s-NUMBERS OF ELEMENTARY OPERATORS ON C^{*}-ALGEBRAS

M. ANOUSSIS, V. FELOUZIS and I.G. TODOROV

Communicated by Kenneth R. Davidson

Abstract

We study s-functions of elementary operators acting on C^{*}-algebras. The main results are the following: If τ is any tensor norm and $A, B \in$ $\mathbf{B}(\mathcal{H})$ are such that the sequences $s(A), s(B)$ of their singular numbers belong to a tensor stable Calkin space \mathfrak{i} then the sequence of approximation numbers of $A \otimes_{\tau} B$ belongs to i. If \mathcal{A} is a C^{*}-algebra, i is a tensor stable Calkin space, s is an s-number function, and $a_{i}, b_{i} \in \mathcal{A}, i=1,2, \ldots, m$ are such that $s\left(\pi\left(a_{i}\right)\right), s\left(\pi\left(b_{i}\right)\right) \in \mathfrak{i}, i=1,2, \ldots, m$ for some faithful representation π of \mathcal{A} then $\mathrm{s}\left(\sum_{i=1}^{m} M_{a_{i}, b_{i}}\right) \in \mathfrak{i}$. The converse implication holds if and only if the ideal of compact elements of \mathcal{A} has finite spectrum. We also prove a quantitative version of a result of Ylinen.

Keywords: Elementary operator, s-numbers, C*-algebra.
MSC (2000): Primary 46L05; Secondary 47B47, 47L20.

INTRODUCTION

Let \mathcal{A} be a C^{*}-algebra. If $a, b \in \mathcal{A}$ we denote by $M_{a, b}$ the operator on \mathcal{A} given by $M_{a, b}(x)=a x b$. An operator $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ is called elementary if $\Phi=\sum_{i=1}^{m} M_{a_{i}, b_{i}}$ for some $a_{i}, b_{i} \in \mathcal{A}, i=1, \ldots, m$.

Let \mathcal{H} be a separable Hilbert space and $\mathbf{B}(\mathcal{H})$ the C^{*}-algebra of all bounded linear operators on \mathcal{H}. A theorem of Fong and Sourour [11] asserts that an elementary operator Φ on $\mathbf{B}(\mathcal{H})$ is compact if and only if there exists a representation $\sum_{i=1}^{m} M_{A_{i}, B_{i}}$ of Φ such that the symbols $A_{i}, B_{i}, i=1, \ldots, m$, of Φ are compact operators. If, instead of $\mathbf{B}(\mathcal{H})$, one has a C^{*}-algebra \mathcal{A}, the role of the compact operators is played by the compact elements: recall that an element a of \mathcal{A} is called compact if the operator $M_{a, a}: \mathcal{A} \rightarrow \mathcal{A}$ is compact. Ylinen [27] showed that an element $a \in \mathcal{A}$ is compact if and only if there exists a faithful $*$-representation π of \mathcal{A} such that the operator $\pi(a)$ is compact.

The result of Fong and Sourour was extended by Mathieu [19] who showed that if \mathcal{A} is a prime C^{*}-algebra, then an elementary operator Φ on \mathcal{A} is compact if and only if there exist compact elements $a_{i}, b_{i} \in \mathcal{A}, i=1, \ldots, m$, such that $\Phi=\sum_{i=1}^{m} M_{a_{i}, b_{i}}$. Recently Timoney [25] extended this result to general C^{*}-algebras.

In this paper we investigate quantitative aspects of the above results. It is well-known that a bounded operator on a Banach space is compact if and only if its Kolmogorov numbers form a null sequence. In our approach we use the more general notion of an s-function introduced by Pietsch and the theory of ideals of $\mathbf{B}(\mathcal{H})$ developed by von Neumann, Schatten, Calkin and others. A detailed study of these notions is presented in the monographs [21], [5], [12] and [23]. Our analysis rests on the classical description of the ideals of $\mathbf{B}(\mathcal{H})$ in terms of subspaces of c_{0} satisfying a certain closure property [4], a result that has inspired many of the developments in the area thereafter. Recently, advances in the study of ideals of $\mathbf{B}(\mathcal{H})$ were made in [9], [13], [14], [15], [16].

In Section 1 of the paper we recall the definitions of Calkin spaces and the basic properties of s-functions.

Weiss considered in [26] a property for ideals of $\mathbf{B}(\mathcal{H})$, called "tensor product closure property", or "tensor stability". In Section 2 we study the analogous property for Calkin spaces. We give a necessary and sufficient condition for the tensor stability of a singly generated Calkin space. We also provide a sufficient condition for the tensor stability of a Lorentz sequence space.

If $a, b \in \mathcal{A}$ and \mathcal{C} is a C^{*}-subalgebra of \mathcal{A} such that $M_{a, b}(\mathcal{C}) \subseteq \mathcal{C}$, we let $M_{a, b}^{\mathcal{C}}$ be the operator on \mathcal{C} given by $M_{a, b}^{\mathcal{C}}(x)=a x b$. In Section 3 we prove inequalities relating the s-number functions of the operators $M_{a, b}$ and $M_{a, b}^{\mathcal{C}}$. These results are used subsequently in Section 5.

In Section 4 we study elementary operators acting on $\mathbf{B}(\mathcal{H})$. Some of our results can be presented in a more general setting. Namely, we show that if τ is any tensor norm and $A, B \in \mathbf{B}(\mathcal{H})$ are such that $s(A), s(B)$ belong to a tensor stable Calkin space i then the sequence of approximation numbers of the operator $A \otimes_{\tau} B$ acting on the Banach space tensor product $\mathcal{H} \otimes_{\tau} \mathcal{H}$ belongs to i. A result of this type for $\mathfrak{i}=\ell_{p, q}$ was proved by König in [17] who used it to establish results concerning tensor stability of s-number ideals in Banach spaces. We also show that if Φ is an elementary operator on $\mathbf{B}(\mathcal{H}), \mathfrak{i}$ is a tensor stable Calkin space and s is an s-function then $\mathrm{s}(\Phi) \in \mathfrak{i}$ if and only if there exist $A_{i}, B_{i} \in \mathbf{B}(\mathcal{H})$, $i=1, \ldots, m$, such that $\Phi=\sum_{i=1}^{m} M_{A_{i}, B_{i}}$ and $s\left(A_{i}\right), s\left(B_{i}\right) \in \mathfrak{i}$. It is well known that all s-functions coincide for operators acting on Hilbert spaces. It follows from our result that if Φ is an elementary operator on $\mathbf{B}(\mathcal{H}), \mathfrak{i}$ is a tensor stable Calkin space and s, s^{\prime} are s-number functions, then the sequence $s(\Phi)$ belongs to i if and only if the sequence $s^{\prime}(\Phi)$ belongs to i.

In Section 5 we study elementary operators acting on C^{*}-algebras. We show that if \mathcal{A} is a C^{*}-algebra, \mathfrak{i} is a tensor stable Calkin space, s is an s-number function, and $a_{i}, b_{i} \in \mathcal{A}, i=1, \ldots, m$, are such that $s\left(\pi\left(a_{i}\right)\right), s\left(\pi\left(b_{i}\right)\right) \in \mathfrak{i}, i=1, \ldots, m$ for some faithful representation π of \mathcal{A}, then $\mathrm{s}\left(\sum_{i=1}^{m} M_{a_{i}, b_{i}}\right) \in \mathfrak{i}$. The converse implication holds if and only if the ideal of compact elements of \mathcal{A} has finite spectrum. Finally, we prove that if $a \in \mathcal{A}$ and the sequence $\mathrm{d}\left(M_{a, a}\right)$ of Kolmogorov numbers of $M_{a, a}$, belongs to \mathfrak{i} for some Calkin space \mathfrak{i} then $s(\rho(a))^{2} \in \mathfrak{i}$, where ρ is the reduced atomic representation of \mathcal{A}. This result may be viewed as a quantitative version of the aforementioned result of Ylinen.

1. CALKIN SPACES AND s-FUNCTIONS

In this section we recall some notions and results concerning the ideal structure of the algebra of all bounded linear operators acting on a separable Hilbert space. We also recall the definition of an s-function.

We will denote by \mathbf{B} the class of all bounded linear operators between Ba nach spaces. If \mathcal{X} and \mathcal{Y} are Banach spaces, we will denote by $\mathbf{B}(\mathcal{X}, \mathcal{Y})$ the space of all bounded linear operators from \mathcal{X} into \mathcal{Y}. If $\mathcal{X}=\mathcal{Y}$ we set $\mathbf{B}(\mathcal{X})=\mathbf{B}(\mathcal{X}, \mathcal{X})$. Ideals of $\mathbf{B}(\mathcal{X})$ or, more generally, of a normed algebra \mathcal{A}, will be proper, twosided and not necessarily norm closed. By $\mathbf{K}(\mathcal{X})$ (respectively $\mathbf{F}(\mathcal{X})$) we denote the ideal of all compact (respectively finite rank) operators on \mathcal{X}. By $\|T\|$ we denote the operator norm of a bounded linear operator T. We denote by ℓ_{∞} the space of all bounded complex sequences, by c_{0} the space of all sequences in ℓ_{∞} converging to 0 and by c_{00} the space of all sequences in c_{0} that are eventually zero. The space of all p-summable complex sequences is denoted by ℓ_{p}. For a subspace \jmath of ℓ_{∞}, we let \jmath^{+}be the subset of \jmath consisting of all sequences with non-negative terms. We denote by c_{0}^{\star} the subset of c_{0}^{+}consisting of all decreasing sequences.

If $\boldsymbol{\alpha}=\left(\alpha_{n}\right)_{n=1}^{\infty}$ and $\boldsymbol{\beta}=\left(\beta_{n}\right)_{n=1}^{\infty}$ are sequences of real numbers, we write $\alpha \leqslant \beta$ if $\alpha_{n} \leqslant \beta_{n}$ for each $n \in \mathbb{N}$. For every $\alpha=\left(\alpha_{n}\right)_{n=1}^{\infty} \in c_{0}$, we let $\alpha^{\star}=$ $\left(\alpha_{n}^{\star}\right)_{n=1}^{\infty} \in c_{0}^{\star}$ be the decreasing rearrangement of the sequence $\left(\left|\alpha_{n}\right|\right)_{n=1}^{\infty}$ including multiplicities, that is, the sequence given by

$$
\begin{aligned}
& \alpha_{1}^{\star}=\max \left\{\left|\alpha_{n}\right|: n \in \mathbb{N}\right\} \\
& \alpha_{1}^{\star}+\cdots+\alpha_{n}^{\star}=\max \left\{\sum_{i \in I}\left|\alpha_{i}\right|: I \subseteq \mathbb{N},|I|=n\right\} .
\end{aligned}
$$

A Calkin space [23] is a subspace \mathfrak{i} of c_{0} possessing the following property:

$$
\text { If } \alpha \in \mathfrak{i}, \beta \in c_{0} \text { and } \beta^{\star} \leqslant \alpha^{*} \text { then } \beta \in \mathfrak{i}
$$

Let \mathcal{H} be a separable Hilbert space. If $e, f \in \mathcal{H}$ we denote by $f^{*} \otimes e$ the rank one operator on \mathcal{H} given by $f^{*} \otimes e(x)=(x, f) e, x \in \mathcal{H}$. If $T \in \mathbf{K}(\mathcal{H})$, there exist orthonormal sequences $\left(f_{n}\right)_{n=1}^{\infty} \subseteq \mathcal{H}$ and $\left(e_{n}\right)_{n=1}^{\infty} \subseteq \mathcal{H}$ and a unique sequence
$\left(s_{n}(T)\right)_{n=1}^{\infty} \in c_{0}^{\star}$ such that

$$
T=\sum_{n=1}^{\infty} s_{n}(T) f_{n}^{*} \otimes e_{n}
$$

where the series converges in norm. Such a decomposition of T is called a Schmidt expansion. The elements of the sequence $s(T)=\left(s_{n}(T)\right)_{n=1}^{\infty}$ are called the singular numbers of T.

For every ideal $\mathcal{I} \subseteq \mathbf{B}(\mathcal{H})$, we set

$$
\mathfrak{i}(\mathcal{I})=\left\{\boldsymbol{\alpha} \in c_{0} \text { : there exists } T \in \mathcal{I} \text { such that } \boldsymbol{\alpha}^{\star}=s(T)\right\} ;
$$

conversely, for every Calkin space \mathfrak{i} we set

$$
\mathcal{I}(\mathfrak{i})=\{T \in \mathbf{B}(\mathcal{H}): s(T) \in \mathfrak{i}\} .
$$

The following classical result of Calkin [4] describes the ideal structure of $\mathbf{B}(\mathcal{H})$ in terms of Calkin spaces (for a proof of the formulation given here see Theorem 2.5 of [23]).

THEOREM 1.1 ([4]). Let \mathcal{H} be a separable infinite dimensional Hilbert space. The mapping $\mathcal{I} \mapsto \mathfrak{i}(\mathcal{I})$ is an isomorphism from the lattice of all ideals of $\mathbf{B}(\mathcal{H})$ onto the lattice of all Calkin spaces with inverse $\mathfrak{i} \mapsto \mathcal{I}(\mathfrak{i})$.

There are several equivalent ways of working with ideals of $\mathbf{B}(\mathcal{H})$ (ideals, characteristic sets and Calkin spaces are some of them). We have chosen to work with Calkin spaces since in Section 5 we consider operators acting on general C^{*}-algebra and Calkin's classification of ideals is not valid in this context.

We now recall Pietsch's definition of s-functions. A map s which assigns to every operator $T \in \mathbf{B}$ a sequence of non-negative real numbers $\mathrm{s}(T)=\left(\mathrm{s}_{1}(T)\right.$, $\left.\mathrm{s}_{2}(T), \ldots\right)$ is called an s-function if the following are satisfied:
(i) $\|T\|=\mathrm{s}_{1}(T) \geqslant \mathrm{s}_{2}(T) \geqslant \cdots$, for $T \in \mathbf{B}$.
(ii) $\mathrm{s}_{n}(S+T) \leqslant \mathrm{s}_{n}(S)+\|T\|$, for $S, T \in \mathbf{B}(\mathcal{X}, \mathcal{Y})$.
(iii) $\mathrm{s}_{n}(R S T) \leqslant\|R\|\|T\| \mathbf{s}_{n}(S)$, for $T \in \mathbf{B}(\mathcal{X}, \mathcal{Y}), S \in \mathbf{B}(\mathcal{Y}, \mathcal{Z}), R \in \mathbf{B}(\mathcal{Z}, \mathcal{W})$.
(iv) If $\operatorname{rank}(T)<n$ then $\mathrm{s}_{n}(T)=0$.
(v) $\mathrm{s}_{n}\left(I_{n}\right)=1$, where I_{n} is the identity operator on ℓ_{2}^{n}. (Here ℓ_{2}^{n} is the n-dimensional complex Hilbert space.)

An s-function s is said to be additive if $\mathrm{s}_{m+n-1}(S+T) \leqslant \mathrm{s}_{m}(S)+\mathrm{s}_{n}(T)$ for all $m, n \in \mathbb{N}$ and all $S, T \in \mathbf{B}(\mathcal{X}, \mathcal{Y})$.

We give below the definition of some s-functions which will be used in the sequel. Let \mathcal{X} and \mathcal{Y} be Banach spaces and $T \in \mathbf{B}(\mathcal{X}, \mathcal{Y})$.
(a) The sequence $\mathrm{a}(T)=\left(\mathrm{a}_{n}(T)\right)_{n=1}^{\infty}$ of approximation numbers of T is given by

$$
\mathrm{a}_{n}(T)=\inf \{\|T-A\|: A \in \mathbf{B}(\mathcal{X}, \mathcal{Y}), \operatorname{rank}(A)<n\}
$$

(b) The sequence $\mathrm{d}(T)=\left(\mathrm{d}_{n}(T)\right)_{n=1}^{\infty}$ of Kolmogorov numbers of T is given by

$$
\mathrm{d}_{n}(T)=\inf _{V} \sup _{\|x\| \leqslant 1} \inf _{y \in V}\|T x-y\|,
$$

where the infimum is taken over all subspaces V of \mathcal{Y} with $\operatorname{dim} V<n$.
(c) The sequence $\mathrm{h}(T)$ of Hilbert numbers of T is given by

$$
\mathrm{h}_{n}(T)=\sup s_{n}(A T B)
$$

where the supremum is taken over all contractions $A \in \mathbf{B}(\mathcal{Y}, \mathcal{H}), B \in \mathbf{B}(\mathcal{K}, \mathcal{X})$ and Hilbert spaces \mathcal{H} and \mathcal{K}.

