
J. OPERATOR THEORY
66:2(2011), 235–260

© Copyright by THETA, 2011

s-NUMBERS OF ELEMENTARY OPERATORS ON
C∗-ALGEBRAS

M. ANOUSSIS, V. FELOUZIS and I.G. TODOROV

Communicated by Kenneth R. Davidson

ABSTRACT. We study s-functions of elementary operators acting on C∗-alge-
bras. The main results are the following: If τ is any tensor norm and A, B ∈
B(H) are such that the sequences s(A), s(B) of their singular numbers belong
to a tensor stable Calkin space i then the sequence of approximation num-
bers of A ⊗τ B belongs to i. If A is a C∗-algebra, i is a tensor stable Calkin
space, s is an s-number function, and ai, bi ∈ A, i = 1, 2, . . . , m are such that
s(π(ai)), s(π(bi)) ∈ i, i = 1, 2, . . . , m for some faithful representation π of A
then s

( m
∑

i=1
Mai ,bi

)
∈ i. The converse implication holds if and only if the ideal

of compact elements of A has finite spectrum. We also prove a quantitative
version of a result of Ylinen.
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INTRODUCTION

LetA be a C∗-algebra. If a, b ∈ Awe denote by Ma,b the operator onA given

by Ma,b(x) = axb. An operator Φ : A → A is called elementary if Φ =
m
∑

i=1
Mai ,bi

for some ai, bi ∈ A, i = 1, . . . , m.
LetH be a separable Hilbert space and B(H) the C∗-algebra of all bounded

linear operators on H. A theorem of Fong and Sourour [11] asserts that an ele-
mentary operator Φ on B(H) is compact if and only if there exists a representation
m
∑

i=1
MAi ,Bi of Φ such that the symbols Ai, Bi, i = 1, . . . , m, of Φ are compact opera-

tors. If, instead of B(H), one has a C∗-algebraA, the role of the compact operators
is played by the compact elements: recall that an element a of A is called compact
if the operator Ma,a : A → A is compact. Ylinen [27] showed that an element
a ∈ A is compact if and only if there exists a faithful ∗-representation π ofA such
that the operator π(a) is compact.
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The result of Fong and Sourour was extended by Mathieu [19] who showed
that if A is a prime C∗-algebra, then an elementary operator Φ on A is compact
if and only if there exist compact elements ai, bi ∈ A, i = 1, . . . , m, such that

Φ =
m
∑

i=1
Mai ,bi

. Recently Timoney [25] extended this result to general C∗-algebras.

In this paper we investigate quantitative aspects of the above results. It is
well-known that a bounded operator on a Banach space is compact if and only if
its Kolmogorov numbers form a null sequence. In our approach we use the more
general notion of an s-function introduced by Pietsch and the theory of ideals
of B(H) developed by von Neumann, Schatten, Calkin and others. A detailed
study of these notions is presented in the monographs [21], [5], [12] and [23].
Our analysis rests on the classical description of the ideals of B(H) in terms of
subspaces of c0 satisfying a certain closure property [4], a result that has inspired
many of the developments in the area thereafter. Recently, advances in the study
of ideals of B(H) were made in [9], [13], [14], [15], [16].

In Section 1 of the paper we recall the definitions of Calkin spaces and the
basic properties of s-functions.

Weiss considered in [26] a property for ideals of B(H), called “tensor prod-
uct closure property”, or “tensor stability”. In Section 2 we study the analogous
property for Calkin spaces. We give a necessary and sufficient condition for the
tensor stability of a singly generated Calkin space. We also provide a sufficient
condition for the tensor stability of a Lorentz sequence space.

If a, b ∈ A and C is a C∗-subalgebra of A such that Ma,b(C) ⊆ C, we let MCa,b
be the operator on C given by MCa,b(x) = axb. In Section 3 we prove inequalities
relating the s-number functions of the operators Ma,b and MCa,b. These results are
used subsequently in Section 5.

In Section 4 we study elementary operators acting on B(H). Some of our
results can be presented in a more general setting. Namely, we show that if τ
is any tensor norm and A, B ∈ B(H) are such that s(A), s(B) belong to a tensor
stable Calkin space i then the sequence of approximation numbers of the operator
A⊗τ B acting on the Banach space tensor product H⊗τ H belongs to i. A result
of this type for i = `p,q was proved by König in [17] who used it to establish
results concerning tensor stability of s-number ideals in Banach spaces. We also
show that if Φ is an elementary operator on B(H), i is a tensor stable Calkin
space and s is an s-function then s(Φ) ∈ i if and only if there exist Ai, Bi ∈ B(H),

i = 1, . . . , m, such that Φ =
m
∑

i=1
MAi ,Bi and s(Ai), s(Bi) ∈ i. It is well known that

all s-functions coincide for operators acting on Hilbert spaces. It follows from
our result that if Φ is an elementary operator on B(H), i is a tensor stable Calkin
space and s, s′ are s-number functions, then the sequence s(Φ) belongs to i if and
only if the sequence s′(Φ) belongs to i.
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In Section 5 we study elementary operators acting on C∗-algebras. We show
that if A is a C∗-algebra, i is a tensor stable Calkin space, s is an s-number func-
tion, and ai, bi ∈ A, i = 1, . . . , m, are such that s(π(ai)), s(π(bi)) ∈ i, i = 1, . . . , m

for some faithful representation π of A, then s
( m

∑
i=1

Mai ,bi

)
∈ i. The converse im-

plication holds if and only if the ideal of compact elements of A has finite spec-
trum. Finally, we prove that if a ∈ A and the sequence d(Ma,a) of Kolmogorov
numbers of Ma,a, belongs to i for some Calkin space i then s(ρ(a))2 ∈ i, where ρ
is the reduced atomic representation of A. This result may be viewed as a quan-
titative version of the aforementioned result of Ylinen.

1. CALKIN SPACES AND s-FUNCTIONS

In this section we recall some notions and results concerning the ideal struc-
ture of the algebra of all bounded linear operators acting on a separable Hilbert
space. We also recall the definition of an s-function.

We will denote by B the class of all bounded linear operators between Ba-
nach spaces. If X and Y are Banach spaces, we will denote by B(X ,Y) the space
of all bounded linear operators fromX into Y . IfX = Y we set B(X ) = B(X ,X ).
Ideals of B(X ) or, more generally, of a normed algebra A, will be proper, two-
sided and not necessarily norm closed. By K(X ) (respectively F(X )) we denote
the ideal of all compact (respectively finite rank) operators on X . By ‖T‖ we de-
note the operator norm of a bounded linear operator T. We denote by `∞ the
space of all bounded complex sequences, by c0 the space of all sequences in `∞
converging to 0 and by c00 the space of all sequences in c0 that are eventually zero.
The space of all p-summable complex sequences is denoted by `p. For a subspace
 of `∞, we let + be the subset of  consisting of all sequences with non-negative
terms. We denote by c?0 the subset of c+0 consisting of all decreasing sequences.

If α = (αn)∞
n=1 and β = (βn)∞

n=1 are sequences of real numbers, we write
α 6 β if αn 6 βn for each n ∈ N. For every α = (αn)∞

n=1 ∈ c0, we let α? =
(α?n)

∞
n=1 ∈ c?0 be the decreasing rearrangement of the sequence (|αn|)∞

n=1 includ-
ing multiplicities, that is, the sequence given by

α?1 = max{|αn| : n ∈ N},

α?1 + · · ·+ α?n = max
{

∑
i∈I
|αi| : I ⊆ N, |I| = n

}
.

A Calkin space [23] is a subspace i of c0 possessing the following property:

If α ∈ i, β ∈ c0 and β? 6 α∗ then β ∈ i.

LetH be a separable Hilbert space. If e, f ∈ H we denote by f ∗ ⊗ e the rank
one operator on H given by f ∗ ⊗ e(x) = (x, f )e, x ∈ H. If T ∈ K(H), there exist
orthonormal sequences ( fn)∞

n=1 ⊆ H and (en)∞
n=1 ⊆ H and a unique sequence
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(sn(T))∞
n=1 ∈ c?0 such that

T =
∞

∑
n=1

sn(T) f ∗n ⊗ en,

where the series converges in norm. Such a decomposition of T is called a Schmidt
expansion. The elements of the sequence s(T) = (sn(T))∞

n=1 are called the singular
numbers of T.

For every ideal I ⊆ B(H), we set

i(I) = {α ∈ c0 : there exists T ∈ I such that α? = s(T)};
conversely, for every Calkin space i we set

I(i) = {T ∈ B(H) : s(T) ∈ i}.
The following classical result of Calkin [4] describes the ideal structure of

B(H) in terms of Calkin spaces (for a proof of the formulation given here see
Theorem 2.5 of [23]).

