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ABSTRACT. We introduce two notions for flows (or one-parameter automor-
phism groups) on quasi-diagonal C∗-algebras, quasi-diagonal and pseudo-
diagonal flows; the former being apparently stronger than the latter. We de-
rive basic facts about these flows and give various examples. In addition we
extend results of Voiculescu from quasi-diagonal C∗-algebras to these flows.
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1. INTRODUCTION

Flows on C∗-algebras have been studied for some time; basic facts on flows
and their generators, from the perspectives of functional analysis, spectral analy-
sis, and Hilbert space representation theory, etc. are described in [5], [6]. But there
remain many problems pertaining to C∗-algebras. For example we still lack clear
and useful criteria which distinguish various kinds of flows, e.g. approximately
inner flows and, in the case of AF algebras, (approximate) AF flows. (See [21] for
some results for flows on AF algebras.) We hope to contribute towards clarifi-
cation of the situation by introducing other properties of flows which appear to
have close bearing on these features at least in the case of simple C∗-algebras.

A bounded operator T on a separable Hilbert spaceH is called quasi-diagonal
if there is an increasing sequence (En) of finite-rank projections on H such that
lim

n
En = 1 strongly and ‖[En, T]‖ → 0. This notion is extended to a norm-

closed ∗-algebra A of bounded operators: In case A is separable A is called quasi-
diagonal if there is such a sequence (En) and ‖[En, T]‖ → 0 for all T ∈ A. If A is
a separable C∗-algebra, then A is called quasi-diagonal if there is a faithful repre-
sentation π of A such that π(A) is quasi-diagonal. (See [25], [10] for more details.)
Easy examples of quasi-diagonal C∗-algebras include AF algebras and commuta-
tive C∗-algebras. We mimic this notion in application to flows on C∗-algebras in
two ways.
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DEFINITION 1.1. Given a Hilbert spaceH, let A be a norm-closed ∗-algebra
of bounded operators on H and U a unitary flow on H such that UtxU∗t ∈ A for
t ∈ R and t 7→ UtxU∗t is norm-continuous for any x ∈ A.

We call (A, U) quasi-diagonal if for any finite set F of A, any finite set ω of
H and ε > 0 there is a finite-rank projection E on H such that ‖[E, x]‖ 6 ε‖x‖
for x ∈ F , ‖(1− E)ξ‖ 6 ε‖ξ‖ for ξ ∈ ω and ‖[E, Ut]‖ < ε for t ∈ [−1, 1]. We
call (A, U) pseudo-diagonal if for any finite set F of A, any finite set ω of H, and
ε > 0 there is a finite-rank projection E on H and a unitary flow V on EH such
that ‖[E, x]‖ 6 ε‖x‖ for x ∈ F , ‖(1− E)ξ‖ 6 ε‖ξ‖ for ξ ∈ ω and ‖EUtxU∗t E−
VtExEV∗t ‖ 6 ε‖x‖ for x ∈ F and t ∈ [−1, 1].

Let A be a C∗-algebra and let α be a flow on A. We call α quasi-diagonal
(respectively pseudo-diagonal) if (A, α) has a covariant representation (π, U) on
a Hilbert space Hπ , with π faithful and non-degenerate, such that (π(A), U) is
quasi-diagonal (respectively pseudo-diagonal).

In the above definition π is required to be non-degenerate. But this is not
essential. A direct proof will be given in the beginning of Section 2 but this also
follows from Theorems 1.5 and 1.6 below. Thus we immediately obtain the fol-
lowing result. (We do not know if a similar statement is true or false for approxi-
mately inner flows.)

COROLLARY 1.2. Let α be a quasi-diagonal (respectively pseudo-diagonal) flow
on a C∗-algebra A and B an α-invariant C∗-subalgebra of A. Then α|B is quasi-diagonal
(respectively pseudo-diagonal).

Let H denote the self-adjoint generator of U in the above definition. In gen-
eral H is unbounded. If Q is a bounded operator on H then [Q, H] is defined to
be bounded if QD(H) ⊂ D(H) and QH− HQ is bounded onD(H) (and extends
to a bounded operator on H). We may replace the condition ‖[E, Ut]‖ < ε for t ∈
[−1, 1] in the definition of quasi-diagonality by the seemingly stronger condition
‖[E, H]‖ < ε. The opposite implication can be seen from the proposition given
below. Using this we conclude that quasi-diagonality implies pseudo-diagonality
since if ‖[E, H]‖ < ε and we set Vt = eitEHE then ‖EUtπ(x)U∗t −VtEπ(x)EV∗t ‖ 6
2ε‖π(x)‖ for any x ∈ A.

PROPOSITION 1.3. Let U be a flow on H and H the self-adjoint generator of U.
For any ε > 0 there is a δ > 0 satisfying the following condition.

If E is a projection such that ‖[E, Ut]‖ < δ for t ∈ [−1, 1], then there is a projection
F onH such that ‖E− F‖ < ε and ‖[F, H]‖ < ε.

Proof. Note that it follows from the above estimate on ‖[E, Ut]‖ that

‖[E, Ut]‖ < δ(1 + |t|)

for all t ∈ R. In addition to this estimate we use the fact that t 7→ UtEU∗t is
continuous in the strong operator topology (or in norm).
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Let f be a non-negative C∞ function on R such that supp( f ) ⊂ [1/3, 4/3]
and f (t) = 1 for t ∈ [2/3, 1]. Define f̂ by f̂ (p) = (2π)−1

∫
e−ipt f (t)dt and set C =∫

|t f̂ (t)|dt < ∞. Let g be a non-negative C∞ function on R such that the support
of g is compact,

∫
g(t)dt = 1 and

∫
|g′(t)|dt < ε/C. Set D =

∫
g(t)(1 + |t|)dt.

Assuming δD < ε/2 < 1/3 we define

Q =
∫

g(t)UtEU∗t dt .

Then 0 6 Q 6 1, ‖Q− E‖ < ε/2 and ‖[H, Q]‖ < ε/C, where i[H, Q] is identified
with −

∫
g′(t)UtEU∗t dt. Since Sp(Q) ⊂ [0, ε/2) ∪ (1− ε/2, 1] it follows that F =

f (Q) =
∫

f̂ (t)eitQdt is a projection satisfying ‖F−Q‖ < ε/2. It also follows that
‖[H, F]‖ 6 ‖[H, Q]‖

∫
|t f̂ (t)|dt < ε. Since ‖E− F‖ < ε, this concludes the proof.

(See [5] for the norm estimates used here.)

We note that a covariant representation (ρ, V) of (A, α) naturally induces a
representation ρ× V of the crossed product A×α R on the representation space
Hρ of ρ. We denote by K(Hρ) the compact operators onHρ.

By extending Voiculescu’s theorem [22] to accommodate the flow we estab-
lish the following:

THEOREM 1.4. Let α be a quasi-diagonal (respectively pseudo-diagonal) flow on
A. If (ρ, V) is a covariant representation of A such that ρ × V is a faithful represen-
tation of A×α R and Ran(ρ× V) ∩ K(Hρ) = {0} then (ρ(A), V) is quasi-diagonal
(respectively pseudo-diagonal).

Mimicking the corresponding result due to Voiculescu [24] we shall give
characterizations of quasi-diagonal and pseudo-diagonal flows.

If A and B are C∗-algebras then a linear map φ of A into B is called positive
if φ(A+) ⊂ B+ and completely positive (or CP) if φn = id⊗ φ : Mn ⊗ A → Mn ⊗ B
is positive for all n.

THEOREM 1.5. Let α be a flow on a C∗-algebra A. Then the following conditions
are equivalent:

(i) α is quasi-diagonal.
(ii) For any finite subset F of A and ε > 0 there is a finite-dimensional C∗-algebra B,

a flow β on B and a CP map φ of A into B such that ‖φ‖ 6 1, ‖φ(x)‖ > (1− ε)‖x‖ and
‖φ(x)φ(y)− φ(xy)‖ 6 ε‖x‖‖y‖ for x, y ∈ F , and ‖βtφ− φαt‖ < ε for t ∈ [−1, 1].

(iii) For any finite subset F of A and ε > 0 there is a covariant representation (π, U)
and a finite-rank projection E onHπ such that ‖Eπ(x)E‖ > ‖x‖− ε and ‖[E, π(x)]‖ 6
ε‖x‖ for x ∈ F and ‖[E, Ut]‖ < ε for t ∈ [−1, 1].

When A is separable it follows from the proof of (iii) ⇒ (i) that there is a
covariant representation (π, U) of (A, α) on a separable Hilbert space such that
(π(A), U) is quasi-diagonal. This fact will be used in the proof of Theorem 1.4
above.
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THEOREM 1.6. Let α be a flow on a C∗-algebra A. Then the following conditions
are equivalent:

(i) α is pseudo-diagonal.
(ii) For any finite subset F of A and ε > 0 there is a finite-dimensional C∗-algebra B,

a flow β on B and a CP map φ of A into B such that ‖φ‖ 6 1, ‖φ(x)‖ > (1− ε)‖x‖
and ‖φ(x)φ(y)− φ(xy)‖ 6 ε‖x‖‖y‖ for x, y ∈ F , and ‖βtφ(x)− φαt(x)‖ 6 ε‖x‖
for x ∈ F and t ∈ [−1, 1].

(iii) For any finite subset F of A and ε > 0 there is a covariant representation (π, U),
a finite-rank projection E on Hπ and a unitary flow V on EHπ such that ‖Eπ(x)E‖ >
(1− ε)‖x‖ and ‖[E, π(x)]‖ 6 ε‖x‖ for x ∈ F and ‖EUtπ(x)U∗t E−VtEπ(x)EV∗t ‖ 6
ε‖x‖ for x ∈ F and t ∈ [−1, 1].

In the above theorems the finite-dimensional C∗-algebra B can be assumed
to be a matrix algebra Mk for some k ∈ N.

If A is separable and α is a pseudo-diagonal flow let (Fn) be an increasing
sequence of finite subsets of A whose union is dense in A and choose, for each
(Fn, n−1) in place of (F , ε), a CP map φn into Mkn and a flow β(n) on Mkn as spec-
ified in condition (ii) of the above theorem. Thus we can define a non-continuous
flow β on the direct product B = ∏

n
Mkn by βt(x) = ∏

n
β
(n)
t (xn) for x = (xn) ∈ B

and a CP map φ of A into B by φ(x) = (φn(x))n. Let I =
⊕
n

Mkn , which is the

ideal of B consisting of sequences converging to zero, and let Q denote the quo-
tient map of B onto B/I. Then it follows that ψ = Qφ is an isomorphism of A into
B/I satisfying ψαt = βtψ. A separable C∗-algebra is an MF algebra if it can be
embedded into ∏

n
Mkn /

⊕
n

Mkn for some (kn) (see [2] for MF algebras). We may

call the flow α an MF flow since it satisfies the intertwining property with β. It
might be interesting to explore this class of flows.

We will show that if α is an approximately inner flow on a quasi-diagonal
C∗-algebra then α is pseudo-diagonal (Proposition 2.17). We will also show that
if α is a pseudo-diagonal flow on a unital C∗-algebra then α has KMS states for all
inverse temperatures (Proposition 2.8).

If A is an AF algebra and α is an (approximate) AF flow then it follows that
α is quasi-diagonal (Proposition 2.18). If A is an AF algebra which has a faithful
family of type I quotients then any flow on A is quasi-diagonal (Proposition 2.25).

Let α (respectively β) be a flow on a C∗-algebra A (respectively B). We say
that (B, β) homotopically dominates (A, α) if there are homomorphisms φ : A →
B and ψ : B → A and a homotopy {χs : s ∈ [0, 1]} of homomorphisms of A into
A such that φαt = βtφ, ψβt = αtψ, χsαt = αtχs, χ0 = ψφ and χ1 = idA. The main
result of Voiculescu’s paper [24] has the following analogue:

THEOREM 1.7. Suppose that (B, β) homotopically dominates (A, α). If β is quasi-
diagonal then α is quasi-diagonal.
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This implies that if α is a flow on a C∗-algebra A then the flow α ⊗ id on
A⊗C0[0, 1) is quasi-diagonal. (The family of endomorphisms φs, s ∈ [0, 1] of A⊗
C0[0, 1) defined by φs(x)(t) = x(st) commutes with the flow α⊗ id and satisfies
φ1 = id and φ0 = 0. This also follows directly from Proposition 2.14.) Thus
approximate innerness does not follow from quasi-diagonality without further
conditions on the C∗-algebra. Another result of this type is that if α is a flow on a
quasi-diagonal C∗-algebra A then the flow β on A⊗C[0, 1] defined by βt(x)(s) =
αst(x(s)) is quasi-diagonal (Proposition 2.15).

We note that we have not been able to give the pseudo-diagonal version
of the above theorem. We also note that we do not know if quasi-diagonality is
strictly stronger than pseudo-diagonality or not.

Let u be an α-cocycle, i.e. let u denote a continuous function from R into the
unitary group of M(A) such that t 7→ ut is continuous in the strict topology and
usαs(ut) = us+t for s, t ∈ R. If A is unital then the multiplier algebra M(A) is just
A and the strict topology is the norm topology. We say the flow t 7→ Ad utαt is
a cocycle perturbation of α. We note that quasi-diagonality (respectively pseudo-
diagonality) is stable under cocycle perturbations (Propositions 2.2 and 2.5). We
also note that if B is an α-invariant hereditary C∗-subalgebra of A which generates
A as an ideal then α|B is quasi-diagonal (respectively pseudo-diagonal) if and
only if α is quasi-diagonal (respectively pseudo-diagonal) (Corollary 2.7).

