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ABSTRACT. We investigate the structure of the Markov states on general
Fermi algebras. The situation treated in the present paper covers, beyond the
d-Markov states on the CAR algebra on Z (i.e. when there are d Fermionic an-
nihilators and creators on each site), also the nonhomogeneous case (i.e. when
the numbers of generators depends on the localization). The present analysis
provides the first necessary step for the study of the general properties, and
the construction of nontrivial examples of Fermi–Markov states on Zν, that is
the Fermi–Markov fields. Natural connections with the KMS boundary con-
dition and entropy of Fermi–Markov states are studied in detail. Apart from
a class of Markov states quite similar to those arising in the tensor product
algebras (called "strongly even" in the sequel), other interesting examples of
Fermi–Markov states naturally appear. Contrarily to the strongly even ex-
amples, the latter are highly entangled and it is expected that they describe
interactions which are not "commuting nearest neighbor". Therefore, the non-
strongly even Markov states, in addition to the natural applications to quan-
tum statistical mechanics, might be of interest for the quantum information
theory as well.
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1. INTRODUCTION

The quantum analogues of Markov processes were first constructed in [1],
where the notion of quantum Markov chain on infinite tensor product algebras
was introduced.

Nowadays, the quantum Markov chains have become a standard computa-
tional tool in solid state physics, and several natural applications have emerged
in quantum statistical mechanics and quantum information theory. On the other
hand, the introduction in [8], [9], [10] of the notion of “product state” on CAR
algebras motivated the analogue construction in [6] of quantum Markov chains
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on these algebras as local perturbation of product states. The Fermi extension of
product and Markov states is nontrivial because, even if the Fermi algebra is iso-
morphic to an infinite tensor products of matrix algebras, this embedding does
not preserve the natural localization which plays an essential role in the very
definition of these states. Product states describe non interacting (free or inde-
pendent) systems. Markov states describe nearest neighbor interactions. In both
cases the notion of "localization" plays a crucial role. Typically a discrete system
is identified to a point in a graph. If this graph is not isomorphic to an interval
in Z (1-dimensional case), one speaks of a random field. The crucial role of the
localization is at the root of the difficulties to construct nontrivial examples of
Markov fields. As the “interacting degrees of freedom” localized in a finite vol-
ume, increase with the volume, the first step to achieve this result is to investigate
the nonhomogeneous 1-dimensional case, one of the goals of the present paper.
Our second goal has to do with the most important difference between tensor
and Fermi–Markov chains, emerged from the analysis of [6], which in its turn
is related to the difference between quantum Markov chains and quantum Markov
states. The origin of this difference lies in the fact that, in the classical case, the
simple structure of Markov states is equivalent to a single intrinsic condition: the
Markov property. In the quantum case, while the Markov property can be formu-
lated in terms of a localization property of the modular group of the state (see [4],
[7]), there is a class of states which have a Markov like local structure but do not
necessarily enjoy the Markov property. These states are called quantum Markov
chains (see e.g. [6], Definition 2.2). This phenomenon is related to the fact that
the natural probabilistic extension of the notion of conditional expectation to the
quantum case in general is not a projection (cf. [2]). On the other hand, the re-
sults of [14] show that some of the most interesting physical applications involve
precisely those Markov chains which are not Markov states. Such Markov chains
can be explicitly constructed, but at the moment no intrinsic operator theoretic
characterization is known. This distinction also appears in the Fermi case. How-
ever, the new phenomenon consists in the fact that, while in the tensor case all
Markov states are convex combinations of states which are product states with
respect to a new localization canonically associated to the original one (two block
factors), this is not true in the Fermi case. The Fermi analogue of the convex com-
bination of two block factors still appear. The last are called in the sequel strongly
even Markov states. In addition, there is a completely new class of Fermi–Markov
states. This new class of non-strongly even Markov states that appears in the
classification theorem below (cf. Theorem 3.2) is likely to play in the Fermi case,
the role played by the entangled states in the tensor product case.

One can define the notion of Fermi entanglement in analogy to the tensor
product case. One can expect that the main problem of the entanglement theory,
that is to find constructive and easily applicable criteria to discriminate entangled
from non entangled states, will be in the Fermi case at least as difficult as in the
tensor case. The first step to attack this problem is to have a full and detailed
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description of this new class of states. In the paper [6] only the simplest case was
considered, that is when there is only one creator and annihilator in each site. The
nonhomogeneous case, discussed in the present paper, includes as a particular
case the translation invariant cases described in [6] and its natural translation
invariant generalization when there are d creators and annihilators localized in
each site. This leads to a much larger class of non-strongly even Markov states,
which can be completely described.

In the present paper, the program outlined below is carried out in the fol-
lowing steps. Section 2 contains the key result on the structure of the even tran-
sition expectations associated to Fermi–Markov states (Proposition 2.7). It is then
possible to provide the full classification of all even Markov quasiconditional ex-
pectations. Section 3 is devoted to the study of the most general situation, in-
cluding also the non homogeneous Fermi–Markov states. Even if the structure of
the Markov states considered here is more complex than the one in [3], [6], we
are still able to provide their decomposition as direct integrals of minimal ones
(Theorem 3.2). Furthermore, the minimal Markov states are the building–blocks
for the construction of all the Fermi–Markov states (Theorem 3.3). Section 4 deals
with some general properties of the Markov states, such as the connection with
the KMS boundary condition, and the entropy. Section 5 is devoted to the study
of the detailed structure of the strongly even Markov states. They can be viewed
as the Fermi analogue of the Ising type interactions. We show that a strongly even
Markov state ϕ on the Fermi algebra arises by a lifting of a classical Markov pro-
cess on the spectrum of a maximal Abelian subalgebra, with respect to the same
localization as ϕ. In addition, we establish the equality between the Connes–
Narnhofer–Thirring dynamical entropy hϕ(α) with respect to the shift and the
mean entropy s(ϕ). Section 6 provides the full list of translation invariant Fermi–
Markov states for low dimensional single site local algebras. The same method is
applicable to higher dimensions. Finally, by using Moriya criterion, we show (cf.
Proposition 6.1) that the Fermi–Markov states which are not strongly even are in-
deed entangled, that is they provide a wide class of examples of entangled states
on the CAR algebra which can be directly constructed and investigated in detail.

2. PRELIMINARIES

For the convenience of the reader, we collect some preliminary facts needed
in the sequel.

2.1. UMEGAKI CONDITIONAL EXPECTATIONS. By a (Umegaki) conditional expec-
tation E : A → B ⊂ A we mean a norm one projection of the C∗-algebra A onto
the C∗-subalgebra (with the same identity 1I) B. The case of interest for us is when
A is a full matrix algebra. Consider a set {Pi} of central orthogonal projections of
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the range B of E, summing up to the identity. We have

(2.1) E(x) = ∑
i

E(PixPi)Pi .

Then E is uniquely determined by its values on the reduced algebras APi := PiAPi.
When the above set {Pi} consists of minimal projections, we get APi = Ni ⊗ Ni,
and there exist states φi on Ni such that

(2.2) E(Pi(a⊗ a)Pi) = φi(a)Pi(a⊗ 1I)Pi .

The reader is referred to [17] for further details.

2.2. QUASICONDITIONAL EXPECTATIONS. Consider a triplet C ⊂ B ⊂ A of unital
C∗-algebras. A quasiconditional expectation with respect to the given triplet, is a
completely positive, identity preserving linear map E : A→ B such that

E(ca) = cE(a) , a ∈ A , c ∈ C .

Notice that, as the quasiconditional expectation E is a real map, we have

E(ac) = E(a)c , a ∈ A , c ∈ C .

If ϕ is a normal faithful state on the W∗-algebra A, the ϕ-expectation Eϕ : A →
B by Accardi and Cecchini preserving the restriction of ϕ to the W∗-subalgebra
B, provides an example of quasiconditional expectation. Namely, it is enough
to choose for C any unital C∗-subalgebra of B contained in the Eϕ-fixed point
algebra. Eϕ is a conditional expectation if and only if the modular group of ϕ
leaves globally stable the subalgebra B, see [2].

2.3. THE CAR ALGEBRA. Denote [a, b] := ab− ba, {a, b} := ab + ba the commu-
tator and anticommutator between elements a, b of an algebra, respectively.

Let J be a set. The Canonical Anticommutation Relations (CAR for short) alge-
bra over J is the C∗-algebra AJ with the identity 1I generated by the set {aj, a†

j }j∈I ,
and the relations

(aj)
∗ = a†

j , {a†
j , ak} = δjk1I , {aj, ak} = {a†

j , a†
k} = 0 , j, k ∈ J .

When there is no matter of confusion, we denote AJ simply as A. The parity
automorphism Θ, of A acts on the generators as

Θ(aj) = −aj , Θ(a†
j ) = −a†

j , j ∈ J ,

and induces on A the Z2-grading A = A+ ⊕A− where

A+ := {a ∈ A : Θ(a) = a} , A− := {a ∈ A : Θ(a) = −a} .