THEOREM 1.1 ([4]). Let H be a separable infinite dimensional Hilbert space. The
mapping I 7→ i(I) is an isomorphism from the lattice of all ideals of B(H) onto the
lattice of all Calkin spaces with inverse i 7→ I(i).

There are several equivalent ways of working with ideals of B(H) (ideals,
characteristic sets and Calkin spaces are some of them). We have chosen to work
with Calkin spaces since in Section 5 we consider operators acting on a general
C∗-algebra and Calkin’s classification of ideals is not valid in this context.

We now recall Pietsch’s definition of s-functions. A map s which assigns to
every operator T ∈ B a sequence of non-negative real numbers s(T) = (s1(T),
s2(T), . . . ) is called an s-function if the following are satisfied:

(i) ‖T‖ = s1(T) > s2(T) > · · · , for T ∈ B.
(ii) sn(S + T) 6 sn(S) + ‖T‖, for S, T ∈ B(X ,Y).

(iii) sn(RST) 6 ‖R‖ ‖T‖sn(S), for T ∈ B(X ,Y), S ∈ B(Y ,Z), R ∈ B(Z ,W).
(iv) If rank(T) < n then sn(T) = 0.
(v) sn(In)=1, where In is the identity operator on `n

2 . (Here `n
2 is the n-dimen-

sional complex Hilbert space.)
An s-function s is said to be additive if sm+n−1(S + T) 6 sm(S) + sn(T) for

all m, n ∈ N and all S, T ∈ B(X ,Y).
We give below the definition of some s-functions which will be used in the

sequel. Let X and Y be Banach spaces and T ∈ B(X ,Y).
(a) The sequence a(T) = (an(T))∞

n=1 of approximation numbers of T is given by

an(T) = inf{‖T − A‖ : A ∈ B(X ,Y), rank(A) < n}.

(b) The sequence d(T) = (dn(T))∞
n=1 of Kolmogorov numbers of T is given by

dn(T) = inf
V

sup
‖x‖61

inf
y∈V
‖Tx− y‖,
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where the infimum is taken over all subspaces V of Y with dim V < n.
(c) The sequence h(T) of Hilbert numbers of T is given by

hn(T) = sup sn(ATB)

where the supremum is taken over all contractions A ∈ B(Y ,H), B ∈ B(K,X )
and Hilbert spacesH and K.

The approximation, the Kolmogorov and the Hilbert s-functions are addi-
tive [21]. Moreover, for every s-function s, every operator T ∈ B and every n we
have hn(T) 6 sn(T) 6 an(T) [21].

A well-known result of Pietsch ([21], Theorem 11.3.4) implies that if s is an
s-function, H is a separable Hilbert space and T ∈ K(H) then sn(T) is equal to
the nth-singular number sn(T) of T.

2. TENSOR STABLE CALKIN SPACES

In this section we present some results concerning tensor stable Calkin spa-
ces. We characterize the tensor stable principal Calkin spaces and show that cer-
tain Lorentz sequence spaces are tensor stable.

If α = (αn)∞
n=1, β = (βn)∞

n=1 ∈ c0, we define the sequence α⊗ β = (γn)∞
n=1 ∈

c?0 by

γ1 = max{|αiβ j| : (i, j) ∈ N×N},

γ1 + · · ·+ γn = max
{

∑
(i,j)∈I

|αiβ j| : I ⊆ N×N, |I| = n
}

.

The sequence α ⊗ β is the rearrangement of the double sequence
(|αnβm|)∞

n,m=1 in decreasing order including multiplicities.

DEFINITION 2.1. Let i and j be Calkin spaces. We let i⊗ j be the smallest
Calkin space containing the sequences α ⊗ β, where α ∈ i and β ∈ j. A Calkin
space i is said to be tensor stable if i⊗ i = i.

Let H be a separable infinite dimensional Hilbert space. Weiss [26] defined
the tensor product closure property for ideals of B(H). An ideal I of B(H) has this
property if S ⊗ T ∈ I whenever S, T ∈ I . Here, the Hilbert space H ⊗ H is
identified with H in a natural way. It is easy to see that an ideal I ⊆ B(H) has
the tensor product closure property if and only if i(I) is a tensor stable Calkin
space.

We would like to note that tensor stability may be considered in the more
general context of the study of ideals of B(H) as it appears in [9]. More specif-
ically, a related property called arithmetic mean stability is studied there and
several applications are obtained in the papers of Kaftal and Weiss [13], [14],
[15], [16].

We will need the following lemma.
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LEMMA 2.2. If α, α′, β, β′ ∈ c+0 are such that α 6 α′ and β 6 β′ then α⊗ β 6
α′ ⊗ β′.

Proof. Clearly αmβn 6 α′mβ′n for every m, n. So to prove the lemma it suffices
to prove that if α 6 β then α? 6 β?. Consider an injection π : N → N such that
α?n = απ(n). Clearly α?1 6 β?

1. Suppose that α?i 6 β?
i for i = 1, . . . , n− 1. If α?n > β?

n
then α?i > β?

n for every i = 1, . . . , n and hence βπ(1), . . . , βπ(n) are strictly greater
than β?

n so the number of all i ∈ N such that βi > β?
n is greater than n − 1, a

contradiction.

NOTATION 2.3. (i) If αn = (αn
i )

ki
i=1, n ∈ N, are finite sequences, we set

(αn)
∞
n=1 = (α1

1, . . . , α1
k1

, α2
1, . . . , α2

k2
, α3

1, . . . , α3
k3

, . . .).

(ii) If ϑ ∈ C and r ∈ N we set (ϑ)r = (ϑ, . . . , ϑ︸ ︷︷ ︸
r times

).

(iii) If r ∈ N we let r = (1, 1, . . . , 1︸ ︷︷ ︸
r times

, 0, 0, . . . ).

(iv) If α, β are sequences of real numbers we write α . β if there exists a con-
stant C > 0 such that α 6 Cβ.

Observe that if (Mn)∞
n=0, (Nn)∞

n=0 are sequences of non negative integers then

(2.1) ((ϑn)Mn)
∞
n=0 ⊗ ((ϑn)Nn)

∞
n=0 = ((ϑn) ∑

k+l=n
Mk Nl )

∞
n=0.

LEMMA 2.4. Let i be a Calkin space. If α ∈ i and β ∈ c00 then α⊗ β ∈ i.

Proof. Let α? = (α?n)
∞
n=1. Clearly, if r ∈ N then

r⊗ α = ((α?1)r, (α?2)r, . . . , (α?n)r, . . . ).

It follows easily from the definition of a Calkin space that r⊗ α ∈ i. Since β? ∈ c+00,
there exists r ∈ N such that β? . r. By Lemma 2.2, β⊗ α = β?⊗ α . r⊗ α. Hence,
β⊗ α ∈ i.

The following notation will be used in the sequel.

NOTATION 2.5. Let α=(αm)∞
m=1 ∈ c?0 and ϑ∈(0, 1). For every n=0, 1, . . . , set

K(ϑ)
n (α) = {m : ϑn+1 < αm 6 ϑn}, K(ϑ)

n (α) = |K(ϑ)
n (α)|,

K̃(ϑ)
n (α) =

n

∑
i=0

K(ϑ)
i (α), M(ϑ)

n (α) = ∑
i+j=n

K(ϑ)
i (α)K(ϑ)

j (α),

M̃n
(ϑ)

(α) =
n

∑
i=0

M(ϑ)
i (α), K(ϑ)

−1 (α) = K̃(ϑ)
−1 (α) = M(ϑ)

−1 (α) = M̃(ϑ)
−1 (α) = 0.

LEMMA 2.6. Let ϑ ∈ (0, 1), α = (αm)∞
m=1 ∈ c?0 , and β = (βm)∞

m=1 ∈ c?0 .
Assume that α1, β1 6 1. Then α . β if and only if there exists a positive integer r such



s-NUMBERS OF ELEMENTARY OPERATORS ON C∗ -ALGEBRAS 241

that for every n ∈ N∪ {0},
K̃(ϑ)

n (α) 6 K̃(ϑ)
n+r(β).

Proof. Set K̃n = K̃(ϑ)
n (α) and L̃n = K̃(ϑ)

n (β). Suppose that α . β and let
C > 0 be such that αm 6 Cβm, for every m ∈ N. Let r ∈ N be such that ϑrC 6 1.
Then βK̃n

> C−1αK̃n
> C−1ϑn+1 > ϑn+1+r. Thus, K̃n 6 L̃n+r.

Conversely, suppose that there exists r ∈ N such that K̃n 6 L̃n+r, for every
n ∈ N∪{0}. Fix m ∈ N and let n and k be such that m = K̃n−1 + k and 1 6 k 6 Kn.
Since K̃n−1 < m 6 K̃n 6 L̃n+r we have

αm 6 ϑn = ϑ−r−1ϑn+r+1 6 ϑ−r−1β L̃n+r
6 ϑ−r−1βm.