In Section 2 we will give the above basic facts on quasi-diagonal and pseudo-
diagonal flows and some examples including the proof of Theorem 1.7. For
example the rotation flow on the continuous functions on the unit circle is not
quasi-diagonal (and not even pseudo-diagonal) but the rotation flow on the con-
tinuous functions on the unit disk is quasi-diagonal. In Section 3 we general-
ize Voiculescu’s Weyl–von Neumann theorem [22] to cover the present situation
and thereby prove Theorem 1.4. In Section 4 we deal with the adaptation of
Voiculescu’s results in [24] to prove Theorems 1.5 and 1.6.

2. QUASI-DIAGONAL AND PSEUDO-DIAGONAL FLOWS

Let α be a flow on a C∗-algebra A. The definition of quasi-diagonality, or
pseudo-diagonality, of α required the representation π in the covariant represen-
tation (π, U) of (A, α) to be faithful and non-degenerate. But the non-degeneracy
of π is not essential by the following argument.

First this is evident if A is unital. Therefore we assume that A is not unital.
Secondly, let π be a faithful degenerate representation of A on a Hilbert

space H and U a unitary flow on H such that Ad Utπ(x) = παt(x) for all x ∈ A.
Let P be the projection onto the closure of π(A)H. Note that UtP = PUt and let
us denote by UP the unitary flow t 7→ UtP on PH.

Suppose that (π(A), U) is pseudo-diagonal. We shall show that the restric-
tion of the pair to PH is pseudo-diagonal. For a finite subsetF of A, a finite subset
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ω of PH and ε > 0 we choose a finite-rank projection E on H and a unitary flow
V on EH which satisfy the conditions of the definition. Let K1 be the subspace
(1− P)EH. We find a subspace K2 of PH with the same dimension as K1 such
that K2 is orthogonal to PEH and ‖παt(x)|K2‖ 6 (ε/2)‖x‖ for x ∈ F ∪ F ∗ and
t ∈ [−1, 1]. Let W1 be a unitary from K1 onto K2 and denote by Pi the projection
onto Ki for i = 1, 2. Regarding W1 as W1 = W1P1, let W = W1 + W∗1 + (1− P1 −
P2), which is a unitary on H, and let F = WEW∗. Since WEH ⊂ W(1− P)EH+
WPEH ⊂ P2W(1 − P)EH + PEH, it follows that F 6 P. Since π(x)WE =
π(x)W1E + π(x)(1− P2)E = π(x)P2(W1 − 1)E + π(x)E we obtain ‖π(x)WE−
π(x)E‖ < ε, which implies that ‖Fπαt(x)F −WVtW∗Fπ(x)FWV∗t W∗‖ 6 5ε‖x‖
for x ∈ F and t ∈ [−1, 1]. The other properties follow easily. Thus the pair F and
t 7→WVtW∗ satisfies the required conditions for (π(A)P, UP).

Now suppose that (π(A), U) is quasi-diagonal. Let (π, U) be the direct sum
of (π, χpU) over all rational numbers p, on the representation space H =

⊕
p
H,

where χpU is the unitary flow t 7→ eiptUt. Let P be the projection onto the closure
of π(A)H as before and let P be the projection onto the closure of π(A)H, i.e.
P =

⊕
p

P. We shall show that (π(A)P, UP) is quasi-diagonal.

From now on we use π, U, P to denote π, U, P. We have now assumed that
π×U is faithful besides (π(A), U) being quasi-diagonal. Let H be the self-adjoint
generator of U. For a finite subset F of A, a finite subset ω of PH and ε > 0 we
choose a finite-rank projection E on H such that ‖[E, H]‖ < ε holds in addition
to the other conditions in the definition. There is a finite-dimensional subspace
K1 of (1 − P)H such that K1 ⊃ (1 − P)EH and ‖[P1, H]‖ < ε/2, where P1 is
the projection onto K1. Let λ1, λ2, . . . , λn be the eigenvalues of P1HP1 in increas-
ing order. We choose a finite-rank projection P2 such that P2 6 P, P2PE = 0,
‖P2π(x)‖, ‖π(x)P2‖ 6 (ε/2)‖x‖ for x ∈ F , ‖[P2, H]‖ < ε/2 and the increas-
ing list of eigenvalues of P2HP2 are arbitrarily close to λ1, λ2, . . . , λn. (In par-
ticular P1 and P2 have the same rank.) This is possible by the lemma below
which uses faithfulness of π ×U. Then we choose a unitary W1 of K1 onto P2H
such that W1P1HP1 ≈ P2HP2W1. We set W = W1 + W∗1 + (1− P1 − P2). Then
F = WEW∗ 6 P and ‖UtW −WUt‖ 6 ε|t| (by making W1P1HP1 ≈ P2HP2W1
precise). This implies that F satisfies the required conditions.

LEMMA 2.1. Suppose that A is non-unital and let π, U, P be as above. For any
finite subset F of A, λ ∈ R and ε > 0 there exists a unit vector ξ ∈ PH such that
‖π(x)ξ‖ < ε for x ∈ F and ‖Utξ − eiλtξ‖ 6 ε|t|.

Proof. Let z = ∑
x∈F

x∗x and let PH denote the spectral measure for H. Sup-

pose that there is an ε > 0 such that 〈ξ, π(z)ξ〉 > ε for any unit vector ξ in
PH(λ− ε, λ + ε)PH. Let f̂ be a non-negative C∞-function on R such that f 6= 0
and supp( f̂ ) ⊂ (λ− ε, λ+ ε). Since π×U is faithful λ( f )(z− ε)λ( f )∗ > 0, where
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λ( f ) =
∫

f (t)λtdt is a multiplier of A×α R such that π(λ( f )) = f̂ (H). Applying
α̂p and taking the integral over p implies that

∫
| f (t)|2αt(z)dt is invertible, which

contradicts that A is non-unital. (See 7.8 of [20] for more details.)

In order for α to be quasi-diagonal or pseudo-diagonal the C∗-algebra A
must be quasi-diagonal. Moreover, it follows that if α is quasi-diagonal then the
crossed product A×α R is quasi-diagonal. (The pair (π, U) gives a representation
π ×U of A×α R, which may not be faithful, such that π ×U(A×α R) is quasi-
diagonal. As a faithful representation of A ×α R is required in the definition of
quasi-diagonality we may take the direct sum of π × χpU over all rationals p as
in the previous paragraph.)

If α is a flow on an AF algebra A then the crossed product A ×α R is AF-
embeddable; in particular it is quasi-diagonal. (We learned this fact from M. Izumi;
the argument uses the fact that the crossed product of A by α|Z is AF-embeddable,
due to [23] and [9].)

As we shall see α need not be quasi-diagonal, nor pseudo-diagonal, even if
A×α R is quasi-diagonal.

PROPOSITION 2.2. Let α be a flow on A and let u be an α-cocycle. Then α is
quasi-diagonal if and only if t 7→ Ad utαt is quasi-diagonal.

Proof. If A is unital this follows straightforwardly. Suppose that A does not
have a unit and that α is quasi-diagonal. Thus we assume that A acts on a Hilbert
spaceH non-degenerately and there is a unitary flow U such that αt(x) = UtxU∗t
for x ∈ A and (A, U) is quasi-diagonal. Let F be a finite subset of A and ω a
finite subset of H. Then we choose p, e ∈ A such that 0 6 p 6 e 6 1, ep = p,
‖x − pxp‖ ≈ 0 for x ∈ F , ‖pξ − ξ‖ ≈ 0 for ξ ∈ ω and ‖αt(e)− e‖ ≈ 0 for t ∈
[−1, 1]. We choose an α-cocycle v in A+C1 such that ‖(ut− vt)e‖ ≈ 0, t ∈ [−1, 1],
where t 7→ vt is continuous in norm [17]. We choose a finite-rank projection E
such that ‖[E, x]‖ ≈ 0 for x ∈ F ∪ {p, e} ∪ {vt : t ∈ [−1, 1]}, ‖(1− E)ξ‖ ≈ 0 for
ξ ∈ Ω and ‖[E, H]‖ ≈ 0. By the lemma below there is a subprojection F of E such
that Fp ≈ Ep, Fe ≈ F, and ‖[F, H]‖ ≈ 0. Since ‖x − pxp‖ ≈ 0 for x ∈ F we
have ‖[F, x]‖ ≈ ‖[E, x]‖ ≈ 0 for x ∈ F . Since ute ≈ vte and eut ≈ evt we have
‖[F, ut]‖ ≈ ‖[F, vt]‖ ≈ 0 for t ∈ [−1, 1], which implies that ‖[F, utUt]‖ ≈ 0 for
t ∈ [−1, 1]. Further we have ‖(1− F)ξ‖ ≈ ‖(1− E)ξ‖ ≈ 0 for ξ ∈ ω.

LEMMA 2.3. For any ε > 0 there exists a δ > 0 such that the following holds.
If e, p ∈ A and a finite-rank projection E satisfy 0 6 p 6 e 6 1, ep = p,

‖αt(e)− e‖ < δ for t ∈ [−1, 1], ‖[E, H]‖ < δ, ‖[E, e]‖ < δ and ‖[E, p]‖ < δ, then
there is a finite rank projection F such that F 6 E, ‖Ep− Fp‖ < ε, ‖Fe− F‖ < ε and
‖[F, H]‖ < ε.

Proof. Let e′ = EeE, p′ = EpE, and H′ = EHE. Since ‖[eitH , e′]‖ ≈ 0
for t ∈ [−1, 1] and ‖(1− E)HE‖ ≈ 0 we conclude that ‖[eitH′ , e′]‖ ≈ 0 for t ∈
[−1, 1]. Then Lin’s theorem [19], [4] for almost commuting self-adjoint e′ and H′
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in B(EH) tells us that there is a self-adjoint h in B(EH) such that h ≈ e′ and
‖[q, H′]‖ ≈ 0 uniformly for any spectral projection q of h. Since p′e′ ≈ p′we
deduce that p′h ≈ p′. Let F be the spectral projection of h corresponding to
[1− ε/2, 1]. From the lemma below and p′ = EpE ≈ Ep we may suppose that
‖Fp− Ep‖ < ε. Since ‖Fh− F‖ 6 ε/2 and h ≈ EeE we may also suppose that
‖Fe − F‖ < ε. Since [F, H] = [F, H′] + FH(1− E) − (1− E)HF it follows that
‖[F, H]‖ 6 ‖[F, H′]‖+ ‖(1− E)HE‖, which we may suppose is smaller than ε.

LEMMA 2.4. For any ε, ε′ > 0 there is a C > 0 such that the following holds.
For any h, p ∈ Asa such that 0 6 h 6 1, 0 6 p 6 1 and ‖hp − p‖ < δ the

spectral projection F of h corresponding to [1− ε, 1] satisfies ‖Fp− p‖ < ε′ + Cδ.

Proof. Fix a continuous function f on [0, 1] such that 0 6 f 6 1, f (1) = 1

and supp( f ) ⊂ [1− ε, 1] and choose a polynomial q(t) =
n
∑

k=1
cktk with q(1) = 1

such that | f (t)− q(t)| < ε′ for t ∈ [0, 1]. Since ‖q(h)p− p‖ 6
n
∑

k=1
|ck|kδ ≡ Cδ and

‖ f (h)− q(h)‖ < ε′ it follows that ‖(1− F)p‖ = ‖(1− F)(1− f (h))p‖ < ε′ + Cδ,
where F denotes the spectral projection of h corresponding to [1− ε, 1].

PROPOSITION 2.5. Let α be a flow on A and u an α-cocycle. Then α is pseudo-
diagonal if and only if t 7→ Ad utαt is pseudo-diagonal.

Proof. If A is unital this follows straightforwardly. Suppose that A does not
have a unit and that α is pseudo-diagonal. Thus we assume that A acts on a
Hilbert spaceH non-degenerately and there is a unitary flow U such that αt(x) =
UtxU∗t , x ∈ A and (A, U) is pseudo-diagonal. Let u be an α-cocycle in M(A).
Further let F be a finite subset of A and ω a finite subset of H. Then, by the
lemma below, we choose p, e ∈ A such that 0 6 p 6 e 6 1, ep = p, ‖x− pxp‖ ≈ 0
for x ∈ F , ‖pξ − ξ‖ ≈ 0 for ξ ∈ ω, ‖αt(e)− e‖ ≈ 0 for t ∈ [−1, 1] and ‖[e, ut]‖ ≈
0 for t ∈ [−1, 1]. For u and e we choose an α-cocycle v in A + C1 such that
‖(ut − vt)e‖ ≈ 0 for t ∈ [−1, 1] [17]. We then express vt as wU(h,α)

t αt(w∗), where

w ∈ U (A + C1), h = h∗ ∈ A + C1 and U(h,α)
t denotes the α-cocycle defined by

d
dt U(h,α)

t = U(h,α)
t αt(ih):

U(h,α)
t = 1 +

∞

∑
n=1

∫
Ωn(t)

αt1(ih)αt2(ih) · · · αtn(ih)dt1 · · ·dtn

where Ωn(t) = {(t1, t2, . . . , tn) : 0 6 t1 6 t2 6 · · · 6 tn 6 t} for t > 0 and
similarly for t < 0 (see Lemma 1.1 of [14]).