The approximation, the Kolmogorov and the Hilbert s-functions are additive [21]. Moreover, for every s-function s, every operator $T \in \mathbf{B}$ and every n we have $\mathrm{h}_{n}(T) \leqslant \mathrm{s}_{n}(T) \leqslant \mathrm{a}_{n}(T)$ [21].

A well-known result of Pietsch ([21], Theorem 11.3.4) implies that if s is an s-function, \mathcal{H} is a separable Hilbert space and $T \in \mathbf{K}(\mathcal{H})$ then $\mathrm{s}_{n}(T)$ is equal to the $n^{\text {th }}$-singular number $s_{n}(T)$ of T.

2. TENSOR STABLE CALKIN SPACES

In this section we present some results concerning tensor stable Calkin spaces. We characterize the tensor stable principal Calkin spaces and show that certain Lorentz sequence spaces are tensor stable.

If $\boldsymbol{\alpha}=\left(\alpha_{n}\right)_{n=1}^{\infty}, \boldsymbol{\beta}=\left(\beta_{n}\right)_{n=1}^{\infty} \in c_{0}$, we define the sequence $\boldsymbol{\alpha} \otimes \boldsymbol{\beta}=\left(\gamma_{n}\right)_{n=1}^{\infty} \in$ c_{0}^{\star} by

$$
\begin{aligned}
& \gamma_{1}=\max \left\{\left|\alpha_{i} \beta_{j}\right|:(i, j) \in \mathbb{N} \times \mathbb{N}\right\} \\
& \gamma_{1}+\cdots+\gamma_{n}=\max \left\{\sum_{(i, j) \in I}\left|\alpha_{i} \beta_{j}\right|: I \subseteq \mathbb{N} \times \mathbb{N},|I|=n\right\}
\end{aligned}
$$

The sequence $\alpha \otimes \beta$ is the rearrangement of the double sequence $\left(\left|\alpha_{n} \beta_{m}\right|\right)_{n, m=1}^{\infty}$ in decreasing order including multiplicities.

Definition 2.1. Let \mathfrak{i} and \mathfrak{j} be Calkin spaces. We let $\mathfrak{i} \otimes \mathfrak{j}$ be the smallest Calkin space containing the sequences $\alpha \otimes \beta$, where $\alpha \in \mathfrak{i}$ and $\beta \in \mathfrak{j}$. A Calkin space \mathfrak{i} is said to be tensor stable if $\mathfrak{i} \otimes \mathfrak{i}=\mathfrak{i}$.

Let \mathcal{H} be a separable infinite dimensional Hilbert space. Weiss [26] defined the tensor product closure property for ideals of $\mathbf{B}(\mathcal{H})$. An ideal \mathcal{I} of $\mathbf{B}(\mathcal{H})$ has this property if $S \otimes T \in \mathcal{I}$ whenever $S, T \in \mathcal{I}$. Here, the Hilbert space $\mathcal{H} \otimes \mathcal{H}$ is identified with \mathcal{H} in a natural way. It is easy to see that an ideal $\mathcal{I} \subseteq \mathbf{B}(\mathcal{H})$ has the tensor product closure property if and only if $\mathfrak{i}(\mathcal{I})$ is a tensor stable Calkin space.

We would like to note that tensor stability may be considered in the more general context of the study of ideals of $\mathbf{B}(\mathcal{H})$ as it appears in [9]. More specifically, a related property called arithmetic mean stability is studied there and several applications are obtained in the papers of Kaftal and Weiss [13], [14], [15], [16].

We will need the following lemma.

LEMMA 2.2. If $\boldsymbol{\alpha}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}, \boldsymbol{\beta}^{\prime} \in c_{0}^{+}$are such that $\boldsymbol{\alpha} \leqslant \boldsymbol{\alpha}^{\prime}$ and $\boldsymbol{\beta} \leqslant \boldsymbol{\beta}^{\prime}$ then $\boldsymbol{\alpha} \otimes \boldsymbol{\beta} \leqslant$ $\alpha^{\prime} \otimes \boldsymbol{\beta}^{\prime}$.

Proof. Clearly $\alpha_{m} \beta_{n} \leqslant \alpha_{m}^{\prime} \beta_{n}^{\prime}$ for every m, n. So to prove the lemma it suffices to prove that if $\alpha \leqslant \beta$ then $\alpha^{\star} \leqslant \beta^{\star}$. Consider an injection $\pi: \mathbb{N} \rightarrow \mathbb{N}$ such that $\alpha_{n}^{\star}=\alpha_{\pi(n)}$. Clearly $\alpha_{1}^{\star} \leqslant \beta_{1}^{\star}$. Suppose that $\alpha_{i}^{\star} \leqslant \beta_{i}^{\star}$ for $i=1, \ldots, n-1$. If $\alpha_{n}^{\star}>\beta_{n}^{\star}$ then $\alpha_{i}^{\star}>\beta_{n}^{\star}$ for every $i=1, \ldots, n$ and hence $\beta_{\pi(1)}, \ldots, \beta_{\pi(n)}$ are strictly greater than β_{n}^{\star} so the number of all $i \in \mathbb{N}$ such that $\beta_{i}>\beta_{n}^{\star}$ is greater than $n-1$, a contradiction.

Notation 2.3. (i) If $\boldsymbol{\alpha}_{n}=\left(\alpha_{i}^{n}\right)_{i=1}^{k_{i}}, n \in \mathbb{N}$, are finite sequences, we set

$$
\left(\boldsymbol{\alpha}_{n}\right)_{n=1}^{\infty}=\left(\alpha_{1}^{1}, \ldots, \alpha_{k_{1}}^{1}, \alpha_{1}^{2}, \ldots, \alpha_{k_{2}}^{2}, \alpha_{1}^{3}, \ldots, \alpha_{k_{3}}^{3}, \ldots\right)
$$

(ii) If $\vartheta \in \mathbb{C}$ and $r \in \mathbb{N}$ we set $(\vartheta)_{r}=(\underbrace{\vartheta, \ldots, \vartheta}_{r \text { times }})$.
(iii) If $r \in \mathbb{N}$ we let $\mathbf{r}=(\underbrace{1,1, \ldots, 1}_{r \text { times }}, 0,0, \ldots)$.
(iv) If α, β are sequences of real numbers we write $\alpha \lesssim \beta$ if there exists a constant $C>0$ such that $\alpha \leqslant C \beta$.
Observe that if $\left(M_{n}\right)_{n=0^{\prime}}^{\infty},\left(N_{n}\right)_{n=0}^{\infty}$ are sequences of non negative integers then

$$
\begin{equation*}
\left(\left(\vartheta^{n}\right)_{M_{n}}\right)_{n=0}^{\infty} \otimes\left(\left(\vartheta^{n}\right)_{N_{n}}\right)_{n=0}^{\infty}=\left(\left(\vartheta^{n}\right)_{k+l=n} M_{k} N_{l}\right)_{n=0}^{\infty} . \tag{2.1}
\end{equation*}
$$

Lemma 2.4. Let \mathfrak{i} be a Calkin space. If $\boldsymbol{\alpha} \in \mathfrak{i}$ and $\boldsymbol{\beta} \in c_{00}$ then $\boldsymbol{\alpha} \otimes \boldsymbol{\beta} \in \mathfrak{i}$.
Proof. Let $\boldsymbol{\alpha}^{\star}=\left(\alpha_{n}^{\star}\right)_{n=1}^{\infty}$. Clearly, if $r \in \mathbb{N}$ then

$$
\mathbf{r} \otimes \boldsymbol{\alpha}=\left(\left(\alpha_{1}^{\star}\right)_{r},\left(\alpha_{2}^{\star}\right)_{r}, \ldots,\left(\alpha_{n}^{\star}\right)_{r}, \ldots\right)
$$

It follows easily from the definition of a Calkin space that $\mathbf{r} \otimes \boldsymbol{\alpha} \in \mathfrak{i}$. Since $\boldsymbol{\beta}^{\star} \in c_{00}^{+}$, there exists $r \in \mathbb{N}$ such that $\boldsymbol{\beta}^{\star} \lesssim \mathbf{r}$. By Lemma $2.2, \boldsymbol{\beta} \otimes \boldsymbol{\alpha}=\boldsymbol{\beta}^{\star} \otimes \boldsymbol{\alpha} \lesssim \mathbf{r} \otimes \boldsymbol{\alpha}$. Hence, $\beta \otimes \boldsymbol{\alpha} \in \mathfrak{i}$.

The following notation will be used in the sequel.
Notation 2.5. Let $\boldsymbol{\alpha}=\left(\alpha_{m}\right)_{m=1}^{\infty} \in c_{0}^{\star}$ and $\vartheta \in(0,1)$. For every $n=0,1, \ldots$, set

$$
\begin{aligned}
& \mathcal{K}_{n}^{(\vartheta)}(\boldsymbol{\alpha})=\left\{m: \vartheta^{n+1}<\alpha_{m} \leqslant \vartheta^{n}\right\}, \quad K_{n}^{(\vartheta)}(\boldsymbol{\alpha})=\left|\mathcal{K}_{n}^{(\vartheta)}(\boldsymbol{\alpha})\right| \\
& \widetilde{K}_{n}^{(\vartheta)}(\boldsymbol{\alpha})=\sum_{i=0}^{n} K_{i}^{(\vartheta)}(\boldsymbol{\alpha}), \quad M_{n}^{(\vartheta)}(\boldsymbol{\alpha})=\sum_{i+j=n} K_{i}^{(\vartheta)}(\boldsymbol{\alpha}) K_{j}^{(\vartheta)}(\boldsymbol{\alpha}), \\
& \widetilde{M}_{n}
\end{aligned}
$$

LEMMA 2.6. Let $\vartheta \in(0,1), \boldsymbol{\alpha}=\left(\alpha_{m}\right)_{m=1}^{\infty} \in c_{0}^{\star}$, and $\boldsymbol{\beta}=\left(\beta_{m}\right)_{m=1}^{\infty} \in c_{0}^{\star}$. Assume that $\alpha_{1}, \beta_{1} \leqslant 1$. Then $\alpha \lesssim \beta$ if and only if there exists a positive integer r such
that for every $n \in \mathbb{N} \cup\{0\}$,

$$
\widetilde{K}_{n}^{(\vartheta)}(\boldsymbol{\alpha}) \leqslant \widetilde{K}_{n+r}^{(\vartheta)}(\boldsymbol{\beta}) .
$$

Proof. Set $\widetilde{K}_{n}=\widetilde{K}_{n}^{(\vartheta)}(\boldsymbol{\alpha})$ and $\widetilde{L}_{n}=\widetilde{K}_{n}^{(\vartheta)}(\boldsymbol{\beta})$. Suppose that $\alpha \lesssim \boldsymbol{\beta}$ and let $C>0$ be such that $\alpha_{m} \leqslant C \beta_{m}$, for every $m \in \mathbb{N}$. Let $r \in \mathbb{N}$ be such that $\vartheta^{r} C \leqslant 1$. Then $\beta_{\widetilde{K}_{n}} \geqslant C^{-1} \alpha_{\widetilde{K}_{n}}>C^{-1} \vartheta^{n+1} \geqslant \vartheta^{n+1+r}$. Thus, $\widetilde{K}_{n} \leqslant \widetilde{L}_{n+r}$.

Conversely, suppose that there exists $r \in \mathbb{N}$ such that $\widetilde{K}_{n} \leqslant \widetilde{L}_{n+r}$, for every $n \in \mathbb{N} \cup\{0\}$. Fix $m \in \mathbb{N}$ and let n and k be such that $m=\widetilde{K}_{n-1}+k$ and $1 \leqslant k \leqslant K_{n}$. Since $\widetilde{K}_{n-1}<m \leqslant \widetilde{K}_{n} \leqslant \widetilde{L}_{n+r}$ we have

$$
\alpha_{m} \leqslant \vartheta^{n}=\vartheta^{-r-1} \vartheta^{n+r+1} \leqslant \vartheta^{-r-1} \beta_{\widetilde{L}_{n+r}} \leqslant \vartheta^{-r-1} \beta_{m} .
$$

Thus, $\alpha \lesssim \beta$.
If $\boldsymbol{\alpha} \in c_{0}$ we let $\langle\boldsymbol{\alpha}\rangle$ denote the smallest Calkin space containing α. A Calkin space of the form $\langle\boldsymbol{\alpha}\rangle$ will be called principal. Note that a Calkin space is principal precisely when it is the Calkin space of a principal ideal of $\mathbf{B}(\mathcal{H})$.

The proof of the following lemma is straightforward.
Lemma 2.7. If $\boldsymbol{\alpha} \in c_{0}$ then

$$
\langle\boldsymbol{\alpha}\rangle=\left\{\boldsymbol{\beta} \in c_{0}: \text { there exists } r \in \mathbb{N} \text { such that } \boldsymbol{\beta}^{\star} \lesssim \mathbf{r} \otimes \boldsymbol{\alpha}\right\} .
$$

THEOREM 2.8. Let $\alpha=\left(\alpha_{n}\right)_{n=1}^{\infty} \in c_{0}^{\star}$ with $\alpha_{1} \leqslant 1$ and $\vartheta \in(0,1)$. The following are equivalent:
(i) The principal Calkin space $\langle\boldsymbol{\alpha}\rangle$ is tensor stable.
(ii) $\boldsymbol{\alpha} \otimes \boldsymbol{\alpha} \in\langle\boldsymbol{\alpha}\rangle$.
(iii) There exists $r \in \mathbb{N}$ and $C>0$ such that $\widetilde{M}_{n}^{(\vartheta)}(\boldsymbol{\alpha}) \leqslant C \widetilde{K}_{n+r}^{(\vartheta)}(\boldsymbol{\alpha})$, for every $n \in$ $\mathbb{N} \cup\{0\}$.