Thus, α . β.

If α ∈ c0 we let 〈α〉 denote the smallest Calkin space containing α. A Calkin
space of the form 〈α〉will be called principal. Note that a Calkin space is principal
precisely when it is the Calkin space of a principal ideal of B(H).

The proof of the following lemma is straightforward.

LEMMA 2.7. If α ∈ c0 then

〈α〉 = {β ∈ c0 : there exists r ∈ N such that β? . r⊗ α}.

THEOREM 2.8. Let α = (αn)∞
n=1 ∈ c?0 with α1 6 1 and ϑ ∈ (0, 1). The following

are equivalent:
(i) The principal Calkin space 〈α〉 is tensor stable.

(ii) α⊗ α ∈ 〈α〉.
(iii) There exists r ∈ N and C > 0 such that M̃(ϑ)

n (α) 6 CK̃(ϑ)
n+r(α), for every n ∈

N∪ {0}.
Proof. (i)⇒ (ii) is trivial.
(ii) ⇒ (i) Let β, γ ∈ 〈α〉. By Lemma 2.7, there exist positive integers m, n

such that β . m⊗ α and γ . n⊗ α. By Lemma 2.2,

β⊗ γ . (m⊗ α)⊗ (n⊗ α) = (mn)⊗ (α⊗ α).

Since α⊗ α ∈ 〈α〉, using Lemma 2.7 again we conclude that β⊗ γ ∈ 〈α〉 and so
〈α〉 is tensor stable.

(i)⇔ (iii) Set Kn = K(ϑ)
n (α) and α̃ = ((ϑn)Kn)

∞
n=0; clearly, 〈α〉 = 〈α̃〉. By the

previous paragraph, 〈α〉 is tensor stable if and only if α̃⊗ α̃ ∈ 〈α̃〉. By Lemma 2.7,
α̃⊗ α̃ ∈ 〈α̃〉 if and only if there exists a positive integer m such that α̃⊗ α̃ . m⊗ α̃.
Since K̃(ϑ)

n (α̃ ⊗ α̃) = M̃(ϑ)
n (α̃) (see equation (2.1)) and K̃(ϑ)

n (m ⊗ α̃) = mK̃(ϑ)
n (α̃),

the conclusion follows from Lemma 2.6.

COROLLARY 2.9. Let α = (αn)∞
n=1 ∈ c?0 with α1 6 1 and ϑ ∈ (0, 1). Suppose

that C > 0 is a constant such that

(2.2) K(ϑ)
n+j(α) > C(K̃(ϑ)

n (α))2
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for all j ∈ N and n ∈ N∪ {0}. Then 〈α〉 is a tensor stable Calkin space.

Proof. Set Kn = K(ϑ)
n (α), K̃n = K̃(ϑ)

n (α) and M̃n = M̃(ϑ)
n (α). Let r be a

positive integer such that rC > 1. Since (K̃n)2 > M̃n, it follows that

K̃n+r > Kn+1 + · · ·+ Kn+r > rCM̃n > M̃n, n ∈ N,

and hence condition (iii) of Theorem 2.8 holds.

We next give some examples.

EXAMPLE 2.10. (i) It follows from Theorem 2.8(iii) that for every ϑ ∈ (0, 1),
the principal Calkin space 〈(ϑn)∞

n=0〉 is not tensor stable. This example was first
given in [26].

(ii) Let λ > 0 and α = (n−λ)∞
n=1. Then the principal Calkin space 〈α〉 is not

tensor stable. To show this, let µ = λ−1 and ϑ = e−1. Let Kn, Mn, K̃n, M̃n be
the positive integers associated with the sequence (n−λ)∞

n=1 and ϑ (Notation 2.5).
Since

1
2
[e(j+1)µ − ejµ] 6 Kj 6 [e(j+1)µ − ejµ],

there exist constants C1, C2 > 0 such that, for every j, we have

C2ejµ 6 Kj 6 C1ejµ.

It follows that Mn = ∑
i+j=n

KiKj > (n + 1)C2
2enµ. Let r be a positive integer. Then

K̃n+r 6C1

n+r

∑
i=0

(eµ)i =
C1(e(n+r+1)µ − 1)

eµ − 1
and M̃n>C2

2

n∫
0

(t + 1)eµtdt>C3nenµ

for some C3 > 0. Thus,

lim
n→+∞

M̃n

K̃n+r
= +∞

for each r ∈ N. By Theorem 2.8, 〈α〉 is not tensor stable.
It follows from the characterization of the symmetrically normable principal

ideals due to Allen and Shen [1] that the principal ideal 〈T〉 of B(H) generated by
an operator T with s(T) = (n−λ)∞

n=1, λ ∈ (0, 1), is symmetrically normed. How-
ever, as we have shown, the principal Calkin space 〈(n−λ)∞

n=1〉, for λ ∈ (0, 1), is
not tensor stable.

(iii) Let α =
( 1

log2 m
)∞

m=2. Then the Calkin space 〈α〉 is tensor stable. To see this,

consider the integers Kn for n = 0, 1, . . . , associated with the sequence
( 1

log2 m
)∞

m=2

and ϑ = 1
2 (Notation 2.5). We have that Kn = 22n+1 − 22n

. Since

(K0 + · · ·+ Kn)
2 = (22n+1 − 2)2

it follows from Corollary 2.9 that 〈α〉 is tensor stable.
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In the sequel we examine the tensor stability of a class of Calkin spaces,
namely, the Lorentz sequence spaces. We recall their definition [18]. Let 1 6 p <
∞ and let w = (wn)∞

n=1 be a decreasing sequence of positive numbers such that

w1 = 1, lim
n→∞

wn = 0 and
∞
∑

n=1
wn = ∞. We shall call such a w a weight sequence.

The linear space `w,p of all sequences α = (αn)∞
n=1 of complex numbers such that

‖α‖w,p
def
= sup

π

{( ∞

∑
n=1

wn |απ(n)|p
)1/p}

< ∞,

where π ranges over all the permutations of N, is a Banach space under the norm
‖ · ‖w,p, called a Lorentz sequence space.

If α ∈ `w,p then one easily sees that

‖α‖w,p =
( ∞

∑
n=1

wn(α
?
n)

p
)1/p

.

If wn = np/q−1 with 0 < p < q we obtain the classical `q,p spaces of Lorentz.

THEOREM 2.11. Let w = (wn)∞
n=1 be a weight sequence such that there exists a

constant C > 0 with wmn 6 Cwmwn for every m, n ∈ N. Then for every p > 1 and
α, β ∈ `w,p we have that

‖α⊗ β‖w,p 6 C1/p ‖α‖w,p ‖β‖w,p.

In particular, `w,p is a tensor stable Calkin space.

Proof. We may assume that α = (αn)∞
n=1 and β = (βn)∞

n=1 are positive de-
creasing sequences with α1, β1 6 1. Fix ϑ with 0 < ϑ < 1. For every n ∈ N ∪ {0},
let Kn = K(ϑ)

n (α), Ln = K(ϑ)
n (β), M̃n = ∑

06i+j6n
KiLj and K−1 = L−1 = M̃−1 = 0.

Let
α̃ = ((ϑn)Kn)

∞
n=0, β̃ = ((ϑn)Ln)

∞
n=0.

Then
α̃⊗ β̃ = ((ϑn)M̃n−M̃n−1

)∞
n=0.

For every n, i, k, l∈N∪{0} such that 06 i6n, 16k6Ki and 16 l6Ln−i we set

(2.3) φn(i, k, l) = M̃n−1 +
i−1

∑
j=0

KjLn−j + kl.

Also, for every i, 1 6 k 6 Ki and 1 6 l 6 Li we set

ψ(i, k) =
i−1

∑
j=0

Kj + k, ψ′(i, l) =
i−1

∑
j=0

Lj + l.

We observe that for every positive integer r, (α̃ ⊗ β̃)r = ϑn if and only if r =

M̃n−1 + s with 1 6 s 6 ∑
i+j=n

KiLj and therefore (α̃⊗ β̃)r = ϑn if and only if there
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exist n, i, k, l ∈ N ∪ {0} such that 0 6 i 6 n, 1 6 k 6 Ki, 1 6 l 6 Ln−i and
r = φn(i, k, l). So,

(2.4) ‖α̃⊗ β̃‖p
w,p =

∞

∑
n=0

( n

∑
i=0

Ki

∑
k=1

Ln−i

∑
l=1

wφn(i,k,l)

)
ϑnp.