Let G = F ∪ {p, e} ∪ {αt(h), αt(w) : t ∈ [−1, 1]}. Then G is a compact
subset of A + C1. Since (A, U) is pseudo-diagonal, we choose, for G and ω, a
finite-rank projection E and a unitary flow V on EH such that ‖[E, x]‖ ≈ 0 for
x ∈ G, ‖(1− E)ξ‖ ≈ 0 for ξ ∈ ω and ‖Eαt(x)E− VtExEV∗t ‖ 6 ε‖x‖ for x ∈ G
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and t ∈ [−1, 1]. Set βt = Ad Vt on B(EH). From the above expression for U(h,α)
t

we note that

Evt = EwU(h,α)αt(w∗) ≈ EwEU(EhE,β)
t βt(EwE)∗

for t ∈ [−1, 1]. Thus replacing EwE by a close unitary in B(EH) we obtain
a β-cocycle b in B(EH) such that Evt ≈ Ebt for t ∈ [−1, 1]. It follows that
EAd vtαt(x)E ≈ Ad btβt(ExE) for x ∈ F and t ∈ [−1, 1]. Since Ad btβt(EeE) ≈
EAd btαt(e)E ≈ EAd vt(e)E ≈ EAd ut(e)E ≈ EeE for t ∈ [−1, 1], by Lemma 2.3,
there is a subprojection F of E such that Fp ≈ Ep, Fe ≈ F and ‖[F, H′]‖ ≈ 0,
where H′ is the self-adjoint generator of t 7→ btVt.

Since ‖x − pxp‖ ≈ 0 for x ∈ F , we have ‖[F, x]‖ ≈ ‖[E, x]‖ ≈ 0 for
x ∈ F and since pξ ≈ ξ for ξ ∈ ω we have ‖(1− F)ξ‖ ≈ ‖(1− E)ξ‖ ≈ 0 for
ξ ∈ ω. We conclude that FAd utαt(x)F ≈ FAd vtαt(x)F ≈ FAd eitH′(ExE)F ≈
Ad eitFH′F(FxF) for x ∈ F .

LEMMA 2.6. Let A be a non-unital C∗-algebra and α a flow on A. Let u be an
α-cocycle in M(A). Then there exists an approximate identity (eµ)µ∈I in A such that
max{‖αt(eµ) − eµ‖ : t ∈ [−1, 1]} and max{‖[eµ, ut]‖ : t ∈ [−1, 1]} converge to
zero. Moreover one may assume that there is another approximate identity (pµ)µ∈I with
the same index set I satisfying the same conditions as (eµ) and eµ pµ = pµ for µ ∈ I.

Proof. Define a flow γ on M2 ⊗ A by γt(e12 ⊗ x) = e12 ⊗ αt(x)u∗t for x ∈
A. (Thus γt(e11 ⊗ x) = e11 ⊗ αt(x) and γt(e22 ⊗ x) = e22 ⊗ Ad utαt(x).) We
choose an approximate identity ( fµ) in M2 ⊗ A such that max{‖γt( fµ) − fµ‖ :
t ∈ [−1, 1]} → 0. By taking a net in the convex combinations of { fµ} we may
further suppose that ‖[eij ⊗ 1, fµ]‖ → 0. Then we define eµ ∈ A by

1⊗ eµ =
1
2 ∑

i
(ei1 ⊗ 1) fµ(e1i ⊗ 1),

which is almost equal to fµ. Thus it follows that ‖γt(1⊗ eµ)− 1⊗ eµ‖ 6 ‖γt(1⊗
eµ)−γt( fµ)‖+ ‖γt( fµ)− fµ‖+ ‖ fµ− 1⊗ eµ‖, which converges to zero uniformly
in t on [−1, 1]. Since γt(1⊗ eµ) = e11 ⊗ αt(eµ) + e22 ⊗ utαt(eµ)u∗t , this completes
the proof for the first part. To prove the additional assertion, we choose two con-
tinuous functions f , g from [0, 1] onto [0, 1] such that f (0) = g(0) = 0, f (1) =
g(1) = 1 and f g = g. Then the pair f (eµ) and g(eµ) satisfy f (eµ)g(eµ) = g(eµ).
One can prove that f (eµ) (respectively g(eµ)) is an approximate identity satisfy-
ing the required properties.

COROLLARY 2.7. Let α be a flow on A and let B be an α-invariant hereditary
C∗-subalgebra of A such that B generates A as an ideal. Then α is quasi-diagonal
(respectively pseudo-diagonal) if and only if α|B is quasi-diagonal (respectively pseudo-
diagonal).

Proof. The “only if” part follows from the definition even if B is an arbitrary
α-invariant C∗-subalgebra of A. (See also Theorems 1.5 and 1.6.)
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Suppose that α|B is quasi-diagonal (respectively pseudo-diagonal). If A is
separable (or has a strictly positive element), then B⊗K and A⊗K are isomor-
phic with each other (see [7]), where K is the separable C∗-algebra of compact
operators. Under this identification, α⊗ id on A⊗K is a cocycle perturbation of
α|B ⊗ id (see [17]). Thus the “if” part follows from Propositions 2.2 and 2.5 in the
separable case.

Suppose that A is not separable. Let F be a finite subset of A. Since the
linear span of ABA is dense in A, there is a countable subset G of AB such that
the closed linear span of {xy∗ : x, y ∈ G} contains F . Let A1 be the α-invariant
C∗-subalgebra of A generated by G. Then A1 ⊃ F . Since αs(x)∗αt(y) ∈ A1 ∩ B
for x, y ∈ G, the hereditary C∗-subalgebra B1 = A1 ∩ B of A1 is essential, i.e. it
generates A1 as an ideal of A1. Since α|B1 is quasi-diagonal (respectively pseudo-
diagonal), it follows that α|A1 is quasi-diagonal (respectively pseudo-diagonal).
Since F is arbitrary this completes the proof.

Recall that pseudo-diagonality follows from quasi-diagonality.

PROPOSITION 2.8. Suppose that α is a pseudo-diagonal flow on a unital C∗-
algebra A. Then α has a KMS state for all inverse temperatures including ±∞.

Proof. Let F be a finite subset F of A and ε > 0. For each (F , ε) we have
a flow β on a finite-dimensional C∗-algebra B and a CP map φ of A into B such
that φ(1) = 1, ‖φ(x)‖ > (1 − ε)‖x‖ and ‖φ(x)φ(y) − φ(xy)‖ 6 ε‖x‖‖y‖ for
x, y ∈ F and ‖βtφ(x) − φαt(x)‖ 6 ε‖x‖ for x ∈ F and t ∈ [−1, 1]. Here we
have replaced the condition ‖φ‖ 6 1 by φ(1) = 1 since A is unital. To justify this
we note that we may assume that 1 ∈ F , which entails that ‖φ(1)2 − φ(1)‖ 6 ε
and ‖βt(φ(1))− φ(1)‖ 6 ε for t ∈ [−1, 1]. By functional calculus for small ε we
obtain a projection p from φ(1). Since ‖βt(p) − p‖ is of order ε for t ∈ [−1, 1]
we can perturb β by a β-cocycle which differs from 1 on [−1, 1] by up to order
ε and suppose that βt(p) = p. Replacing B by pBp and φ by qφ( · )q with q =
(pφ(1)p)−1/2 and restricting β we can assume that φ is unital. Since ‖q− p‖ is of
order ε we could start with a smaller ε to obtain the right estimates.

There is a self-adjoint h ∈ B such that βt = Ad eith. Fix γ ∈ R and define a
state ϕ on B by

ϕ(Q) =
Tr(e−γhQ)

Tr(e−γh)
,

where Tr is a trace on B. Then ϕ is a KMS state on B with respect to β at inverse
temperature γ.

Let f(F ,ε) = ϕφ be a state on A where ϕ and φ depend on (F , ε). Let f
be a weak∗-limit point of f(F ,ε), where the set X of (F , ε) is a directed set in an
obvious way. We fix a Banach limit ψ on L∞(X) such that f (x) is the ψ limit
of (F , ε) 7→ f(F ,ε)(x) for x ∈ A. Note that f (xαt(y)) is the ψ limit of (F , ε) 7→
ϕ(φ(xαt(y))), which is close to ϕ(φ(x)βtφ(y)) around ∞. Thus one can conclude
that f is a KMS state at γ.
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A similar proof works for a KMS state for γ = ±∞ (or a ground state and
ceiling state). See [5], [6] for more details on KMS states.

We may call such a state fF ,ε on A as above a local KMS state (depending also
on the choice of B, φ, β, h and Tr on B) and a KMS state f on A obtained as a limit of
local KMS states locally approximable. It follows that the locally approximable KMS
states at an inverse temperature form a closed convex cone. It may be natural to
ask whether all the KMS states are locally approximable for a pseudo-diagonal
flow on some C∗-algebra. An easy example of such will be given later.

We remind the reader that if α is approximately inner then we obtain the
same conclusion as in the above proposition [5]. The proof is similar. Since there
is a flow on a unital AF algebra which has no KMS states for γ > 0, we know that
there is a flow, on a unital AF algebra, which is not pseudo-diagonal. Obvious
examples of non-pseudo-diagonal flows are as follows:

EXAMPLE 2.9. Let Ω be a compact Hausdorff space and α a flow of home-
omorphisms of Ω such that no point of Ω is fixed under α. We denote by the
same symbol α the flow of the C∗-algebra on A = C(Ω) which naturally arises as
αt( f )(ω) = f (α−t(ω)) for f ∈ C(Ω) and ω ∈ Ω. Then the flow α is not pseudo-
diagonal since if α has a KMS state for non-zero inverse temperature then α acts
trivially on π(A)′′, where π is the associated GNS representation of A, (since
π(A)′′ is commutative) and this implies the existence of fixed points under α
in Ω.

EXAMPLE 2.10. Define a flow α on the C∗-algebra C0(R) by αt( f )(s) =
f (s − t). Then α is not pseudo-diagonal. If one defines self-adjoint operators
P and Q on L2(R) by Pξ(s) = −i d

ds ξ(s) and Qξ(s) = sξ(s) then there is a finite
sequence f1, f2, . . . , fn in C0(R) and ε > 0 such that if a finite-rank projection E on
L2(R) satisfies ‖E fi(Q)E‖ > (1− ε)‖ fi‖ and ‖[E, fi(Q)]‖ 6 ε‖ fi‖ for i = 1, . . . , n
then ‖[E, P]‖ > ε. (This statement appears considerably stronger than the state-
ment that if E is a finite-rank projection on L2(R) such that ‖EΩ0‖ > 1/2 then
‖[E, Q]‖+ ‖[E, P]‖ > 1/3, where Ω0 = π−1/4e−s2/2 is the vacuum vector.)

First consider the paranthetic assertion and note that (P− iQ)(P + iQ) > 1
and (P − iQ)Ω0 = 0. Assuming there is such a projection E with ‖EΩ0‖ >
1/2 let T = E(P + iQ)E and γ = ‖[E, P]‖ + ‖[E, Q]‖ < 1. Then Tξ = [E, P +
iQ]ξ + (P + iQ)ξ for ξ ∈ EL2(R) and this implies that ‖Tξ‖ > (1− γ)‖ξ‖. Since
T∗EΩ0 = E(P− iQ)EΩ0 = E[P− iQ, E]Ω0 we deduce that ‖T∗EΩ0‖ 6 γ. Since
‖T−1‖ = ‖(T∗)−1‖ (as operators on the finite-dimensional subspace EL2(R)) it
follows that ‖EΩ0‖/γ 6 (1− γ)−1 or γ > ‖EΩ0‖/(‖EΩ0‖ + 1) > 1/3. (This
assertion is related to the Heisenberg uncertainty principle.)

To establish the principal assertion of Example 2.10 we may add an iden-
tity to C0(R), i.e. we may consider α as acting on the continuous functions on
R+ = R ∪ {∞}. We define a unitary u ∈ C(R+) by u(t) = 1 for |t| > 1 and
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u(t) = eiπ(t+1) for t ∈ (−1, 1). Note that αt(u) = e−ibt u for t > 0, where bt is a
continuous function on R with supp(bt) = [−1, 1 + t] such that bt(s) = 1 + s for
s ∈ [−1,−1+ t], bt(s) = t for s ∈ (−1+ t, 1) and bt(s) = 1+ t− s for s ∈ [1, 1+ t].