Elements in A+ (respectively A−) are called even (respectively odd).
A map T : A1 → A2 between the Z2-graded algebras A1, A2 with Z2-

gradings Θ1, Θ2 is said to be even if it is grading-equivariant:

T ◦Θ1 = Θ2 ◦ T .
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The previous definition applied to states ϕ ∈ S(A) leads to ϕ ◦Θ = ϕ, that is ϕ is
even if it is Θ-invariant.

When the index set J is countable, the CAR algebra is isomorphic to the
C∗-infinite tensor product of J-copies of M2(C):

(2.3) AJ ∼
⊗

J
M2(C)

C∗
.

For the convenience of the reader, we report the Jordan–Klein–Wigner trans-
formation establishing the mentioned isomorphism. Fix any enumeration j =

1, 2, . . . of the set J. Let Uj := aja†
j − a†

j aj, j = 1, 2, . . . . Put V0 := 1I, Vj :=
j

∏
n=1

Un,

and denote

e11(j) := aja†
j , e12(j) := Vj−1aj ,

e21(j) := Vj−1a†
j , e22(j) := a†

j aj .(2.4)

{ekl(j) : k, l = 1, 2}j∈I provides a system of commuting 2× 2 matrix units realiz-
ing the mentioned isomorphism.

The CAR algebra AJ has a unique tracial state τ as the extension of the
unique tracial state on AI , |I| < +∞. Let J1 ⊂ J be a finite set and ϕ ∈ S(A).
Then there exists a unique positive element T such that ϕdAJ1

= τdAJ1
( · T). The

element T is called the adjusted matrix of ϕdAJ1
. (For the standard applications to

quantum statistical mechanics, we also use the density matrix with respect to the
unnormalized trace, see Section 5.) The state ϕdAJ1

is even (faithful) if and only if
its adjusted matrix is even (invertible). The reader is referred to Section XIV.1 of
[23], and [9] for further details.

We end the present subsection by recalling the description of product state
(cf. [9]), and the definition of entanglement (cf. Section 2 of [18]). Let J1, J2 ⊂ I
with J1 ∩ J2 = ∅. Fix ϕ1 ∈ S(AJ1), ϕ2 ∈ S(AJ2). If at least one among them is
even, then according to Theorem 11.2 of [9], the product state extension (called
product state for short) ϕ ∈ S(AJ1∪J2) is uniquely defined. We write with an abuse
of notation, ϕ = ϕ1 ϕ2. Suppose that J1, J2 are finite sets. Let T1 ∈ AJ1 , T2 ∈ AJ2 be
the adjusted densities relative to ϕ1 ∈ S(AJ1), ϕ2 ∈ S(AJ2), respectively. If at least
one among T1 and T2 is even, then [T1, T2] = 0 and T := T1T2 is a well defined
positive element of AJ1∪J2 which is precisely the density matrix of ϕ = ϕ1 ϕ2.
ϕ ∈ S(AJ1∪J2) is even if and only if ϕ1 and ϕ2 are both even.

A state ϕ ∈ S(AJ1∪J2) is called separable (with respect to to the decomposi-
tion AJ1∪J2 = AJ1 ∨AJ2 ) if it is in the closed convex hull of all the product states
over AJ1∪J2 . Otherwise it is called entangled.

2.4. PRELIMINARIES ON FERMI–MARKOV STATES. Let us start as in [3], with a
totally ordered countable set I containing, possibly a smallest element j− and/or
a greatest element j+. If I contains neither j−, nor j+, then I ∼ Z. If only j+ ∈
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I, then I ∼ Z−, and if only j− ∈ I, then I ∼ Z+. Finally, if both j− and j+
belong to I, then I is a finite set and the analysis becomes easier. If I is order
isomorphic to Z, Z− or Z+, we put simbolically j− and/or j+ equal to−∞ and/or
+∞ respectively. In such a way, the objects with indices j− and j+ will be missing
in the computations.

Let Aj be the CAR algebra generated by dj creators and annihilators

{aj,1, a†
j,1, aj,2, a†

j,2, . . . , aj,dj
, a†

j,dj
}

localized on the site j ∈ I. The numbers of the 2dj generators of Aj may depend
on j. We call the following the Fermi algebra:

(2.5) A :=
∨
j∈I

Aj
C∗

.

Let J :=
⋃
j∈I
{1, 2, . . . , dj} be the disjoint union of the sets {1, 2, . . . , dj}, j ∈ I. Then

the Fermi algebra A given in (2.5) is nothing but the CAR algebra over the set J
previously described.

Now we pass to describe the local structure of the Fermi algebra A. For
each Λ ⊂ I, the local algebra AΛ ⊂ A is defined as AΛ :=

∨
j∈Λ

Aj. According to

this notation, A{j} = Aj and AI = A. Then Λ ⊂ I 7→ AΛ ⊂ A describes the local
structure of the Fermi algebra. The C∗-algebra A has the structure of a quasi local
algebra,

⋃{AΛ : Λ ⊂ I , finite} being the set of the localized elements. Particular
subsets of I are

[k, n] := {l ∈ I : k 6 l 6 n} , n] := {l ∈ I : l 6 n} .

We put for Λ ⊂ I, SΛ := SdAΛ
, S being any map defined on A. The reader is

referred to Section 2.6 of [11] and Section 4 of [9], for further details.
A state ϕ ∈ A is said to be locally faithful if ϕΛ is faithful whenever Λ ⊂ I is

finite.
If the number dj of the local generators depends on j we refer to this situa-

tion as the nonhomogeneous case. Conversely, when I = Z and dj = d, j ∈ Z, the
shift j→ j + 1 acts in a natural way as an automorphism α of A. A state ϕ ∈ S(A)
is translation invariant if ϕ ◦ α = ϕ. If a state is translation invariant, then it is
automatically even, see e.g. Example 5.2.21 of [11].

We specialize the definition of Markov states which parallels Definition 4.1
of [6].

DEFINITION 2.1. An even state ϕ on A is called a Markov state if, for each
n < j+, there exists an even quasi conditional expectation En with respect to the
triplet An−1] ⊂ An] ⊂ An+1] satisfying

(2.6) ϕn] ◦ En = ϕn+1] , En(A[n,n+1]) ⊂ A{n} .
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Notice that the local structure Λ 7→ AΛ, Λ finite subset of I, plays a cru-
cial role in defining the Markov property. In fact, the isomorphism in (2.3) does
not preserve neither the grading, nor the natural localization. (The algebra on
the right hande side of (2.3) is naturally equipped with the trivial parity auto-
morphism. Thus, its Z2-grading is trivial.) Hence, it does not intertwine the
corresponding Markov states.

When the numbers dj of the generators of Aj depend of the site, we call a
Markov state ϕ (or equally well a Markov measure in the Abelian case) a non-
homogeneous Markov state. If dj = d for each j we refer to the d-Markov property.
Thus, homogeneity means d-Markov property for some d. For the applications to
quantum statistical mechanics, dj is nothing but the "range of interaction" on the
chain which might depend on the site. When d = 1 we speak of nearest neighbor
interaction. The reader is referred to [3], [4], [20] and the literature cited therein,
for the connection between the Markov property and the statistical mechanics,
and for further details.

Let ϕ ∈ S(A) be a locally faithful Markov state. Then the restriction en :=
EndA[n,n+1]

is a completely positive identity preserving linear map en : A[n,n+1] →
A{n} ⊂ A[n,n+1] leaving invariant the faithful state ϕ[n,n+1]. It is a quite standard
fact (see e.g. [2]) that the ergodic average

εn := lim
k

1
k

k−1

∑
h=0

(en)
h

exists and defines a conditional expectation

εn : A[n,n+1] → R(εn) ⊂ A{n}

projecting onto the fixed point algebra of en, the last coinciding with the range
R(εn) of εn. The sequence {εn}n<j+ of two point conditional expectations is
called in the sequel the sequence of transition expectations associated to the locally
faithful Markov state ϕ. They uniquely determine, and are determined by the
conditional expectations En : An+1] → An], given for x ∈ An−1], y ∈ A[n,n+1] by

(2.7) En(xy) = xεn(y) .

In addition, it is quite standard to verify (cf. Proposition 4.2 of [6]) that we
can freely replace the quasiconditional expectation En in Definition 2.1 with its
ergodic average En. For the convenience of the reader we report Proposition 4.3
of [6].

PROPOSITION 2.2. Let f : A[n,n+1] → R( f ) ⊂ A{n} be an even conditional
expectation. The formula

F (xy) := x f (y) , x ∈ An−1] , y ∈ A[n,n+1]

uniquely defines an even conditional expectation

F : An+1] → An−1] ∨R( f ) ⊂ An] .
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From now on, we deal without further mention with even (quasi) condi-
tional expectations. In addition, all the Markov states we deal with are even and
locally faithful if it is not otherwise specified.