Proof. (i) \Rightarrow (ii) is trivial.
(ii) \Rightarrow (i) Let $\beta, \gamma \in\langle\boldsymbol{\alpha}\rangle$. By Lemma 2.7, there exist positive integers m, n such that $\beta \lesssim \mathbf{m} \otimes \boldsymbol{\alpha}$ and $\gamma \lesssim \mathbf{n} \otimes \boldsymbol{\alpha}$. By Lemma 2.2,

$$
\boldsymbol{\beta} \otimes \gamma \lesssim(\mathbf{m} \otimes \boldsymbol{\alpha}) \otimes(\mathbf{n} \otimes \boldsymbol{\alpha})=(\mathbf{m} \mathbf{n}) \otimes(\boldsymbol{\alpha} \otimes \boldsymbol{\alpha})
$$

Since $\boldsymbol{\alpha} \otimes \boldsymbol{\alpha} \in\langle\boldsymbol{\alpha}\rangle$, using Lemma 2.7 again we conclude that $\boldsymbol{\beta} \otimes \gamma \in\langle\boldsymbol{\alpha}\rangle$ and so $\langle\boldsymbol{\alpha}\rangle$ is tensor stable.
(i) \Leftrightarrow (iii) Set $K_{n}=K_{n}^{(\vartheta)}(\boldsymbol{\alpha})$ and $\widetilde{\boldsymbol{\alpha}}=\left(\left(\vartheta^{n}\right)_{K_{n}}\right)_{n=0}^{\infty}$; clearly, $\langle\boldsymbol{\alpha}\rangle=\langle\widetilde{\boldsymbol{\alpha}}\rangle$. By the previous paragraph, $\langle\boldsymbol{\alpha}\rangle$ is tensor stable if and only if $\widetilde{\boldsymbol{\alpha}} \otimes \widetilde{\boldsymbol{\alpha}} \in\langle\widetilde{\boldsymbol{\alpha}}\rangle$. By Lemma 2.7, $\widetilde{\boldsymbol{\alpha}} \otimes \widetilde{\boldsymbol{\alpha}} \in\langle\widetilde{\boldsymbol{\alpha}}\rangle$ if and only if there exists a positive integer m such that $\widetilde{\boldsymbol{\alpha}} \otimes \widetilde{\boldsymbol{\alpha}} \lesssim \mathbf{m} \otimes \widetilde{\boldsymbol{\alpha}}$. Since $\widetilde{K}_{n}^{(\vartheta)}(\widetilde{\boldsymbol{\alpha}} \otimes \widetilde{\boldsymbol{\alpha}})=\widetilde{M}_{n}^{(\vartheta)}(\widetilde{\boldsymbol{\alpha}})$ (see equation (2.1)) and $\widetilde{K}_{n}^{(\vartheta)}(\mathbf{m} \otimes \widetilde{\boldsymbol{\alpha}})=m \widetilde{K}_{n}^{(\vartheta)}(\widetilde{\boldsymbol{\alpha}})$, the conclusion follows from Lemma 2.6.

COROLLARY 2.9. Let $\alpha=\left(\alpha_{n}\right)_{n=1}^{\infty} \in c_{0}^{\star}$ with $\alpha_{1} \leqslant 1$ and $\vartheta \in(0,1)$. Suppose that $C>0$ is a constant such that

$$
\begin{equation*}
K_{n+j}^{(\vartheta)}(\boldsymbol{\alpha}) \geqslant C\left(\widetilde{K}_{n}^{(\vartheta)}(\boldsymbol{\alpha})\right)^{2} \tag{2.2}
\end{equation*}
$$

for all $j \in \mathbb{N}$ and $n \in \mathbb{N} \cup\{0\}$. Then $\langle\boldsymbol{\alpha}\rangle$ is a tensor stable Calkin space.
Proof. Set $K_{n}=K_{n}^{(\vartheta)}(\boldsymbol{\alpha}), \widetilde{K}_{n}=\widetilde{K}_{n}^{(\vartheta)}(\boldsymbol{\alpha})$ and $\widetilde{M}_{n}=\widetilde{M}_{n}^{(\vartheta)}(\boldsymbol{\alpha})$. Let r be a positive integer such that $r C \geqslant 1$. Since $\left(\widetilde{K}_{n}\right)^{2} \geqslant \widetilde{M}_{n}$, it follows that

$$
\widetilde{K}_{n+r} \geqslant K_{n+1}+\cdots+K_{n+r} \geqslant r C \widetilde{M_{n}} \geqslant \widetilde{M_{n}}, \quad n \in \mathbb{N},
$$

and hence condition (iii) of Theorem 2.8 holds.
We next give some examples.
EXAMPLE 2.10. (i) It follows from Theorem 2.8(iii) that for every $\vartheta \in(0,1)$, the principal Calkin space $\left\langle\left(\vartheta^{n}\right)_{n=0}^{\infty}\right\rangle$ is not tensor stable. This example was first given in [26].
(ii) Let $\lambda>0$ and $\boldsymbol{\alpha}=\left(n^{-\lambda}\right)_{n=1}^{\infty}$. Then the principal Calkin space $\langle\boldsymbol{\alpha}\rangle$ is not tensor stable. To show this, let $\mu=\lambda^{-1}$ and $\vartheta=e^{-1}$. Let $K_{n}, M_{n}, \widetilde{K}_{n}, \widetilde{M}_{n}$ be the positive integers associated with the sequence $\left(n^{-\lambda}\right)_{n=1}^{\infty}$ and ϑ (Notation 2.5). Since

$$
\frac{1}{2}\left[e^{(j+1) \mu}-e^{j \mu}\right] \leqslant K_{j} \leqslant\left[e^{(j+1) \mu}-e^{j \mu}\right]
$$

there exist constants $C_{1}, C_{2}>0$ such that, for every j, we have

$$
C_{2} e^{j \mu} \leqslant K_{j} \leqslant C_{1} e^{j \mu} .
$$

It follows that $M_{n}=\sum_{i+j=n} K_{i} K_{j} \geqslant(n+1) C_{2}^{2} e^{n \mu}$. Let r be a positive integer. Then

$$
\widetilde{K}_{n+r} \leqslant C_{1} \sum_{i=0}^{n+r}\left(e^{\mu}\right)^{i}=\frac{C_{1}\left(e^{(n+r+1) \mu}-1\right)}{e^{\mu}-1} \quad \text { and } \quad \widetilde{M}_{n} \geqslant C_{2}^{2} \int_{0}^{n}(t+1) e^{\mu t} \mathrm{~d} t \geqslant C_{3} n e^{n \mu}
$$

for some $C_{3}>0$. Thus,

$$
\lim _{n \rightarrow+\infty} \frac{\widetilde{M}_{n}}{\widetilde{K}_{n+r}}=+\infty
$$

for each $r \in \mathbb{N}$. By Theorem 2.8, $\langle\boldsymbol{\alpha}\rangle$ is not tensor stable.
It follows from the characterization of the symmetrically normable principal ideals due to Allen and Shen [1] that the principal ideal $\langle T\rangle$ of $\mathbf{B}(\mathcal{H})$ generated by an operator T with $s(T)=\left(n^{-\lambda}\right)_{n=1}^{\infty}, \lambda \in(0,1)$, is symmetrically normed. However, as we have shown, the principal Calkin space $\left\langle\left(n^{-\lambda}\right)_{n=1}^{\infty}\right\rangle$, for $\lambda \in(0,1)$, is not tensor stable.
(iii) Let $\boldsymbol{\alpha}=\left(\frac{1}{\log _{2} m}\right)_{m=2}^{\infty}$. Then the Calkin space $\langle\boldsymbol{\alpha}\rangle$ is tensor stable. To see this, consider the integers K_{n} for $n=0,1, \ldots$, associated with the sequence $\left(\frac{1}{\log _{2} m}\right)_{m=2}^{\infty}$ and $\vartheta=\frac{1}{2}$ (Notation 2.5). We have that $K_{n}=2^{2^{n+1}}-2^{2^{n}}$. Since

$$
\left(K_{0}+\cdots+K_{n}\right)^{2}=\left(2^{2^{n+1}}-2\right)^{2}
$$

it follows from Corollary 2.9 that $\langle\boldsymbol{\alpha}\rangle$ is tensor stable.

In the sequel we examine the tensor stability of a class of Calkin spaces, namely, the Lorentz sequence spaces. We recall their definition [18]. Let $1 \leqslant p<$ ∞ and let $\mathbf{w}=\left(w_{n}\right)_{n=1}^{\infty}$ be a decreasing sequence of positive numbers such that $w_{1}=1, \lim _{n \rightarrow \infty} w_{n}=0$ and $\sum_{n=1}^{\infty} w_{n}=\infty$. We shall call such a \mathbf{w} a weight sequence. The linear space $\ell_{\mathbf{w}, p}$ of all sequences $\boldsymbol{\alpha}=\left(\alpha_{n}\right)_{n=1}^{\infty}$ of complex numbers such that

$$
\|\boldsymbol{\alpha}\|_{\mathbf{w}, p} \stackrel{\text { def }}{=} \sup _{\pi}\left\{\left(\sum_{n=1}^{\infty} w_{n}\left|\alpha_{\pi(n)}\right|^{p}\right)^{1 / p}\right\}<\infty
$$

where π ranges over all the permutations of \mathbb{N}, is a Banach space under the norm $\|\cdot\|_{\mathbf{w}, p}$, called a Lorentz sequence space.

If $\alpha \in \ell_{\mathbf{w}, p}$ then one easily sees that

$$
\|\boldsymbol{\alpha}\|_{\mathbf{w}, p}=\left(\sum_{n=1}^{\infty} w_{n}\left(\alpha_{n}^{\star}\right)^{p}\right)^{1 / p}
$$

If $w_{n}=n^{p / q-1}$ with $0<p<q$ we obtain the classical $\ell_{q, p}$ spaces of Lorentz.
THEOREM 2.11. Let $\mathbf{w}=\left(w_{n}\right)_{n=1}^{\infty}$ be a weight sequence such that there exists a constant $C>0$ with $w_{m n} \leqslant C w_{m} w_{n}$ for every $m, n \in \mathbb{N}$. Then for every $p \geqslant 1$ and $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \ell_{\mathbf{w}, p}$ we have that

$$
\|\boldsymbol{\alpha} \otimes \boldsymbol{\beta}\|_{\mathbf{w}, p} \leqslant C^{1 / p}\|\boldsymbol{\alpha}\|_{\mathbf{w}, p}\|\boldsymbol{\beta}\|_{\mathbf{w}, p}
$$

In particular, $\ell_{\mathbf{w}, p}$ is a tensor stable Calkin space.
Proof. We may assume that $\alpha=\left(\alpha_{n}\right)_{n=1}^{\infty}$ and $\beta=\left(\beta_{n}\right)_{n=1}^{\infty}$ are positive decreasing sequences with $\alpha_{1}, \beta_{1} \leqslant 1$. Fix ϑ with $0<\vartheta<1$. For every $n \in \mathbb{N} \cup\{0\}$, let $K_{n}=K_{n}^{(\vartheta)}(\boldsymbol{\alpha}), L_{n}=K_{n}^{(\vartheta)}(\boldsymbol{\beta}), \tilde{M}_{n}=\sum_{0 \leqslant i+j \leqslant n} K_{i} L_{j}$ and $K_{-1}=L_{-1}=\tilde{M}_{-1}=0$.

Let

$$
\widetilde{\boldsymbol{\alpha}}=\left(\left(\vartheta^{n}\right)_{K_{n}}\right)_{n=0}^{\infty}, \quad \widetilde{\boldsymbol{\beta}}=\left(\left(\vartheta^{n}\right)_{L_{n}}\right)_{n=0}^{\infty}
$$

Then

$$
\widetilde{\boldsymbol{\alpha}} \otimes \widetilde{\boldsymbol{\beta}}=\left(\left(\vartheta^{n}\right)_{\widetilde{M}_{n}-\widetilde{M}_{n-1}}\right)_{n=0}^{\infty}
$$

For every $n, i, k, l \in \mathbb{N} \cup\{0\}$ such that $0 \leqslant i \leqslant n, 1 \leqslant k \leqslant K_{i}$ and $1 \leqslant l \leqslant L_{n-i}$ we set

$$
\begin{equation*}
\phi_{n}(i, k, l)=\tilde{M}_{n-1}+\sum_{j=0}^{i-1} K_{j} L_{n-j}+k l . \tag{2.3}
\end{equation*}
$$

Also, for every $i, 1 \leqslant k \leqslant K_{i}$ and $1 \leqslant l \leqslant L_{i}$ we set

$$
\psi(i, k)=\sum_{j=0}^{i-1} K_{j}+k, \quad \psi^{\prime}(i, l)=\sum_{j=0}^{i-1} L_{j}+l
$$

We observe that for every positive integer $r,(\widetilde{\boldsymbol{\alpha}} \otimes \widetilde{\boldsymbol{\beta}})_{r}=\vartheta^{n}$ if and only if $r=$ $\widetilde{M}_{n-1}+s$ with $1 \leqslant s \leqslant \sum_{i+j=n} K_{i} L_{j}$ and therefore $(\widetilde{\boldsymbol{\alpha}} \otimes \widetilde{\boldsymbol{\beta}})_{r}=\vartheta^{n}$ if and only if there
exist $n, i, k, l \in \mathbb{N} \cup\{0\}$ such that $0 \leqslant i \leqslant n, 1 \leqslant k \leqslant K_{i}, 1 \leqslant l \leqslant L_{n-i}$ and $r=\phi_{n}(i, k, l)$. So,

$$
\begin{equation*}
\|\widetilde{\boldsymbol{\alpha}} \otimes \widetilde{\boldsymbol{\beta}}\|_{\mathbf{w}, p}^{p}=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} \sum_{k=1}^{K_{i}} \sum_{l=1}^{L_{n-i}} w_{\phi_{n}(i, k, l)}\right) \vartheta^{n p} \tag{2.4}
\end{equation*}
$$

Also, $\widetilde{\alpha}_{r}=\vartheta^{i}$ if and only if $r=\sum_{j=-1}^{i-1} K_{j}+k$ for some k with $1 \leqslant k \leqslant K_{i}$ and $\widetilde{\beta}_{r}=\vartheta^{i i^{\prime}}$ if and only if $r=\sum_{j=-1}^{i^{\prime}-1} L_{j}+l$ for some l with $1 \leqslant l \leqslant L_{i^{\prime}}$. So,

$$
\|\widetilde{\boldsymbol{\alpha}}\|_{\mathbf{w}, p}^{p}=\sum_{n=0}^{\infty}\left(\sum_{k=1}^{K_{n}} w_{\psi(n, k)}\right) \vartheta^{n p}, \quad\|\widetilde{\boldsymbol{\beta}}\|_{\mathbf{w}, p}^{p}=\sum_{n=0}^{\infty}\left(\sum_{l=1}^{L_{n}} w_{\psi^{\prime}(n, l)}\right) \vartheta^{n p}
$$

and

$$
\begin{equation*}
\|\widetilde{\boldsymbol{\alpha}}\|_{\mathbf{w}, p}^{p}\|\widetilde{\boldsymbol{\beta}}\|_{\mathbf{w}, p}^{p}=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} \sum_{k=1}^{K_{i}} \sum_{l=1}^{L_{n-i}} w_{\psi(i, k)} w_{\psi^{\prime}(n-i, l)}\right) \vartheta^{n p} . \tag{2.5}
\end{equation*}
$$

But

$$
\begin{aligned}
\psi(i, k) \psi^{\prime}(n-i, l) & =\left(\sum_{j=0}^{i-1} K_{j}+k\right)\left(\sum_{j=0}^{n-i-1} L_{j}+l\right) \\
& =\sum_{j=0}^{i-1} \sum_{j^{\prime}=0}^{n-i-1} K_{j} L_{j^{\prime}}+k \sum_{j=0}^{n-i-1} L_{j}+l \sum_{j=0}^{i-1} K_{j}+k l \\
& \leqslant \sum_{j=0}^{i-1} \sum_{j^{\prime}=0}^{n-i-1} K_{j} L_{j^{\prime}}+K_{i} \sum_{j=0}^{n-i-1} L_{j}+L_{n-i} \sum_{j=0}^{i-1} K_{j}+k l \\
& \leqslant \widetilde{M}_{n-1}+k l \leqslant \phi_{n}(i, k, l)
\end{aligned}
$$

By the monotonicity of the weight sequence \mathbf{w} we have

$$
\begin{equation*}
w_{\phi_{n}(i, k, l)} \leqslant w_{\psi(i, k)} \psi^{\prime}(n-i, l) \leqslant C w_{\psi(i, k)} w_{\psi^{\prime}(n-i, l)} \tag{2.6}
\end{equation*}
$$

Finally, by (2.4), (2.5) and (2.6),

$$
\begin{aligned}
\|\boldsymbol{\alpha} \otimes \boldsymbol{\beta}\|_{\mathbf{w}, p} & \leqslant\|\widetilde{\boldsymbol{\alpha}} \otimes \widetilde{\boldsymbol{\beta}}\|_{\mathbf{w}, p} \leqslant C^{1 / p}\|\widetilde{\boldsymbol{\alpha}}\|_{\mathbf{w}, p}\|\widetilde{\boldsymbol{\beta}}\|_{\mathbf{w}, p} \\
& =C^{1 / p} \frac{1}{\vartheta^{2}}\|\vartheta \widetilde{\boldsymbol{\alpha}}\|_{\mathbf{w}, p}\|\vartheta \widetilde{\boldsymbol{\beta}}\|_{\mathbf{w}, p} \leqslant C^{1 / p} \frac{1}{\vartheta^{2}}\|\boldsymbol{\alpha}\|_{\mathbf{w}, p}\|\boldsymbol{\beta}\|_{\mathbf{w}, p} .
\end{aligned}
$$

Letting $\vartheta \rightarrow 1$ we obtain

$$
\|\boldsymbol{\alpha} \otimes \boldsymbol{\beta}\|_{p, \mathbf{w}} \leqslant C^{1 / p}\|\boldsymbol{\alpha}\|_{\mathbf{w}, p}\|\boldsymbol{\beta}\|_{\mathbf{w}, p}
$$

Let \mathcal{A} be a C^{*}-algebra. If $a, b \in \mathcal{A}$ we denote by $M_{a, b}$ the operator on \mathcal{A} given by $M_{a, b}(x)=a x b$. An operator $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ is called elementary if $\Phi=\sum_{i=1}^{m} M_{a_{i}, b_{i}}$ for some $a_{i}, b_{i} \in \mathcal{A}, i=1, \ldots, m$.