We fix t0 ∈ (0, 1/2) and ε ∈ (0, 1/6) and introduce f , g, h ∈ C0(R) as in
Lemma 2.12 below. In particular it follows that f αt(g) = αt(g) and f bt = bt
for t ∈ [0, t0], (u − 1)g = u − 1, and bt0 h = t0h. By applying Theorem 1.6 to
u, f , g, h, bt ∈ [0, t0] etc. we obtain a unital CP map φ of C(R+) into Mn for some
n and a flow β on Mn such that φ(u∗)φ(u) ≈ 1, φ(g)(φ(u) − 1) ≈ φ(u) − 1 ≈
(φ(u)− 1)φ(g), φ(αt(g)) ≈ βt(φ(g)) and

φ(αt(u)) ≈ φ(e−ibt)φ(u) ≈ e−iφ(bt)φ(u) ≈ βt(φ(u))

for t ∈ [0, t0]. In addition φ and β satisfy the assertion made in Lemma 2.12.
We construct the spectral projections F, G, H ∈ Mn out of φ( f ), φ(g), φ(h) cor-
responding to [1− δ, 1] with a small δ > 0 as in Lemma 2.12. In particular this
ensures that G(φ(u) − 1) ≈ φ(u) − 1 and Fβt(G) ≈ βt(G) and Fφ(bt) ≈ φ(bt)
for t ∈ [0, t0]. By slightly modifying F we can suppose that GF = G. By the
polar decomposition of Gφ(u)G + 1− G ≈ φ(u) we obtain a unitary W ∈ Mn

such that W = GWG + 1− G and e−iφ(bt)W ≈ βt(W). Let V be a unitary flow in
Mn such that βt = Ad Vt. Since FVtGF ≈ VtG there is a unitary Yt ∈ FMnF
such that YtG ≈ VtG. We may suppose that t ∈ [0, t0] 7→ Yt is continuous
with Y0 = F. Since W(F − G) = F − G and Fβt(G) ≈ βt(G) we deduce that
Fβt(W)F ≈ YtWY∗t where W is now regarded as a unitary in FMnF. By us-
ing Fe−iφ(bt)F ≈ e−iFφ(bt)F we thus deduce that YtWY∗t W∗ ≈ e−iFφ(bt)F in Mn
for t ∈ [0, t0]. Hence there is a self-adjoint dt ∈ FMnF such that dt ≈ 0 and
YtWY∗t W∗ = e−iFφ(bt)Feidt , where t 7→ dt is continuous. Since det(YtWY∗t W∗) = 1
we obtain −Tr(Fφ(bt)F) + Tr(dt) ∈ 2πZ. Since YtWY∗t W∗ = 1, bt = 0 and
dt = 0 at t = 0 it follows that Tr(Fφ(bt)F) = Tr(dt). Note that Tr(Fφ(bt)F) >
tTr(Fφ(h)F) > t(1− δ)Tr(FHF) and Tr(FHF) is almost greater than dim(F)/3
(by Lemma 2.12). Since |Tr(dt)| 6 ‖dt‖dim(F) ≈ 0 this gives a contradiction for
some t away from 0. (See [11], [3] for similar arguments.)

LEMMA 2.11. For any ε1, ε2, ε′ > 0 there is a C > 0 such that the following holds.
For any h, p ∈ Asa such that 0 6 h 6 1, 0 6 p 6 1, and ‖hp − p‖ < δ

the spectral projections F of h and G of p corresponding to [1− ε1, 1] and [1− ε2, 1],
respectively, satisfy ‖FG− G‖ < ε′ + Cδ.

The proof is similar to that of Lemma 2.4.

LEMMA 2.12. Fix t0 ∈ (0, 1/2) and ε ∈ (0, 1/6). Define g ∈ C0(R) by g(s) = 0
for |t| > 1 + ε and g(s) = 1 for t ∈ [−1, 1] and by linearity elsewhere. Define f ∈
C0(R) by f = α−ε(g)∨ αt0+ε(g) where α is the translation flow of Example 2.10. (Note
that f (s) = 1 for s ∈ [−1− ε, 1 + t0 + ε] and f αt(g) = αt(g) for t ∈ [0, t0].) Define
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h ∈ C0(R) by h(t) = 0 for t < −1+ t0 and t > 1, h(t) = 1 for t ∈ [−1+ t0 + ε, 1− ε]
and by linearity elsewhere. (Note that f ·∨{αs(h) : |s| 6 t0 + 3ε} = f .)

Let δ ∈ (0, 1) and suppose that α is pseudo-diagonal. Then for any ε′ > 0 there
is a unital CP map φ of C0(R+) into Mn and a flow β on Mn satisfying the following
assertion. If F, G, and H are spectral projections of φ( f ), φ(g), and φ(h), respectively,
corresponding to [1− δ, 1], then ‖Fβt(G)− βt(G)‖ < ε′ for t ∈ [0, t0] and dim F 6
3 dim H.

Proof. The estimate ‖FG − G‖ < ε′ follows from Lemma 2.11 by assum-
ing ‖φ( f )φ(g) − φ(g)‖ ≈ 0. If φ(αt(g)) ≈ βt(φ(g)) sufficiently closely then
βt(G) is almost dominated by the spectral projection Gt of φαt(g) correspond-
ing to [1 − 3δ/2, 1] (and almost dominates the spectral projection correspond-
ing to [1− δ/2, 1]). (See Lemma 2.2 of [3].) If φ( f )φαt(g) ≈ φαt(g) sufficiently
closely then FGt ≈ Gt. Thus, assuming ‖φ( f )φαt(g) − φαt(g)‖ ≈ 0, it follows
that Fβt(G) ≈ βt(G) for t ∈ [0, t0].

Let t1 = −t0 − 3ε, t2 = 2− 2t0 − 6ε, and t3 = 4− 3t0 − 9ε and note that
αt1(h) ∨ αt2(h) ∨ αt3(h) · f = f and that there are non-negative f1, f2, f3 ∈ C0(R)
such that f = f1 + f2 + f3 and αti (h) fi = fi. Suppose that dim F > 3 dim H how-
ever we choose φ and β. Then, since dim F > dim(βt1(H) ∨ βt2(H) ∨ βt3(H)),
there is a state ϕ on Mn such that ϕ(F) = 1 and ϕ(βti (H)) = 0 for i = 1, 2, 3.
By assuming that ‖φ( fi)φαti (h) − φ( fi)‖ ≈ 0 etc. we would have ϕ(φ( fi)) ≈ 0
for i = 1, 2, 3, which implies that ϕ(φ( f )) ≈ 0. But since ϕ(φ( f )) > 1 − δ
due to ϕ(F) = 1 this is a contradiction. Hence dim F 6 3 dim H follows if
φ( fi)φαti (h) ≈ φ( fi).

EXAMPLE 2.13. Let D denote the unit disk {z ∈ C : |z| 6 1}. Define a flow
α of homeomorphisms of D by αt(z) = zeit. Then the induced flow on C(D) is
quasi-diagonal. More generally let v be a continuous function on [0, 1] of finite
variation and define a flow α′ on D by α′t(z) = eitv(|z|)z. Then the induced flow
on C(D) is quasi-diagonal. Note that the origin is a fixed point which is neither
absorbing nor repelling.

We shall prove the first assertion here. The second one will not be proved
but follows from the proof of Proposition 2.15 given later.

Let α denote the induced flow on C(D) and β the rotation flow on C(T), i.e.
βt(x)(z) = x(ze−it), where T = {z ∈ C : |z| = 1}. We regard C(T) as acting
on L2(T). Then β is implemented by the unitary flow U defined by Utξ(z) =

ξ(ze−it). Note that Ut =
∞
∑

k=−∞
eiktPk where Pk is a rank-one projection. For r ∈

[0, 1] let πr be the restriction map of C(D) onto C(T) : πr(x)(z) = x(rz). For

n ∈ N, we define a covariant representation ρn of C(D) by ρn =
n⊕

k=0
πk/n with the

unitary flow U(n) defined by U(n)
t =

n⊕
k=0

Ut.
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Let F be a finite subset of C(D) and ε > 0. For any δ > 0 there is an n ∈ N
such that ‖ρn(x)‖ > (1 − δ)‖x‖ for all x ∈ F and ‖πr(x) − πs(x)‖ 6 δ‖x‖ if
x ∈ F and ‖r− s‖ 6 1/n. We find a decreasing sequence

T0 = F0, G0, T1, F1, G1, . . . , Tn, Fn, Gn = 0

of non-negative operators in the convex hull of the Pk such that all Fk and Gk
are projections, ‖(Fk − Gk)πk/n(x)(Fk − Gk)‖ > (1− δ)‖πk/n(x)‖ for x ∈ F and
‖[Tk, πk/n(x)]‖ 6 δ‖x‖ for x ∈ F . We construct the sequence in the reverse order.

After choosing Gk, since πk/r(x) is not compact, one can choose Fk > Gk
to satisfy the condition ‖(Fk − Gk)πk/n(x)(Fk − Gk)‖ > (1 − δ)‖πk/n(x)‖. By
the general theory of quasi-central approximate units, (see [1] or [20]), one can
choose Tk > Fk. If Tk is chosen we set Gk−1 to be the support projection of Tk.
After repeating this process a finite number of times we construct F0. Since the
condition ‖[Tk, πk/n(x)]‖ 6 δ‖x‖ is void for k = 0 we can set T0 = F0.

We define a finite-rank projection E = S∗S on
n⊕

k=0
L2(T) with S = ((T0 −

T1)
1/2, (T1 − T2)

1/2, . . . , (Tn − Tn+1)
1/2) with Tn+1 = 0. Since SS∗ = T0, E is

indeed a finite-rank projection. Since all the Tk commute with U, it follows that
[E, U(n)

t ] = 0. Since E is tri-diagonal, [E, ρn(x)] is expressed as the sum of the

diagonal part
n⊕

k=0
[Tk − Tk+1, πk/n(x)], the upper off-diagonal part and the lower

off-diagonal part, respectively,

n−1⊕
k=0

{Ek,k+1π(k+1)/n(x)−πk/n(x)Ek,k+1},
n−1⊕
k=0

{Ek+1,kπk/n(x)−π(k+1)/n(x)Ek+1,k},

where Ek,k+1 = Ek+1,k = (Tk − Tk+1)
1/2(Tk+1 − Tk+2)

1/2 = (Tk+1 − T2
k+1)

1/2.
Thus one can conclude that ‖[E, ρn(x)]‖ 6 ε‖x‖ for x ∈ F for a sufficiently small
δ. The diagonal part of Eρn(x)E is given by the direct sum of

(Tk−Tk+1)πk/n(x)(Tk−Tk+1)+Ek,k+1π(k+1)/n(x)Ek+1,k+Ek,k−1π(k−1)/n(x)Ek−1,k,

over k = 0, 1, . . . , n, where Ek,k+1 etc. are given above and the term should be
omitted if k + 1 = n + 1 or k− 1 = −1. Hence the norm of this is greater than or
equal to

n⊕
k=0

(Fk − Gk)πk/n(x)(Fk − Gk).

Thus we obtain ‖Eρn(x)E‖ > (1− ε)‖x‖ for x ∈ F for a small δ.
Since π0(x) = x(0), π0 is an α-invariant character. Hence we could choose

t 7→ 1 for a unitary flow implementing α instead of the U which has spectrum
2πZ, but then the above proof would fail.

The above proof was taken from the proof of Proposition 3 of [24]. It is
appropriate to indicate how to prove Theorem 1.7 at this point. First we establish
the following analogue of Proposition 3 of [24].



QUASI-DIAGONAL FLOWS 367

PROPOSITION 2.14. Let α (respectively β) be a flow on a C∗-algebra A (respec-
tively B). Let {φs : s ∈ [0, 1]} be a homotopy of homomorphisms of A into B such that
φsαt = βtφs and

⋂
s

Ker(φs) = {0}. If β|φ1(A) is quasi-diagonal then α is quasi-diagonal.

Proof. Let (ρ, V) be a covariant representation of (B, β) such that ρ × V
is faithful and contains no non-zero compact operators in its range. Then, by
the assumption,

⊕
s

ρφs is faithful and (ρφ1(A), V) is quasi-diagonal. Let H de-

note the self-adjoint generator of V. Let F be a finite subset of A and ε > 0.
There is a self-adjoint compact operator K on Hρ such that ‖K‖ < ε/2 and
H1 = H + K is diagonal. For any small constant δ > 0, there is an n ∈ N
such that if |s1 − s2| 6 1/n and x ∈ F then ‖φs1(x) − φs2(x)‖ 6 δ‖x‖ and
if x ∈ F then max

k
‖πk/n(x)‖ > (1 − δ)‖x‖. There is a finite increasing se-

quence G0 = 0, F0, T0, G1, F1, T1, G2, . . . , Gn, Fn = Tn of non-negative compact op-
erators in the maximal commutative von Neumann algebra generated by a fam-
ily of minimal projections commuting with H1 such that all Gk, Fk are projections,
‖(Fk−Gk)πk/n(x)(Fk−Gk)‖ > (1− δ)‖πk/n(x)‖ for x ∈ F and ‖[Tk, φk/n(x)]‖ <
δ‖x‖ for x ∈ F . Let π =

n⊕
k=0

ρφk/n and U =
n⊕

n=0
V. In this covariant representa-

tion space
n⊕

k=0
Hρ we define a finite-rank projection E as S∗S ∈ Mn+1 ⊗ B(Hρ),

where S is the row vector (T0, (T1− T0)
1/2, . . . , (Tn − Tn−1)

1/2). If δ is sufficiently
small, one can show that (π, U) and E satisfy condition (iii) of Theorem 1.5 for
(F , ε). (See the proof of Proposition 3 of [24] for more details.)

Theorem 1.7 follows from Proposition 2.14 exactly as in the proof of Theo-
rem 5 of [24]. Let us reproduce the proof here. We have two flows α on A and β on
B such that (B, β) dominates (A, α), i.e. there are intertwining homomorphisms
φ : A → B and ψ : B → A such that ψφ is homotopic to the identity in the en-
domorphisms of A commuting with α. The assumption that β is quasi-diagonal
implies that β|φ(A) is quasi-diagonal and hence that the flow α̇ on A/Ker(φ) in-
duced from α is quasi-diagonal. Let D = A⊕ A/Ker(φ) with the flow α⊕ α̇ and
consider two intertwining homomorphisms ψφ ⊕ π and id⊕ π from A into D,
where π is the quotient map of A onto A/Ker(φ). Then, since Ran(ψφ⊕π) is iso-
morphic to A/Ker(φ), we conclude that α⊕ α̇|Ran(ψφ⊕π) is quasi-diagonal. Since
ψφ⊕ π is homotopic to id⊕ π in the intertwining homomorphisms and id⊕ π
is injective Proposition 2.14 implies that α is quasi-diagonal. This concludes the
proof of 1.7. (See [24] for another formulation.)

We can also show the following variant of Proposition 3 of [24].