Also, α̃r = ϑi if and only if r =
i−1
∑

j=−1
Kj + k for some k with 1 6 k 6 Ki and β̃r = ϑi′

if and only if r =
i′−1
∑

j=−1
Lj + l for some l with 1 6 l 6 Li′ . So,

‖α̃‖p
w,p =

∞

∑
n=0

( Kn

∑
k=1

wψ(n,k)

)
ϑnp, ‖β̃‖p

w,p =
∞

∑
n=0

( Ln

∑
l=1

wψ′(n,l)

)
ϑnp

and

(2.5) ‖α̃‖p
w,p ‖β̃‖

p
w,p =

∞

∑
n=0

( n

∑
i=0

Ki

∑
k=1

Ln−i

∑
l=1

wψ(i,k)wψ′(n−i,l)

)
ϑnp.

But

ψ(i, k) ψ′(n− i, l) =
( i−1

∑
j=0

Kj + k
)( n−i−1

∑
j=0

Lj + l
)

=
i−1

∑
j=0

n−i−1

∑
j′=0

KjLj′ + k
n−i−1

∑
j=0

Lj + l
i−1

∑
j=0

Kj + kl

6
i−1

∑
j=0

n−i−1

∑
j′=0

KjLj′ + Ki

n−i−1

∑
j=0

Lj + Ln−i

i−1

∑
j=0

Kj + kl

6 M̃n−1 + kl 6 φn(i, k, l).

By the monotonicity of the weight sequence w we have

(2.6) wφn(i,k,l) 6 wψ(i,k) ψ′(n−i,l) 6 Cwψ(i,k) wψ′(n−i,l).

Finally, by (2.4), (2.5) and (2.6),

‖α⊗ β‖w,p 6 ‖α̃⊗ β̃‖w,p 6 C1/p‖α̃‖w,p ‖β̃‖w,p

= C1/p 1
ϑ2 ‖ϑα̃‖w,p ‖ϑβ̃‖w,p 6 C1/p 1

ϑ2 ‖α‖w,p ‖β‖w,p.

Letting ϑ→ 1 we obtain

‖α⊗ β‖p,w 6 C1/p ‖α‖w,p ‖β‖w,p.
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3. s-NUMBERS OF RESTRICTIONS

LetA be a C∗-algebra. If a, b ∈ Awe denote by Ma,b the operator onA given

by Ma,b(x) = axb. An operator Φ : A → A is called elementary if Φ =
m
∑

i=1
Mai ,bi

for some ai, bi ∈ A, i = 1, . . . , m.
If C is a C∗-subalgebra of A such that Ma,b(C) ⊆ C we will denote by MCa,b

the operator C → C defined by MCa,b(x) = axb. In this section we prove inequali-
ties concerning the s-number functions of the operators Ma,b and MCa,b.

It is well-known that every closed two-sided ideal J of A is an M-ideal,
that is, that there exists a projection η : A∗ → J ⊥, where J ⊥ is the annihilator of
J in A∗, such that for every ϕ ∈ A∗,

‖ϕ‖ = ‖η(ϕ)‖+ ‖ϕ− η(ϕ)‖

(see e.g. Theorem 11.4 of [7]). A functional ϕ ∈ A∗ is called a Hahn–Banach ex-
tension of φ ∈ J ∗ if it is an extension of φ and ‖ϕ‖ = ‖φ‖. If J is an M-ideal of
A then every φ ∈ J ∗ has a unique Hahn–Banach extension in A∗ denoted by φ̃.
Thus, if we identify J ∗ with the subspace {φ̃ : φ ∈ J ∗} of A∗ then

A∗ = J ∗ ⊕`1 J
⊥;

hence ‖φ̃ + ψ‖ = ‖φ‖ + ‖ψ‖ for all φ ∈ J ∗, ψ ∈ J ⊥. Given T ∈ B(J ) let
T̂ : A∗ → A∗ be given by

T̂(φ̃ + ψ) = T̃∗(φ),

where φ ∈ J ∗ and ψ ∈ J ⊥. We identify A with a subspace of A∗∗ via the
canonical embedding and denote by T̃ : A → A∗∗ the restriction of T̂∗ to A.

LEMMA 3.1. (i) If T ∈ B(J ) then T̃ extends T and ‖T̃‖ = ‖T‖.
(ii) The map T → T̃ is linear.

Proof. The second assertion is easily verified. We show (i). Let x ∈ J and
f ∈ A∗. Then f = φ̃ + ψ with φ ∈ J ∗ and ψ ∈ J ⊥. We have

T̃(x)( f ) = T̂∗(x)( f ) = T̂( f )(x) = T̃∗(φ)(x) = T∗(φ)(x)

= φ(Tx) = φ̃(Tx) = f (Tx) = T(x)( f ).

Hence, T̃ is an extension of T and so ‖T‖ 6 ‖T̃‖.
We show that ‖T̃‖ 6 ‖T‖. Let x ∈ A and f ∈ A∗. Then f = φ̃ + ψ with

φ ∈ J ∗ and ψ ∈ J ⊥. We have

|T̃(x)( f )| = |T̂∗(x)( f )| = |T̂( f )(x)| = |T̃∗(φ)(x)| 6 ‖T̃∗(φ)‖‖x‖
= ‖T∗(φ)‖‖x‖ 6 ‖T∗‖‖φ‖‖x‖ = ‖T∗‖‖φ̃‖‖x‖ 6 ‖T∗‖‖ f ‖‖x‖.

Hence, ‖T̃‖ 6 ‖T∗‖ = ‖T‖ and the proof is complete.
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Let X be a reflexive Banach space and ι : J ∗ → A∗ be the map defined by
ι(φ) = φ̃, φ ∈ J ∗. Clearly, ‖ι‖ = 1.

Let T : J → X . Write T] : A → X for the restriction of (ι ◦ T∗)∗ to A.

LEMMA 3.2. The operator T] extends T and ‖T]‖ = ‖T‖.
Proof. Let a ∈ J and g ∈ X ∗. We have that

T](a)(g) = (ι ◦ T∗)∗(a)(g) = a(ι(T∗(g))) = ι(T∗(g))(a) = T̃∗(g)(a)

= T∗(g)(a) = g(Ta) = T(a)(g).

Hence T] extends T and so ‖T‖ 6 ‖T]‖. On the other hand,

‖T]‖ 6 ‖(ι ◦ T∗)∗‖ = ‖ι ◦ T∗‖ 6 ‖ι‖‖T∗‖ = ‖T‖.

LEMMA 3.3. Let A be a C∗-algebra, J ⊆ A be a closed two sided ideal and
Φ : A → A be a bounded operator which leaves J invariant. Let Φ0 : J → J be the
operator given by Φ0(x) = Φ(x). Then hn(Φ0) 6 hn(Φ), for each n ∈ N.

Proof. Write ι0 : J → A for the inclusion map. In the supremum below, H
and K are arbitrary Hilbert spaces. Using Lemma 3.2 we have that

hn(Φ0) = sup{sn(AΦ0B) : B ∈ B(H,J ), A ∈ B(J ,K) contractions}

= sup{sn(A]Φ(ι0B)) : B ∈ B(H,J ), A ∈ B(J ,K) contractions}
6 sup{sn(A1ΦB1) : B1 ∈ B(H,A), A1 ∈ B(A,K) contractions}
= hn(Φ).

If X is a Banach space, c ∈ X and φ ∈ X ∗ we denote by φ⊗ c the operator
on X given by φ⊗ c(x) = φ(x)c. We denote by Fn(X ) the set of all operators F

on X of rank less than or equal to n. It is well-known that Fn(X ) =
{ n

∑
i=1

φi ⊗ ci :

φi ∈ X ∗, ci ∈ X , i = 1, 2, . . . , n
}

.

LEMMA 3.4. Let A be a C∗-algebra and J be a closed two-sided ideal of A.

(i) Assume that a, b ∈ J . Then M̃Ja,b(x) = Ma,b(x) for every x ∈ A.
(ii) Let φi ∈ J ∗, ci ∈ J , i = 1, . . . , n, and F be the operator on J given by F =

n
∑

i=1
φi ⊗ ci. Then F̃(x) =

( n
∑

i=1
φ̃i ⊗ ci

)
(x) for every x ∈ A.

Proof. (i) Let S = Ma,b, T = MJa,b, and φ ∈ J ∗. First note that S∗(φ̃) is an
extension of T∗(φ). Indeed, for every x ∈ J we have that

S∗(φ̃)(x) = φ̃(Sx) = φ(Tx) = T∗(φ)(x).

We show that S∗(φ̃) is the Hahn–Banach extension of T∗(φ). To this end, let x ∈ A
and {uλ}λ∈Λ ⊆ J be a contractive approximate unit for J . Then for each x ∈ A,
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auλxb→λ axb in norm and hence φ(auλxb)→λ φ(axb). We thus have that

|S∗(φ̃)(x)| = |φ̃(Sx)| = |φ̃(axb)| = |φ(axb)| = lim
λ∈Λ
|φ(auλxb)|

= lim
λ∈Λ
|T∗(φ)(uλx)| 6 ‖T∗(φ)‖‖x‖.