LEMMA 2.3. Let E : A[k,l+1] → R(E) ⊂ A[k,l] be a conditional expectation with
A[k,l−1] ⊂ R(E). Then E is faithful provided that EdA[l,l+1]

is faithful.

Proof. Let ϕ1, ψ be faithful even states on A[k,l−1], A[l,l+1] respectively. The
state ϕ2 := ψ ◦ (EdA[l,l+1]

) on A[l,l+1] is even and faithful. Then the product state
ϕ := ϕ1 ϕ2 is a faithful state on A[k,l+1] left invariant by E . Fix a ∈ A[k,l+1] with
E(a∗a) = 0. Then ϕ(a∗a) = ϕ(E(a∗a)) = 0 which implies that a = 0 as ϕ is
faithful. Namely, E is faithful.

We then pass to study the structure of the even conditional expectations

εn : A[n,n+1] → R(εn) ⊂ A{n} .

To shorten the notations, it is enough to consider the case when n = 0. After
putting ε := ε0, let us start with the finite set {Pj} of the minimal projections of
the centre Z(R(ε)) ofR(ε).

LEMMA 2.4. The parity automorphism Θ acts on Z(R(ε)), and the orbits of min-
imal projections consist of one or two elements.

Proof. Let Pj be a minimal projection of Z(R(ε)). As ε is even and Θ2 = id,
we have that Θ(Pj) is a minimal projection of Z(R(ε)). This means that either
Θ(Pj) = Pj, or Θ(Pj) is orthogonal to Pj. The latter means that the orbit of Θ(Pj)
consists of two elements.

We showed in [6] that there are interesting examples with Θ(Pj) 6= Pj. Let
ε be as above. Some useful properties of the pieces ε(PxP)P, P being an even
projection of the centre ofR(ε), minimal among the invariant ones, are described
below.

LEMMA 2.5. Let M = M+ ⊕M− be a Z2-graded full matrix algebra. If x ∈ M−
commutes with M+, then x = 0.

Proof. Let the Z2-grading be implemented by the automorphism Θ. As Θ
is inner, there exists an even selfadjoint unitary V ∈ M, uniquely determined
up to a sign, implementing Θ on M, see Corollary 8.11 of [22]. This means that
M+ = A′, A being the Abelian algebra generated by V, and the commutant is
taken in the full matrix algebra M. As x ∈ (M+)′, x ∈ A′′ ≡ A. As x is odd, we
have VxV = −x. Collecting together, we obtain x = 0.

LEMMA 2.6. Let M = M+ ⊕M− be a Z2-graded full matrix algebra. For every
Θ-invariant full matrix subalgebra N ⊂ M, there exists a unique Θ-invariant full matrix
subalgebra N ⊂ M such that M = N ∨ N, and

(2.8) xx + σ(x, x)xx = 0 , x ∈ N± , x ∈ N±
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where σ(x, x) is 1 if both x, x are odd, and−1 in the remaining cases. Moreover, we have
N ∧ N = C1I.

Proof. Let Ñ := N′ ∧M which is a Θ-invariant full matrix subalgebra of M
as well. Fix a (even) unitary V ∈ N uniquely determined up to a sign, imple-
menting Θ on N. Define for x = x+ + x− ∈ Ñ,

(2.9) β(x) := x+ + Vx− .

It is easy to see that β defines a ∗-algebra isomorphism between Ñ and β(Ñ).
Thus, the full matrix algebra N := β(Ñ) is the algebra we are looking for.

For the uniqueness, let R ⊂ M be a Θ-invariant full matrix algebra fulfilling
the commutation relations in (2.8) whenever x ∈ N±, x ∈ R±, such that N ∨ R =
M. Then it is easy to verify that R̃ := {x+ + Vx− : x ∈ R} is a full matrix
subalgebra of Ñ. Since M = N ∨ Ñ ∼ N ⊗ Ñ, we get that R̃ must coincide with
Ñ which implies R = N.

We call the algebra

(2.10) N := (N′ ∧M)+ + V(N′ ∧M)−

obtained in Lemma 2.6, the Fermion complement of N in M.

PROPOSITION 2.7. Let A :=
∨
j∈I

Aj be the Fermi C∗-algebra with I = {0, 1}.

(i) Let P ∈ A{0} be a Θ-invariant projection. Then there is a one–to–one correspon-
dence between:

(a) ε : PAP → PAP an even conditional expectation such that R(ε) is a full
matrix subalgebra of PA{0}P;

(b) N ⊂ PA{0}P a Θ-invariant full matrix subalgebra and Φ an even state on
N ∨ PA{1}P.

The correspondence is given for x ∈ N, y ∈ N ∨ PA{1}P by

(2.11) ε(xy) = Φ(y)x

where N is the Fermion complement of N in PA{0}P given in (2.10). In particular,
R(ε) = N.

(ii) Let P1, P2 ∈ A{0} such that Θ(P1) = P2, P1P2 = 0. Then there is a one-to-one
correspondence between:

(a) ε : (P1 + P2)A(P1 + P2) → (P1 + P2)A(P1 + P2) an even conditional
expectation such thatR(ε) ⊂ A{0} and Z(R(ε)) = CP1 ⊕CP2;

(b) N1 ⊂ P1A{0}P1 full matrix algebra and Φ a state on M1 := N′1 ∧ P1AP1.
The correspondence is given for xi ∈ Ni, yi ∈ Mi, i = 1, 2,

(2.12) ε(x1y1 + x2y2) = Φ(y1)x1 + Φ(Θ(y2))x2

where N2 := Θ(N1), M2 := Θ(M1). In particular,R(ε) = N1 ⊕Θ(N1).
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In addition, if z ∈ A{1} is even, then

(2.13) ε((P1 + P2)z) = Φ(P1zP1)(P1 + P2) .

Proof. (i) Let N := R(ε). As ε is even, N is a Θ-invariant full matrix algebra
of PA{0}P. Let N be the Fermion complement of N in PA{0}P, and y ∈ N ∨
PA{1}P an odd element. Then ε(y) ∈ N is odd too, and by the bimodule property
of ε, [ε(y), N+] = 0. By Lemma 2.5, ε(y) = 0. If x ∈ N, y ∈ N ∨A{1}, we have

xε(y) = xε(y+) = ε(xy+) = ε(y+x) = ε(y+)x = ε(y)x .

This means that ε(y) ∈ Z(N) ≡ CP, that is ε(xy) = Φ(y)x for a uniquely deter-
mined even state Φ on N ∨ PA{1}P.

Fix now an invariant full matrix subalgebra N of PA{0}P. By uniqueness,
the Fermion complement of N in PAP is all of N ∨ PA{1}P. Thus, in order to
shorten the notations, we can suppose that N is the Fermion complement of N in
PAP. Thus,

PAP = N ∨ β−1(N) ∼ N ⊗ β−1(N) ,

where β : Ñ → N is the isomorphism given in (2.9). Define ε := EΦ◦β
N as the

Fubini mapping given in 9.8.4 of [21]. Let now x ∈ N, y ∈ N. We get

ε(xy) = ε(x(y+ + y−)) = ε(xy+) + ε[(xV)(Vy−)]

= Φ(y+)x + Φ(β(Vy−))xV = Φ(y+)x + Φ(y−)xV

= Φ(y+)x = Φ(y+)x + Φ(y−)x = Φ(y)x

as, being Φ even, it is zero on the odd part of N.
(ii) Take Ni := PiR(ε)Pi, Mi := Pi(R(ε)′ ∧A)Pi, i = 1, 2. As ε is even, we have

Θ(N1) = N2 , Θ(M1) = M2 , Θ(P1AP1) = P2AP2 ,

and

P1AP1 + P2AP2 = N1 ∨M1 + N2 ∨M2 ∼ N1 ⊗M1 ⊕ N2 ⊗M2 .

As ε is uniquely determined by the restriction on the reduced algebras APi , i =
1, 2, according to (2.1) and (2.2), there exist uniquely determined states ϕi on Mi,
such that

ε(x1y1 + x2y2) = ϕ1(y1)x1 + ϕ2(y2)x2

whenever xi ∈ Ni, yi ∈ Mi, i = 1, 2. Thus, it is enough to show that ϕ2 = ϕ1 ◦Θ.
We compute

ε(Θ(x1y1 + x2y2)) = ϕ1(Θ(y2))Θ(x2) + ϕ2(Θ(y1))Θ(x1) ,

and
Θ(ε(x1y1 + x2y2)) = ϕ2(y2)Θ(x2) + ϕ1(y1)Θ(x1) .

Thanks to the Θ-equivariance of ε, we conclude that ϕ2 = ϕ1 ◦Θ and vice versa.
Finally, if z ∈ A{1} is even, then

PizPi ≡ Piz ∈ Pi(R(ε)′ ∧A[0,1])Pi = Mi , i = 1, 2 .
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By the first part, we get

ε((P1 + P2)z) = Φ(P1zP1)P1 + Φ(Θ(P2zP2))P2

= Φ(P1zP1)P1 + Φ(P1zP1)P2 = Φ(P1zP1)(P1 + P2) .