PROPOSITION 2.15. Let α be a flow on a quasi-diagonal C∗-algebra A and define
a flow β on B = A⊗ C[0, 1] by βt(x)(s) = αst(x(s)). Then β is quasi-diagonal.

Proof. Let (π, U) be a covariant representation of (A, α) such that π ×U is
faithful. For s ∈ [0, 1] we define a map φs of B onto A by φs(x) = x(s). For
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each n ∈ N let Ln = 1 + 1/2 + 1/3 + · · · + 1/n and let sk = L−1
n

k
∑

m=1
1/m for

k = 1, 2, . . . , n with s0 = 0. We define a representation πn of B by πn =
n⊕

k=0
πφ1−sk

and a unitary flow U(n)
t =

n⊕
k=0

U(1−sk)t which implements β. Given F and ε > 0

we construct the required finite-rank projection in the representation spaceHn =
n⊕

k=0
Hπ of πn for some large n. The finite-rank projection E = (Ek`) is defined just

as before as the tri-diagonal matrix S∗S by choosing a finite increasing sequence
T0, T1, . . . , Tn of finite-rank non-negative operators as above; Ekk = Tk − Tk−1 and
Ek,k+1 = Ek+1,k = (Tk − Tk−1)

1/2(Tk+1 − Tk)
1/2 = (Tk − T2

k )
1/2. Since U(n) is not

the direct sum of n + 1 copies of the same flow it is not sufficient to assume Tk

almost commutes with Ut(1−sk)
. To achieve Ad U(n)

t (E) ≈ E we must also have

U(1−sk)tEk,k+1U∗(1−sk+1)t
≈ Ek,k+1.

Since Ek,k+1 almost commutes with U, this amounts to Ek,k+1Ut(k+1)−1L−1
n
≈ Ek,k+1,

i.e. (Ut − 1)(Tk − T2
k ) ≈ 0 if |t| 6 (k + 1)−1L−1

n .
Let X be the linear subspace of C0(R+) consisting of non-increasing C∞-

functions f on R such that f (t) = 1 for all small t and f (t) = 0 for all large t.
We regard H as the generator of t 7→ λt in the multiplier algebra M(A×α R) and
write f (H) =

∫
f̂ (t)λtdt. Since f (H) with f ∈ X is a subspace in M(A ×α R)

and contains the identity in its closure with respect to the strict topology, there
is an f− ∈ X such that ‖[ f−(H), x]‖ 6 (ε/4)‖x‖ for all x ∈ F , where F is the
given finite subset of A. Since this inequality is left invariant under the dual
flow we may assume that f−(t) = 1 for t 6 0 and f−(t) < 1 for t > 0. Let
L = min{t : f−(t) = 0} and define f+ by f+(t) = 1− f−(t + L). On the other
hand there is an L′ > 0 such that

‖χ(−L′ ,L′)(H)xχ(−L′ ,L′)(H)‖ >
(

1− ε

2

)
‖x‖

for x ∈ F where χ(−L′ ,L′) is the characteristic function of the interval (−L′, L′)
(and hence χ(−L′ ,L′)(H) is an open projection in the second dual of A×α R). We
define fk ∈ C0(R) by

fk(t) = f+(t + kL + (2k + 1)L′) f−(t− kL− (2k + 1)L′)

for k = 0, 1, 2, . . .. We note that supp( fk) = [−(k + 1)L− (2k + 1)L′, (k + 1)L +
(2k + 1)L′], fk(t) = 1 for t ∈ [−kL− (2k + 1)L′, kL + (2k + 1)L′], fk fk+1 = fk, and
‖[ fk(H), x]‖ 6 (ε/2)‖x‖ for x ∈ F .

Let P0 = χ(−L′ ,L′)(H) where H now denotes the generator of U. We choose
a finite-rank non-negative operator T0 onHπ such that T0 6 f0(H), ‖[T0, Ut]‖ < ε
for t ∈ [−1, 1], and ‖[T0, π(x)]‖ 6 (ε/2)‖x‖ and ‖P0T0π(x)T0P0‖ > (1− ε)‖x‖
for x ∈ F . This is possible since the set of finite-rank operators T satisfying
0 6 T 6 f0(H) forms a convex set invariant under Ad Ut and contains f0(H) in
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its closure with the strict topology on K(Hπ) and f0(H) satisfies all the condi-
tions required for T0 with stricter coefficients. Let G1 be the support projection
of T0 and let P1 = χ(−L−3L′ ,−L−L′)(H) + χ(L+L′ ,L+3L′)(H). We will find a finite-
rank non-negative operator T1 on Hπ such that G1 6 T1 6 f1(H), ‖[T1, Ut]‖ < ε
for t ∈ [−1, 1], and ‖[T1, π(x)]‖ 6 (ε/2)‖x‖ and ‖P1T1π(x)T1P1‖ > (1− ε)‖x‖
for x ∈ F . For this purpose let N be a large number and let F be a finite-
rank projection such that F 6 χ(−L−L′ ,L+L′)(H) and ‖FUtG1U∗t − UtG1U∗t ‖ =

‖U∗t FUtG1−G1‖ ≈ 0 for all t ∈ [−N, N]. We then choose a finite-rank T such that
F 6 T 6 f1(H), ‖[T, P1]‖ < ε, ‖[T, παt(x)]‖ 6 (2ε/3)‖x‖ and ‖P1Tπαt(x)TP1‖ >
(1− 2ε/3)‖x‖ for x ∈ F and t ∈ [−N, N]. Then by taking

∫
h(t)UtTU∗t dt instead

of T with an appropriate function h > 0 and assuming that N is large enough we
can see that all the conditions are satisfied with TG1 ≈ G1 instead of G1 6 T. We
then modify T slightly to obtain a T1 which satisfies all the conditions. Note that
T1T0 = T0 and ‖[T1 − T0, π(x)]‖ 6 ε‖x‖.

By repeating this process we obtain T0, T1, . . . , Tn−1 such that Tk 6 fk(H),
TkTk−1 = Tk−1, ‖[Tk, Ut]‖ < ε for t ∈ [−1, 1], ‖[Tk − Tk−1, π(x)]‖ 6 ε‖x‖ and
‖PkTkπ(x)TkPk‖ > (1− ε)‖x‖ for x ∈ F , where

Pk = χ(−kL−(2k+1)L′ ,−kL−(2k−1)L′)(H) + χ(kL+(2k−1)L′ ,kL+(2k+1)L′)(H).

Let P′n = χ(−∞,−nL−(2n+1)L′)(H) + χ(2nL+(2n+1)L′ ,∞)(H). By using that A is quasi-
diagonal, we then choose a finite-rank projection Tn such that Tn > Tn−1 and
‖P′nTnπ(x)TnP′n‖ > (1− ε)‖x‖ and ‖[Tn, π(x)‖ 6 ε‖x‖ for x ∈ F . If |t| 6 (k +
1)−1L−1

n , then ‖(Ut − 1)(Tk − T2
k )‖ 6 |L(k + 1) + L′(2k + 1)|(k + 1)−1L−1

n 6 (L +
2L′)/Ln. Since Ln → ∞ as n → ∞ we obtain the desired sequence T0, T1, . . . , Tn
for some n.

EXAMPLE 2.16. Let Aθ denote the irrational rotation C∗-algebra generated
by two unitaries u, v satisfying uv = ei2πθvu with θ ∈ (0, 1) irrational. (Then
Aθ is a unital simple AT-algebra with a unique tracial state.) Let α be a flow
on Aθ such that αt(u) = eitu and αt(v) = eiptv with some p ∈ R. Then α is
not pseudo-diagonal. This follows because if ω is a KMS state for the inverse
temperature β 6= 0 then one must have e−β = ω(u∗αiβ(u)) = ω(uu∗) = 1 which
is a contradiction. Thus α has no KMS states and α is not pseudo-diagonal.

PROPOSITION 2.17. Let A be a quasi-diagonal C∗-algebra and α an approximately
inner flow on A. Then α is pseudo-diagonal.

Proof. Suppose A acts non-degenerately on a Hilbert spaceH such that A is
a quasi-diagonal set of B(H).

LetF be a finite subset of A and ε > 0. By assumption there is an h = h∗ ∈ A
such that ‖αt(x) − Ad eith(x)‖ 6 ε/3‖x‖ for x ∈ F and t ∈ [−1, 1]. There is a
finite-rank projection E on H such that ‖ExE‖ > (1− ε)‖x‖ and ‖[E, x]‖ 6 ε‖x‖
for x ∈ F , and ‖[E, h]‖ < ε/3. Since ‖EeithE− eitEhEE‖ < ε/6 for t ∈ [−1, 1], it
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follows that

‖Eαt(x)E−Ad eitEhE(ExE)‖ 6 ε‖x‖

for all x ∈ F . Note also that ‖ExEyE − ExyE‖ 6 ε‖x‖‖y‖ for x, y ∈ F . By
setting B = B(EH), βt = Ad eitEhE and φ(x) = ExE we obtain condition (ii) of
Theorem 1.6.

If α is a pseudo-diagonal flow on A and B is an α-invariant C∗-subalgebra of
A then α|B is pseudo-diagonal, i.e. pseudo-diagonality is preserved under pass-
ing to an invariant C∗-subalgebra. But it is not evident that this property holds
for approximate innerness.

PROPOSITION 2.18. If α is an AF flow then α is quasi-diagonal.

Proof. By assumption the C∗-algebra A is an AF algebra and has an in-
creasing sequence (An) of finite-dimensional C∗-subalgebras such that

⋃
n

An is

dense in A and αt(An) = An. We choose a maximal abelian C∗-subalgebra Dn
of An ∩ A′n−1 (with A0 = C1) such that α is trivial on Dn and let D be the C∗-
subalgebra of A generated by all Dn. Let (φn) be a dense sequence in the char-
acters of D. Each φn uniquely extends to a pure α-invariant state of A which we
also denote by φn. Note that

⊕
n

πφn is a faithful representation of A.

In the GNS representation πφ of A for φ = φn we define a unitary flow U
by Utπφ(x)Ωφ = πφαt(x)Ωφ, x ∈ A. It follows that (πφ, U) is a covariant rep-
resentation of (A, α). Denote by En the finite-rank projection onto the subspace
πφ(An)Ωn. Then [En, πφ(x)] = 0 for x ∈ An, [E, Ut] = 0 and lim

n
En = 1. This

shows that (πφ(A), U) is quasi-diagonal. Denoting U by Uφ we conclude that
((
⊕

n πφn)(A),
⊕

n Uφn) is quasi-diagonal.

From the above proof one can construct a projection of norm one φn of A
onto An such that αt|An ◦ φn = φn ◦ αt, from which follows a stronger form of
condition (ii) of Theorem 1.5. By using this fact one can show that all the KMS
states are locally approximable for an AF flow (see 4.6.1 of [21] and the comment
after Proposition 2.8). This remark also applies to approximate AF flows [16].

A quasi-diagonal flow on an AF algebra is not expected to be simply a co-
cycle perturbation of an AF flow because there is a more general type of AF flow
(see [21] for commutative derivations which generate such flows). Specifically,
there is a flow α on a unital simple AF algebra A, which is not a perturbation
of an AF flow, such that A has an increasing sequence (Bn) of α-invariant C∗-
subalgebras of A with dense union satisfying α|Bn is uniformly continuous and
Bn ∼= An ⊗ C[0, 1] with An finite-dimensional [15]. We take an α-invariant pure
state f such that f |Bn reduces to an evaluation on C[0, 1]. Then, in the GNS repre-
sentation associated with f , the subspace π f (Bn)Ω f is finite-dimensional, which
gives the desired finite-rank projections.
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EXAMPLE 2.19. Let (An) be an increasing sequence of finite-dimensional
C∗-algebras and A the closure of the union

⋃
n

An. Let Bn = A1 ⊕ A2 ⊕ · · · ⊕ An.

We define an embedding of Bn into Bn+1 as follows: if k < n then Ak of Bn is
identified with Ak of Bn+1 and An is mapped into An ⊕ An+1 by duplication. Let
B be the closure of the union

⋃
n

Bn (which is also defined as the C∗-algebra of

bounded sequences (xn) with xn ∈ An such that lim
n

xn converges in A). We note

that B has many finite-dimensional quotients. Let In be the ideal generated by
all Ai ⊂ Bm with i 6= n 6 m. Then B/In is isomorphic to An. Since

⋂
In = {0},

one concludes that B is quasi-diagonal. This shows that any flow β on B is quasi-
diagonal (since β fixes In).

Let α be an approximately inner flow on A and choose an hn = h∗n ∈ An
such that Ad eithn(x) → αt(x) for x ∈ A. We can define a flow β on B as follows.
Let β(n) denote the flow on Bn implemented by

⊕
k6n

hk. One shows that β
(n)
t (x)

converges for x ∈ B and defines β as the limit.
Conversely, if a flow β is given on B then we have an hn = h∗n ∈ An such

that the induced flow on B/In is given by Ad eithn and can argue that Ad eithn

converges to a flow on A. Hence one concludes that β is defined just as in the
previous paragraph.

EXAMPLE 2.20. Let A be a residually finite-dimensional C∗-algebra and α
a flow on A which fixes each ideal of A. Then α is quasi-diagonal. This follows
because A has a separating family of finite-dimensional representations which
must be covariant under α. Thus the direct sum of these representations gives the
required faithful representation of A.

EXAMPLE 2.21. Let γ denote the periodic flow on the UHF algebra
∞⊗

n=1
M2

of type 2∞ given by γt =
⊗
n

Ad(1⊕ e2πit) and let A be the fixed point algebra of γ.