If \mathcal{C} is a C^{*}-subalgebra of \mathcal{A} such that $M_{a, b}(\mathcal{C}) \subseteq \mathcal{C}$ we will denote by $M_{a, b}^{\mathcal{C}}$ the operator $\mathcal{C} \rightarrow \mathcal{C}$ defined by $M_{a, b}^{\mathcal{C}}(x)=a x b$. In this section we prove inequalities concerning the s-number functions of the operators $M_{a, b}$ and $M_{a, b}^{\mathcal{C}}$.

It is well-known that every closed two-sided ideal \mathcal{J} of \mathcal{A} is an M-ideal, that is, that there exists a projection $\eta: \mathcal{A}^{*} \rightarrow \mathcal{J}^{\perp}$, where \mathcal{J}^{\perp} is the annihilator of \mathcal{J} in \mathcal{A}^{*}, such that for every $\varphi \in \mathcal{A}^{*}$,

$$
\|\varphi\|=\|\eta(\varphi)\|+\|\varphi-\eta(\varphi)\|
$$

(see e.g. Theorem 11.4 of [7]). A functional $\varphi \in \mathcal{A}^{*}$ is called a Hahn-Banach extension of $\phi \in \mathcal{J}^{*}$ if it is an extension of ϕ and $\|\varphi\|=\|\phi\|$. If \mathcal{J} is an M-ideal of \mathcal{A} then every $\phi \in \mathcal{J}^{*}$ has a unique Hahn-Banach extension in \mathcal{A}^{*} denoted by $\widetilde{\phi}$. Thus, if we identify \mathcal{J}^{*} with the subspace $\left\{\widetilde{\phi}: \phi \in \mathcal{J}^{*}\right\}$ of \mathcal{A}^{*} then

$$
\mathcal{A}^{*}=\mathcal{J}^{*} \oplus_{\ell_{1}} \mathcal{J}^{\perp}
$$

hence $\|\widetilde{\phi}+\psi\|=\|\phi\|+\|\psi\|$ for all $\phi \in \mathcal{J}^{*}, \psi \in \mathcal{J}^{\perp}$. Given $T \in \mathbf{B}(\mathcal{J})$ let $\widehat{T}: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ be given by

$$
\widehat{T}(\widetilde{\phi}+\psi)=\widetilde{T^{*}(\phi)}
$$

where $\phi \in \mathcal{J}^{*}$ and $\psi \in \mathcal{J}^{\perp}$. We identify \mathcal{A} with a subspace of $\mathcal{A}^{* *}$ via the canonical embedding and denote by $\widetilde{T}: \mathcal{A} \rightarrow \mathcal{A}^{* *}$ the restriction of \widehat{T}^{*} to \mathcal{A}.

Lemma 3.1. (i) If $T \in \mathbf{B}(\mathcal{J})$ then \widetilde{T} extends T and $\|\widetilde{T}\|=\|T\|$.
(ii) The map $T \rightarrow \widetilde{T}$ is linear.

Proof. The second assertion is easily verified. We show (i). Let $x \in \mathcal{J}$ and $f \in \mathcal{A}^{*}$. Then $f=\widetilde{\phi}+\psi$ with $\phi \in \mathcal{J}^{*}$ and $\psi \in \mathcal{J}^{\perp}$. We have

$$
\begin{aligned}
\widetilde{T}(x)(f) & =\widehat{T}^{*}(x)(f)=\widehat{T}(f)(x)=\widetilde{T^{*}(\phi)}(x)=T^{*}(\phi)(x) \\
& =\phi(T x)=\widetilde{\phi}(T x)=f(T x)=T(x)(f)
\end{aligned}
$$

Hence, \widetilde{T} is an extension of T and so $\|T\| \leqslant\|\widetilde{T}\|$.
We show that $\|\widetilde{T}\| \leqslant\|T\|$. Let $x \in \mathcal{A}$ and $f \in \mathcal{A}^{*}$. Then $f=\widetilde{\phi}+\psi$ with $\phi \in \mathcal{J}^{*}$ and $\psi \in \mathcal{J}^{\perp}$. We have

$$
\begin{aligned}
|\widetilde{T}(x)(f)| & =\left|\widehat{T}^{*}(x)(f)\right|=|\widehat{T}(f)(x)|=\left|\widetilde{T^{*}(\phi)}(x)\right| \leqslant\left\|\widetilde{T^{*}(\phi)}\right\|\|x\| \\
& =\left\|T^{*}(\phi)\right\|\|x\| \leqslant\left\|T^{*}\right\|\|\phi\|\|x\|=\left\|T^{*}\right\|\|\widetilde{\phi}\|\|x\| \leqslant\left\|T^{*}\right\|\|f\|\|x\| .
\end{aligned}
$$

Hence, $\|\widetilde{T}\| \leqslant\left\|T^{*}\right\|=\|T\|$ and the proof is complete.

Let \mathcal{X} be a reflexive Banach space and $\iota: \mathcal{J}^{*} \rightarrow \mathcal{A}^{*}$ be the map defined by $\iota(\phi)=\widetilde{\phi}, \phi \in \mathcal{J}^{*}$. Clearly, $\|\iota\|=1$.

Let $T: \mathcal{J} \rightarrow \mathcal{X}$. Write $T^{\sharp}: \mathcal{A} \rightarrow \mathcal{X}$ for the restriction of $\left(\iota \circ T^{*}\right)^{*}$ to \mathcal{A}.
Lemma 3.2. The operator T^{\sharp} extends T and $\left\|T^{\sharp}\right\|=\|T\|$.
Proof. Let $a \in \mathcal{J}$ and $g \in \mathcal{X}^{*}$. We have that

$$
\begin{aligned}
T^{\sharp}(a)(g) & =\left(\iota \circ T^{*}\right)^{*}(a)(g)=a\left(\iota\left(T^{*}(g)\right)\right)=\iota\left(T^{*}(g)\right)(a)=\widetilde{T^{*}(g)}(a) \\
& =T^{*}(g)(a)=g(T a)=T(a)(g) .
\end{aligned}
$$

Hence T^{\sharp} extends T and so $\|T\| \leqslant\left\|T^{\sharp}\right\|$. On the other hand,

$$
\left\|T^{\sharp}\right\| \leqslant\left\|\left(\iota \circ T^{*}\right)^{*}\right\|=\left\|\iota \circ T^{*}\right\| \leqslant\|\iota\|\left\|T^{*}\right\|=\|T\| .
$$

Lemma 3.3. Let \mathcal{A} be a C^{*}-algebra, $\mathcal{J} \subseteq \mathcal{A}$ be a closed two sided ideal and $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ be a bounded operator which leaves \mathcal{J} invariant. Let $\Phi_{0}: \mathcal{J} \rightarrow \mathcal{J}$ be the operator given by $\Phi_{0}(x)=\Phi(x)$. Then $h_{n}\left(\Phi_{0}\right) \leqslant h_{n}(\Phi)$, for each $n \in \mathbb{N}$.

Proof. Write $\iota_{0}: \mathcal{J} \rightarrow \mathcal{A}$ for the inclusion map. In the supremum below, \mathcal{H} and \mathcal{K} are arbitrary Hilbert spaces. Using Lemma 3.2 we have that

$$
\begin{aligned}
h_{n}\left(\Phi_{0}\right) & =\sup \left\{s_{n}\left(A \Phi_{0} B\right): B \in \mathbf{B}(\mathcal{H}, \mathcal{J}), A \in \mathbf{B}(\mathcal{J}, \mathcal{K}) \text { contractions }\right\} \\
& =\sup \left\{s_{n}\left(A^{\sharp} \Phi\left(\iota_{0} B\right)\right): B \in \mathbf{B}(\mathcal{H}, \mathcal{J}), A \in \mathbf{B}(\mathcal{J}, \mathcal{K}) \text { contractions }\right\} \\
& \leqslant \sup \left\{s_{n}\left(A_{1} \Phi B_{1}\right): B_{1} \in \mathbf{B}(\mathcal{H}, \mathcal{A}), A_{1} \in \mathbf{B}(\mathcal{A}, \mathcal{K}) \text { contractions }\right\} \\
& =h_{n}(\Phi) .
\end{aligned}
$$

If \mathcal{X} is a Banach space, $c \in \mathcal{X}$ and $\phi \in \mathcal{X}^{*}$ we denote by $\phi \otimes c$ the operator on \mathcal{X} given by $\phi \otimes c(x)=\phi(x) c$. We denote by $\mathbf{F}_{n}(\mathcal{X})$ the set of all operators F on \mathcal{X} of rank less than or equal to n. It is well-known that $\mathbf{F}_{n}(\mathcal{X})=\left\{\sum_{i=1}^{n} \phi_{i} \otimes c_{i}\right.$: $\left.\phi_{i} \in \mathcal{X}^{*}, c_{i} \in \mathcal{X}, i=1,2, \ldots, n\right\}$.

Lemma 3.4. Let \mathcal{A} be a C^{*}-algebra and \mathcal{J} be a closed two-sided ideal of \mathcal{A}.
(i) Assume that $a, b \in \mathcal{J}$. Then $\widetilde{M_{a, b}^{\mathcal{J}}}(x)=M_{a, b}(x)$ for every $x \in \mathcal{A}$.
(ii) Let $\phi_{i} \in \mathcal{J}^{*}, c_{i} \in \mathcal{J}, i=1, \ldots, n$, and F be the operator on \mathcal{J} given by $F=$ $\sum_{i=1}^{n} \phi_{i} \otimes c_{i}$. Then $\widetilde{F}(x)=\left(\sum_{i=1}^{n} \widetilde{\phi}_{i} \otimes c_{i}\right)(x)$ for every $x \in \mathcal{A}$.

Proof. (i) Let $S=M_{a, b}, T=M_{a, b^{\prime}}^{\mathcal{J}}$, and $\phi \in \mathcal{J}^{*}$. First note that $S^{*}(\widetilde{\phi})$ is an extension of $T^{*}(\phi)$. Indeed, for every $x \in \mathcal{J}$ we have that

$$
S^{*}(\widetilde{\phi})(x)=\widetilde{\phi}(S x)=\phi(T x)=T^{*}(\phi)(x)
$$

We show that $S^{*}(\widetilde{\phi})$ is the Hahn-Banach extension of $T^{*}(\phi)$. To this end, let $x \in \mathcal{A}$ and $\left\{u_{\lambda}\right\}_{\lambda \in \Lambda} \subseteq \mathcal{J}$ be a contractive approximate unit for \mathcal{J}. Then for each $x \in \mathcal{A}$,
$a u_{\lambda} x b \rightarrow_{\lambda} a x b$ in norm and hence $\phi\left(a u_{\lambda} x b\right) \rightarrow_{\lambda} \phi(a x b)$. We thus have that

$$
\begin{aligned}
\left|S^{*}(\widetilde{\phi})(x)\right| & =|\widetilde{\phi}(S x)|=|\widetilde{\phi}(a x b)|=|\phi(a x b)|=\lim _{\lambda \in \Lambda}\left|\phi\left(a u_{\lambda} x b\right)\right| \\
& =\lim _{\lambda \in \Lambda}\left|T^{*}(\phi)\left(u_{\lambda} x\right)\right| \leqslant\left\|T^{*}(\phi)\right\|\|x\|
\end{aligned}
$$

It follows that $\left\|S^{*}(\widetilde{\phi})\right\| \leqslant\left\|T^{*}(\phi)\right\|$. Since $S^{*}(\widetilde{\phi})$ extends $T^{*}(\phi)$, we have that $S^{*}(\widetilde{\phi})$ is the Hahn-Banach extension of $T^{*}(\phi)$, that is, $S^{*}(\widetilde{\phi})=\widetilde{T^{*}(\phi)}$.

Let $x \in \mathcal{A}$ and $f \in \mathcal{A}^{*}$. Then $f=\widetilde{\phi}+\psi$ with $\phi \in \mathcal{J}^{*}$ and $\psi \in \mathcal{J}^{\perp}$, and

$$
\begin{aligned}
\widetilde{T}(x)(f) & =\widehat{T}^{*}(x)(f)=\widetilde{T^{*}(\phi)}(x)=S^{*}(\widetilde{\phi})(x)=\widetilde{\phi}(S x) \\
& =(\widetilde{\phi}+\psi)(S x)=S^{*}(f)(x)=S(x)(f)
\end{aligned}
$$

(ii) By Lemma 3.1(ii), it suffices to show the statement in the case $F=\phi_{1} \otimes$ c_{1}, where $\phi_{1} \in \mathcal{J}^{*}$ and $c_{1} \in \mathcal{J}$. Let $\phi \in \mathcal{J}^{*}$. We have that $\widetilde{F^{*}(\phi)}(x)=\widetilde{\phi}_{1}(x) \phi\left(c_{1}\right)$ for every $x \in \mathcal{A}$. Indeed, the functional $x \rightarrow \widetilde{\phi}_{1}(x) \phi\left(c_{1}\right)$ extends $F^{*}(\phi)$ and has norm equal to the norm of $F^{*}(\phi)$ since $\left\|\phi_{1}\right\|=\left\|\widetilde{\phi}_{1}\right\|$. Let $x \in \mathcal{A}$ and $f \in \mathcal{A}^{*}$. We have $f=\widetilde{\phi}+\psi$, where $\phi \in \mathcal{J}^{*}$ and $\psi \in \mathcal{J}^{\perp}$. Then

$$
\begin{aligned}
\widetilde{F}(x)(f) & =\widehat{F}^{*}(x)(f)=\widehat{F}(f)(x)=\widehat{F}(\widetilde{\phi}+\psi)(x)=\widehat{F^{*}(\phi)}(x) \\
& =\widetilde{\phi}_{1}(x) \phi\left(c_{1}\right)=\widetilde{\phi}_{1}(x) \widetilde{\phi}\left(c_{1}\right)=\widetilde{\phi}_{1}(x) f\left(c_{1}\right)=\left(\widetilde{\phi}_{1} \otimes c_{1}\right)(x)(f)
\end{aligned}
$$

The following theorem is the main result of this section.
Theorem 3.5. Let \mathcal{A} be a C^{*}-algebra, \mathcal{J} be a closed two-sided ideal of \mathcal{A} and $a, b \in \mathcal{J}$. Then for every $n \in \mathbb{N}$ we have that

$$
\mathrm{h}_{n}\left(M_{a, b}^{\mathcal{J}}\right) \leqslant \mathrm{h}_{n}\left(M_{a, b}\right) \leqslant \mathrm{a}_{n}\left(M_{a, b}\right) \leqslant \mathrm{a}_{n}\left(M_{a, b}^{\mathcal{J}}\right)
$$

Proof. The first inequality follows from Lemma 3.3 while the second one is trivial. In what follows the operators \widetilde{F} for $F \in \mathbf{F}_{n-1}(\mathcal{J})$ and $\widetilde{M_{a, b}^{\mathcal{J}}}$ are considered as operators from \mathcal{A} to \mathcal{A}; this is possible by Lemma 3.4. It follows from Lemmas 3.1 and 3.4 that for every $n \in \mathbb{N}$ we have

$$
\begin{aligned}
\mathrm{a}_{n}\left(M_{a, b}\right) & =\inf \left\{\left\|M_{a, b}-G\right\|: G \in \mathbf{F}_{n-1}(\mathcal{A})\right\} \\
& \leqslant \inf \left\{\left\|M_{a, b}-\widetilde{F}\right\|: F \in \mathbf{F}_{n-1}(\mathcal{J})\right\} \\
& =\inf \left\{\left\|\widetilde{M_{a, b}^{\mathcal{J}}}-\widetilde{F}\right\|: F \in \mathbf{F}_{n-1}(\mathcal{J})\right\} \\
& =\inf \left\{\left\|M_{a, b}^{\mathcal{J}}-F\right\|: F \in \mathbf{F}_{n-1}(\mathcal{J})\right\}=\mathrm{a}_{n}\left(M_{a, b}^{\mathcal{J}}\right) .
\end{aligned}
$$

We close the section with a lemma which will be used in the proof of Theorem 5.6.