The previous results relative to the action of the grading automorphism on
the centers of the transition expectations allow us to provide the definition of the
strongly even and minimal Markov states.

We start by noticing that Definition 2.1 can be slightly generalized by sim-
ply requiring that the local subalgebras Aj appearing in (2.5) are full matrix C∗-
algebras such that the grading automorphism Θ leaves each algebra Aj globally
stable. In this case, the Markov property is still described by the transition expec-
tations εn previously described, and Lemma 2.4 still works. Thus, the following
definition is meaningful.

DEFINITION 2.8. Let ϕ ∈ S(B) be a Markov state on the Z2-graded quasi
local C∗-algebra

B :=
∨
j∈I

Bj
C∗

.

It is called strongly even (respectively minimal) if the parity automorphism Θ acts
trivially (respectively transitively) on each Z(R(εn)), {εn}n<j+ being the transi-
tion expectations canonically associated to ϕ through Proposition 2.2.

For some interesting applications (see e.g. Corollary 4.3), it is enough to con-
sider a Markov state as strongly even if Θ acts trivially on the centers of the transi-
tion expectations, infinitely often. Then a Markov state ϕ will be non-strongly even
if there exists k ∈ N such that the action of Θ on Z(R(εn)) is nontrivial either for
each n > k, or for each n < −k.

3. THE STRUCTURE OF GENERAL FERMI–MARKOV STATES

In the present section we investigate the structure of Fermi–Markov states.
We follow Section 3 of [3], where we dealt with the quasi local algebra

A =
⊗
j∈I

Mdj
(C)

C∗
,

equipped with the local structure AΛ =
⊗
j∈Λ

Mdj
(C), Λ ⊂ I finite, and trivial Z2-

grading. The forthcoming analysis also represents the extension to the most gen-
eral Fermi algebra of the results in Section 5 of [6], where only the homogeneous

situation A :=
∨
I
M2(C)

C∗
, and only the strongly even Markov states were con-

sidered.
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The program in [3] cannot be directly implemented in this situation. In fact
the parity automorphism Θ does not act trivially on the centres of Z(R(ε j)) in
general. Thus, the minimal projections of the centers Z(R(ε j)) of the ranges
R(ε j) does not generate an Abelian algebra. Yet, we are able to decompose non-
homogeneous Markov states on the Fermi algebras into minimal ones (cf. Defini-
tion 2.8).

Let ϕ be a Markov state, together with the sequence {ε j}j<j+ of transition
expectations canonically associated to ϕ as previously explained. We start by
considering the centre Zj ofR(ε j), together with the generating family {Pj

γj}γj∈Γj

of minimal projections. Define Ωj := Γj/ ∼ where “∼” stands for the equiva-
lence relation induced by Θ on the spectrum Γj of Zj. Let pj : Γj → Ωj be the
corresponding canonical projection. Put

(3.1) Qj
ωj :=

∨
γj=p−1

j ({ωj})

Pj
γj .

For j < j+, denote Cj ⊂ Zj the subalgebra generated by {Qj
ωj : ωj ∈ Ωj}. Notice

that spec(Cj) = Ωj. The Cj generate an Abelian subalgebra of A whose spectrum
is precisely

(3.2) Ω := ∏
j∈I

Ωj ≡∏
j∈I

spec(Cj) ,

where the product in (3.2) stands for the topological product of the finite sets Ωj.
In order to simplify the notations, we define ε j+ := idAj+

. This means Ωj+ :=

{j+}, Qj+ ≡ Pj+ := 1I, and finally, for Nj+ , N j+ given in Proposition 2.7, Nj+ :=
A{j+}

, N j+ := C1I with an obvious meaning. Put

Bj :=
⊕

ωj∈Ωj

Qj
ωjA{j}Q

j
ωj ⊂ A{j} , and B :=

∨
j∈I

Bj ⊂ A .

The next step is to construct a conditional expectation of A onto B. Thanks to
the fact that the Qj

ωj are even and thus mutually commuting, we have for each
x ∈ A[k,l],

∑
ωk−1,ωk ,...,ωl ,ωl+1

(Qk−1
ωk−1

Qk
ωk
· · ·Ql

ωl
Ql+1

ωl+1
)x(Qk−1

ωk−1
Qk

ωk
· · ·Ql

ωl
Ql+1

ωl+1
)

= ∑
ωk−1

Qk−1
ωk−1 ∑

ωl+1

Qk
ωl+1 ∑

ωk ,...,ωl

(Qk
ωk
· · ·Ql

ωl
)x(Qk

ωk
· · ·Ql

ωl
)

= ∑
ωk ,...,ωl

(Qk
ωk
· · ·Ql

ωl
)x(Qk

ωk
· · ·Ql

ωl
) .



FERMI–MARKOV STATES 397

Moreover, if x = xkxk+1 · · · xl , then

∑
ωk ,ωk+1,...,ωl ,ωl

(Qk
ωk

Qk+1
ωk+1
· · ·Ql

ωl
)x(Qk

ωk
Qk+1

ωk+1
· · ·Ql

ωl
)

= ∑
ωk ,ωk+1,...,ωl

(Qk
ωk

xkQk
ωk
)(Qk+1

ωk+1
xk+1Qk+1

ωk+1
) · · · (Ql

ωl
xlQl

ωl
) .

Thus, on the dense subalgebra A :=
⋃

Λ⊂I
AΛ, Λ finite, we get a norm one projec-

tion E : A → B, given on the algebraic generators of A by

(3.3) E(xj1 · · · xjn) = ∑
ωj1

,...,ωjn

(Qj1
ωj1

xj1 Qj1
ωj1

) · · · (Qjn
ωjn

xjn Qjn
ωjn

)

which uniquely extends to a conditional expectation (denoted again by E by an
abuse of notations) E : A → B of A onto B. It is also a quite standard fact to see
that

ϕ = ϕ ◦ E ≡ ϕdB ◦E .

By taking into account the previous considerations we can investigate the struc-
ture of Fermi–Markov states following the lines in [3]. We recover the following
objects canonically associated to the Markov state ϕ under consideration.

(a) A classical Markov process on the compact space Ω given in (3.2), whose
law µ is uniquely determined by the sequences of compatible distributions and
transition probabilities at the place j given respectively by

π
j
ωj := ϕ(Qj

ωj) , j < j+; π
j
ωj ,ωj+1 :=

ϕ(ε j(Q
j
ωj Q

j+1
ωj+1))

ϕ(Qj
ωj)

, j < j+ .(3.4)

(b) For each trajectory ω ≡ (. . . , ωj−1, ωj, ωj+1, . . . ) ∈ Ω, the C∗-algebra Bω

given by

(3.5) Bω :=
∨
j∈I

Qj
ωjA{j}Q

j
ωj

C∗

.

Notice that, in the non trivial cases (i.e. when I is infinite), Bω cannot be
viewed in a canonical way as a subalgebra of A. Yet, whenever Λ ⊂ I is finite,

Bω
Λ :=

∨
j∈Λ

Qj
ωjA{j}Q

j
ωj

is a subalgebra of AΛ with the identity the projection
∨

j∈Λ
Qj

ωj . Namely, Bω is

equipped with a canonical localization {Bω
Λ : Λ finite subset of I}, and a Z2-

grading implemented by the automorphism Θω arising from the restrictions ΘdAΛ
.
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(c) A completely positive identity preserving map Eω : A → Bω, which is
uniquely determined as in (3.3) by

xj1 xj2 · · · xjn ∈ A 7→ (Qj1
ωj1

xj1 Qj1
ωj1

)(Qj2
ωj2

xj2 Qj2
ωj2

) · · · (Qjn
ωjn

xjn Qjn
ωjn

) .(3.6)

The above map satisfies Eω ◦ E = Eω.

(d) A sequence {Eω
j }j∈I of maps

Eω
j : Bω

j+1] → Bω
j]

given, for x ∈ Bω
j−1], y ∈ Bω

[j,j+1] by

Eω
j (xy) :=

xε j(y)

π
j
ωj ,ωj+1

.

PROPOSITION 3.1. The maps Eω
j are even conditional expectations.

Proof. As for each k 6 j,

Bω
[k,j+1] =

( j+1

∏
l=k

Ql
ωl

)
A[k,j+1]

( j+1

∏
l=k

Ql
ωl

)
⊂ A[k,j+1] ,

and

Eω
j dBω

[k,j+1]
=
EjdBω

[k,j+1]

π
j
ωj ,ωj+1

.

Thanks to Proposition 2.2, Eω
j is an even conditional expectation, provided that it

is identity preserving. This means that we must check Eω
j (Qj

ωj Q
j+1
ωj+1) = Qj

ωj . But,

we have by (2.13) that ε j(Q
j
ωj Q

j+1
ωj+1) = cQj

ωj . The proof follows as the number c

is precisely π
j
ωj ,ωj+1 .