The dimension group of A is isomorphic to Z[t] with the positive cone of strictly
positive functions on the open interval (0, 1). There is a decreasing sequence
I1, I2, . . . of ideals of A such that A/I1

∼= C1,
⋂
n

In = {0}, and In/In+1
∼= K for

n > 1, where K is the compact operators on a separable infinite-dimensional
Hilbert space. It follows from the next lemma that any flow on A/In is quasi-
diagonal and this then implies that any flow on A is quasi-diagonal.

LEMMA 2.22. If A is a type I AF algebra then any flow on A is quasi-diagonal.

Proof. There is a strictly increasing family {Iµ} of (closed) ideals of A in-
dexed by µ in a segment [0, ν] of ordinals such that I0 = {0}, Iν = A,

⋃
µ<γ

Iµ

is dense in Iγ for any limit ordinal γ, and Iµ+1/Iµ is generated as an ideal by a
minimal projection for any µ < ν, i.e. Iµ+1/Iµ

∼= K or otherwise Mm for some
m = 1, 2, . . . (see, e.g. [20] for type I C∗-algebras). In the following we allow
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Iµ+1/Iµ
∼= 0 and call this a composite series for A. Note that any flow α on A

fixes each ideal (because the ideal is generated by projections). We shall prove
the statement that any flow on A (with a composite series indexed by [0, ν]) is
quasi-diagonal by induction on ν. If ν = 1 this is obvious since A ∼= K or Mm for
some m and any flow on A is inner. (If A ∼= K we use the Weyl–von Neumann
theorem.)

Suppose that this is shown for any ν < σ. Let A be a type I AF algebra with
a composite series {Iµ} with µ ∈ [0, σ]. If σ is a limit ordinal, then

⋃
ν<σ

Iν is dense

in A. Since Iν has a composite series indexed by [0, ν] the induction hypothesis
implies that any flow on Iν is quasi-diagonal which in turn implies that any flow
on A is quasi-diagonal. If σ is not a limit ordinal (and Iσ−1 6= A) then there is
a minimal projection in A/Iσ−1 which is an image of a projection e of A. The
existence of such a projection e follows since A is AF. Let J(e) denote the ideal of
A generated by e and note that A = J(e) + Iσ−1 = J(e) + (1− e)Iσ−1(1− e). Since
(1− e)Iσ−1(1− e) is an ideal of (1− e)A(1− e) and is generated by an increasing
sequence (pn) of projections it follows that the sequence J(e + pn) is increasing
and

⋃
n

J(e + pn) is dense in A. Set en = e + pn.

Let α be a flow on A. Then there is an α-cocycle u in A (or A +C1 if A is not
unital) such that Ad utαt(en) = en. To prove that α is quasi-diagonal on J(en) it
suffices to show, by Proposition 2.2, that Ad uα is quasi-diagonal on B = en Aen.
Note that B has a composite series {Jµ} with Jµ = en Iµen ⊂ Iµ and µ ∈ [0, σ].
Since B/Jσ−1

∼= C1 and any flow on Jσ−1 is quasi-diagonal one can conclude that
any flow on B is quasi-diagonal. Thus we conclude that α|J(en) is quasi-diagonal
for any n, which implies that α is quasi-diagonal.

REMARK 2.23. If A is a type I AF algebra then any flow on A is an approx-
imate AF flow (or a cocycle perturbation of an AF flow [16]). The proof is quite
similar to the above but using Corollary 1.6 of [17] in place of Proposition 2.7.
Thus the above lemma also follows from this fact and Proposition 2.18.

REMARK 2.24. Let A be a type I C∗-algebra and α a flow on A which fixes
each ideal. Then α is universally weakly inner and is approximately inner. (N.B.
A need not be quasi-diagonal.) This follows from [13], [8].

It looks that the quasi-diagonal condition is strong for flows on AF algebras.
But we could not decide if they are approximately inner or not.

Summarizing Example 2.21 gives the following.

PROPOSITION 2.25. Let A be an AF algebra and suppose that there is a sequence
{In} of ideals of A such that

⋂
n

In = {0} and A/In is of type I for all n. Then any flow

on A is quasi-diagonal.

PROPOSITION 2.26. Let A be a unital AF algebra and let α be a flow on A. Sup-
pose that there is a covariant irreducible representation (π, U) such that (π(A), U) is
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quasi-diagonal. Then there is an increasing sequence (En) of finite-rank projections on
Hπ and an α-cocyle u in A such that [En, π(ut)Ut] = 0 and

⋃
n

Bn is dense in A where

Bn = {x ∈ A : [Ek, π(x)] = 0, k > n}.
Proof. Since A is an AF algebra there is an increasing sequence (An) of finite-

dimensional C∗-subalgebras of A such that the union is dense in A. We omit π in
the arguments below.

Given a finite-rank projection E onH and ε > 0 there is a finite-rank projec-
tion F on H such that A1EH ⊂ FH, ‖[F, x]‖ 6 ε‖x‖ for x ∈ A1 and ‖[F, Ut]‖ < ε
for t ∈ [−1, 1]. Since A1 is finite-dimensional the average of vFv∗ over v in the
unitary group of A1 is in a small vicinity of F (depending on ε and dim A1) which
yields a projection F′ with ‖F − F′‖ small by functional calculus. We note that
E 6 F′, F′ ∈ A′1, and ‖[F′, Ut]‖ < ε′ + 2‖F′ − F‖ for t ∈ [−1, 1]. Since ‖F − F′‖
can be made arbitrarily small we now suppose that the finite-rank projection F
satisfies E 6 F, F ∈ A′1 and ‖[F, Ut]‖ < ε for t ∈ [−1, 1]. By Proposition 1.3
one obtains a projection F′ in a small vicinity of F such that ‖[F′, H]‖ is small
where H is the self-adjoint operator with Ut = eitH . Using the irreducibility
of A and Kadison’s transitivity theorem we obtain an h = h∗ ∈ A such that
[h, F′] = [H, F′] and ‖h‖ = ‖[H, F′]‖. We define V to be the unitary part of the
polar decomposition of X = F′F + (1− F′)(1− F). Since ‖X − 1‖ 6 2‖F − F′‖
and XF = F′X we conclude that ‖V − 1‖ is small and that VFV∗ = F′. A sec-
ond application of Kadison’s transitivity theorem gives a unitary v ∈ A such that
vF′ = VF′ and ‖v− 1‖ 6 ‖V − 1‖. Note that veit(H−h)v∗ commutes with F. Let
ut = veit(H−h)v∗e−itH ∈ A. This is an α-cocycle satisfying utUtF = FutUt and
‖ut − 1‖ is small for t ∈ [−1, 1] because ‖h‖ and ‖v− 1‖ are small. Note that if E
satisfies that [E, Ut] = 0 then we may suppose that utE = E.

We apply the foregoing procedure repeatedly and each time make a pertur-
bation by selecting a cocycle.

Let (ξn) be an orthonormal basis for H. We construct a sequence (En) of
finite-rank projections and a sequence (u(n)) of cocycles such that Enξn = ξn,
En−1 6 En, En ∈ A′n, u(n)

t En−1 = En−1, ‖u(n)
t − 1‖ < 2−n for t ∈ [−1, 1], and u(n)

is α(n−1)-cocycle, where α(0) = α and α(n) = Ad u(n)α(n−1). Then α(n) converges
to a flow α(∞) which is a cocycle perturbation of α with the cocycle ut obtained as
the limit of u(n)

t u(n−1)
t · · · u(1)

t . Since Bn ⊃ An, the union
⋃
n

Bn is dense in A. The

other requirements follow easily.

Let α be a flow on a unital simple AF algebra A and consider the following
conditions:

(i) There is a covariant irreducible representation (π, U) of A such that the
pair (π(A), U) is quasi-diagonal.
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(ii) There exist an α-cocycle u and an increasing sequence (Bn) of residually
finite-dimensional C∗-subalgebras of A such that

⋃
n

Bn is dense in A and each

Bn is left invariant under Ad uα and has a faithful family of covariant finite-
dimensional representations.

(iii) α is quasi-diagonal.

The above proposition shows that (i) implies (ii). It is immediate that (ii)
implies (iii) since Ad uα|Bn is quasi-diagonal. But to show that (iii) implies (i) we
would need to extract more information on (A, α) in addition to the conclusion
of Proposition 2.8.

3. VOICULESCU’S WEYL–VON NEUMANN THEOREM

Our aim is to prove a version of Voiculescu’s non-commutative Weyl–von
Neumann theorem [22]. A new feature is that we deal with a C∗-algebra together
with a derivation implemented by an unbounded self-adjoint operator.

THEOREM 3.1. Let α be a flow on a separable C∗-algebra A and (π, U) (respec-
tively (ρ, V)) a covariant representation of (A, α) on a separable Hilbert space such that
the range of ρ × V does not contain a non-zero compact operator. If Ker(ρ × V) ⊂
Ker(π ×U), then there is a sequence W1, W2, . . . of isometries from Hπ into Hρ such
that π(x) −W∗n ρ(x)Wn ∈ K(Hπ) and ‖π(x) −W∗n ρ(x)Wn‖ → 0 for x ∈ A.
In addition HU −W∗n HVWn ∈ K(Hπ) and ‖HU −W∗n HVWn‖ → 0 where HU
(respectively HV) is the self-adjoint generator of U (respectively V). Furthermore if
Ker(ρ × V) = Ker(π × U) and the range of π × U (as well as of ρ × V) does not
contain a non-zero compact operator then the Wn can be assumed to be unitary.

This theorem immediately allows a proof of Theorem 1.4.

Poof of Theorem 1.4. Let (ρ, V) be a covariant representation of (A, α) such
that Ker(ρ×V) = {0} and Ran(ρ×V) ∩ K(Hρ) = {0}. Let F be a finite subset
of A, ω a finite subset of Hρ and ε > 0. Let B be the α-invariant C∗-subalgebra
of A generated by F and let H′ be a separable closed subspace of Hρ which is
invariant under ρ(B) and V such that H′ ⊃ ω and the representation ρ|B ×V on
H′ is faithful. We set ρ′ = ρ|B on H′ and V′ = V|H′ . Note that B is separable
and α|B is quasi-diagonal. Let (π, U) be a covariant representation of (B, αB) on a
separable Hilbert spaceHπ such that (π(B), U) is quasi-diagonal, Ker(π×U) =
{0}, and Ran(π × U) ∩ K(Hπ) = {0}. We now apply Theorem 3.1 to (π, U)
and (ρ′, V′). For any ε > 0 there is a unitary W from H′ onto Hπ such that
‖ρ′(x) −W∗π(x)W‖ 6 (ε/4)‖x‖ for x ∈ F and ‖HV′ −W∗HUW‖ 6 ε/2. Let
E be a finite rank projection on Hπ such that ‖[E, π(x)]‖ 6 (ε/2)‖x‖ for x ∈ F ,
‖(1 − E)Wξ‖ 6 ε‖ξ‖ for ξ ∈ ω and ‖[E, HU ]‖ < ε/2. We set F = W∗EW,
which is a finite-rank projection on H′ ⊂ Hρ. Then ‖[F, ρ(x)]‖ 6 ε‖x‖ for x ∈ F ,
‖(1− F)ξ‖ = ‖(1− E)Wξ‖ 6 ε‖ξ‖ for ξ ∈ ω, and ‖[F, HV ]‖ < ε/2+ ‖[E, HU ]‖ <
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ε. This completes the proof in the quasi-diagonal case. A similar proof can be
given in the pseudo-diagonal case.

Now we turn to the proof of Theorem 3.1.
Let σ be a completely positive map (or CP map) of A×α R into B(H). Let

(eν) be an approximate identity in A×α R. Then σ(eν) is increasing and bounded
in B(H) and hence converges in the strong operator topology. Denote the limit
by I and remark that I is the supremum of {σ(x) : x ∈ A×α R, 0 6 x 6 1} in
B(H).

More generally we extend σ to a CP map from the multiplier algebra M(A×α

R) into B(H). For x ∈ M(A×α R) one shows that σ(eνx) converges in the weak
operator topology since |〈ξ, σ((eµ − eν)x)η〉| 6 〈ξ, σ(eµ − eν)ξ〉1/2〈η, σ(x∗(eµ −
eν)x)η〉1/2 for µ > ν. We denote the limit by σ(x). It is also the limit of σ(eνxeν)
since σ(eνx(eµ − eν)) converges to zero for all pairs µ, ν with µ > ν as ν → ∞.
Note that σ(λ( f )) for f ∈ L1(R) and σ(λt) for t ∈ R are all well-defined where
λ denotes the unitary group implementing α on A and λ( f ) =

∫
f (t)λtdt ∈

M(A×α R). From the definition we have that σ(1) = I.
We next define the α-spectrum of σ. Set

J = { f ∈ L1(R) : λ( f ) > 0, σ(λ( f )) = 0}.

Then J is a hereditary closed cone in L1(R)+ and the α-spectrum of σ, denoted by
Spα(σ), is defined by

⋂{Ker f̂ : f ∈ J}. When Spα(σ) is compact and f ∈ L1(R)+
satisfies f̂ = 1 on Spα(σ) then it follows that σ(λ( f )) = σ(1).

Let D denote the set of ξ ∈ H such that σ(λt − 1)ξ/it converges strongly
as t → 0. If D is a dense linear subspace then the operator H′ defined on D as
the limit of σ(λt − 1)/it is symmetric. If the closure of H′, which we will denote
by σ(H), is self-adjoint we will say that σ is α-differentiable. If Spα(σ) is compact
then σ is α-differentiable and σ(H) is bounded (because if f ∈ L1(R) satisfies
f̂ = 1 on Spα(σ) and supp( f̂ ) is compact then it follows that σ(λt) = σ(λ( f )λt)
and t 7→ λ( f )λt is differentiable in t). If σ is a homomorphism then t 7→ σ(λt) is
a unitary flow and thus σ is α-differentiable.