Lemma 3.6. Let $\mathcal{B} \subseteq \mathbf{B}(\mathcal{H})$ be a C^{*}-algebra, $\mathcal{A}=\overline{\mathcal{B}}^{\text {wot }}$ and $A \in \mathcal{A}$. Assume that $A \in \mathcal{B}$. Then $\mathrm{d}\left(M_{A, A}\right) \leqslant \mathrm{d}\left(M_{A, A}^{\mathcal{B}}\right)$.

Proof. Set $\mathrm{d}\left(M_{A, A}^{\mathcal{B}}\right)=\left(d_{n}\right)_{n=1}^{\infty}$. Let $\varepsilon>0$ and $\mathcal{F} \subseteq \mathcal{B}$ be a linear space such that $\operatorname{dim} \mathcal{F}<n$ and

$$
\inf _{F \in \mathcal{F}}\|A X A-F\|<d_{n}+\varepsilon
$$

for each contraction $X \in \mathcal{B}$. It suffices to show that $\inf _{F \in \mathcal{F}}\|A Y A-F\| \leqslant d_{n}+\varepsilon$ for each contraction $Y \in \mathcal{A}$. Suppose this is not the case and let $Y \in \mathcal{A}$ be a contraction such that $\|A Y A-F\|>d_{n}+\varepsilon$, for each $F \in \mathcal{F}$. By the Kaplansky Density theorem, there exists a net $\left(X_{v}\right)_{v} \subseteq \mathcal{B}$ of contractions such that $X_{v} \rightarrow_{v} Y$ in the weak operator topology. Let $F_{v} \in \overline{\mathcal{F}}$ be such that $\left\|A X_{v} A-F_{v}\right\|<d_{n}+\varepsilon$. We have that $\left\|F_{v}\right\| \leqslant d_{n}+\varepsilon+1$ for each v, and hence we may assume without loss of generality that $F_{v} \rightarrow F_{0}$ in norm. We thus have $A X_{v} A-F_{v} \rightarrow A Y A-F_{0}$ weakly. It follows that

$$
\left\|A \curlyvee A-F_{0}\right\| \leqslant \liminf \left\|A X_{v} A-F_{v}\right\| \leqslant d_{n}+\varepsilon
$$

a contradiction.

4. ELEMENTARY OPERATORS ON B($\mathcal{H})$

In this section we obtain estimates for the s-numbers of an elementary operator acting on $\mathbf{B}(\mathcal{H})$ in terms of the singular numbers of its symbols. We formulate some of our results using tensor products. Recall [21] that a cross norm τ is a norm defined simultaneously on all algebraic tensor products $\mathcal{X} \otimes \mathcal{Y}$ of Banach spaces \mathcal{X} and \mathcal{Y} such that $\tau(x \otimes y)=\|x\|\|y\|$ for all $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. By $\mathcal{X} \otimes_{\tau} \mathcal{Y}$ we denote the completion of the algebraic tensor product with respect to τ. A tensor norm is a cross norm τ such that for every $A \in \mathbf{B}(\mathcal{X}, \mathcal{Y})$ and $B \in \mathbf{B}\left(\mathcal{X}^{\prime}, \mathcal{Y}^{\prime}\right)$ the linear operator $A \otimes B: \mathcal{X} \otimes \mathcal{X}^{\prime} \rightarrow \mathcal{Y} \otimes \mathcal{Y}^{\prime}$ given by $A \otimes B\left(x \otimes x^{\prime}\right)=A x \otimes B x^{\prime}$ is bounded with respect to τ and the norm of its extension $A \otimes_{\tau} B \in \mathbf{B}\left(\mathcal{X} \otimes_{\tau} \mathcal{X}^{\prime}, \mathcal{Y} \otimes_{\tau} \mathcal{Y}^{\prime}\right)$ satisfies the inequality $\left\|A \otimes_{\tau} B\right\| \leqslant\|A\|\|B\|$.

In Theorem 4.2 below we give an upper bound for the approximation numbers of the operator $A \otimes_{\tau} B$ in terms of the sequence $s(A) \otimes s(B)$. We will need the following lemma due to König ([17], Lemma 2).

Lemma 4.1. Let τ be a tensor norm, \mathcal{X}, \mathcal{Y} be Banach spaces, $A \in \mathbf{B}\left(\ell_{2}, \mathcal{X}\right), B \in$ $\mathbf{B}\left(\ell_{2}, \mathcal{Y}\right)$ and $\left(P_{k}\right)_{k=0^{\prime}}^{n}\left(Q_{k}\right)_{k=0}^{n}$ be families of mutually orthogonal projections acting on ℓ_{2}. Then

$$
\left\|\sum_{k=0}^{n} A P_{k} \otimes_{\tau} B Q_{k}\right\|_{\ell_{2} \otimes_{\tau} \ell_{2} \rightarrow \mathcal{X} \otimes_{\tau} \mathcal{Y}} \leqslant \max _{0 \leqslant k \leqslant n}\left\{\left\|A P_{k}\right\|\left\|B Q_{k}\right\|\right\}
$$

Theorem 4.2. Let \mathcal{H} be a Hilbert space, $A, B \in \mathbf{K}(\mathcal{H})$ and τ be a tensor norm. Then

$$
\begin{equation*}
\mathrm{a}\left(A \otimes_{\tau} B\right) \leqslant 6.75 s(A) \otimes s(B) \tag{4.1}
\end{equation*}
$$

Consequently, if \mathfrak{i} and \mathfrak{j} are Calkin spaces, $s(A) \in \mathfrak{i}$ and $s(B) \in \mathfrak{j}$ and s is any s-function then $\mathrm{s}\left(A \otimes_{\tau} B\right) \in \mathfrak{i} \otimes \mathfrak{j}$.

Proof. If $\boldsymbol{\alpha}=\left(\alpha_{n}\right)_{n=1}^{\infty}$ is a bounded sequence we write $D_{\alpha} \in \mathbf{B}\left(\ell_{2}\right)$ for the diagonal operator given by $D_{\alpha}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)=\left(\alpha_{n} x_{n}\right)_{n=1}^{\infty}$ for $\left(x_{n}\right)_{n=1}^{\infty} \in \ell_{2}$. It suffices to prove the theorem in the case where A and B are diagonal operators in $\mathbf{B}\left(\ell_{2}\right)$. Indeed, suppose that (4.1) holds in this case. By polar decomposition, there exist partial isometries $U_{A}, U_{B}: \mathcal{H} \rightarrow \ell_{2}, V_{A}, V_{B}: \ell_{2} \rightarrow \mathcal{H}$ and diagonal operators $D_{\alpha}, D_{\beta}: \ell_{2} \rightarrow \ell_{2}$, where $\alpha=s(A), \boldsymbol{\beta}=s(B)$, such that $A=V_{A} D_{\alpha} U_{A}$ and $B=V_{B} D_{\beta} U_{B}$. Then

$$
A \otimes_{\tau} B=\left(V_{A} \otimes_{\tau} V_{B}\right)\left(D_{\alpha} \otimes_{\tau} D_{\beta}\right)\left(U_{A} \otimes_{\tau} U_{B}\right),
$$

and hence

$$
\begin{aligned}
\mathrm{a}\left(A \otimes_{\tau} B\right) & \leqslant\left\|V_{A} \otimes_{\tau} V_{B}\right\| \mathrm{a}\left(D_{\alpha} \otimes_{\tau} D_{\beta}\right)\left\|U_{A} \otimes_{\tau} U_{B}\right\| \leqslant \mathrm{a}\left(D_{\boldsymbol{\alpha}} \otimes_{\tau} D_{\beta}\right) \\
& \leqslant 6.75 \boldsymbol{\alpha} \otimes \boldsymbol{\beta}=6.75 s(A) \otimes s(B)
\end{aligned}
$$

So let $A=D_{\alpha}: \ell_{2} \rightarrow \ell_{2}, B=D_{\beta}: \ell_{2} \rightarrow \ell_{2}$, where $\boldsymbol{\alpha}=\left(\alpha_{n}\right)_{n=1}^{\infty}, \beta=\left(\beta_{n}\right)_{n=1}^{\infty}$ are non-negative decreasing sequences. We may further assume that $\alpha_{1}, \beta_{1} \leqslant 1$. Set $\mathrm{a}_{n}=\mathrm{a}_{n}\left(A \otimes_{\tau} B\right)$ and fix ϑ with $0<\vartheta<1$.

In what follows we use Notation 2.5. For every $n \in \mathbb{N} \cup\{0\}$ let

$$
\begin{aligned}
& K_{n}=K_{n}^{(\vartheta)}(\boldsymbol{\alpha}), \quad L_{n}=K_{n}^{(\vartheta)}(\boldsymbol{\beta}), \quad \widetilde{M}_{n}=\sum_{0 \leqslant i+j \leqslant n} K_{i} L_{j}, \quad \tilde{M}_{-1}=0 \\
& P_{n}=\sum_{i \in \mathcal{K}_{n}^{(\vartheta)}(\boldsymbol{\alpha})} e_{i}^{*} \otimes e_{i}, \quad Q_{n}=\sum_{i \in \mathcal{K}_{n}^{(\vartheta)}(\boldsymbol{\beta})} e_{i}^{*} \otimes e_{i}
\end{aligned}
$$

where $\left(e_{n}\right)_{n=0}^{\infty}$ is the standard basis of ℓ_{2}.
Let $A_{n}=A P_{n}, B_{n}=B Q_{n}$ and $E_{n}=\sum_{0 \leqslant k+l \leqslant n} A_{k} \otimes_{\tau} B_{l}$. Clearly, $\left\|A_{n}\right\| \leqslant \vartheta^{n}$, $\left\|B_{n}\right\| \leqslant \vartheta^{n}$ and $\operatorname{rank} E_{n} \leqslant \widetilde{M}_{n}$. Moreover,

$$
A=\sum_{n=0}^{\infty} A_{n}, \quad B=\sum_{n=0}^{\infty} B_{n}, \quad A \otimes_{\tau} B=\sum_{n, m=0}^{\infty} A_{m} \otimes_{\tau} B_{n}
$$

where the series are absolutely convergent in the norm topology. Hence,

$$
\mathrm{a}_{\widetilde{M}_{n}+1}\left(A \otimes_{\tau} B\right) \leqslant\left\|A \otimes_{\tau} B-E_{n}\right\| \leqslant \sum_{N=n+1}^{\infty}\left\|\sum_{k+l=N} A_{k} \otimes_{\tau} B_{l}\right\|
$$

By Lemma 4.1,
$\left\|\sum_{k+l=N} A_{k} \otimes_{\tau} B_{l}\right\|=\left\|\sum_{k=0}^{N} A P_{k} \otimes_{\tau} B Q_{N-k}\right\| \leqslant \max _{0 \leqslant k \leqslant N}\left\|A_{k}\right\|\left\|B_{N-k}\right\| \leqslant \max _{0 \leqslant k \leqslant N} \vartheta^{k} \vartheta^{N-k}=\vartheta^{N}$ and so

$$
\begin{equation*}
\mathrm{a}_{\widetilde{M}_{n}+1} \leqslant \sum_{N=n+1}^{\infty} \vartheta^{N}=\frac{1}{1-\vartheta} \vartheta^{n+1} \tag{4.2}
\end{equation*}
$$

By the monotonicity of the approximation numbers, Lemma 2.2, (2.1) and (4.2) we obtain

$$
\begin{aligned}
\left(\mathrm{a}_{n}\right)_{n=1}^{\infty} & =\left(\left(\mathrm{a}_{j}\right)_{j=\widetilde{M}_{n}+1}^{\tilde{M}_{n+1}}\right)_{n=-1}^{\infty} \leqslant\left(\left(\mathrm{a}_{\widetilde{M}_{n}+1}\right)_{\widetilde{M}_{n+1}-\widetilde{M}_{n}}\right)_{n=-1}^{\infty} \\
& \leqslant \frac{1}{1-\vartheta}\left(\left(\vartheta^{n+1}\right)_{\widetilde{M}_{n+1}-\widetilde{M}_{n}}\right)_{n=-1}^{\infty}=\frac{1}{1-\vartheta}\left(\left(\vartheta^{n}\right)_{\sum_{i+j=n} K_{i} L_{j}}\right)_{n=0}^{\infty} \\
& =\frac{1}{1-\vartheta}\left(\left(\vartheta^{n}\right)_{K_{n}}\right)_{n=0}^{\infty} \otimes\left(\left(\vartheta^{n}\right)_{L_{n}}\right)_{n=0}^{\infty} \\
& =\frac{1}{\vartheta^{2}(1-\vartheta)}\left(\left(\vartheta^{n+1}\right)_{K_{n}}\right)_{n=0}^{\infty} \otimes\left(\left(\vartheta^{n+1}\right)_{L_{n}}\right)_{n=0}^{\infty} \\
& \leqslant \frac{1}{\vartheta^{2}(1-\vartheta)} s(A) \otimes s(B)
\end{aligned}
$$

The minimal value of $\frac{1}{\vartheta^{2}(1-\vartheta)}$ for $\vartheta \in(0,1)$ is 6.75 , and so

$$
\mathrm{a}\left(A \otimes_{\tau} B\right) \leqslant 6.75 s(A) \otimes s(B)
$$

Theorems 4.2 and 2.11 yield the following corollary.
COROLLARY 4.3. Let $\mathbf{w}=\left(w_{n}\right)_{n=1}^{\infty}$ be a weight sequence with $w_{m n} \leqslant C w_{m} w_{n}$ for all m, n and let $A, B \in \mathbf{K}(\mathcal{H})$ be operators with $s(A), s(B) \in \ell_{\mathbf{w}, p}$. Then

$$
\left\|\mathrm{a}\left(A \otimes_{\tau} B\right)\right\|_{\mathbf{w}, p} \leqslant 6.75 C^{1 / p}\|s(A)\|_{\mathbf{w}, p}\|s(B)\|_{\mathbf{w}, p}
$$

Consider the weight sequence $\mathbf{w}=\left(w_{n}\right)_{n=1}^{\infty}$, where $w_{n}=\frac{(1+\ln n)^{\gamma}}{n^{\alpha}}$. If $0<\alpha \leqslant 1$ and $\gamma \geqslant 0$, then $w_{m n} \leqslant w_{m} w_{n}$ for all m, n. Hence Corollary 4.3 extends results of H. König ([17], Proposition 3) and F. Cobos and L.M. Fernàndez-Cabrera [6].