(e) The state ψω ∈ S(Bω), uniquely determined on localized elements by

(3.7) ψω := lim
k↓j− , l↑j+

ϕdQk
ωk

A{k}Q
k
ωk
◦Eω

k ◦ · · · ◦ E
ω
l

πk
ωk

.

It is straightforward to check that the state ψω is a minimal Markov state on
Bω with respect to the conditional expectations

Ẽω
j := Eω

j ◦ Eω
j+1 .

In addition, the following field is σ(A∗,A)-measurable:

ω ∈ Ω 7→ ψω ◦ Eω ∈ S(A).
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THEOREM 3.2. Let ϕ be a Markov state on the Fermi algebra A with respect to the
associated sequence {Ej}j−6j<j+ of conditional expectations given in (2.7). Define the
compact set Ω by (3.2), the probability measure µ on Ω by (3.4), the quasi local algebra
Bω by (3.5), the map Eω by (3.6), the state ψω on Bω by (3.7).

Then ϕ admits the integral decomposition

(3.8) ϕ(A) =
∫
Ω

⊕
ψω ◦ Eω(A)µ(dω) , A ∈ A .

Proof. We outline the proof which is similar to that of Theorem 3.2 of [3]
after writing down the corresponding objects relative to the Fermi case.

Consider the Abelian C∗-subalgebra C of B given by

C :=
∨
j∈I

Cj ∼
⊗
j∈I

Cj
C∗

,

together its spectrum spec(C) = Ω. By restricting ϕ to C, we obtain a possibly
nonhomogeneous Markov random process on Ω with law µ described above. Let
π be the GNS representation of B relative to ϕdB. Then L∞(Ω, µ) ∼ π(C)′′ ⊂
π(B)′ ∩ π(B)′′. Thus, we have for π the direct integral decomposition

π =
∫
Ω

⊕
πωµ(dω) ,

where ω 7→ πω is a measurable field of representations of B. This leads to the
direct integral decomposition of ϕdB, and then the decomposition of ϕ≡ ϕdB◦E
as ϕ=

∫
Ω

ϕωµ(dω), see e.g. Section IV of [23]. It is then straightforward to see that

ϕω(A) = ψω(Eω(A)) ,

almost everywhere on Ω for each A ∈ A.

The constructive part of Proposition 2.7 allows us to provide the following
reconstruction theorem for the class of Fermi–Markov states considered in the
sequel. It parallels the analogous one (cf. Theorem 3.3 of [3]).

Let A be a Fermi algebra. Take for every j < j+, a Θ-invariant commutative
subalgebra Zj of A{j} with spectrum Γj and generators {Pj

γj}γj∈Γj . Put Zj+ := C1I.
Let “∼” be the equivalence relation on the Γj induced by the action of Θ, and pj

the corresponding projection map. Set Ωj := Γj/ ∼, and define Qj
ωj as in (3.1).

Choose a full matrix subalgebra N j
γj ⊂ Pj

γjA{j}P
j
γj which is Θ-invariant whenever

Pj
γj is a fixed point of Θ. (Notice that N j

γj
given in Proposition 2.7 is also left

globally invariant under the parity.) Form for j < j+, the two point even, faithful
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conditional expectations

ε
j
ωj ,ωj+1 : Qj

ωjA{j}Q
j
ωj ∨Qj+1

ωj+1A{j+1}Q
j+1
ωj+1 →

⊕
γj=p−1

j ({ωj})

N j
γj ⊂ Qj

ωjA{j}Q
j
ωj ,

ε
j+−1
ωj+−1,j+ : Qj+−1

ωj+−1A{j+−1}Q
j+−1
ωj+−1∨A{j+}→

⊕
γj+−1=p−1

j ({ωj+−1})

N j+−1
γj+−1⊂Qj+−1

ωj+−1A{j+−1}Q
j
ωj+−1 ,

according to Proposition 2.7, by taking for the states in (2.11), (2.12), faithful ones.
Define Bω, Eω as in (3.5), (3.6) respectively. For the trajectory

ω = (. . . , ωj−1, ωj, ωj+1, . . . ) ,

and j < j+, define the map Eω
j as

Eω
j (xy) := xε

j
ωj ,ωj+1(y) ,

which is an even faithful conditional expectation according to Proposition 2.2,
and Lemma 2.3. Take, for j < j+, a compatible sequence of even faithful states
ϕω

j on Qj
ωjA{j}Q

j
ωj . (It can be shown by a standard compactness property (cf.

Proposition 5.1 of [5]), that the set of sequences of even compatible states ϕω
j , that

is such that ϕω
j+1 = ϕω

j ◦ Eω
j dBω

{j+1}
, is nonvoid.) Form the state ψω ∈ S(Bω) as

in (3.7) by taking as initial distributions the ϕω
j . Finally, fix a Markov process on

the product space Ω := ∏
j∈I

Ωj with law µ determined, for ωj ∈ Ωj, ωj+1 ∈ Ωj+1,

by the marginal distributions π
j
ωj > 0, and transition probabilities π

j
ωj ,ωj+1 > 0.

THEOREM 3.3. In the above notations, the state ϕ on A given by

ϕ :=
∫
Ω

ψω ◦ Eωµ(dω)

is a Markov state with respect to the sequence {Ej}j<j+ of conditional expectations
uniquely determined (with the convention A{j−−1} = C1I) for a ∈ Aj−1], x ∈ A{j},
y ∈ A{j+1} by

Ej(axy)= a ∑
ωj ,ωj+1,ωj+2

π
j
ωj π

j
ωj ,ωj+1 π

j+1
ωj+1,ωj+2E

ω
j (Qj

ωj xE
ω
j+1(Q

j+1
ωj+1 yQj+1

ωj+1 Qj+2
ωj+2)Q

j
ωj) ,

j 6 j+ − 2 ;

Ej(axy)= a ∑
ωj

π
j
ωjE

ω
j (Qj

ωj xQj
ωj y) , j = j+ − 1 .

Proof. A straightforward computation shows that, for all generators of the
form xk · · · xl ∈ A[k,l], ϕ satisfies (2.6), for the sequence of conditional expectations
constructed as above (cf. Theorem 4.1 of [3]). The proof follows as the state ϕ is
locally faithful, by taking into account Lemma 2.3.
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4. GENERAL PROPERTIES OF FERMI–MARKOV STATES

Let ϕ ∈ S(A), and D[k,l] be the adjusted density matrix of the restriction
ϕ[k,l]. For k < n < j+, define the unitary wk,n(t) ∈ A[k,n+1] as

wk,n(t) := Dit
[k,n+1]D

−it
[k,n] , t ∈ R .

The unitaries {wk,n(t)}t∈R give rise to a cocycle called transition cocycle when ϕ is
a Markov state (cf. [7]). Denote S(·) the von Neumann entropy (see e.g. [19]).

The following theorem collects some properties of the Fermi–Markov states,
which parallel the analogous ones relative to Markov states on tensor product
algebras (cf. [3], [7], [19]). For the natural applications of the properties described
below to the variational principle in quantum statistical mechanics, the reader is
referred to [9], [19].

THEOREM 4.1. Let ϕ ∈ S(A) be a locally faithful even state. Then the following
assertions are equivalent:

(i) ϕ ∈ S(A) is a Markov state;
(ii) for each t ∈ R and k < n < j+, wk,n(t) ∈ A[n,n+1],+.

Moreover, if I = Z, A{n} = M2d(C) for each n ∈ Z, and ϕ is translation invari-
ant, the previous assertions are also equivalent to

(iii) S(ϕ[0,n+1])− S(ϕ[0,n]) = S(ϕ[0,1])− S(ϕ{0}), n > 1.

Proof. (i)⇒ (ii) Thanks to Lemma 4.1 of [7], if ϕ is a Markov state, then there
exists an unitary ut ∈ A′[k,n−1] ∧A[k,n+1] such that, for each x ∈ A[k,n−1],

wk,n(t)xwk,n(t)∗ ≡ σ
ϕ[k,n+1]
−t (σ

ϕ[k,n]
t (x)) = utxu∗t ≡ x ,

σ
ϕ
t denoting the modular group of a faithful state ϕ on a von Neumann algebra,

see e.g. [22]. As wk,n(t) is even, we have

wk,n(t) ∈ A′[k,n−1] ∧A[k,n+1] ∧A+ = A[n,n+1],+ ,

see Lemma 11.1 and Theorem 4.17 of [9].
(ii)⇒ (i) The Accardi–Cecchini ϕ-expectation Ek,n of ϕ[k,n+1] with respect to

the inclusion A[k,n] ⊂ A[k,n+1] (cf. [2]) is written as

Ek,n(x) = E0
[k,n](wk,n(−i/2)∗xwk,n(−i/2))

where wk,n(−i/2) is the analytic continuation at −i/2 of wk,n(t), and E0
[k,n] is the

conditional expectation of A[k,n+1] onto A[k,n] preserving the normalized trace. If
the wk,n(t) satisfy all the properties listed above, the Accardi–Cecchini expecta-
tion Ek,l is a ϕ[k,n+1]-preserving quasiconditional expectation with respect to the
triplet A[k,n−1] ⊂ A[k,n] ⊂ A[k,n+1]. By taking for each fixed n the pointwise limit

εn := lim
k↓j−

(
lim

L

1
L

L−1

∑
l=0

(Ek,ndA[n,n+1]
)l
)

,
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we obtain by En(xy) := xεn(y), x ∈ A[n−1], y ∈ A[n,n+1], a conditional expectation
(cf. Proposition 2.2) fulfilling all the properties listed in Definition 2.1.