From now on we always assume that the C∗-algebra A is separable.

DEFINITION 3.2. Let σ : A ×α R → B(H) and σ′ : A ×α R → B(H′) be α-
differentiable CP maps. For two bounded (or unbounded self-adjoint) operators
T and T′ (with a common domain) we write T ∼ T′ if the difference T − T′ is (or
extends to) a compact operator.

We write σ ∼ σ′ if there is a unitary V : H → H′ such that σ(x) ∼ V∗σ′(x)V
for x ∈ A ∪ A ×α R and σ(H) ∼ V∗σ′(H)V and σ . σ′ if there is an isometry
W : H → H′ such that σ(x) ∼ W∗σ′(x)W for x ∈ A ∪ A ×α R and σ(H) ∼
W∗σ′(H)W where W∗D(σ′(H)) = D(σ(H)) and WW∗D(σ′(H)) ⊂ D(σ′(H)).

We write σ ≈ σ′ if there is a sequence of unitaries Vn : H → H′ such that
the Vn satisfy the above conditions for V and ‖σ(x)− V∗n σ′(x)Vn‖ → 0 for x ∈



376 AKITAKA KISHIMOTO AND DEREK W. ROBINSON

A ∪ A ×α R and ‖σ(H) − V∗n σ′(H)Vn‖ → 0, and σ / σ′ if there is a sequence
of isometries Wn : H → H′ such that the Wn satisfy the above conditions for
W, WnW∗n → 0, ‖σ(x) −W∗n σ′(x)Wn‖ → 0 for x ∈ A ∪ A ×α R and ‖σ(H) −
W∗n σ′(H)Wn‖ → 0.

Note that / is transitive: if σ / σ′ and σ′ / σ′′ then σ / σ′′ as easily follows.
We are now able to state the following version of the Theorem 3.1.

THEOREM 3.3. Let (π, U) be a covariant representation of (A, α) on a separable
Hilbert space such that the range of π×U does not contain a non-zero compact operator.
If ρ is an α-differentiable CP map of A ×α R into B(Hρ) such that Qρ is a homomor-
phism with Ker(Qρ) ⊂ Ker(π × U), where Q is the quotient map of B(Hρ) onto
B(Hρ)/K(Hρ), then π ×U / ρ.

The following lemma is an adaptation of 3.5.5 of [12].

LEMMA 3.4. Let σ be a homomorphism of A×α R into B(H) where H is a sep-
arable Hilbert space. Then there exists a sequence of CP maps σn : A×α R → B(Hn)

such that Spα(σn) is compact, dimHn is finite, σn(1) = 1 and σ /
∞⊕

n=1
σn.

Proof. Let P be the spectral measure of the generator σ(H) of t 7→ σ(λt).
On each spectral subspace P(n, n + 1]H we find a compact operator Kn such
that H′n = σ(H)P(n, n + 1] + Kn is diagonal with eigenvalues in (n, n + 1] and
‖Kn‖ < 1/(|n| + 1). Then H′ = ∑

n
H′n is diagonal and is given by σ(H) + K

where K = ∑
n

Kn is compact. Let (En) be an approximate unit forK(H) consisting

of projections such that [En, H′] = 0. Note that each En commutes with P(k, k+ 1],
is dominated by P[−m, m] for some m and satisfies ‖[En, H]‖ = ‖[En, K]‖ → 0 as
n → ∞. In the convex hull of (En) there is an approximate unit (Fn) for K(H)
such that (Fn) satisfies ‖[Fn, σ(x)]‖ → 0 for x ∈ A ∪ A ×α R in addition to the
conditions on H. Note that Fn is of finite rank.

Let (Fk) be an increasing sequence of finite subsets of A∪ A×α R such that⋃
k
Fk is dense in A∪ A×α R and ε > 0. By assuming ‖[Fn, σ(x)]‖ and ‖[Fn, σ(H)]‖

are sufficiently small we may suppose that Dn = (Fn − Fn−1)
1/2 with F0 = 0

satisfies

‖Dnσ(x)− σ(x)Dn‖ < ε2−n, x ∈ Fn, and ‖Dnσ(H)− σ(H)Dn‖ < ε2−n.

The former follows from ‖[Fn − Fn−1, σ(x)]‖ ≈ 0 as Dn is just a continuous func-
tion of Fn − Fn−1 which can be approximated by polynomials. For the latter,
where σ(H) is unbounded in general, we use the fact that both Dn and σ(H)
commute with P(k, k + 1]. Thus we have

[Dn, σ(H)] = ∑
k
[DnP(k, k + 1], (σ(H)− k)P(k, k + 1]],
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where each commutator is between elements of norm one or less. Since DnP(k, k+
1] = (FnP(k, k + 1]− Fn−1P(k, k + 1])1/2 the latter inequality then follows just as
the former.

Introduce the finite-dimensional subspace Hn of H by Hn = DnH. Let
H′ = ⊕

n
Hn and define a linear map V from H into H′ by Vξ =

⊕
n

Dnξ. This

is an isometry since ∑
n

D2
n = 1. Let Qn be the projection onto Hn in H and

let σn(x) = Qnσ(x)Qn for x ∈ A ×α R. Since Hn is finite-dimensional and
Dn = DnP[−m, m] for some m one has σn(1) = 1 and Spα(σn) is compact with
σn(H) = Qnσ(H)Qn = Qnσ(H)P[−m, m]Qn. Define σ′ =

⊕
n

σn. Then σ′(H) is

well-defined and is equal to
⊕
n

σn(H).

We will show that VD(σ(H)) ⊂ D(σ′(H)) and D(σ(H)) ⊃ V∗D(σ′(H)). If
ξ ∈ D(σ(H)) then

∑
n
‖σn(H)Dnξ‖2 6 ∑

n
‖[σn(H), Dn]ξ + Dnσ(H)ξ‖2

6 2 ∑
n
‖[σ(H), Dn]ξ‖2 + 2‖σ(H)ξ‖2,

which implies that Vξ ∈ D(σ′(H)). If η ∈ D(σ′(H)) and PN denotes the projec-
tion onto the first N direct summands inH′ then

‖σ(H)V∗PNη‖=
∥∥∥ N

∑
n=1

[σn(H), Dn]ηn + Dnσn(H)ηn

∥∥∥
6
∥∥∥ N

∑
n=1

[σn(H), Dn]ηn

∥∥∥+∥∥∥ N

∑
n=1

Dnσn(H)ηn

∥∥∥6 ε‖η‖+‖V∗PNσ′(H)η‖,

where we have used ‖[σ(H), Dn]‖ < ε2−n. From this kind of computation we can
conclude that (σ(H)V∗PNη)N is a Cauchy sequence and so V∗η ∈ D(σ(H)).

From the two inequalities above it follows that D(σ(H)) = V∗D(σ′(H))
and VD(σ(H)) = VV∗D(σ′(H)) ⊂ D(σ′(H)). Thus D(Vσ(H)) = D(σ(H)) and
D(σ′(H)V) = V∗D(σ′(H)) are equal and on this common domain

Vσ(H)ξ − σ′(H)Vξ = (Dnσ(H)ξ − σ(H)Dnξ)n.

Since ‖[Dn, σ(H)]‖ < ε2−n, the closure of Vσ(H)− σ′(H)V onD(σ(H)) is a com-
pact operator with norm less than ε. Since the closure of Vσ(H)V∗ − σ′(H)VV∗

on D(σ′(H)) is compact it follows that the closure of Vσ(H)V∗ − VV∗σ′(H) on
D(σ′(H)) is also compact. Thus we can conclude that the closure of σ′(H)VV∗ −
VV∗σ′(H) onD(σ′(H)) is compact. In the same way one concludes that Vσ(x)−
σ′(x)V is a compact operator for x ∈ ⋃Fk and so for all x ∈ A and all x ∈ A×α R.
Note that ‖Vσ(x)− σ′(x)V‖ < ε for x ∈ F1. This concludes the proof of σ . σ′ =⊕
n

σn.

It also follows from the foregoing construction of σ′ and V that one has
bounds ‖Vσ(H) − σ′(H)V‖ < ε and ‖Vσ(x) − σ′(x)V‖ < ε for x ∈ F1 where
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F1 is a prescribed finite subset of A ∪ A×α R. One can then obtain a sequence of
such (σ′k, Vk) such that ‖Vkσ(H)− σ′k(H)Vk‖ → 0 and ‖Vkσ(x)− σ′k(x)Vk‖ → 0
for all x ∈ A ∪ A×α R. Since the direct sum

⊕
σ′k is of the form

⊕
σn described

in the statement this concludes the proof.

LEMMA 3.5. Let ρ be a homomorphism of A×α R into B(H) such that Ran(ρ)∩
K(H) = {0} and let σ be a CP map of A×α R into B(Cn) such that σ(1) = 1, Spα(σ)
is compact, and ker σ ⊃ ker ρ. Then it follows that σ / ρ.

More generally let ρ be an α-differentiable CP map of A×α R into B(H) such that
Qρ is a homomorphism satifying Ker(σ) ⊃ Ker(Qρ) where Q is the quotient map from
B(H) onto B(H)/K(H). Then the same conclusion follows.

Proof. We may assume that A is unital. There is a C∞-function f ∈ L1(R)
such that the support of f̂ is compact, 0 6 λ( f ) 6 1 and f̂ = 1 on Spα(σ).
Then it follows that σ(λ( f )) = 1. We denote by ρn the representation id⊗ ρ of
Mn(A×α R) onHn = Cn ⊗H. We define a state φ on Mn(A×α R) by

φ([xij]) =
1
n

n

∑
i,j=1
〈ξi, σ(xij)ξ j〉,

where (ξi) is the standard orthonormal basis for Cn. Since

φ|Ker(σn)
= 0, Ker(ρn) ⊂ Ker(σn), φ(σn(1⊗ λ( f ))) = 1

and Ran(ρn) ∩ K(Cn ⊗H) = {0} there is a sequence (ηk) of vectors in Cn ⊗H
such that 〈ηk, ρn(x)ηk〉 → φ(x) for x ∈ Mn(A×α R), 〈ηk, ρn(1⊗ λ( f ))ηk〉 = 1 and
ηk converges to zero weakly. Since φ(eij ⊗ λ( f )) = δij/n we may assume

〈ηk, ρn(eij ⊗ λ( f ))ηk〉 =
δij

n
.

If ηk = (ηk1, . . . , ηkn) ∈ Cn ⊗H ∼= H⊕H⊕ · · · ⊕ H then we define an isometry
Vk : Cn → H by Vkξi =

√
nηki. Then one can conclude that ‖σ(x)−V∗k ρ(x)Vk‖ →

0 for x ∈ A×α R. (See the proof of 3.6.7 of [12] for details.) Since ρ(λ( f ))Vk = Vk,
σ(H) = iλ( f ′) and ρ(Hλ( f )) = iρ(λ( f ′)) it also follows that

‖σ(x)−Vkρ(x)Vk‖ → 0, x ∈ A

and ‖σ(H)−Vkρ(H)Vk‖ → 0.
The condition required for the existence of the foregoing (ηk) is precisely

the content of the additional statement. Let B be the C∗-algebra generated by the
range of ρ and the compact operators. Then σQ is a CP map of B into B(Cn)
vanishing on K(H). Then the above arguments show that σQ / idB for maps
from B. Composing with the homomorphism ρ of A into B one arrives at the
conclusion.

The following is an adaptation of 3.5.2 of [12].
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LEMMA 3.6. Let ρ be an α-differentiable CP map of A×α R into B(H) such that
Qρ is a homomorphism where Q is the quotient map of B(H) onto B(H)/K(H). Let
σn : A×α R → B(Hn) be a sequence of CP maps such that dimHn < ∞, σn(1) = 1
and Spα(σn) is compact. If σn / ρ for all n then σ ≡ ⊕

n
σn / ρ.

Proof. For each n there is a C∞-function fn ∈ L1(R) such that the support
of f̂ is compact, 0 6 λ( fn) 6 1 and f̂n = 1 on Spα(σn). By σn(λ( fn)) = 1
and the assumption σn / ρ there is a sequence (Vk) of isometries of Hn into
H such that ρ(λ( fn))Vk = Vk, Vkη converges to zero weakly for η ∈ Hn and
‖σn(x)−V∗k ρ(x)Vk‖ → 0 for x ∈ A ∪ A×α R and x = H.