It follows that ‖S∗(φ̃)‖ 6 ‖T∗(φ)‖. Since S∗(φ̃) extends T∗(φ), we have that

S∗(φ̃) is the Hahn–Banach extension of T∗(φ), that is, S∗(φ̃) = T̃∗(φ).
Let x ∈ A and f ∈ A∗. Then f = φ̃ + ψ with φ ∈ J ∗ and ψ ∈ J ⊥, and

T̃(x)( f ) = T̂∗(x)( f ) = T̃∗(φ)(x) = S∗(φ̃)(x) = φ̃(Sx)

= (φ̃ + ψ)(Sx) = S∗( f )(x) = S(x)( f ).

(ii) By Lemma 3.1(ii), it suffices to show the statement in the case F = φ1 ⊗
c1, where φ1 ∈ J ∗ and c1 ∈ J . Let φ ∈ J ∗. We have that F̃∗(φ)(x) = φ̃1(x)φ(c1)
for every x ∈ A. Indeed, the functional x → φ̃1(x)φ(c1) extends F∗(φ) and has
norm equal to the norm of F∗(φ) since ‖φ1‖ = ‖φ̃1‖. Let x ∈ A and f ∈ A∗. We
have f = φ̃ + ψ, where φ ∈ J ∗ and ψ ∈ J ⊥. Then

F̃(x)( f ) = F̂∗(x)( f ) = F̂( f )(x) = F̂(φ̃ + ψ)(x) = F̃∗(φ)(x)

= φ̃1(x)φ(c1) = φ̃1(x)φ̃(c1) = φ̃1(x) f (c1) = (φ̃1 ⊗ c1)(x)( f ).

The following theorem is the main result of this section.

THEOREM 3.5. Let A be a C∗-algebra, J be a closed two-sided ideal of A and
a, b ∈ J . Then for every n ∈ N we have that

hn(MJa,b) 6 hn(Ma,b) 6 an(Ma,b) 6 an(MJa,b).

Proof. The first inequality follows from Lemma 3.3 while the second one is

trivial. In what follows the operators F̃ for F ∈ Fn−1(J ) and M̃Ja,b are considered
as operators from A to A; this is possible by Lemma 3.4. It follows from Lem-
mas 3.1 and 3.4 that for every n ∈ N we have

an(Ma,b) = inf{‖Ma,b − G‖ : G ∈ Fn−1(A)}

6 inf{‖Ma,b − F̃‖ : F ∈ Fn−1(J )}

= inf{‖M̃Ja,b − F̃‖ : F ∈ Fn−1(J )}

= inf{‖MJa,b − F‖ : F ∈ Fn−1(J )} = an(MJa,b).

We close the section with a lemma which will be used in the proof of Theo-
rem 5.6.

LEMMA 3.6. Let B ⊆ B(H) be a C∗-algebra, A = Bwot and A ∈ A. Assume
that A ∈ B. Then d(MA,A) 6 d(MBA,A).
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Proof. Set d(MBA,A) = (dn)∞
n=1. Let ε > 0 and F ⊆ B be a linear space such

that dimF < n and
inf

F∈F
‖AXA− F‖ < dn + ε

for each contraction X ∈ B. It suffices to show that inf
F∈F
‖AYA − F‖ 6 dn + ε

for each contraction Y ∈ A. Suppose this is not the case and let Y ∈ A be a
contraction such that ‖AYA − F‖ > dn + ε, for each F ∈ F . By the Kaplansky
Density theorem, there exists a net (Xν)ν ⊆ B of contractions such that Xν →ν Y
in the weak operator topology. Let Fν ∈ F be such that ‖AXν A− Fν‖ < dn + ε.
We have that ‖Fν‖ 6 dn + ε + 1 for each ν, and hence we may assume without
loss of generality that Fν → F0 in norm. We thus have AXν A− Fν → AYA− F0
weakly. It follows that

‖AYA− F0‖ 6 lim inf ‖AXν A− Fν‖ 6 dn + ε,

a contradiction.

4. ELEMENTARY OPERATORS ON B(H)

In this section we obtain estimates for the s-numbers of an elementary op-
erator acting on B(H) in terms of the singular numbers of its symbols. We for-
mulate some of our results using tensor products. Recall [21] that a cross norm τ
is a norm defined simultaneously on all algebraic tensor products X ⊗ Y of Ba-
nach spaces X and Y such that τ(x ⊗ y) = ‖x‖‖y‖ for all x ∈ X and y ∈ Y .
By X⊗τY we denote the completion of the algebraic tensor product with re-
spect to τ. A tensor norm is a cross norm τ such that for every A ∈ B(X ,Y)
and B ∈ B(X ′,Y ′) the linear operator A ⊗ B : X ⊗ X ′ → Y ⊗ Y ′ given by
A⊗ B(x⊗ x′) = Ax⊗ Bx′ is bounded with respect to τ and the norm of its exten-
sion A⊗τ B ∈ B(X⊗τX ′,Y⊗τY ′) satisfies the inequality ‖A⊗τ B‖ 6 ‖A‖ ‖B‖.

In Theorem 4.2 below we give an upper bound for the approximation num-
bers of the operator A⊗τ B in terms of the sequence s(A) ⊗ s(B). We will need
the following lemma due to König ([17], Lemma 2).

LEMMA 4.1. Let τ be a tensor norm, X ,Y be Banach spaces, A ∈ B(`2,X ), B ∈
B(`2,Y) and (Pk)

n
k=0, (Qk)

n
k=0 be families of mutually orthogonal projections acting on

`2. Then ∥∥∥ n

∑
k=0

APk⊗τ BQk

∥∥∥
`2⊗τ`2→X⊗τY

6 max
06k6n

{‖APk‖ ‖BQk‖}.

THEOREM 4.2. Let H be a Hilbert space, A, B ∈ K(H) and τ be a tensor norm.
Then

(4.1) a(A⊗τ B) 6 6.75 s(A)⊗ s(B).
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Consequently, if i and j are Calkin spaces, s(A) ∈ i and s(B) ∈ j and s is any s-function
then s(A⊗τ B) ∈ i⊗ j.

Proof. If α = (αn)∞
n=1 is a bounded sequence we write Dα ∈ B(`2) for the

diagonal operator given by Dα((xn)∞
n=1) = (αnxn)∞

n=1 for (xn)∞
n=1 ∈ `2. It suffices

to prove the theorem in the case where A and B are diagonal operators in B(`2).
Indeed, suppose that (4.1) holds in this case. By polar decomposition, there exist
partial isometries UA, UB : H → `2, VA, VB : `2 → H and diagonal operators
Dα, Dβ : `2 → `2, where α = s(A), β = s(B), such that A = VADαUA and
B = VBDβUB. Then

A⊗τ B = (VA⊗τVB)(Dα⊗τ Dβ)(UA⊗τUB),

and hence

a(A⊗τ B) 6 ‖VA⊗τVB‖ a(Dα⊗τ Dβ) ‖UA⊗τUB‖ 6 a(Dα⊗τ Dβ)

6 6.75 α⊗ β = 6.75 s(A)⊗ s(B).

So let A = Dα : `2 → `2, B = Dβ : `2 → `2, where α = (αn)∞
n=1, β = (βn)∞

n=1 are
non-negative decreasing sequences. We may further assume that α1, β1 6 1. Set
an = an(A⊗τ B) and fix ϑ with 0 < ϑ < 1.

In what follows we use Notation 2.5. For every n ∈ N∪ {0} let

Kn = K(ϑ)
n (α), Ln = K(ϑ)

n (β), M̃n = ∑
06i+j6n

KiLj, M̃−1 = 0,

Pn = ∑
i∈K(ϑ)

n (α)

e∗i ⊗ ei, Qn = ∑
i∈K(ϑ)

n (β)

e∗i ⊗ ei,

where (en)∞
n=0 is the standard basis of `2.

Let An = APn, Bn = BQn and En = ∑
06k+l6n

Ak⊗τ Bl . Clearly, ‖An‖ 6 ϑn,

‖Bn‖ 6 ϑn and rankEn 6 M̃n. Moreover,

A =
∞

∑
n=0

An, B =
∞

∑
n=0

Bn, A⊗τ B =
∞

∑
n,m=0

Am⊗τ Bn,

where the series are absolutely convergent in the norm topology. Hence,

aM̃n+1(A⊗τ B) 6 ‖A⊗τ B− En‖ 6
∞

∑
N=n+1

∥∥∥ ∑
k+l=N

Ak⊗τ Bl

∥∥∥.