(ii)⇔ (iii) We have

w0,n(t) = [Dϕ[0,n+1] : D(ϕ[0,n+1] ◦ E0
[0,n])]t ,

the last being the Connes–Radon–Nikodym cocycle of ϕ[0,n+1] with respect to
ϕ[0,n+1] ◦ E0

[0,n] (cf. [22]). The assertion follows from the fact that (iii) is equivalent
to the fact that A[n,n+1] is a sufficient subalgebra for both the mentioned states.
It turns out to be equivalent to (ii) by translation invariance, see Proposition 11.5
and Proposition 9.3 of [19].

COROLLARY 4.2. Suppose that j− ∈ I. If ϕ ∈ S(A) is a Markov state, then its
support in A∗∗ is central. In addition, ϕ is faithful.

Proof. By Theorem 4.1, the pointwise norm limit

lim
n↑j+

D−it
[j− ,n]xDit

[j− ,n]

exists as it is asymptotically constant in n, on localized elements. Thus, it defines
a one parameter group of automorphisms t 7→ σt of A which admits, by construc-
tion, ϕ as a KMS state. This means that πϕ(A)′ξϕ is dense in Hϕ, (πϕ,Hϕ, ξϕ)
being the GNS triplet of ϕ. Furthermore, ϕ is faithful as A is a simple C∗-algebra,
see Proposition 2.6.17 of [11].

COROLLARY 4.3. Suppose that, for each n ∈ I, there exists a k(n) ∈ I with
k(n) 6 n, such that Θ acts trivially onZ(R(εk(n))), ε j being the transition expectations
associated to the Markov state ϕ. Then the assertions in Corollary 4.2 hold true as well.

Proof. By regrouping the local algebras, we can suppose that there exists a
j0 ∈ I such that, for j < j0, Θ acts trivially on Z(R(ε j)). Consider for k < j0,
l > j0 the local algebras

M[k,l] := Rc
k ∨A[k+1,l] ,

with Rc
k given in (5.4). The last assertion follows as in Corollary 4.2, by looking

at the transition cocycles of ϕ relative to the new localization {M[k,l]}k<j0<j.

Let ϕ be a translation invariant locally faithful state on the Fermion algebra
A ≡ AZ. The mean entropy s(ϕ) of ϕ (see e.g. [19]) is defined as

s(ϕ) := lim
n

1
n + 1

S(ϕ[0,n]) ,

S(ϕ[0,n]) being the von Neumann entropy of ϕ[0,n].

COROLLARY 4.4. We have for the translation invariant Markov state ϕ,

s(ϕ) = S(ϕ[0,1])− S(ϕ{0}) .

Proof. It immediately follows by (iii) of Theorem 4.1.
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5. STRONGLY EVEN MARKOV STATES

In the present section we investigate the structure of strongly even Markov
states (cf. Definition 2.8). By taking into account the structure of the local densities
(or equally well the local Hamiltonians by passing to the logaritm) described in
(5.3), the strongly even Markov states can be viewed as the Fermi analogue of
the Ising type interactions. In addition, they enjoy a kind of local entanglement
effect, see Section 4 of [15] for further details.

Notice that, as explained in the previous section, the forthcoming analysis
extends to the situation when there exists a subsequence {nj} ⊂ I such that Θ

acts trivially on all the Z(R(εnj)).
We start with the following lemma which is known to the experts.

LEMMA 5.1. Let Cn ⊂ Bn, n ∈ N, be an increasing sequence of inclusions of
unital C∗-subalgebras of B :=

⋃
n∈N

Bn satisfying (Ck)
′ ∩Bn = Cn, k > n. Then

C :=
⋃

n∈N
Cn is a maximal Abelian C∗-subalgebra of B.

Proof. We have for the commutant C′ in the ambient algebra B,

C′ =
⋃

n∈N
(C′ ∩Bn) =

⋃
n∈N

(( ⋂
k∈N

(Ck)′
)
∩Bn

)
=
⋃

n∈N

( ⋂
k∈N

(
(Ck)′ ∩Bn

))
=
⋃

n∈N
Cn = C .

Let ω = (. . . , ωj−1, ωj, ωj+1, . . . ) ∈ Ω be a trajectory. Thanks to part (i) of
Proposition 2.7,

Bω ≡
( ∨

j<j+

Qj
ωjA{j}Q

j
ωj

)
∨A{j+}

C∗

(5.1)

=N j−
ωj−

∨ ( ∨
j<j+−1

(N j
ωj
∨ N j+1

ωj+1)
)
∨ (N j+−1

ωj+−1
∨A{j+})

C∗

,

N j
ωj N j

ωj
providing the (Fermi) decompositions of the Qj

ωjA{j}Q
j
ωj described by

(2.10) in Proposition 2.7. This decomposition is quite similar to the analogous one
described in Theorem 3.2 of [3], and generalize the situation treated in Section 5
of [6].

LEMMA 5.2. Any maximal Abelian subalgebra of (N j
ωj
∨ N j+1

ωj+1)+ is maximal

Abelian in N j
ωj
∨ N j+1

ωj+1 as well.
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Proof. Let V ∈ N j
ωj
∨ N j+1

ωj+1 be any selfadjoint unitary implementing Θ.
Then

(N j
ωj
∨N j+1

ωj+1)+≡ (CE1⊕CE−1)
′=E1(N j

ωj
∨N j+1

ωj+1)E1⊕E−1(N j
ωj
∨N j+1

ωj+1)E−1 ,

V = E1 − E−1 being the resolution of V.

LEMMA 5.3. The unnormalized trace of

R := Nk
ωk
∨ Nk

ωk
∨ · · · ∨ Nl

ωl
∨ Nl

ωl

is the product of the unnormalized traces of the N j
ωj and N j

ωj
, k 6 j 6 l.

Proof. Put R = (Qj
ωjA{j}Q

j
ωj) ∨ · · · ∨ (Qj+1

ωj+1A{j+1}Q
j+1
ωj+1). By the product

property of TrA[k,l]
, we get

TrR =
l

∏
j=k

Tr
Qj

ωjA{j}Q
j
ωj

.

Thus, we reduce the situation to the algebra N j
ωj ∨ N j

ωj
≡ Qj

ωjA{j}Q
j
ωj . Notice

that
Qj

ωjA{j}Q
j
ωj = N j

ωj ∨ Ñ j
ωj ∼ N j

ωj ⊗ Ñ j
ωj ,

N j
ωj , Ñ j

ωj are both globally stable under the action of Θ, N j
ωj

= Ñ j
ωj ,+ + VÑ j

ωj ,−,

V being any unitary of N j
ωj implementing Θ on itself, see Proposition 2.7. As the

traces are invariant under any automorphism, we get

Tr
Qj

ωjA{j}Q
j
ωj

= Tr
N j

ωj
Tr

Ñ j
ωj

=
(

Tr
N j

ωj ,+
◦ id+Θ

2

)(
Tr

Ñ j
ωj ,+
◦ id+Θ

2

)
=
(

Tr
N j

ωj ,+
◦ id+Θ

2

)(
Tr

N j
ωj ,+
◦ id+Θ

2

)
= Tr

N j
ωj

Tr
N j

ωj

.

Let the initial distributions η
j−
ωj−
∈S(N j−

ωj−
), the states η

j
ωj ,ωj+1S(N j

ωj
∨N j+1

ωj+1)

be recovered by ϕ according to (2.11). (If j− and/or j+ do not belong to I, they
do not appear in the formulae, the last having an obvious meaning. In addition,
as Ωj+ ≡ {j+}, we use the symbology η

j
ωj ,ωj+1 also for the final distributions

η
j+−1
ωj+−1,j+ .) Consider the even densities T(j)

ωj , T̂(j)
ωj , T(j)

ωj ,ωj+1 localized in N j
ωj , N j

ωj
,

N j
ωj
∨N j+1

ωj+1 , and associated to η
j−
ωj−

or η
j
ωj ,ωj+1dN j+1

ωj+1
, η

j
ωj ,ωj+1dN j

ωj

, η
j
ωj ,ωj+1 respec-

tively.