Let (Fn) be an increasing sequence of finite subsets of A ∪ A ×α R such
that

⋃
n
Fn is dense in A ∪ A ×α R and let ε > 0. We construct inductively a

sequence Vn : Hn → H of isometries such that ρ(λ( fn))Vn = Vn, ‖σn(H) −
V∗n ρ(H)Vn‖ < ε2−n and ‖σn(x)− V∗n ρ(x)Vn‖ < ε2−n for all x ∈ Fn, and more-
over VnHn with n > 1 is orthogonal to the finite-dimensional subspace spanned
by Vmξ, ρ(H)Vmξ, ρ(x)Vmξ, ρ(x∗)Vmξ with ξ ∈ Hm, x ∈ Fn and m < n. (This last
condition may require a slight modification of Vn, retaining ρ(λ( fn))Vn = Vn,
which will not affect the condition ‖σn(H)−V∗n ρ(H)Vn‖ < ε2−n since ρ(H) may
be replaced by bounded ρ(H)ρ(λ( fn)).) We define V =

⊕
n

Vn, which is an isom-

etry from
⊕
n
Hn intoH. Since for x ∈ Fm

V∗ρ(x)V = (V∗i ρ(x)Vj)i,j<m ⊕
⊕
n>m

Vnρ(x)Vn,

one has

σ(x)−V∗ρ(x)V = (σi(x)δij −V∗i ρ(x)Vj)i,j<m ⊕
⊕
n>m

(σn(x)−V∗n ρ(x)Vn),

where if m = 1 we ignore the first direct summand, otherwise it is an operator
on

⊕
i<m
Hi, which is finite-dimensional. Then one concludes that the displayed

operator is compact and that ‖σ(x) − V∗ρ(x)V‖ < ε for x ∈ F1. Similarly one
has

σ(H)−V∗ρ(H)V =
⊕

n
(σn(H)−V∗n ρ(H)Vn),

which is compact with norm less than ε.

Proof of Theorem 3.3. Let (π, U) be a covariant representation of (A, α) and
ρ an α-differentiable CP map of A×α R into B(Hρ) as in the theorem. We may
assume that A is unital.

Let σ = π ×U. By Lemma 3.4 we find a sequence σn : A×α R → B(Hn) of
CP maps such that dimHn < ∞, σn(1) = 1, Spα(σn) is compact and σ /

⊕
n

σn.

Since Ker(σn) ⊃ Ker(σ) ⊃ Ker(ρ) Lemma 3.5 shows that σn / ρ. Since
⊕
n

σn / ρ

by Lemma 3.6 one concludes that σ / ρ.
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Proof of Theorem 3.1. The first part of the theorem is a special case of Theo-
rem 3.3.

Let π = π × U and ρ = ρ × V and suppose that Ker(ρ) = Ker(π). Let
ρ∞ denote the direct sum of infinite copies of ρ. Then applying the first part of
the theorem to ρ∞ and π we deduce that ρ∞ can be approximated by a direct
summand π1 of π through a unitary. Here π1 is obtained as Pπ( · )P where P is a
projection such that PD(π(H)) ⊂ D(π(H)) and ‖[P, π(H)]‖ is small depending
on the approximation. Thus π1 is an α-differentiable unital CP map and this
situation will simply be written as ρ∞ ∼ π1. Writing π2 = (1 − P)π( · )(1 −
P) one obtains that π ∼ π1 ⊕ π2 and that ρ∞ ⊕ π2 ∼ π. Since ρ ⊕ ρ∞ ∼ ρ∞,
one calculates that ρ ⊕ π ∼ ρ ⊕ ρ∞ ⊕ π2 ∼ ρ∞ ⊕ π2 ∼ π. By changing the
roles of ρ and π we conclude that ρ ∼ π. Since this is true for any degree of
approximation one obtains the conclusion (see the arguments on page 340 of [1]
for more details).

4. ABSTRACT CHARACTERIZATIONS

Voiculescu [24] gave conditions for C∗-algebras to be quasi-diagonal. By
mimicking his proof we shall establish Theorems 1.5 and 1.6.

Proof of Theorem 1.5. (i)⇒ (ii). Suppose α is quasi-diagonal. Then there is a
faithful representation π of A and a unitary flow U onHπ such that (π(A), U) is
quasi-diagonal. For any finite subset F of A and ε > 0 there is a finite subset ω of
unit vectors in Hπ such that max{|〈ξ, π(x)η〉| : ξ, η ∈ ω} > (1− ε/3)‖x‖ for all
x ∈ F . Then there is a finite-rank projection E onHπ such that ‖[E, π(x)]‖ 6 ε‖x‖
for x ∈ F , ‖(1− E)ξ‖ 6 ε/3 for ξ ∈ ω and ‖[E, H]‖ < ε, where H is the self-
adjoint generator of U. Set B = B(EHπ), βt = Ad eitEHE and φ(x) = Eπ(x)E for
x ∈ A. Then it follows that ‖φ(x)‖ > (1− ε)‖x‖ for x ∈ F , ‖φ(x)φ(y)−φ(xy)‖ 6
ε‖x‖‖y‖ for x, y ∈ F and ‖βtφ − φαt‖ < ε for t ∈ [−1, 1]. The triple B, β, φ
satisfies the required conditions.

(ii)⇒ (iii). LetF be a finite subset of A and ε > 0. Suppose there is a CP map
φ of A into a finite-dimensional C∗-algebra B with a flow β such that ‖φ‖ 6 1,
‖φ(x)‖ > (1− ε)‖x‖ and ‖φ(xy)− φ(x)φ(y)‖ 6 ε‖x‖‖y‖ for x, y ∈ F ∪ F ∗ and
‖βtφ − φαt‖ < ε for t ∈ [−1, 1]. We may assume that φ is unital. (If A is not
unital, we may assume this by extending φ as such; if A is unital we modify φ
using the fact that φ(1) is close to a projection.) By Stinespring’s theorem there is
a representation π of A and a finite-rank projection E onHπ such that φ identifies
with Eπ( · )E. It follows that

‖φ(x∗x)− φ(x∗)φ(x)‖ = ‖Eπ(x∗)(1− E)φ(x)E‖ = ‖(1− E)π(x)E‖2.

Since ‖[E, π(x)]‖ = max{‖Eπ(x)(1− E)‖, Eπ(x∗)(1− E)‖}we obtain (iii) except
for the condition concerned with the flow.
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To prove (iii) fully we have to modify φ and go back to the proof of Stine-
spring’s theorem. For a small γ > 0 we replace φ by

ϕ =
γ

2

∞∫
−∞

e−γ|t|β−tφαtdt.

Then ϕ(1) = 1, β−t ϕαt 6 eγ|t|ϕ and ‖βt ϕ − ϕαt‖ < ε for t ∈ [−1, 1]. (This
method is used in [18].) Noting that ‖β−tφαt−φ‖ < ε(1+ |t|) we have ‖ϕ−φ‖ <
ε(1 + 1/γ), which is an arbitrarily small constant if ε is chosen after γ. Hence we
may assume that φ satisfies β−tφαt 6 eε|t|φ in addition to the conditions in (ii).

The above representation π is constructed as follows. Assuming B acts on
a finite-dimensional Hilbert spaceH we define an inner product on the algebraic
tensor product A⊗H by〈

∑
i

xi ⊗ ξi, ∑
j

yj ⊗ ηj

〉
= ∑

i,j
〈ξi, φ(x∗i yj)ηj〉.

We obtain a Hilbert space Hπ by the standard process of dividing A⊗H out by
the null space followed by completion and then a representation π of A on Hπ

from the multiplication of A on A, the first factor of A⊗H. Using a flow V onH
such that βt(x) = VtxV∗t for x ∈ B we define a one-parameter group of operators
Wt onHπ by

Wt ∑
i

xi ⊗ ξi = ∑
i

αt(xi)⊗Vtξi.

Since ∥∥∥Wt ∑
i

xi ⊗ ξi

∥∥∥2
= ∑

i,j
〈ξi, β−tφαt(x∗i yj)ηj〉,

the group W is well-defined and we obtain estimates e−εt1 6 W∗t Wt 6 eεt1. De-
noting the generator of W by iK one concludes that D(K∗) = D(K) and −ε 6
−iK∗ + iK 6 ε1. Then the closure k of K − K∗ has norm less than or equal
to ε. Since Wtπ(x)W−t = παt(x) we conclude that W∗t Wt ∈ π(A)′ and so
k ∈ π(A)′. Set Ut = eit(K−k/2) for t ∈ R. The U is a unitary flow such that
Utπ(x)U∗t = παt(x) for x ∈ A.

We denote by H′ the subspace of Hπ generated by 1⊗ ξ with ξ ∈ H. Let
E denote the projection onto H′. Then it follows that φ(x) = Eπ(x)E for x ∈ A.
Since WtEW−t∗ = E one obtains ‖UtEU∗t − E‖ 6 ‖k‖|t|. Thus condition (iii)
follows.

(iii)⇒ (i). We prove this by following the argument given in [24]. We may
suppose that A is separable.

Let (Fn) be an increasing sequence of finite subsets of A with dense union.
For (Fn, n−1) we choose a covariant representation (πn, Un) and a finite-rank
projection En on the representation space Hn satisfying the conditions described

in (iii). Let H =
∞⊕

n=1
Hn, π =

∞⊕
n=1

πn, U =
∞⊕

n=1
Un and E =

∞⊕
n=1

En. For each
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k ∈ N let P′k denote the projection in H onto the first k direct summands and let
Pk = (1− P′k)E = E(1− P′k). If πn(H) (respectively π(H)) denotes the self-adjoint

generator of Un (respectively U) then π(H) =
∞⊕

n=1
πn(H). Since ‖[En, πn(x)]‖ 6

n−1‖x‖ for x ∈ Fn and ‖[En, πn(H)]‖ < n−1 one has [Pk, π(x)] ∈ K for x ∈ A
and [Pk, π(H)] ∈ K where K denotes the compact operators on H. If we de-
note by π ×U the covariant representation of A×α R, then it follows that σk =
Pk(π ×U)Pk is an α-differentiable CP map of A×α R into B(PkH) such that the
composition Q ◦ σk is an isomorphism and

σk(H) = (1− P′k) ·
∞⊕

n=1

Enπn(H)En · (1− P′k),

where Q is the quotient map of B(PkH) into B(PkH)/K.
Let (ρ, V) be a covariant representation on a separable Hilbert space X such

that ρ × V is faithful and Ran(ρ × V) ∩ K = {0}. We set X∞ = X ⊕ X ⊕ · · · ,
ρ∞ = ρ ⊕ ρ ⊕ · · · , and V∞ = V ⊕ V ⊕ · · · . Let Gk denote the projection onto
the direct sum of the first k copies of X in X∞. We will show that (ρ∞, V∞) is
quasi-diagonal as required in (i).

Fix k ∈ N. By Theorem 3.3 applied to (ρ∞, V∞)|GkX∞ and σn = Pn(π×U)Pn
we find partial isometries Sn : X∞ → H such that S∗nSn = Gk, Ran(Sn) ⊂ PnH and
‖Snρ∞(x)− π(x)Sn‖ → 0 for x ∈ A and ‖Snρ∞(H)− π(H)Sn‖ → 0. Similarly
from the pair of (π, U) and (ρ, V) we also find isometries Tn : H → X such that
‖Tnπ(x)− ρ(x)Tn‖ → 0 for x ∈ A and ‖Tnπ(H)− ρ(H)Tn‖ → 0. We define an
isometry Wn ofH into X∞ by

Wnξ = S∗nξ ⊕ Tn(1− SnS∗n)ξ ⊕ 0⊕ 0⊕ · · · ,

which satisfies that GkX∞ ⊂WnH ⊂ Gk+1X∞ and ‖Wnπ(x)− ρ∞(x)Wn‖ → 0 for
x ∈ A and ‖Wnπ(H)− ρ∞(H)Wn‖ → 0 as n→ ∞. We note that Gk = WnPnW∗n .

Now Fm = P′mE is a finite-rank projection such that [Fm, Pn] = 0 and FmPn =
(P′m − P′n)E → Pn as m → ∞. Thus choosing mn > n for each n sufficiently
large we may suppose that WnFmn PnW∗n ξ → ξ for each ξ ∈ GkX∞. Since Fmn Pn
commutes with the range of σn, WnFmn PnW∗n will serve as the required finite-rank
projection on X∞ for a large n.

Proof of Theorem 1.6. (i)⇒ (ii). This is easy.
(ii)⇒ (iii). Given (F , ε) let G = {x, x∗, xy : x, y ∈ F}. By condition (ii) there

is a flow β on a finite-dimensional C∗-subalgebra B and a CP map φ of A into B
such that ‖φ‖ 6 1, ‖φ(x)‖ > (1 − ε)‖x‖ and ‖φ(x)φ(y) − φ(xy)‖ 6 ε‖x‖‖y‖
for x, y ∈ G, and ‖βtφ(x)− φαt(x)‖ 6 ε‖x‖ for x ∈ G and t ∈ [−1, 1]. We may
assume that A and φ are unital. For γ = − log ε > 0 we replace φ by

ϕ =
γ

2

∞∫
−∞

e−γ|t|β−tφαtdt.
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Since ‖ϕ(x) − φ(x)‖ 6 (ε + e−γ)‖x‖ = 2ε‖x‖ for x ∈ G, we may suppose,
starting with ε/7 instead of ε, that φ satisfies the above properties as well as
the covariance βtφαt 6 eγ|t|φ for γ ≈ − log ε. We suppose that B acts on a
finite-dimensional Hilbert space H and choose a unitary flow V on H such that
βt = Ad Vt|B. Then, by Stinespring’s construction for φ as in the proof of Theo-
rem 1.5, we obtain a representation π of A, a (non-unitary) flow W and a finite-
rank projection E such that φ(x) = Eπ(x)E for x ∈ A, under the identification of
EH with H, Wtπ(x)W−t = παt(x) for x ∈ A and WtE = EWtE = VtE. By a per-
turbation of W we obtain a unitary flow U such that παt(x) = Ad Utπ(x), x ∈ A.
Then we conclude that (π, U, E, V) satisfies the required properties.

(iii)⇒ (i). The proof is similar to the proof of the corresponding implication
in Theorem 1.5.
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ADDED IN PROOFS. The two notions, quasi-diagonality and pseudo-diagonality, for
flows on C∗-algebras are in fact equivalent, which will be shown in a forthcoming paper.