For the rest of the paper, we will be concerned with elementary operators. Let A, B be compact operators in $\mathbf{B}(\mathcal{H})$. We recall that $M_{A, B}$ is the operator $\mathbf{B}(\mathcal{H}) \rightarrow \mathbf{B}(\mathcal{H})$ defined by $M_{A, B}(X)=A X B$ and $M_{A, B}^{\mathbf{K}(\mathcal{H})}$ is the operator $\mathbf{K}(\mathcal{H}) \rightarrow \mathbf{K}(\mathcal{H})$ defined by $M_{A, B}^{\mathbf{K}(\mathcal{H})}(X)=A X B$. Theorems 3.5 and 4.2 imply the following corollary.

Corollary 4.4. Let A, B be compact operators in $\mathbf{B}(\mathcal{H})$. Then

$$
\mathrm{a}\left(M_{A, B}\right) \leqslant \mathrm{a}\left(M_{A, B}^{\mathbf{K}(\mathcal{H})}\right) \leqslant 6.75 s(A) \otimes s(B)
$$

Proof. For every $x \in \mathcal{H}$ we denote by f_{x} the functional on \mathcal{H} defined by $f_{x}(y)=\langle y, x\rangle$. The conjugate space $\overline{\mathcal{H}}$ of \mathcal{H} is defined to be the set $\left\{f_{x}: x \in \mathcal{H}\right\}$ with vector space operations $f_{x}+f_{y}=f_{x+y}, \lambda f_{x}=f_{\bar{\lambda} x}$ and inner product given by $\left\langle f_{x}, f_{y}\right\rangle=\overline{\langle x, y\rangle}$. For every $A \in \mathbf{B}(\mathcal{H})$ we denote by $\bar{A} \in \mathbf{B}(\overline{\mathcal{H}})$ the operator defined by $\bar{A}\left(f_{x}\right)=f_{A x}$.

Note that the map $A \mapsto \bar{A}$ is a surjective conjugate linear isometry and that $s(A)=s(\bar{A})$, for every compact operator A.

Let ε be the injective tensor norm. The mapping $F: \overline{\mathcal{H}} \otimes \mathcal{H} \rightarrow \mathbf{B}(\mathcal{H})$ given by $F\left(\sum_{i=1}^{n} f_{x_{i}} \otimes y_{i}\right)=\sum_{i=1}^{n} x_{i}^{*} \otimes y_{i}$ is a linear isometry ([24], Chapter IV, Theorem 2.5) of $\overline{\mathcal{H}} \otimes_{\mathcal{E}} \mathcal{H}$ onto $\mathbf{K}(\mathcal{H})$.

We define $\widetilde{F}: \mathbf{B}(\overline{\mathcal{H}} \otimes \mathcal{H}) \rightarrow \mathbf{B}(\mathbf{K}(\mathcal{H}))$ by $\widetilde{F}(T)=F \circ T \circ F^{-1}$. Clearly \widetilde{F} is a surjective linear isometry and $\widetilde{F}(T)$ is given by $\widetilde{F}(T)\left(x^{*} \otimes y\right)=F\left(T\left(f_{x} \otimes y\right)\right)$ for $x, y \in \mathcal{H}$.

For every $\bar{A} \in \mathbf{B}(\overline{\mathcal{H}})$, where $A \in \mathbf{B}(\mathcal{H})$, and every $B \in \mathbf{B}(\mathcal{H})$ we have that

$$
\begin{equation*}
\widetilde{F}\left(\bar{A} \otimes_{\mathcal{E}} B\right)=M_{B^{*}, A}^{\mathrm{K}(\mathcal{H})} . \tag{4.3}
\end{equation*}
$$

Indeed, for every $x, y \in \mathcal{H}$,

$$
\begin{aligned}
\widetilde{F}\left(\bar{A} \otimes_{\varepsilon} B\right)\left(x^{*} \otimes y\right) & =F\left(\bar{A} \otimes_{\varepsilon} B\right)\left(f_{x} \otimes y\right)=F\left(\bar{A} f_{x} \otimes B y\right)=F\left(f_{A x} \otimes B y\right) \\
& =(A x)^{*} \otimes B y=B\left(x^{*} \otimes y\right) A^{*}=M_{B, A^{*}}^{\mathbf{K}(\mathcal{H})}\left(x^{*} \otimes y\right) .
\end{aligned}
$$

So if $A, B \in \mathbf{B}(\mathcal{H})$ by (4.3) and Theorems 3.5 and 4.2 we have that

$$
\begin{aligned}
\mathrm{a}\left(M_{A, B}\right) & \leqslant \mathrm{a}\left(M_{A, B}^{\mathrm{K}(\mathcal{H})}\right)=\mathrm{a}\left(\widetilde{F}\left(\bar{B} \otimes_{\varepsilon} A^{*}\right)\right)=\mathrm{a}\left(\bar{B} \otimes_{\varepsilon} A^{*}\right) \\
& \leqslant 6.75 s(\bar{B}) \otimes s\left(A^{*}\right)=6.75 s(A) \otimes s(B) .
\end{aligned}
$$

Proposition 4.5. Let \mathcal{A} be a C^{*}-subalgebra of $\mathbf{B}(\mathcal{H})$ such that $\mathbf{K}(\mathcal{H}) \subseteq \mathcal{A}$. Let $A_{i}, B_{i} \in \mathcal{A}, i=1, \ldots, m$, and $\Phi=\sum_{i=1}^{m} M_{A_{i}, B_{i}}$. If the operators A_{i} (respectively, B_{i}), $i=1, \ldots, m$, are linearly independent then there exists $r \in \mathbb{N}$ and a constant $C>0$ such that for every n and for every $i=1, \ldots, m$,

$$
s_{r n-r+1}\left(A_{i}\right) \leqslant C h_{n}(\Phi) \quad\left(\text { respectively }, s_{r n-r+1}\left(B_{i}\right) \leqslant C h_{n}(\Phi)\right)
$$

In particular, if \mathfrak{i} is a Calkin space and $\mathrm{h}(\Phi) \in \mathfrak{i}$ then $s\left(A_{i}\right) \in \mathfrak{i}$ (respectively, $s\left(B_{i}\right) \in \mathfrak{i}$) for every $i=1, \ldots, m$.

Proof. We will only consider the case where the operators $B_{i}, i=1, \ldots, m$, are linearly independent. The other case can be treated similarly.

By Lemma 1 of [11], there exist $r \in \mathbb{N}$ and $\xi_{i}, \eta_{i} \in \mathcal{H}, i=1, \ldots, r$, such that

$$
\sum_{j=1}^{r}\left\langle B_{i} \eta_{j}, \xi_{j}\right\rangle= \begin{cases}1 & \text { if } i=1 \\ 0 & \text { if } i=2, \ldots, m\end{cases}
$$

Let $\phi_{j}: \mathcal{H} \rightarrow \mathcal{A}, j=1, \ldots, r$ be the operators given by $\phi_{j}(\xi)=\xi_{j}^{*} \otimes \xi, \psi_{j}: \mathcal{A} \rightarrow \mathcal{H}$, $j=1, \ldots, r$ be the operators given by $\psi_{j}(B)=B \eta_{j}$ and

$$
S=\sum_{j=1}^{r} \psi_{j} \circ \Phi \circ \phi_{j}=\sum_{i=1}^{m} \sum_{j=1}^{r} \psi_{j} \circ M_{A_{i}, B_{i}} \circ \phi_{j}
$$

For $\xi \in \mathcal{H}$ we have

$$
\begin{aligned}
\left(\psi_{j} \circ M_{A_{i}, B_{i}} \circ \phi_{j}\right)(\xi) & =\psi_{j}\left(A_{i} \phi_{j}(\xi) B_{i}\right)=\psi_{j}\left(A_{i}\left(\xi_{j}^{*} \otimes \xi\right) B_{i}\right) \\
& =\psi_{j}\left(\left(B_{i}^{*} \xi_{j}\right)^{*} \otimes A_{i} \xi\right)=\left\langle\eta_{j}, B_{i}^{*} \xi_{j}\right\rangle A_{i} \xi=\left\langle B_{i} \eta_{j}, \xi_{j}\right\rangle A_{i} \xi
\end{aligned}
$$

and hence

$$
S=\sum_{i=1}^{m}\left(\sum_{j=1}^{r}\left\langle B_{i} \eta_{j}, \xi_{j}\right\rangle\right) A_{i}=A_{1}
$$

By the additivity of the singular numbers, we have that

$$
s_{r n-r+1}\left(A_{1}\right) \leqslant \sum_{j=1}^{r} s_{n}\left(\psi_{j} \circ \Phi \circ \phi_{j}\right), \quad n \in \mathbb{N} .
$$

Let $C=r \max _{j=1, \ldots, r}\left\|\psi_{j}\right\|\left\|\phi_{j}\right\|$. Then $s_{n}\left(\psi_{j} \circ \Phi \circ \phi_{j}\right) \leqslant\left\|\psi_{j}\right\|\left\|\phi_{j}\right\| h_{n}(\Phi)$ and so $s_{n r-r+1}\left(A_{1}\right)$ $\leqslant \mathrm{Ch}_{n}(\Phi), n \in \mathbb{N}$.

Finally, by the monotonicity of s-numbers, we have that

$$
\begin{aligned}
s\left(A_{1}\right)=\left(s_{n}\left(A_{1}\right)\right)_{n=1}^{\infty} & =\left(\left(s_{n r-r+1+k}\left(A_{1}\right)\right)_{k=0}^{r-1}\right)_{n=1}^{\infty} \\
& \leqslant\left(\left(s_{n r-r+1}\left(A_{1}\right)\right)_{r}\right)_{n=1}^{\infty} \leqslant C\left(\left(\mathrm{~h}_{n}(\Phi)\right)_{r}\right)_{n=1}^{\infty}
\end{aligned}
$$

If \mathfrak{i} is a Calkin space and $\mathrm{h}(\Phi) \in \mathfrak{i}$, Lemma 2.4 implies that $\left(\left(h_{n}(\Phi)\right)_{r}\right)_{n=1}^{\infty} \in \mathfrak{i}$. It follows that $s\left(A_{1}\right) \in \mathfrak{i}$. Similarly, $s\left(A_{i}\right) \in \mathfrak{i}, i=2, \ldots, m$.

The following theorem is the main result of this section.
THEOREM 4.6. Let Φ be an elementary operator on $\mathbf{B}(\mathcal{H})$ (respectively on $\mathbf{K}(\mathcal{H})$), \mathfrak{i} be a tensor stable Calkin space and s be an s-function. Then $\mathrm{s}(\Phi) \in \mathfrak{i}$ if and only if there exist $m \in \mathbb{N}$ and $A_{i}, B_{i} \in \mathbf{B}(\mathcal{H}), i=1, \ldots, m$, such that $\Phi=\sum_{i=1}^{m} M_{A_{i}, B_{i}}$ and $s\left(A_{i}\right), s\left(B_{i}\right) \in \mathfrak{i}$ for $i=1, \ldots, m$.

Proof. We prove the theorem in the case where Φ is an elementary operator on $\mathbf{B}(\mathcal{H})$. The proof in the case where Φ is an elementary operator on $\mathbf{K}(\mathcal{H})$ is similar.

Suppose that $s(\Phi) \in \mathfrak{i}$. Let $\Phi=\sum_{i=1}^{m} M_{A_{i}, B_{i}}$ be a representation of Φ where m is minimal. Then A_{i} (respectively B_{i}), $i=1, \ldots, m$, are linearly independent. Since $\mathrm{h}(\Phi) \leqslant \mathrm{s}(\Phi)$ we have that $\mathrm{h}(\Phi) \in \mathfrak{i}$. By Proposition 4.5, $s\left(A_{i}\right), s\left(B_{i}\right) \in \mathfrak{i}$ for every $i=1, \ldots, m$.

Conversely, suppose that $\Phi=\sum_{i=1}^{m} M_{A_{i}, B_{i}}$ where $s\left(A_{i}\right), s\left(B_{i}\right) \in \mathfrak{i}$ for every $i=1, \ldots, m$. Since \mathfrak{i} is tensor stable, Corollary 4.4 implies that $a\left(M_{A_{i}, B_{i}}\right) \in \mathfrak{i}$. By the additivity of the approximation numbers, $\mathrm{a}(\Phi) \in \mathfrak{i}$ and so $\mathrm{s}(\Phi) \in \mathfrak{i}$.

Theorem 4.4 provides an upper bound for the the approximation numbers of $M_{A, B}$ in terms of the sequence $s(A) \otimes s(B)$. In the following proposition we obtain a lower bound for the Hilbert numbers of $M_{A, B}$ in terms of the sequence
$s(A) \otimes s(B)$. For $1 \leqslant p<\infty$ we denote by $\left(\mathcal{S}_{p},\|\cdot\|_{p}\right)$ the Schatten p-class, that is, the space of all operators $A \in \mathbf{K}(\mathcal{H})$ such that $s(A) \in \ell^{p}$, where the norm is given by $\|A\|_{p}=\left(\sum_{n=1}^{\infty}|s(A)|^{p}\right)^{1 / p}$. If $\alpha=\left(\alpha_{n}\right)_{n=1}^{\infty}$ and $\beta=\left(\beta_{n}\right)_{n=1}^{\infty}$ are sequences of complex numbers we denote by $\alpha \boldsymbol{\beta}$ the sequence $\left(\alpha_{n} \beta_{n}\right)_{n=1}^{\infty}$.

Proposition 4.7. Let $A, B \in \mathbf{K}(\mathcal{H})$. The following hold:
(i) If $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ are sequences of unit norm in ℓ_{4}^{+}then $\mathrm{h}\left(M_{A, B}\right) \geqslant(\lambda s(A)) \otimes(\boldsymbol{\mu s}(B))$.
(ii) If λ is a sequence of unit norm in ℓ_{2}^{+}then $\mathrm{h}\left(M_{A, B}\right) \geqslant(\lambda s(A)) \otimes s(B)$ and $\mathrm{h}\left(M_{A, B}\right) \geqslant s(A) \otimes(\lambda s(B))$.

In particular,

$$
\begin{equation*}
\mathrm{h}_{n}\left(M_{A, B}\right) \geqslant \frac{(s(A) \otimes s(B))(n)}{\sqrt{n}}, \quad n \in \mathbb{N} \tag{4.4}
\end{equation*}
$$

Proof. (i) Let $A, B \in \mathbf{K}(\mathcal{H})$ have norm one and $A^{*}=U\left|A^{*}\right|$ and $B=V|B|$ be the polar decompositions of A^{*} and B, respectively. Let $s(A)=\left(\alpha_{n}\right)_{n=1}^{\infty}, s(B)=$ $\left(\beta_{n}\right)_{n=1}^{\infty}$ and

$$
\left|A^{*}\right|=\sum_{i=1}^{\infty} \alpha_{i} e_{i}^{*} \otimes e_{i} \quad \text { and } \quad|B|=\sum_{j=1}^{\infty} \beta_{j} f_{j}^{*} \otimes f_{j}
$$

be Schmidt expansions of $\left|A^{*}\right|$ and $|B|$, respectively. Let \mathcal{K} be the closed subspace of \mathcal{S}_{2} spanned by the family $\left\{f_{i}^{*} \otimes e_{j}, i, j\right\}$ and $F: \mathcal{K} \rightarrow \mathbf{B}(\mathcal{H})$ be the map given by $F(X)=U X V^{*}$. Clearly, $\|F\| \leqslant 1$.