PROPOSITION 5.4. The states η
j−
ωj−

, η
j
ωj ,ωj+1 uniquely define a product state on

Bω, coinciding with ψω in (3.8), which is symbolically written as

(5.2) ψω = η
j−
ωj− ∏

j6j+−1
η

j
ωj ,ωj+1 .
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Proof. Consider on Bω the localization

Bω =
∨
j∈I

N
j
ωj

suggested by (5.1). Here, Nj−
ωj−

:= N j−
ωj−

, Nj
ωj := N j−1

ωj−1
∨ N j+1

ωj , j− < j < j+, and

finally N
j+
ωj+

:= N j+−1
ωj+−1

∨ A{j+}. As the above densities commute each other, for
each k < l, the product of local densities

T(k−1)
ωk−1,ωk × · · · × T(l−1)

ωl−1,ωl

is a well defined positive even operator on
∨

k6j6l
N

j
ωj which by Lemma 5.3, is the

density of ψωd∨
k6j6l N

j
ωj

with respect to the unnormalized trace of
∨

k6j6l
N

j
ωj . As

explained in Section 2.3, this means that ψω is the product states of η
j−
ωj−

with the

η
j
ωj ,ωj+1 as explained in (5.2) (see Theorem 11.2 of [9] for a similar situation).

As all the states appearing in (5.2) are even, we can explicitely write the lo-
cal densities associated to the strongly even Markov state. Namely, consider the
Radon–Nikodym derivatives (i.e. the densities) TA[k,l]

with respect to the unnor-
malized trace of A[k,l],

ϕ[k,l] = TrA[k,l]
(TA[k,l]

·) .

Then TA[k,l]
has the nice decomposition

(5.3) TA[k,l]
=

⊕
ωk ,...,ωl

T(k)
ωk T(k)

ωk ,ωk+1 × · · · × T(l−1)
ωl−1,ωl T̂

(l)
ωl .

By Corollary 4.2, any strongly even Markov state is a KMS state for the one pa-
rameter group of automomorphisms σt given, for x ∈ A, by

σt(x) := lim
k↓j− , l↑j+

T−it
A[k,l]

xTit
A[k,l]

.

In addition, each strongly even Markov state is faithful.
We now show that each strongly even Markov state is a lifting of a classical

Markov process. This result parallels the analogous one relative to the tensor
product algebra, obtained first in [16] for some particular cases, and then in [15]
for the general situation. Such property was called diagonalizability in [16]. After
adapting the situation relative to the tensor product case to the strongly even
Fermi–Markov states, we can follow the same line of the proof of Theorem 3.2 of
[15].

We start by defining increasing subalgebras of the Fermi algebra A equipped
with a natural local structure inherited from that of the original algebra. Let Rj :=
R(ε j), with relative commutant

(5.4) Rc
j := R′j ∧A{j} .
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Define

N{k} := Z(Rk) , N[k,k+1] := Rc
k ∨Rk+1 ,(5.5)

N[k,l] := Rc
k ∨A[k+1,l−1] ∨Rl , k < l + 1 .

Thanks to Lemma 5.2, for each k 6 j < l and ωj ∈ Ωj, we can choose an even

maximal Abelian subalgebra Dj
ωj ,ωj+1 of N j

ωj
∨ N j+1

ωj+1 containing T(j)
ωj ,ωj+1 . Put

D{k} :=N{k} ≡ Z(Rk) ,

D[k,l] :=
⊕

ωk ,...,ωl

(Dk
ωk ,ωk+1

∨ · · · ∨ Dl−1
ωl−1,ωl

) , k < l ,(5.6)

D :=
( ⋃
[k,l]⊂I

D[k,l]

)
.

THEOREM 5.5. Let ϕ ∈ S(A) be a strongly even Markov state. Then there exists
an even maximal Abelian C∗-subalgebra D ⊂ A, and a conditional expectation E : A→
D such that ϕ = ϕdD◦E. In addition, the measure µ on spec(D) associated to ϕdD is a
Markov measure with respect to the natural localization of D given in (5.6).

Proof. Let [mk, nk] be an increasing sequence of intervals such that [mk, nk] ↑
I. Then

A =
(

lim
→

[mk ,nk ]↑I

N[mk ,nk ]

)C∗

.

As D[m,n] is an even maximal Abelian subalgebra of N[m,n], the increasing se-
quence D[mk ,nk ]

⊂ N[mk ,nk ]
satisfies the hypotheses of Lemma 5.1. Thus, D is an

even maximal Abelian C∗-subalgebra of A. According to (5.3), we have

TN[m,n]
=

⊕
ωm ,...,ωn

T(m)
ωm ,ωm+1 × · · · × T(n−1)

ωn−1,ωn ,

that is, {TN[m,n]
}m<n ⊂ D. Let E0

m,n : N[m,n] → D[m,n] be the canonical conditional
expectation of N[m,n] onto the maximal abelian subalgebra D[m,n] (cf. Footnote 4
of [15]). We have

ϕdN[m,n]
≡TrN[m,n]

(TN[m,n]
·) = TrN[m,n]

(E0
m,n(TN[m,n]

·))

=TrN[m,n]
(TN[m,n]

E0
m,n(·)) ≡ ϕdN[m,n]

◦E0
m,n .(5.7)

As the sequence {E0
m,n}m<n is projective, the direct limit lim

→
[m,n]↑I

E0
m,n uniquely de-

fines a conditional expectation E : A → D fulfilling by (5.7), ϕ = ϕdD◦E. The
measure µ on spec(D) associated to ϕdD is a Markov measure with respect to
the natural localization of D previously described. This follows as in Section 6
of [15], after noticing that Dm

ωm ,ωm+1
∨ · · · ∨ Dn−1

ωn−1,ωn in (5.6) generates a tensor
product, and the restriction ϕdDm

ωm ,ωm+1∨···∨Dn−1
ωn−1,ωn

defines a product measure on

spec(Dm
ωm ,ωm+1

)× · · · × spec(Dn
ωn ,ωn+1

).
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Now we pass to the dynamical entropy hϕ(α) with respect to the right shift
α for translation invariant strongly even Markov states. The reader is referred to
[12], [13], [19] for the definition and technical details on the dynamical entropy.

The definition of the dynamical entropy hϕ(α) is based on the multiple sub-
algebra entropy Hϕ(N1, . . . , Nk), with N1, . . . , Nk ⊂ M. We start by pointing out
that, if the subalgebras N1, . . . , Nk are the range of ϕ-preserving conditional ex-
pectations and are contained in different factors of a tensor product algebra, then

(5.8) Hϕ(N1, . . . , Nk) = S(ϕdN) ,

with N := N1 ∨ · · · ∨ Nk. (Fix a faithful trace on M. Let T1, · · · , Tk, T be the
corresponding densities of N1, . . . , Nk, M respectively. Choose maximal Abelian
subalgebras Aj of Nj containing Tj, j = 1, . . . , k. As the Nj are expected, we have
for a ∈ Aj,

T−itaTit = T−it
j aTit

j = a ,

that is Aj ⊂ Mϕ, Mϕ being the centralizer of the faithful state ϕ. As the Aj
are contained in different factors of a tensor product, A1 ∨ · · · ∨ Ak is maximal
Abelian in N. Thus, (5.8) follows by Corollary VIII.8 of [13].)

THEOREM 5.6. Let ϕ ∈ S(A) be a translation invariant strongly even Markov
state. Then hϕ(α) = s(ϕ).

Proof. The proof follows the same lines of the tensor product case. We keep
into account some boundary effects which cannot be neglected in proving the
result. Fix n, and consider N[0,n+1] given in (5.5). We have A[1,n] ⊂ N[0,n] ⊂
A[0,n+1], and N[0,n] is expected. We compute,

H(k) :=Hϕ(N[0,n], α(N[0,n]), . . . , αk(n+2)(N[0,n]))

>Hϕ(N[0,n], αn+2(N[0,n]), . . . , αk(n+2)(N[0,n]))

>Hϕ(N[0,n],+, αn+2(N[0,n],+), . . . , αk(n+2)(N[0,n],+)) ,

Now, N[0,n],+, αn+2(N[0,n],+, ), . . . , αk(n+2)(N[0,n],+) are all expected, and generate
a tensor product. Then

H(k) > S(ϕdMk ) = −S(ϕdMk , τdMk ) + k ln d .