By Lemma 4.1,∥∥∥ ∑
k+l=N

Ak⊗τ Bl

∥∥∥=∥∥∥ N

∑
k=0

APk⊗τ BQN−k

∥∥∥6 max
06k6N

‖Ak‖‖BN−k‖6 max
06k6N

ϑkϑN−k =ϑN

and so

(4.2) aM̃n+1 6
∞

∑
N=n+1

ϑN =
1

1− ϑ
ϑn+1.
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By the monotonicity of the approximation numbers, Lemma 2.2, (2.1) and
(4.2) we obtain

(an)
∞
n=1 = ((aj)

M̃n+1

j=M̃n+1
)∞

n=−1 6 ((aM̃n+1)M̃n+1−M̃n
)∞

n=−1

6
1

1− ϑ
((ϑn+1)M̃n+1−M̃n

)∞
n=−1 =

1
1− ϑ

((ϑn)∑i+j=n Ki Lj)
∞
n=0

=
1

1− ϑ
((ϑn)Kn)

∞
n=0 ⊗ ((ϑn)Ln)

∞
n=0

=
1

ϑ2(1− ϑ)
((ϑn+1)Kn)

∞
n=0 ⊗ ((ϑn+1)Ln)

∞
n=0

6
1

ϑ2(1− ϑ)
s(A)⊗ s(B).

The minimal value of 1
ϑ2(1−ϑ)

for ϑ ∈ (0, 1) is 6.75, and so

a(A⊗τ B) 6 6.75 s(A)⊗ s(B).

Theorems 4.2 and 2.11 yield the following corollary.

COROLLARY 4.3. Let w = (wn)∞
n=1 be a weight sequence with wmn 6 Cwmwn

for all m,n and let A, B ∈ K(H) be operators with s(A), s(B) ∈ `w,p. Then

‖a(A⊗τ B)‖w,p 6 6.75 C1/p ‖s(A)‖w,p ‖s(B)‖w,p.

Consider the weight sequence w=(wn)∞
n=1, where wn =

(1+ln n)γ

nα . If 0<α61
and γ > 0, then wmn 6 wmwn for all m, n. Hence Corollary 4.3 extends results of
H. König ([17], Proposition 3) and F. Cobos and L.M. Fernàndez-Cabrera [6].

For the rest of the paper, we will be concerned with elementary opera-
tors. Let A, B be compact operators in B(H). We recall that MA,B is the oper-

ator B(H) → B(H) defined by MA,B(X) = AXB and MK(H)
A,B is the operator

K(H) → K(H) defined by MK(H)
A,B (X) = AXB. Theorems 3.5 and 4.2 imply the

following corollary.

COROLLARY 4.4. Let A, B be compact operators in B(H). Then

a(MA,B) 6 a(MK(H)
A,B ) 6 6.75 s(A)⊗ s(B).

Proof. For every x ∈ H we denote by fx the functional on H defined by
fx(y) = 〈y, x〉. The conjugate space H of H is defined to be the set { fx : x ∈ H}
with vector space operations fx + fy = fx+y, λ fx = fλx and inner product given
by 〈 fx, fy〉 = 〈x, y〉. For every A ∈ B(H) we denote by A ∈ B(H) the operator
defined by A( fx) = fAx.

Note that the map A 7→ A is a surjective conjugate linear isometry and that
s(A) = s(A), for every compact operator A.
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Let ε be the injective tensor norm. The mapping F : H⊗H → B(H) given

by F
( n

∑
i=1

fxi ⊗ yi

)
=

n
∑

i=1
x∗i ⊗ yi is a linear isometry ([24], Chapter IV, Theorem 2.5)

ofH⊗ε H onto K(H).
We define F̃ : B(H⊗H) → B(K(H)) by F̃(T) = F ◦ T ◦ F−1. Clearly F̃ is a

surjective linear isometry and F̃(T) is given by F̃(T)(x∗ ⊗ y) = F(T( fx ⊗ y)) for
x, y ∈ H.

For every A ∈ B(H), where A ∈ B(H), and every B ∈ B(H) we have that

(4.3) F̃(A⊗ε B) = MK(H)
B∗ ,A .

Indeed, for every x, y ∈ H,

F̃(A⊗ε B)(x∗ ⊗ y) = F(A⊗ε B)( fx ⊗ y) = F(A fx ⊗ By) = F( fAx ⊗ By)

= (Ax)∗ ⊗ By = B(x∗ ⊗ y)A∗ = MK(H)
B,A∗ (x∗ ⊗ y).

So if A, B ∈ B(H) by (4.3) and Theorems 3.5 and 4.2 we have that

a(MA,B) 6 a(MK(H)
A,B ) = a(F̃(B⊗ε A∗)) = a(B⊗ε A∗)

6 6.75 s(B)⊗ s(A∗) = 6.75 s(A)⊗ s(B).

PROPOSITION 4.5. Let A be a C∗-subalgebra of B(H) such that K(H) ⊆ A. Let

Ai, Bi ∈ A, i = 1, . . . , m, and Φ =
m
∑

i=1
MAi ,Bi . If the operators Ai (respectively, Bi),

i = 1, . . . , m, are linearly independent then there exists r ∈ N and a constant C > 0
such that for every n and for every i = 1, . . . , m,

srn−r+1(Ai) 6 C hn(Φ) (respectively, srn−r+1(Bi) 6 C hn(Φ)).

In particular, if i is a Calkin space and h(Φ) ∈ i then s(Ai) ∈ i (respectively, s(Bi) ∈ i)
for every i = 1, . . . , m.

Proof. We will only consider the case where the operators Bi, i = 1, . . . , m,
are linearly independent. The other case can be treated similarly.

By Lemma 1 of [11], there exist r ∈ N and ξi, ηi ∈ H, i = 1, . . . , r, such that

r

∑
j=1
〈Biηj, ξ j〉 =

{
1 if i = 1,
0 if i = 2, . . . , m.

Let φj : H → A, j = 1, . . . , r be the operators given by φj(ξ) = ξ∗j ⊗ ξ, ψj : A → H,
j = 1, . . . , r be the operators given by ψj(B) = Bηj and

S =
r

∑
j=1

ψj ◦Φ ◦ φj =
m

∑
i=1

r

∑
j=1

ψj ◦MAi ,Bi ◦ φj.
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For ξ ∈ H we have

(ψj ◦MAi ,Bi ◦ φj)(ξ) = ψj(Aiφj(ξ)Bi) = ψj(Ai(ξ
∗
j ⊗ ξ)Bi)

= ψj((B∗i ξ j)
∗ ⊗ Aiξ) = 〈ηj, B∗i ξ j〉Aiξ = 〈Biηj, ξ j〉Aiξ

and hence

S =
m

∑
i=1

( r

∑
j=1
〈Biηj, ξ j〉

)
Ai = A1.

By the additivity of the singular numbers, we have that

srn−r+1(A1) 6
r

∑
j=1

sn(ψj ◦Φ ◦ φj), n ∈ N.

Let C= r max
j=1,...,r

‖ψj‖‖φj‖. Then sn(ψj ◦Φ ◦φj)6‖ψj‖‖φj‖hn(Φ) and so snr−r+1(A1)

6 Chn(Φ), n ∈ N.
Finally, by the monotonicity of s-numbers, we have that

s(A1) = (sn(A1))
∞
n=1 = ((snr−r+1+k(A1))

r−1
k=0)

∞
n=1

6 ((snr−r+1(A1))r)
∞
n=1 6 C((hn(Φ))r)

∞
n=1.

If i is a Calkin space and h(Φ) ∈ i, Lemma 2.4 implies that ((hn(Φ))r)∞
n=1 ∈ i. It

follows that s(A1) ∈ i. Similarly, s(Ai) ∈ i, i = 2, . . . , m.

The following theorem is the main result of this section.

THEOREM 4.6. Let Φ be an elementary operator on B(H) (respectively on K(H)),
i be a tensor stable Calkin space and s be an s-function. Then s(Φ) ∈ i if and only if

there exist m ∈ N and Ai, Bi ∈ B(H), i = 1, . . . , m, such that Φ =
m
∑

i=1
MAi ,Bi and

s(Ai), s(Bi) ∈ i for i = 1, . . . , m.

Proof. We prove the theorem in the case where Φ is an elementary operator
on B(H). The proof in the case where Φ is an elementary operator on K(H) is
similar.

Suppose that s(Φ) ∈ i. Let Φ =
m
∑

i=1
MAi ,Bi be a representation of Φ where

m is minimal. Then Ai (respectively Bi), i = 1, . . . , m, are linearly independent.
Since h(Φ) 6 s(Φ) we have that h(Φ) ∈ i. By Proposition 4.5, s(Ai), s(Bi) ∈ i for
every i = 1, . . . , m.

Conversely, suppose that Φ =
m
∑

i=1
MAi ,Bi where s(Ai), s(Bi) ∈ i for every

i = 1, . . . , m. Since i is tensor stable, Corollary 4.4 implies that a(MAi ,Bi ) ∈ i. By
the additivity of the approximation numbers, a(Φ) ∈ i and so s(Φ) ∈ i.