Consider sequences $\lambda=\left(\lambda_{i}\right), \boldsymbol{\mu}=\left(\mu_{j}\right) \in \ell_{4}^{+}$of unit norm and let $D_{\lambda}, D_{\mu} \in$ $\mathbf{B}(\mathcal{H})$ be the operators given by

$$
D_{\lambda}=\sum_{i=1}^{\infty} \lambda_{i} e_{i}^{*} \otimes e_{i}, \quad D_{\mu}=\sum_{j=1}^{\infty} \mu_{j} f_{j}^{*} \otimes f_{j}
$$

Let $G: \mathbf{B}(\mathcal{H}) \rightarrow \mathcal{K}$ be the operator given by $G(Y)=D_{\lambda} Y D_{\mu}$. Since

$$
\left\|D_{\lambda} Y D_{\mu}\right\|_{2} \leqslant\left\|D_{\lambda}\right\|_{4}\left\|D_{\mu}\right\|_{4}\|Y\| \leqslant\|Y\|
$$

the operator G is well defined and $\|G\| \leqslant 1$. The family $\left\{f_{i}^{*} \otimes e_{j}, i, j\right\}$ is an orthonormal basis of \mathcal{K} and

$$
\left(G \circ M_{A, B} \circ F\right)\left(f_{i}^{*} \otimes e_{j}\right)=\lambda_{j} \alpha_{j} \mu_{i} \beta_{i} f_{i}^{*} \otimes e_{j}
$$

It follows that

$$
\mathrm{h}_{n}\left(M_{A, B}\right) \geqslant s_{n}\left(G \circ M_{A, B} \circ F\right)=(\boldsymbol{\lambda} s(A) \otimes \boldsymbol{\mu} s(B))(n)
$$

and (i) is proved. The proof of (ii) is similar.
We show inequality (4.4). Let $s(A) \otimes s(B)=\left(v_{n}\right)_{n \in \mathbb{N}}$ and $\pi: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$, $\pi(n)=\left(i_{n}, j_{n}\right)$ be a bijection such that $v_{n}=\alpha_{i_{n}} \beta_{j_{n}}$. We set $\lambda=\left(\lambda_{i}\right)_{i=1}^{\infty}, \mu=$
$\left(\mu_{j}\right)_{j=1}^{\infty}$ where

$$
\lambda_{i}=\left\{\begin{array}{ll}
\frac{1}{\sqrt[4]{n}} & \text { if } i \in\left\{i_{1}, \ldots, i_{n}\right\}, \\
0 & \text { if } i \notin\left\{i_{1}, \ldots, i_{n}\right\} ;
\end{array} \quad \mu_{j}= \begin{cases}\frac{1}{\sqrt[4]{n}} & \text { if } i \in\left\{j_{1}, \ldots, j_{n}\right\} \\
0 & \text { if } i \notin\left\{j_{1}, \ldots, j_{n}\right\}\end{cases}\right.
$$

We have that $(\boldsymbol{\lambda s}(A) \otimes \boldsymbol{\mu} s(B))(k)=\frac{1}{\sqrt{n}} v_{k}$ for every $k=1, \ldots, n$, and so $h_{n}\left(M_{A, B}\right)$ $\geqslant \frac{1}{\sqrt{n}} v_{n}$.

It follows from Theorem 4.6 that if the s-numbers of the symbols of an elementary operator Φ belong to a tensor stable Calkin space \mathfrak{i} then the s-numbers of Φ also belong to i. In what follows we show that this is not true without the assumption that i is tensor stable.

Proposition 4.8. Let $\vartheta \in(0,1)$ and \mathfrak{i} be the principal Calkin space generated by the sequence $\vartheta=\left(\vartheta^{n-1}\right)_{n=1}^{\infty}$. Then there exists $A \in \mathbf{B}(\mathcal{H})$ such that $s(A) \in \mathfrak{i}$ and $\mathrm{h}\left(M_{A, A}\right) \notin \mathfrak{i}$.

Proof. Let $A \in \mathbf{B}(\mathcal{H})$ be such that $s(A)=\boldsymbol{\vartheta}$. We will show that $\mathrm{h}\left(M_{A, A}\right) \notin \mathfrak{i}$. By Proposition 4.7 it suffices to show that the sequence $\boldsymbol{\alpha}=\left(\frac{1}{n}(\boldsymbol{\vartheta} \otimes \boldsymbol{\vartheta})(n)\right)_{n=1}^{\infty}$ does not belong to \mathfrak{i}, or (by Lemma 2.7) that for every $r \in \mathbb{N}, \boldsymbol{\alpha} \not \mathbb{L} \otimes \boldsymbol{\vartheta}$.

Suppose that there exist $r_{0} \in \mathbb{N}$ and $C>0$ such that $\alpha \leqslant C \mathbf{r}_{\mathbf{0}} \otimes \boldsymbol{\vartheta}$. Let $\boldsymbol{\alpha}=\left(\alpha_{n}\right)_{n=1}^{\infty}$ and $\mathbf{r}_{0} \otimes \boldsymbol{\vartheta}=\left(\beta_{n}\right)_{n=1}^{\infty}$. Then for every m we have that

$$
\beta_{r_{0} m}=\vartheta^{m-1} \quad \text { and } \quad \alpha_{m(m+1) / 2}=\frac{2}{m(m+1)} \vartheta^{m-1}
$$

So, if r is an even positive integer and $n(r)=\frac{r r_{0}\left(r r_{0}+1\right)}{2}$ we have that

$$
\frac{2}{r r_{0}\left(r r_{0}+1\right)} \vartheta^{r r_{0}-1}=\alpha_{n(r)} \leqslant C \beta_{n(r)}=C \vartheta^{r\left(r_{0} r+1\right) / 2-1}
$$

which leads to a contradiction.

5. ELEMENTARY OPERATORS ON C^{*}-ALGEBRAS

Let \mathcal{A} be a C^{*}-algebra. Recall that an element $a \in \mathcal{A}$ is called compact if the operator $M_{a, a}: \mathcal{A} \rightarrow \mathcal{A}$ is compact. We denote by $\mathcal{K}(\mathcal{A})$ the closed twosided ideal of all compact elements of \mathcal{A}. The spectrum of \mathcal{A} is the set of unitary equivalence classes of non-zero irreducible representations of \mathcal{A}. We will need two lemmas which follow from Section 5.5 of [20].

Lemma 5.1. Let $(\rho, \mathcal{H})=\left(\bigoplus_{i \in I} \rho_{i}, \bigoplus_{i \in I} \mathcal{H}_{i}\right)$ be the reduced atomic representation of \mathcal{A} where $\left\{\left(\rho_{i}, \mathcal{H}_{i}\right), i \in I\right\}$ is a maximal family of unitarily inequivalent irreducible representations of \mathcal{A}. Let $J=\left\{i \in I: \rho_{i}(\mathcal{K}(\mathcal{A})) \neq\{0\}\right\}$. Let σ_{i} be the restriction of ρ_{i} to $\mathcal{K}(\mathcal{A})$. Then the representation $\sigma=\left(\bigoplus_{i \in J} \sigma_{i}, \bigoplus_{i \in J} \mathcal{H}_{i}\right)$ is the reduced atomic representation of $\mathcal{K}(\mathcal{A})$.

Lemma 5.2. Let \mathcal{A} be a C^{*}-algebra such that $\mathcal{A}=\mathcal{K}(\mathcal{A})$ and $\sigma=\left(\bigoplus_{i \in J} \sigma_{i}\right.$, $\oplus_{i \in J} \mathcal{H}_{i}$) be the reduced atomic representation of \mathcal{A}. Then \mathcal{A} has finite spectrum if and only if J is finite. In this case, $\sigma(\mathcal{A})=\sum_{i \in J} \mathbf{K}\left(\mathcal{H}_{i}\right)$.

THEOREM 5.3. Let \mathcal{A} be a C^{*}-algebra, \mathfrak{i} be a tensor stable Calkin space and s be an s-function. Let Φ be a compact elementary operator on \mathcal{A}.
(i) Suppose that

$$
\begin{equation*}
\Phi=\sum_{i=1}^{m} M_{a_{i}, b_{i}} \quad a_{i}, b_{i} \in \mathcal{A}, i=1, \ldots, m \tag{5.1}
\end{equation*}
$$

and that π is a faithful representation of \mathcal{A} such that $s\left(\pi\left(a_{i}\right)\right), s\left(\pi\left(b_{i}\right)\right) \in \mathfrak{i}, i=$ $1, \ldots, m$. Then $\mathrm{s}(\Phi) \in \mathfrak{i}$.
(ii) Suppose that $\mathcal{K}(\mathcal{A})$ has finite spectrum and that $\mathrm{s}(\Phi) \in \mathfrak{i}$. Then there exist a representation $\sum_{i=1}^{m} M_{a_{i}, b_{i}}, a_{i}, b_{i} \in \mathcal{A}, i=1, \ldots, m$, of Φ and a faithful representation π of \mathcal{A} such that $s\left(\pi\left(a_{i}\right)\right), s\left(\pi\left(b_{i}\right)\right) \in \mathfrak{i}, i=1, \ldots, m$.

Proof. (i) Since $\mathrm{s}_{n}(\Phi) \leqslant \mathrm{a}_{n}(\Phi)$ for each n, it suffices to show that $\mathrm{a}(\Phi) \in \mathfrak{i}$. By the additivity of the approximation numbers we have that $\mathrm{a}_{n m-m+1}(\Phi) \leqslant$ $\sum_{i=1}^{m} \mathrm{a}_{n}\left(M_{a_{i}, b_{i}}\right)$. If $\mathrm{a}\left(M_{a_{i}, b_{i}}\right) \in \mathfrak{i}$ for each $i=1, \ldots, m$, Lemma 2.4 implies that $\mathrm{a}(\Phi) \in$ i. Thus, we may assume that $\Phi=M_{a, b}$, where $a, b \in \mathcal{A}$.

Let $\pi: \mathcal{A} \rightarrow \mathbf{B}(\mathcal{H})$ be a faithful representation such that $s(\pi(a)), s(\pi(b)) \in$ i. Set $A=\pi(a)$ and $B=\pi(b)$. We denote by $M_{A, B}$ the corresponding elementary operator acting on $\pi(\mathcal{A})$. Clearly, A and B are compact operators and $\mathrm{a}(\Phi)=$ $\mathrm{a}\left(M_{A, B}\right)$. Let $\mathcal{J}=\pi(\mathcal{A}) \cap \mathbf{K}(\mathcal{H})$. By Theorem 3.5,

$$
\mathrm{a}_{n}\left(M_{A, B}\right) \leqslant \mathrm{a}_{n}\left(M_{A, B}^{\mathcal{J}}\right), \quad \text { for every } n \in \mathbb{N}
$$

Let \mathcal{H}_{0} the closure of $\mathcal{J H}$. Then there exist positive integers $\left\{m_{i}\right\}_{i \in I}$ and Hilbert spaces $\left\{H_{i}\right\}_{i \in I}$ such that:
(i) $\mathcal{H}_{0}=\sum_{i \in I}(\underbrace{\mathcal{H}_{i} \oplus \cdots \oplus \mathcal{H}_{i}}_{m_{i} \text { times }})$.
(ii) the C^{*}-algebra \mathcal{J} is equal to a c_{0}-direct sum $\underset{i \in I}{\bigoplus}\left(\mathbb{C} I_{m_{i}} \otimes \mathbf{K}\left(\mathcal{H}_{i}\right)\right)$ where $I_{m_{i}}$ is the the identity operator on a Hilbert space of dimension m_{i} ([3], Section 1.4).

Let $\Theta: \mathcal{J} \rightarrow \mathbf{K}\left(\mathcal{H}_{0}\right)$ be the canonical injection. Let P_{i} be the orthogonal projection from \mathcal{H}_{0} onto $(\underbrace{\mathcal{H}_{i} \oplus \cdots \oplus \mathcal{H}_{i}}_{m_{i} \text { times }})$ and $\Delta_{1}: \mathbf{K}\left(\mathcal{H}_{0}\right) \rightarrow \sum_{i \in I} P_{i} \mathbf{K}\left(\mathcal{H}_{0}\right) P_{i}$ the operator given by $\Delta_{1}(X)=\sum_{i \in I} P_{i} X P_{i}$.

An element $Y \in \sum_{i \in I} P_{i} \mathbf{K}\left(\mathcal{H}_{0}\right) P_{i}$ may be written as

$$
Y=\sum_{i \in I} Y^{i}
$$

where $Y^{i} \in P_{i} \mathbf{K}\left(\mathcal{H}_{0}\right) P_{i}$ is an $m_{i} \times m_{i}$ matrix $Y_{p, q}^{i}$ with coefficients in $\mathbf{K}\left(\mathcal{H}_{i}\right)$. Let $\Delta_{2}: \sum_{i \in I} P_{i} \mathbf{K}\left(\mathcal{H}_{0}\right) P_{i} \rightarrow \mathcal{J}$ be the operator defined as follows: If $Y^{i} \in P_{i} \mathbf{K}\left(\mathcal{H}_{0}\right) P_{i}$, then $\Delta_{2}\left(Y^{i}\right)$ is the diagonal $m_{i} \times m_{i}$ matrix with all its diagonal entries equal to $\frac{1}{m_{i}} \sum_{p=1}^{m_{i}} Y_{p, p}^{i}$. Set $\Delta=\Delta_{2} \Delta_{1}$. We have that $M_{A, B}^{\mathcal{J}}=\Delta \circ M_{A, B}^{\mathbf{K}\left(\mathcal{H}_{0}\right)} \circ \Theta$ where $M_{A, B}^{\mathbf{K}\left(\mathcal{H}_{0}\right)}$ is the corresponding elementary operator acting on $\mathbf{K}\left(\mathcal{H}_{0}\right)$. Clearly, Δ is a contraction. Thus,

$$
\mathrm{a}_{n}\left(M_{A, B}^{\mathcal{J}}\right) \leqslant\|\Delta\| \mathrm{a}_{n}\left(M_{A, B}^{\mathbf{K}(\mathcal{H})}\right)\|\Theta\| \leqslant \mathrm{a}_{n}\left(M_{A, B}^{\mathbf{K}(\mathcal{H})}\right)
$$

By Corollary 4.4, $\mathrm{a}(\Phi) \in \mathfrak{i}$.
(ii) We identify \mathcal{A} with $\rho(\mathcal{A})$ where $(\rho, \mathcal{H})=\left(\bigoplus_{i \in I} \rho_{i}, \bigoplus_{i \in I} \mathcal{H}_{i}\right)$ is the reduced atomic representation of \mathcal{A}. By Theorem 3.1 of [25], there exist $A_{0 j}, B_{0 j} \in$ $\mathcal{K}(\mathcal{A}), j=1, \ldots, m$, such that $\Phi=\sum_{j=1}^{m} M_{A_{0 j}, B_{0 j}}$. Since $\mathrm{h}_{n}(\Phi) \leqslant \mathrm{s}_{n}(\Phi)$ for each n, we may assume that $\mathrm{s}=\mathrm{h}$. Let $\Phi_{0}: \mathcal{K}(\mathcal{A}) \rightarrow \mathcal{K}(\mathcal{A})$ be the operator defined by $\Phi_{0}(X)=\Phi(X)$. By Lemma 3.3, $\mathrm{h}\left(\Phi_{0}\right) \in \mathfrak{i}$. Consequently, the C^{*}-algebra $\mathcal{K}(\mathcal{A})$ and the operator Φ_{0} satisfy our assumptions. Thus we may assume that $\mathcal{A}=\mathcal{K}(\mathcal{A})$.

By Lemmas 5.1 and $5.2, \mathcal{K}(\mathcal{A})=\bigoplus_{i \in I_{0}} \mathbf{K}\left(\mathcal{H}_{i}\right)$ where I_{0} is a finite subset of I. Let $i \in I_{0}$. Clearly, $\mathbf{K}\left(\mathcal{H}_{i}\right)$ is invariant by Φ. Let $\Phi_{i}: \mathbf{K}\left(\mathcal{H}_{i}\right) \rightarrow \mathbf{K}\left(\mathcal{H}_{i}\right)$ be the operator defined by $\Phi_{i}(X)=\Phi(X)$. The operator Φ_{i} is an elementary operator on $\mathbf{K}\left(\mathcal{H}_{i}\right)$. By Theorem 3.5, $\mathrm{h}\left(\Phi_{i}\right) \in \mathfrak{i}$. By Theorem 4.6, there exists a representation $\sum_{j=1}^{m_{i}} M_{A_{i j}, B_{i j}}$ of Φ_{i} where $A_{i j}, B_{i j} \in \mathbf{K}\left(\mathcal{H}_{i}\right)$ and $s\left(A_{i j}\right), s\left(B_{i j}\right) \in \mathfrak{i}$. Considering $A_{i j}$ and $B_{i j}$ as operators on \mathcal{H} we obtain that $\Phi=\sum_{i=1}^{k} \sum_{j=1}^{m_{i}} M_{A_{i j}, B_{i j}}$ is a representation with the required properties.

