
Now assume B = z2 ϕα ϕβ ϕγ and all ρk can be extended analytically to the

unit disk. We will show α = β = γ = 0. Since each ρk satisfies

(4.1) B(ρk(z))− B(z) = 0,

then |ρk(z)| → 1 (|z| → 1) and hence all ρk are Blaschke products, of degree one.
One of them is the identity map. There are two cases.

Case I. There is a k such that ρk(z) = cz, where |c| = 1 and c 6= 1. Then from
(4.1), we see

(4.2) B(cz) = B(z).

First we show that either α = β = γ = 0 or αβγ 6= 0. If not, then there are
essentially two cases to discuss. If α 6= 0 and β = γ = 0, then by (4.2), cα = α.
So α = 0, which is a contradiction. If αβ 6= 0 and γ = 0, then by comparing the
zeros of two sides of (4.2) we get c = −1 and β = −α. Then B = z3 ϕα2(z2) and
B(cz) 6= B(z), which is a contradiction.

Next we will exclude the case αβγ 6= 0 to finish the proof. Again by (4.2),
(cα, cβ, cγ) is a permutation of (α, β, γ). Without loss of generality, β = ca and
then (c2α, cγ) is a permutation of (α, γ). Since c 6= 1, cγ 6= γ, so c2α = γ and
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cγ = α. Therefore c3 = 1. By a simple computation, we get B(cz) = c2B(z) 6=
B(z), which is a contradiction.

Case II. There is a k such that ρk(z) is a Mobius map other than the identity
map and ρk(0) 6= 0. Write ρk = φ. By B ◦ φ = B, z2 is a factor of B ◦ φ. So we can
assume that α = β = φ(0). Now α 6= 0 is a zero of B with multiplicity > 2, and by
B ◦ φ = B, α is also a zero of B ◦ φ with multiplicity > 2. This implies φ(α) = 0.
So there exists a constant ξ (|ξ| = 1) satisfying φ = ξϕα, and by α = φ(0), we get
φ = ϕα. By (4.1),

z2 ϕ2
α ϕγ ◦ ϕα = z2 ϕ2

α ϕγ.

So ϕγ ◦ ϕα = ϕγ, which is impossible.

To prove Theorem 4.1, we also need the following lemma, which comes
from Lemma 2 of [20]. However, Sun’s proof reads difficult. We include a differ-
ent proof for completeness.

LEMMA 4.3 ([20]). Suppose B be a finite Blaschke product of degree n, and S is a
unitary operator which commutes with MB, then there exist constants ck (1 6 k 6 n)

satisfying
n
∑

k=1
|ck|2 = 1 and

(4.3) Sh(w) =
n

∑
k=1

ckρ′k(w)h ◦ ρk(w), h ∈ L2
a(D), w ∈ D.

REMARK 4.4. Let us make clear what (4.3) means. First, both sides of (4.3)
are analytic in D− P, so (4.3) holds for w ∈ D− P; notice that the left side Sh
of (4.3) is analytic in D, so the right side of (4.3) can be extend analytically to D.
Therefore (4.3) holds on D.

Proof. First we will prove Lemma 4.3 in the case that B has only simple
zeros. Let β1, . . . , βn be n branches of B−1 and they are locally analytic. And
regard ρk(z) (1 6 k 6 n) as n different branches of B−1 ◦ B; clearly, locally
(ρ1(z), . . . , ρn(z)) is a permutation of (β1 ◦ B, . . . , βn ◦ B).

Fix β1 and without loss of generality, we may assume that the set ∆ in Propo-
sition 3.4 is such that β1(∆) j D− P (otherwise we may replace ∆ with some
open disk ∆′ and 0 is not necessarily in ∆′). Also we can assume

ρi|β1(∆)
= βi ◦ B|β1(∆)

.

Then we have

(4.4) ρi ◦ β1|∆ = βi|∆,

and hence

(4.5) ρ′i ◦ β1β′1|∆ = β′i|∆.
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Since S commutes with MB, by Proposition 3.4 there exists an n× n numer-
ical unitary matrix W such that

W

 f (β1(w))β′1(w)
...

f (βn(w))β′n(w)

 =

 S f (β1(w))β′1(w)
...