Theorem 4.4 provides an upper bound for the the approximation numbers
of MA,B in terms of the sequence s(A) ⊗ s(B). In the following proposition we
obtain a lower bound for the Hilbert numbers of MA,B in terms of the sequence
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s(A)⊗ s(B). For 1 6 p < ∞ we denote by (Sp, ‖ · ‖p) the Schatten p-class, that is,
the space of all operators A ∈ K(H) such that s(A) ∈ `p, where the norm is given

by ‖A‖p =
( ∞

∑
n=1
|s(A)|p

)1/p
. If α = (αn)∞

n=1 and β = (βn)∞
n=1 are sequences of

complex numbers we denote by αβ the sequence (αnβn)∞
n=1.

PROPOSITION 4.7. Let A, B ∈ K(H). The following hold:
(i) If λ and µ are sequences of unit norm in `+4 then h(MA,B) > (λs(A))⊗ (µs(B)).

(ii) If λ is a sequence of unit norm in `+2 then h(MA,B) > (λs(A)) ⊗ s(B) and
h(MA,B) > s(A)⊗ (λs(B)).

In particular,

(4.4) hn(MA,B) >
(s(A)⊗ s(B))(n)√

n
, n ∈ N.

Proof. (i) Let A, B ∈ K(H) have norm one and A∗ = U|A∗| and B = V|B| be
the polar decompositions of A∗ and B, respectively. Let s(A) = (αn)∞

n=1, s(B) =
(βn)∞

n=1 and

|A∗| =
∞

∑
i=1

αie∗i ⊗ ei and |B| =
∞

∑
j=1

β j f ∗j ⊗ f j

be Schmidt expansions of |A∗| and |B|, respectively. LetK be the closed subspace
of S2 spanned by the family { f ∗i ⊗ ej, i, j} and F : K → B(H) be the map given
by F(X) = UXV∗. Clearly, ‖F‖ 6 1.

Consider sequences λ = (λi), µ = (µj) ∈ `+4 of unit norm and let Dλ, Dµ ∈
B(H) be the operators given by

Dλ =
∞

∑
i=1

λie∗i ⊗ ei, Dµ =
∞

∑
j=1

µj f ∗j ⊗ f j.

Let G : B(H)→ K be the operator given by G(Y) = DλYDµ. Since

‖DλYDµ‖2 6 ‖Dλ‖4‖Dµ‖4‖Y‖ 6 ‖Y‖

the operator G is well defined and ‖G‖ 6 1. The family { f ∗i ⊗ ej, i, j} is an or-
thonormal basis of K and

(G ◦MA,B ◦ F)( f ∗i ⊗ ej) = λjαjµiβi f ∗i ⊗ ej.

It follows that

hn(MA,B) > sn(G ◦MA,B ◦ F) = (λs(A)⊗ µs(B))(n)

and (i) is proved. The proof of (ii) is similar.
We show inequality (4.4). Let s(A)⊗ s(B) = (νn)n∈N and π : N → N×N,

π(n) = (in, jn) be a bijection such that νn = αin β jn . We set λ = (λi)
∞
i=1, µ =
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(µj)
∞
j=1 where

λi =

{
1

4√n
if i ∈ {i1, . . . , in},

0 if i 6∈ {i1, . . . , in};
µj =

{
1

4√n
if i ∈ {j1, . . . , jn},

0 if i 6∈ {j1, . . . , jn}.

We have that (λs(A)⊗µs(B))(k) =
1√
n

νk for every k = 1, . . . , n, and so hn(MA,B)

> 1√
n νn.

It follows from Theorem 4.6 that if the s-numbers of the symbols of an ele-
mentary operator Φ belong to a tensor stable Calkin space i then the s-numbers
of Φ also belong to i. In what follows we show that this is not true without the
assumption that i is tensor stable.

PROPOSITION 4.8. Let ϑ ∈ (0, 1) and i be the principal Calkin space generated
by the sequence ϑ = (ϑn−1)∞

n=1. Then there exists A ∈ B(H) such that s(A) ∈ i and
h(MA,A) 6∈ i.

Proof. Let A ∈ B(H) be such that s(A) = ϑ. We will show that h(MA,A) 6∈ i.
By Proposition 4.7 it suffices to show that the sequence α =

( 1
n (ϑ ⊗ ϑ)(n)

)∞
n=1

does not belong to i, or (by Lemma 2.7) that for every r ∈ N, α 6. r⊗ ϑ.
Suppose that there exist r0 ∈ N and C > 0 such that α 6 Cr0 ⊗ ϑ. Let

α = (αn)∞
n=1 and r0 ⊗ ϑ = (βn)∞

n=1. Then for every m we have that

βr0m = ϑm−1 and αm(m+1)/2 =
2

m(m + 1)
ϑm−1.

So, if r is an even positive integer and n(r) = rr0(rr0+1)
2 we have that

2
rr0(rr0 + 1)

ϑrr0−1 = αn(r) 6 Cβn(r) = Cϑr(r0r+1)/2−1,

which leads to a contradiction.

5. ELEMENTARY OPERATORS ON C∗-ALGEBRAS

Let A be a C∗-algebra. Recall that an element a ∈ A is called compact if
the operator Ma,a : A → A is compact. We denote by K(A) the closed two-
sided ideal of all compact elements of A. The spectrum of A is the set of unitary
equivalence classes of non-zero irreducible representations of A. We will need
two lemmas which follow from Section 5.5 of [20].

LEMMA 5.1. Let (ρ,H) = (
⊕

i∈I ρi,
⊕

i∈I Hi) be the reduced atomic representa-
tion ofAwhere {(ρi,Hi), i ∈ I} is a maximal family of unitarily inequivalent irreducible
representations of A. Let J = {i ∈ I : ρi(K(A)) 6= {0}}. Let σi be the restriction of
ρi to K(A). Then the representation σ = (

⊕
i∈J σi,

⊕
i∈J Hi) is the reduced atomic

representation of K(A).
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LEMMA 5.2. Let A be a C∗-algebra such that A = K(A) and σ = (
⊕

i∈J σi,⊕
i∈J Hi) be the reduced atomic representation of A. Then A has finite spectrum if and

only if J is finite. In this case, σ(A) = ∑
i∈J

K(Hi).

THEOREM 5.3. Let A be a C∗-algebra, i be a tensor stable Calkin space and s be
an s-function. Let Φ be a compact elementary operator on A.

(i) Suppose that

(5.1) Φ =
m

∑
i=1

Mai ,bi
ai, bi ∈ A, i = 1, . . . , m,

and that π is a faithful representation of A such that s(π(ai)), s(π(bi)) ∈ i, i =
1, . . . , m. Then s(Φ) ∈ i.

(ii) Suppose that K(A) has finite spectrum and that s(Φ) ∈ i. Then there exist a

representation
m
∑

i=1
Mai ,bi

, ai, bi ∈ A, i = 1, . . . , m, of Φ and a faithful representation π

of A such that s(π(ai)), s(π(bi)) ∈ i, i = 1, . . . , m.

Proof. (i) Since sn(Φ) 6 an(Φ) for each n, it suffices to show that a(Φ) ∈ i.
By the additivity of the approximation numbers we have that anm−m+1(Φ) 6
m
∑

i=1
an(Mai ,bi

). If a(Mai ,bi
) ∈ i for each i = 1, . . . , m, Lemma 2.4 implies that a(Φ) ∈

i. Thus, we may assume that Φ = Ma,b, where a, b ∈ A.
Let π : A → B(H) be a faithful representation such that s(π(a)), s(π(b)) ∈

i. Set A = π(a) and B = π(b). We denote by MA,B the corresponding elementary
operator acting on π(A). Clearly, A and B are compact operators and a(Φ) =
a(MA,B). Let J = π(A) ∩K(H). By Theorem 3.5,

an(MA,B) 6 an(MJA,B), for every n ∈ N.

Let H0 the closure of JH. Then there exist positive integers {mi}i∈I and
Hilbert spaces {Hi}i∈I such that:

(i)H0 = ∑
i∈I

(Hi ⊕ · · · ⊕Hi︸ ︷︷ ︸
mi times

).

(ii) the C∗-algebra J is equal to a c0-direct sum
⊕
i∈I

(CImi ⊗K(Hi)) where Imi is

the the identity operator on a Hilbert space of dimension mi ([3], Section 1.4).

Let Θ : J → K(H0) be the canonical injection. Let Pi be the orthogonal
projection from H0 onto (Hi ⊕ · · · ⊕Hi︸ ︷︷ ︸

mi times

) and ∆1 : K(H0) → ∑
i∈I

PiK(H0)Pi the

operator given by ∆1(X) = ∑
i∈I

PiXPi.