Part (ii) of Theorem 5.3 does not hold if we do not assume that $\mathcal{K}(\mathcal{A})$ has finite spectrum. In fact, we have the following:

THEOREM 5.4. Let \mathcal{A} be a C^{*}-algebra. The following are equivalent:
(i) $\mathcal{K}(\mathcal{A})$ has finite spectrum.
(ii) Let sbe an s-function, \mathfrak{i} be a tensor stable Calkin space and Φ be a compact elementary operator on \mathcal{A}. Assume that $\mathrm{s}(\Phi) \in \mathfrak{i}$. Then there exist a representation $\sum_{i=1}^{m} M_{a_{i}, b_{i}}$ of Φ and a faithful representation π of \mathcal{A} such that $s\left(\pi\left(a_{i}\right)\right), s\left(\pi\left(b_{i}\right)\right) \in \mathfrak{i}$ for every $i=1, \ldots, m$.

Proof. The implication (i) \Rightarrow (ii) follows from Theorem 5.3. We prove that (ii) implies (i). Suppose that $\mathcal{K}(\mathcal{A}) \neq\{0\}$ and that $\mathcal{K}(\mathcal{A})$ does not have finite spectrum. We will show that for every $p>2$ there exists an elementary operator Φ on \mathcal{A} such that:
(a) a $(\Phi) \in \ell_{p}$, and
(b) whenever π is a faithful representation of \mathcal{A} and $\Phi=\sum_{i=1}^{m} M_{c_{i}, d_{i}}, c_{i}, d_{i} \in$ $\mathcal{K}(\mathcal{A})$, there exists $i, 1 \leqslant i \leqslant m$, such that $s\left(\pi\left(c_{i}\right)\right) \notin \ell_{p}$ or $s\left(\pi\left(d_{i}\right)\right) \notin \ell_{p}$.

Let σ be the reduced atomic representation of $\mathcal{K}(\mathcal{A})$. Then

$$
\sigma(\mathcal{K}(\mathcal{A}))=\bigoplus_{j \in J} \mathbf{K}\left(\mathcal{H}_{j}\right)
$$

It follows from Lemma 5.2 that J is infinite. Choose an infinite countable subfamily $\left\{\mathcal{H}_{j}\right\}_{j=1}^{\infty}$ of the family J. For each $j \in \mathbb{N}$, consider a unit vector $e_{j} \in \mathcal{H}_{j}$.

Let r_{j} be the projection of $\mathcal{K}(\mathcal{A})$ such that $\sigma\left(r_{j}\right)=e_{j}^{*} \otimes e_{j}$ and $\left(\lambda_{j}\right)_{j=1}^{\infty}$ be a decreasing sequence of positive real numbers belonging to $\ell_{2 p}$ but not to ℓ_{p}. We set

$$
c=\sum_{j=1}^{\infty} \lambda_{j} r_{j}, p_{k}=\sum_{j=1}^{k} r_{j} \quad \text { and } \quad \Phi=M_{c, c} \in \mathbf{B}(\mathcal{A}) .
$$

We will show that $a(\Phi) \in \ell_{p}$.
Let ρ be the reduced atomic representation of \mathcal{A}. Let $c_{n}=\sum_{i=1}^{n} \lambda_{i} r_{i}$. It follows from Lemma 5.1 that

$$
M_{\rho\left(c_{n}\right), \rho\left(c_{n}\right)}(\rho(a))=\sum_{i=1}^{n} \sigma_{i}\left(r_{i}\right) \rho_{i}(a) \sigma_{i}\left(r_{i}\right)
$$

and hence the operator $M_{\rho\left(c_{n}\right), p\left(c_{n}\right)}$ is an operator of rank n. It also follows from Lemma 5.1 that $M_{\rho(c), \rho(c)}-M_{\rho\left(c_{n}\right), \rho\left(c_{n}\right)}=M_{\rho\left(c-c_{n}\right), \rho\left(c-c_{n}\right)}$. Hence,

$$
\mathrm{a}_{n}\left(M_{c, c}\right)=\mathrm{a}_{n}\left(M_{\rho(c), \rho(c)}\right) \leqslant\left\|\rho\left(c-c_{n-1}\right)\right\|^{2} \leqslant \lambda_{n}^{2}
$$

and so $\mathrm{a}(\Phi) \in \ell_{p}$.
Assume that there exist a faithful representation $\pi: \mathcal{A} \rightarrow \mathbf{B}(\mathcal{H})$ and elements $a_{i}, b_{i} \in \mathcal{K}(\mathcal{A})$ for $i=1, \ldots, m$, such that $s\left(\pi\left(a_{i}\right)\right), s\left(\pi\left(b_{i}\right)\right) \in \ell_{p}, i=1, \ldots, m$, and $\Phi=\sum_{i=1}^{m} M_{a_{i}, b_{i}}$. We have $\Phi\left(p_{k}\right)=c p_{k} c=\sum_{i=1}^{m} a_{i} p_{k} b_{i}$. Hence $\pi(c) \pi\left(p_{k}\right) \pi(c)=$ $\sum_{i=1}^{m} \pi\left(a_{i}\right) \pi\left(p_{k}\right) \pi\left(b_{i}\right)$ and by continuity

$$
\begin{equation*}
\pi(c) P \pi(c)=\sum_{i=1}^{m} \pi\left(a_{i}\right) P \pi\left(b_{i}\right) \tag{5.2}
\end{equation*}
$$

where $P=\sum_{j=1}^{\infty} \pi\left(r_{j}\right)$ is the sot-limit of the sequence $\left(\pi\left(p_{k}\right)\right)_{k=1}^{\infty}$.
It follows from (5.2) that $\pi(c) P \pi(c) \in \mathcal{S}_{p / 2}$. On the other hand,

$$
\pi(c) P \pi(c)=\sum_{j=1}^{\infty} \lambda_{j}^{2} \pi\left(r_{j}\right)
$$

It follows that $\left(\lambda_{j}^{2}\right) \in \ell_{p / 2}$ and so $\left(\lambda_{j}\right) \in \ell_{p}$, a contradiction.
We note the following corollary of Theorem 5.3.
Corollary 5.5. Let \mathcal{A} be a C^{*}-algebra such that $\mathcal{K}(\mathcal{A})$ has finite spectrum, \mathfrak{i} be a tensor stable Calkin space and s be an s-function. Let Φ be an elementary operator on \mathcal{A} such that $\mathrm{s}(\Phi) \in \mathfrak{i}$. Then Φ is a linear combination of positive elementary operators $\Phi_{j}, j=1,2,3,4$ such that, $\mathbf{s}\left(\Phi_{j}\right) \in \mathfrak{i}$ for every $j=1,2,3,4$.

Proof. By assertion (ii) of Theorem 5.3, there exist a representation $\sum_{i=1}^{m} M_{a_{i}, b_{i}}$, $a_{i}, b_{i} \in \mathcal{A}, i=1, \ldots, m$, of Φ and a faithful representation π of \mathcal{A} such that $s\left(\pi\left(a_{i}\right)\right), s\left(\pi\left(b_{i}\right)\right) \in \mathfrak{i}, i=1, \ldots, m$. Let $\Phi^{ \pm}(x)=\frac{1}{4} \sum_{i=1}^{m}\left(a_{i} \pm b_{i}^{*}\right) x\left(a_{i}^{*} \pm b_{i}\right)$ and $\Psi^{ \pm}(x)=\frac{1}{4} \sum_{i=1}^{m}\left(a_{i} \pm i b_{i}^{*}\right) x\left(a_{i}^{*} \mp i b_{i}\right)$. Clearly, all operators $\Phi^{ \pm}, \Psi^{ \pm}$are positive. By assertion (i) of Theorem 5.3, $\mathrm{s}\left(\Phi^{ \pm}\right), \mathrm{s}\left(\Psi^{ \pm}\right) \in \mathfrak{i}$. A straightforward verification shows that $\Phi=\Phi^{+}-\Phi^{-}+i\left(\Psi^{+}-\Psi^{-}\right)$. The proof is complete.

We close this section by proving a result which may be viewed as a quantitative version of a result of Ylinen [27].

Theorem 5.6. Let \mathcal{A} be a C^{*}-algebra, $a \in \mathcal{A}$ and \mathfrak{i} be a Calkin space. Assume that $\mathrm{d}\left(M_{a, a}\right) \in \mathfrak{i}$. Then $s(\rho(a))^{2} \in \mathfrak{i}$ where (ρ, \mathcal{H}) is the reduced atomic representation of \mathcal{A}.

Proof. Since $\mathrm{d}\left(M_{a, a}\right) \in \mathfrak{i}$, the operator $M_{a, a}$ is compact and it follows from [27] that $\rho(a)$ is compact.

Let $(\rho, \mathcal{H})=\left(\bigoplus_{i \in I} \rho_{i}, \bigoplus_{i \in I} \mathcal{H}_{i}\right)$. Set $\mathcal{C}=\bigoplus_{i \in I} \mathbf{B}\left(\mathcal{H}_{i}\right)$.
Let $\Phi: \mathcal{C} \rightarrow \mathcal{C}$ be the operator defined by $\Phi(X)=\rho(a) X \rho(a)$. Since $\overline{\rho(\mathcal{A})}^{\text {wot }}=\mathcal{C}$, Lemma 3.6 implies that $\mathrm{d}(\Phi) \leqslant \mathrm{d}\left(M_{\rho(a), \rho(a)}\right)$ and so $\mathrm{d}(\Phi) \in \mathfrak{i}$.

Let $\rho(a)=U A$ be the polar decomposition of $\rho(a)$ and $A=\sum_{k=1}^{\infty} \lambda_{k} e_{k}^{*} \otimes e_{k}$ be a Schmidt expansion of A. Define

$$
\begin{array}{ll}
\alpha: \ell_{\infty} \rightarrow \mathcal{C} & \text { by } \alpha\left(\left(x_{l}\right)_{l=1}^{\infty}\right)=\sum_{l=1}^{\infty} x_{l} e_{l}^{*} \otimes e_{l}, \text { and } \\
\beta: \mathcal{C} \rightarrow \ell_{\infty} & \text { by } \beta(X)=\left(\left\langle X e_{l}, e_{l}\right\rangle\right)_{l=1}^{\infty} .
\end{array}
$$

Consider the map $\Psi: \ell_{\infty} \rightarrow \ell_{\infty}$ defined by

$$
\Psi\left(\left(x_{l}\right)_{l=1}^{\infty}\right)=\beta\left(U^{*} \Phi\left(\alpha\left(\left(x_{l}\right)_{l=1}^{\infty}\right) U^{*}\right)\right)
$$

Since α and β are contractions we have $\mathrm{d}(\Psi) \leqslant \mathrm{d}(\Phi)$ and so $\mathrm{d}(\Psi) \in \mathfrak{i}$. A direct calculation shows that $\Psi\left(\left(x_{l}\right)_{l=1}^{\infty}\right)=\left(\lambda_{l}^{2} x_{l}\right)_{l=1}^{\infty}$. It follows ([21], Theorem 11.11.3) that $\mathrm{d}(\Psi)=\left(\lambda_{l}^{2}\right)_{l=1}^{\infty}$. Hence, $s(A)^{2} \in \mathfrak{i}$.

Acknowledgements. We wish to thank the referee for his useful suggestions and comments.

REFERENCES

[1] G.D. Allen, L.C. Shen, On the structure of principal ideals of operators, Trans. Amer. Math. Soc. 238(1978), 253-270.
[2] P. Ara, M. Mathieu, Local Multipliers of C^{*}-Algebras, Springer Monogr. Math., Springer-Verlag London, Ltd., London 2003.
[3] W. Arveson, An Invitation to C*-Algebras, Grad. Texts Math., vol. 39. Springer-Verlag, New York-Heidelberg 1976.
[4] J.W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. 42(1941) 839-873.
[5] B. Carl, I. Stephani, Entropy, Compactness and Approximation of Operators, Cambridge Univ. Press, Cambridge 1990.
[6] F. Cobos, L.M. Fernàndez-Cabrera, On the tensor stability of some operator ideals, Bull. Polish Acad. Sci. Math. 37(1989), 459-465.
[7] K.R. Davidson, Nest Algebras. Triangular Forms for Operator Algebras on Hilbert Space, Pitman Res. Notes Math. Ser., vol. 191, Longman Sci. Tech., Harlow and John Wiley and Sons, Inc., New York 1988.
[8] J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars \& Cie, Paris 1964.
[9] K. Dyкema, T. Figiel, G. Weiss, M. Wodzicki, Commutator structure of operator ideals, Adv. Math. 185(2004), 1-79.
[10] J.A. ERDOS, On certain elements of C^{*}-algebras, Illinois J. Math. 15(1971), 682-693.
[11] C.K. Fong, A.R. Sourour, On the operator indentity $\sum A_{k} X B_{k} \equiv 0$, Canad. J. Math. 31(1979), 845-857.
[12] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Amer. Math. Soc., Providence, RI 1969.
[13] V. Kaftal, G. Weiss, Traces, ideals, and arithmetic means, Proc. Nat. Acad. Sci. U.S.A. 99(2002), 7356-7360.
[14] V. Kaftal, G. Weiss, Soft ideals and arithmetic mean ideals, Integral Equations Operator Theory 58(2007), 363-405.
[15] V. Kaftal, G. Weiss, $B(H)$ lattices, density and arithmetic mean ideals, Houston J. Math. 37(2011), 233-283.
[16] V. Kaftal, G. Weiss, Traces on operator ideals and arithmetic means, J. Operator Theory 63(2010), 3-46.
[17] H. König, On the tensor stability of s-number ideals, Math. Ann. 269(1984), 77-93.
[18] J. Lindestrauss, L. Tzafriri, Classical Banach Spaces. I. Sequence spaces, Ergeb. Math. Grenzgeb., vol. 92. Springer-Verlag, Berlin-New York 1997.
[19] M. Mathieu, Elementary operators on prime C*-algebras. II, Glasgow Math. J. 30(1988), 275-284.
[20] G. Murphy, C*-Algebras and Operator Theory, Academic Press, Boston 1990.
[21] A. Pietsch, Operator Ideals, North-Holland Math. Library, vol. 20, North Holland Publ. Co., Amsterdam-New York 1980.
[22] A. Pietsch, Tensor products of sequences, functions and operators, Arch. Math. 38(1982), 335-344.
[23] B. Simon, Trace Ideals and their Applications, Cambridge Univ. Press, Cambridge 1979.
[24] A. Takesaki, Theory of Operator Algebras. I, Springer-Verlag, New York-Heidelberg 1979.
[25] R.M. Timoney, Some formulae for norms of elementary operators, J. Operator Theory 57(2007), 121-145.
[26] G. Weiss, Classification of certain commutator ideals and the tensor product closure property, Integral Equations Operator Theory 12(1989), 99-128.
[27] K. Ylinen, A note on the compact elements of C^{*}-algebras, Proc. Amer. Math. Soc. 35(1972), 305-306.

[^0]
[^0]: M. ANOUSSIS, Department of Mathematics, University of the Aegean, 83200 Karlovasi, SAmos, Greece

 E-mail address: mano@aegean.gr
 V. FELOUZIS, Department of Mathematics, University of the Aegean, 83200 Karlovasi, Samos, Greece

 E-mail address: felouzis@aegean.gr
 I.G. TODOROV, Department of Pure Mathematics, Queen's University Belfast, Belfast BT7 1NN, U.K.

 E-mail address: i.todorov@qub.ac.uk