S f (βn(w))β′n(w)

 , f ∈ L2
a(D) and w ∈ ∆.

So there are n constants c1, . . . , cn satisfying
n
∑

i=1
|ci|2 = 1 and

S f (β1(w))β′1(w) =
n

∑
i=1

ci f (βi(w))β′i(w), f ∈ L2
a(D) and w ∈ ∆.

Therefore by (4.4) and (4.5), we have for each f ∈ L2
a(D)

S f (β1(w))β′1(w) =
n

∑
i=1

ci f (ρi ◦ β1(w))ρ′i ◦ β1(w)β′1(w), w ∈ ∆,

and thus

S f (β1(w)) =
n

∑
i=1

ci f (ρi ◦ β1(w))ρ′i ◦ β1(w), w ∈ ∆.

That is, (4.3) holds on β1(∆). Moreover, since the two sides of (4.3) are analytic
on the connected set D− P, then (4.3) holds on D− P. And by Remark 4.4, we
have (4.3) on D. Then the proof is complete in the case that B has only simple
zeros.

In general, by Remark 3.6 we still have Proposition 3.4, but then ∆ will be
replaced with some other disk. Then the same argument as above shows that
(4.3) holds.

We have an immediate corollary.

COROLLARY 4.5. Let CB be the commutant of {MB, M∗B}, then dim CB 6 n.

Proof. Notice that Lemma 4.3 implies all unitary operators in CB span a sub-
space of dimension 6 n. Since CB is a von Neumann algebra containing the iden-
tity, and any von Neumann algebra is the finite linear span of its unitary operators
[8], then we get dim CB 6 n, as desired.

Now we comes to the proof of Theorem 4.1.

Proof of Theorem 4.1. Let B be a finite Blaschke product and there are two
cases under consideration: deg B = 5 and deg B = 6.

Case I. deg B = 5. Recall that for any Blaschke product B of degree 5, there
always exists an a and c in D such that ϕa ◦ B ◦ ϕc = z2 ϕα ϕβ ϕγ with α, β, γ ∈ D.
So without loss of generality, assume B = z2 ϕα ϕβ ϕγ as above.
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Observe that there is always an orthogonal decomposition of L2
a(D):

(4.6) L2
a(D) =

t⊕
i=0

Mi,

where each Mi (0 6 i 6 t) is a minimal reducing subspace. Here and below M0
always denotes the distinguished reducing subspace. Since (4.6) gives

(4.7) L2
a(D)	 BL2

a(D) =
t⊕

i=0

Mi 	 BMi,

then we get

(4.8)
t

∑
i=0

dim Mi 	 BMi = deg B = 5.

The next discussion is based on (4.7) and (4.8). In fact, noting dim M0	 BM0 = 1,
it suffices to consider the following cases:

(i) t = 4 and dim Mi 	 BMi = 1 (1 6 i 6 4);
(ii) t = 3, dim Mi 	 BMi = 1 (1 6 i 6 2) and dim M3 	 BM3 = 2;

(iii) t = 1 and dim M1 	 BM1 = 4;
(iv) t = 2, dim M1 	 BM1 = 1 and dim M2 	 BM2 = 3;
(v) t = 2 and dim M1 	 BM1 = dim M2 	 BM2 = 2.

Cases (i)–(iv) can be done by similar arguments as in the proof of Corollary 3.2.
For example, let us deal with case (ii) and suppose conversely that there is some
other minimal reducing subspace other than Mi (0 6 i 6 3), say N. Since
dim Mi 	 BMi = 1 (0 6 i 6 2), then by Theorem 3.1, N is orthogonal to
Mi (0 6 i 6 2). Therefore N j M3, and hence by minimality, N = M3. This
is a contradiction. Case (i), (iii) and (iv) can be done similarly. The difficulty lies
in case (v) and we will discuss this case in details. Below, we will consider case
(v), and show that there is no minimal reducing subspace other than M0, M1 and
M2.