An element Y ∈ ∑
i∈I

PiK(H0)Pi may be written as

Y = ∑
i∈I

Yi
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where Yi ∈ PiK(H0)Pi is an mi × mi matrix Yi
p,q with coefficients in K(Hi). Let

∆2 : ∑
i∈I

PiK(H0)Pi → J be the operator defined as follows: If Yi ∈ PiK(H0)Pi,

then ∆2(Yi) is the diagonal mi × mi matrix with all its diagonal entries equal to
1

mi

mi
∑

p=1
Yi

p,p. Set ∆ = ∆2∆1. We have that MJA,B = ∆ ◦MK(H0)
A,B ◦Θ where MK(H0)

A,B is

the corresponding elementary operator acting on K(H0). Clearly, ∆ is a contrac-
tion. Thus,

an(MJA,B) 6 ‖∆‖ an(MK(H)
A,B ) ‖Θ‖ 6 an(MK(H)

A,B ).

By Corollary 4.4, a(Φ) ∈ i.
(ii) We identify A with ρ(A) where (ρ,H) = (

⊕
i∈I ρi,

⊕
i∈I Hi) is the re-

duced atomic representation of A. By Theorem 3.1 of [25], there exist A0j, B0j ∈

K(A), j = 1, . . . , m, such that Φ =
m
∑

j=1
MA0j ,B0j . Since hn(Φ) 6 sn(Φ) for each

n, we may assume that s = h. Let Φ0 : K(A) → K(A) be the operator defined
by Φ0(X) = Φ(X). By Lemma 3.3, h(Φ0) ∈ i. Consequently, the C∗-algebra
K(A) and the operator Φ0 satisfy our assumptions. Thus we may assume that
A = K(A).

By Lemmas 5.1 and 5.2, K(A) =
⊕

i∈I0

K(Hi) where I0 is a finite subset of

I. Let i ∈ I0. Clearly, K(Hi) is invariant by Φ. Let Φi : K(Hi) → K(Hi) be the
operator defined by Φi(X) = Φ(X). The operator Φi is an elementary operator on
K(Hi). By Theorem 3.5, h(Φi) ∈ i. By Theorem 4.6, there exists a representation
mi
∑

j=1
MAij ,Bij of Φi where Aij, Bij ∈ K(Hi) and s(Aij), s(Bij) ∈ i. Considering Aij

and Bij as operators on H we obtain that Φ =
k
∑

i=1

mi
∑

j=1
MAij ,Bij is a representation

with the required properties.

Part (ii) of Theorem 5.3 does not hold if we do not assume that K(A) has
finite spectrum. In fact, we have the following:

THEOREM 5.4. Let A be a C∗-algebra. The following are equivalent:
(i) K(A) has finite spectrum.

(ii) Let s be an s-function, i be a tensor stable Calkin space and Φ be a compact elemen-

tary operator on A. Assume that s(Φ) ∈ i. Then there exist a representation
m
∑

i=1
Mai ,bi

of Φ and a faithful representation π of A such that s(π(ai)), s(π(bi)) ∈ i for every
i = 1, . . . , m.

Proof. The implication (i) ⇒ (ii) follows from Theorem 5.3. We prove that
(ii) implies (i). Suppose that K(A) 6= {0} and that K(A) does not have finite
spectrum. We will show that for every p > 2 there exists an elementary operator
Φ on A such that:
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(a) a(Φ) ∈ `p, and

(b) whenever π is a faithful representation of A and Φ =
m
∑

i=1
Mci ,di

, ci, di ∈

K(A), there exists i, 1 6 i 6 m, such that s(π(ci)) 6∈ `p or s(π(di)) 6∈ `p.

Let σ be the reduced atomic representation of K(A). Then

σ(K(A)) =
⊕
j∈J

K(Hj).

It follows from Lemma 5.2 that J is infinite. Choose an infinite countable subfam-
ily {Hj}∞

j=1 of the family J. For each j ∈ N, consider a unit vector ej ∈ Hj.
Let rj be the projection of K(A) such that σ(rj)=e∗j ⊗ej and (λj)

∞
j=1 be a de-

creasing sequence of positive real numbers belonging to `2p but not to `p. We set

c =
∞

∑
j=1

λjrj, pk =
k

∑
j=1

rj and Φ = Mc,c ∈ B(A).

We will show that a(Φ) ∈ `p.

Let ρ be the reduced atomic representation ofA. Let cn =
n
∑

i=1
λiri. It follows

from Lemma 5.1 that

Mρ(cn),ρ(cn)(ρ(a)) =
n

∑
i=1

σi(ri)ρi(a)σi(ri)

and hence the operator Mρ(cn),ρ(cn) is an operator of rank n. It also follows from
Lemma 5.1 that Mρ(c),ρ(c) −Mρ(cn),ρ(cn) = Mρ(c−cn),ρ(c−cn). Hence,

an(Mc,c) = an(Mρ(c),ρ(c)) 6 ‖ρ(c− cn−1)‖2 6 λ2
n,

and so a(Φ) ∈ `p.
Assume that there exist a faithful representation π : A→B(H) and elements

ai, bi ∈ K(A) for i = 1, . . . , m, such that s(π(ai)), s(π(bi)) ∈ `p, i = 1, . . . , m,

and Φ =
m
∑

i=1
Mai ,bi

. We have Φ(pk) = cpkc =
m
∑

i=1
ai pkbi. Hence π(c)π(pk)π(c) =

m
∑

i=1
π(ai)π(pk)π(bi) and by continuity

(5.2) π(c)Pπ(c) =
m

∑
i=1

π(ai)Pπ(bi),

where P =
∞
∑

j=1
π(rj) is the sot-limit of the sequence (π(pk))

∞
k=1.

It follows from (5.2) that π(c)Pπ(c) ∈ Sp/2. On the other hand,

π(c)Pπ(c) =
∞

∑
j=1

λ2
j π(rj).
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It follows that (λ2
j ) ∈ `p/2 and so (λj) ∈ `p, a contradiction.

We note the following corollary of Theorem 5.3.

COROLLARY 5.5. Let A be a C∗-algebra such that K(A) has finite spectrum, i be
a tensor stable Calkin space and s be an s-function. Let Φ be an elementary operator on
A such that s(Φ) ∈ i. Then Φ is a linear combination of positive elementary operators
Φj, j = 1, 2, 3, 4 such that, s(Φj) ∈ i for every j = 1, 2, 3, 4.

Proof. By assertion (ii) of Theorem 5.3, there exist a representation
m
∑

i=1
Mai ,bi

,

ai, bi ∈ A, i = 1, . . . , m, of Φ and a faithful representation π of A such that

s(π(ai)), s(π(bi)) ∈ i, i = 1, . . . , m. Let Φ±(x) = 1
4

m
∑

i=1
(ai ± b∗i )x(a∗i ± bi) and

Ψ±(x) = 1
4

m
∑

i=1
(ai ± ib∗i )x(a∗i ∓ ibi). Clearly, all operators Φ±, Ψ± are positive.

By assertion (i) of Theorem 5.3, s(Φ±), s(Ψ±) ∈ i. A straightforward verification
shows that Φ = Φ+ −Φ− + i(Ψ+ −Ψ−). The proof is complete.

We close this section by proving a result which may be viewed as a quanti-
tative version of a result of Ylinen [27].

THEOREM 5.6. Let A be a C∗-algebra, a ∈ A and i be a Calkin space. Assume
that d(Ma,a) ∈ i. Then s(ρ(a))2 ∈ i where (ρ,H) is the reduced atomic representation
of A.

Proof. Since d(Ma,a) ∈ i, the operator Ma,a is compact and it follows from
[27] that ρ(a) is compact.

Let (ρ,H) = (
⊕

i∈I ρi,
⊕

i∈I Hi). Set C = ⊕
i∈I

B(Hi).

Let Φ : C → C be the operator defined by Φ(X) = ρ(a)Xρ(a). Since

ρ(A)wot
= C, Lemma 3.6 implies that d(Φ) 6 d(Mρ(a),ρ(a)) and so d(Φ) ∈ i.

Let ρ(a) = UA be the polar decomposition of ρ(a) and A =
∞
∑

k=1
λke∗k ⊗ ek be

a Schmidt expansion of A. Define

α : `∞ → C by α((xl)
∞
l=1) =

∞

∑
l=1

xle∗l ⊗ el , and

β : C → `∞ by β(X) = (〈Xel , el〉)∞
l=1.

Consider the map Ψ : `∞ → `∞ defined by

Ψ((xl)
∞
l=1) = β(U∗Φ(α((xl)

∞
l=1)U

∗)).

Since α and β are contractions we have d(Ψ) 6 d(Φ) and so d(Ψ) ∈ i. A direct
calculation shows that Ψ((xl)

∞
l=1) = (λ2

l xl)
∞
l=1. It follows ([21], Theorem 11.11.3)

that d(Ψ) = (λ2
l )

∞
l=1. Hence, s(A)2 ∈ i.
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