To this end, assume conversely that M is a minimal reducing subspace other
than M0, M1 and M2. Then M is orthogonal to M0, and hence M j M1 ⊕M2. A
simple application of Theorem 3.3 shows that M1 and M2 are unitarily equivalent.
That is, there is a unitary U from M1 onto M2 which commutes with MB. Now
extend U to Ũ such that Ũ|M1 = U and Ũ|M⊥1 = 0. Let Pj denote the orthogonal

projection from L2
a(D) onto Mj (j = 0, 1, 2), and it is easy to check that

P0, P1, P2, Ũ and Ũ∗

are linearly independent. Moreover, for any pair (c1, c2) ∈ T2,

P0 +
2

∑
i=1

ciPi and P0 + c1Ũ + c2Ũ∗
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are unitary operators which commute with MB. And it is easy to see that all such
unitary operators span a subspace of dimension 5, then by Lemma 4.3, it is not
difficult to show that for each k (1 6 k 6 n),

h→ ρ′k(w)h ◦ ρk(w)

is a well defined map from L2
a(D) to L2

a(D). Precisely, by Remark 4.4, the function
ρ′k(w)h ◦ ρk(w) that is analytic in D− P can be analytically extended to D for each
h ∈ L2

a(D). In particular, ρ′k(w) is analytic in D and hence ρk can be extend to an
analytic function over D. Then by Lemma 4.2, we get B(z) = −z5. In this case, it
is well known that MB has precisely 5 minimal reducing subspaces and each one
of them, say N, satisfies dim N 	 BN = 1, which is a contradiction.

Case II. deg B = 6. Similarly, we can assume B = z2 ϕα ϕβ ϕγ ϕδ with α, β, γ, δ

∈ D. And by (4.7) and similar arguments as in the proof of Case I, it suffices to
consider this case:

t = 3, dim M1 	 BM1 = 1 and dim Mi 	 BMi = 2 (i = 2, 3).

And by careful verifications, one can established a similar version of Lemma 4.2,
which will derive a contradiction if we assume there is some other minimal re-
ducing subspace different from Mi (0 6 i 6 3). The proof is just like that of
case (v). Thus Theorem 4.1 also holds in this case. The proof of Theorem 4.1 is
complete.

To end this section, we will apply Corollary 4.5 to give another proof of
Corollary 3.2. And by Proposition 3.9 (=Proposition 1.4), we restate it as the fol-
lowing form.

COROLLARY 4.6 ([25], [11], [23]). Let B be a finite Blaschke product of degree n
with 1 6 n 6 4, then CB is abelian, and hence MB has at most n minimal reducing
subspaces.

Proof. As mentioned above, CB is a von Neumann algebra, and by Corol-
lary 4.5, dim CB 6 deg B = n. Notice Theorem III.1.2 in [9] states that any finite
dimensional von Neumann algebra is ∗-isomorphic to the direct sum of full matrix alge-
bras

r⊕
k=1

Mnk (C).

So we assume CB is ∗-isomorphic to

(4.9)
r⊕

k=1

Mnk (C).

If 1 6 n 6 3, then dim CB 6 n 6 3. Since dim Mj(C) = j2, clearly all nk in (4.9)
equal one. Thus CB is abelian.

If n = 4, then dim CB 6 4. To reach a contradiction, assume that CB is not
abelian. By dim CB 6 4, it is easy to see that CB ∼= M2(C), whose center is trivial.
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But by Theorem 3.1, the orthogonal projection P0 onto the distinguished subspace
M0 is orthogonal to any other minimal projection in CB. And since all minimal
projections span CB, P0 belongs to the center of CB. This is a contradiction. The
proof is complete.
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ADDED IN PROOFS. R. Douglas, S. Sun and D. Zheng recently proved that when the
order n of Blaschke product B is equal to 7, 8, the multiplication operator MB has at most
n minimal reducing subspaces; see Adv. Math. 226(2011), 541–584.