Here, Mk := N[0,n],+ ∨ αn+2(N[0,n],+) ∨ · · · ∨ αk(n+2)(N[0,n],+), d is the tracial di-
mension of N[0,n],+, τ the normalized trace on A, and finally S(·, ·) the relative
entropy (see e.g. [19]). As A[1,m],+ ⊂ N[0,m],+, and the tracial dimension of A[1,m],+
coincides with that of A[1,m] (cf. Lemma 5.2), we obtain by the monotonicity of the
relative entropy,

H(k) > −S(ϕdA[1,(n+2)(k+1)]
, τdA[1,(n+2)(k+1)]

) + k ln d

= S(ϕdA[1,(n+2)(k+1)]
) + [kn− (n + 2)(k + 1)] ln l ,
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l being the tracial dimension of A{0}. Finally, we get

hϕ(α)> lim
k

H(k)
(n+2)k

> lim
k

[ k+1
k

s(ϕ)+
kn− (n+2)(k+1)

(n + 2)k
ln l
]
= s(ϕ)− 2 ln l

n+2
.

Since hϕ(α) 6 s(ϕ) and n is arbitrary, the assertion follows.

6. EXAMPLES OF TRANSLATION INVARIANT FERMI–MARKOV STATES

In the present section we exhibit examples of Fermi–Markov states. It ex-
hausts all the low dimensional translation invariant cases. The present construc-
tion can be extended to the most general situation when the dimensions dim(Aj),
j ∈ I, are arbitrary and/or the Markov state under consideration is not transla-
tion invariant. It furnishes the direct application of Theorem 3.3, or equally well
Proposition 2.7.

Thanks to translation invariance, it is enough to construct a two point even
transition expectation ε : A[0,1] → A{0}, and compute the stationary even distri-
butions by solving ρ = ρ ◦ ε ◦ αdA{0} , ρ running into the even states of A{0}. A
translation invariant Markov state ϕ is then recovered by the marginals

(6.1) ϕ(xk · · · xl) = ρ(εk(xkεk+1(xk+1 · · · ε l−1(xl−1ε l(xl)) · · · ))) .

6.1. CASE 1: A{n} ∼M2(C), Z(R(ε)) ∼ C2, # of orbits of ΘdZ(R(ε))= 1.
We start with the pivotal example in Subsection 6.4 of [6] by showing that

it provides examples of Fermi–Markov states which are entangled. Define, for a
fixed χ in the unit circle T,

qχ :=
1
2
(1I + χa0 + χa†

0) .

Choose a faithful state η ∈ S(qχA[0,1]qχ). Put

(6.2) ε(x) = η(qχxqχ)qχ + η(qχΘ(x)qχ)q−χ , x ∈ A[0,1] .

With τ the normalized trace on M2(C), εn := ε ◦ α−n, and xk ∈ A{k}, . . . , xl ∈ A{l},
the marginals (6.1) with ρ = τ, uniquely determine a translation invariant locally
faithful Markov state ϕ on the Fermion algebra A := AZ satisfying the required
properties. We show that ϕ is entangled for particular choices of η. Thanks to
shift invariance, it suffices to consider x ∈ A{0}, y ∈ A{1}.

Let ξχ, ξ⊥χ be the (uniquely determined up to a phase) normalized eigen-
vectors of qχ, q−χ = q⊥χ acting on C2, corresponding to the eigenvalues 1, respec-
tively. Put

V := 〈 · , ξχ〉ξ⊥χ .

As V ∈ M2(C) = A{0} ⊂ A[0,1], V is also in A[0,1]. Put δ := η(V(χa1 + χa†
1)qχ).

We have

ϕ(xy) = 〈x+ξχ, ξχ〉〈α−1(y+)ξχ, ξχ〉+ δ〈x−ξχ, ξ⊥χ 〉〈α−1(y−)ξχ, ξχ〉 .
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Now we show that there exists a faithful state η as above, such that η(X) 6= 0,
where

(6.3) X := Vα(qχ,−)qχ ≡
1
2

V(χa1 + χa†
1)qχ) 6= 0 .

Pick a functional which is different from zero on X, hence a state η0 which is
nonnull on X. Let p ∈ qχA[0,1]qχ be the support of η0. Choose a state η1 with
support qχ − p. Then η := βη0 + (1− β)η1 is a faithful state on qχA[0,1]qχ which
is nonnull on X for an appropriate choice of β ∈ [0, 1]. (The last claim easily
follows as η(X) = 0 means η0(X) 6= η1(X), and β = η1(X)

η1(X)−η0(X)
.) We then have

the following

PROPOSITION 6.1. Let Λ1, Λ2 ⊂ Z such that Λ1 ∩Λ2 = ∅, Λ1 ∪Λ2 = Z.
Suppose that η(X) 6= 0, where η is the state in (6.2) and X is given in (6.3). Then the
state ϕ described above is entangled with respect to the decomposition A = AΛ1 ∨AΛ2 .

Proof. Let A{n} ⊂ AΛ1 , A{n+1} ⊂ AΛ2 for some n ∈ Z (which is always
the case after a possible renumbering of Λ1, Λ2). Under the above assumption,
ϕ(x−y−) cannot be identically zero for each x ∈ AΛ1 , y ∈ AΛ2 due to the shift
invariance. The proof now follows by applying the Moriya criterion established
in Proposition 1 of [18].

By extending the previous computations to more general cases, it is then
possible to construct many examples of entangled translation invariant Fermi–
Markov states for the situation when A{0} = M2d , d > 1. We are going to describe
a sample of pivotal examples.

We now consider the successive step A{k} ∼ M4(C). We exhibit exam-
ples for each possible structure of the Abelian algebra Z(R(ε)), and for the ac-
tion of Θ on it. Let {ai, a†

i : i = 1, 2} be the creators and annihilators generat-
ing A{0}. Consider the system {ekl(j) : j, k, l = 1, 2} of commuting 2 × 2 ma-
trix units obtained via the Jordan–Klein–Wigner transformation (2.4). Putting
e(i,j)(k,l) := eik(1)ejl(2), we obtain a system of matrix units for A{0} which realizes
the isomorphism A{0} ∼M2(C)⊗M2(C).

6.2. CASE 2. Z(R(ε)) ∼ C4, # of orbits of ΘdZ(R(ε))= 4.
Choose {e(i,j)(i,j) : i, j = 1, 2} as the generators of Z(R(ε)). In this situation,

there exist even states ϕij, i, j = 1, 2 on A{1} such that for x ∈ A{0}, y ∈ A{1},

ε(xy) =
2

∑
i,j=1

Tr(xe(i,j)(i,j))ϕij(y)e(i,j)(i,j) .

This is nothing but the example in Subsection 6.2 of [6]. Thus, ϕ is strongly
clustering with respect to the shift on the chain, and the von Neumann algebra
πϕ(A)′′ generated by the GNS representation πϕ of ϕ is a type IIIλ factor for some
λ ∈ (0, 1], see [15].
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6.3. CASE 3. Z(R(ε)) ∼ C4, # of orbits of ΘdZ(R(ε))= 3.
For a fixed χ in the unit circle T, define

Qχ :=
1
2
(1I + χa2 + χa†

2) .

Choose {e(1,j)(1,j), e22(1)Q±χ : j = 1, 2} as the generators of Z(R(ε)). In this sit-
uation, there exist even states ϕj, j = 1, 2 on A{1}, and a state ϕ on e22(1)QχA[0,1]
e22(1)Qχ such that, for x ∈ A{0}, y ∈ A{1},

ε(xy) =
2

∑
j=1

Tr(xe(1,j)(1,j))ϕj(y)e(1,j)(1,j) + ϕ(e22(1)Qχxye22(1)Qχ)e22(1)Qχ

+ ϕ(e22(1)QχΘ(xy)e22(1)Qχ)e22(1)Q−χ .

6.4. CASE 4. Z(R(ε)) ∼ C4, # of orbits of ΘdZ(R(ε))= 2.
First choose {eii(1)Q±χ : i = 1, 2} as the generators of Z(R(ε)). In this

situation, there exist states ϕi, on eii(1)QχA[0,1]eii(1)Qχ, i = 1, 2 such that, for
x ∈ A[0,1],

ε(x) =
2

∑
i=1

(ϕi(eii(1)Qχxeii(1)Qχ)eii(1)Qχ + ϕi(eii(1)QχΘ(x)eii(1)Qχ)eii(1)Q−χ) .

Next, for fixed (χ, η) ∈ T2, define with V := a†
1a1 − a1a†

1,

Pχ,η :=
1
4
(1I + χa1 + χa†

1)(1I + ηVa2 + ηVa†
2) .

Choose {P±χ,±η} as the generators of Z(R(ε)). In this situation, there exist states
ϕ± on P±χ,ηA[0,1]P±χ,η respectively, such that for x ∈ A[0,1],

ε(x) = ϕ+(Pχ,η xPχ,η)Pχ,η + ϕ+(Pχ,ηΘ(x)Pχ,η)P−χ,−η

+ ϕ−(P−χ,η xP−χ,η)P−χ,η + ϕ−(P−χ,ηΘ(x)P−χ,η)Pχ,−η .

6.5. CASE 5. Z(R(ε)) ∼ C3, # of orbits of ΘdZ(R(ε))= 3.
First choose {e11(1)ejj(2) , e22(1) : j = 1, 2} as the generators of Z(R(ε)).

We have two possibilities. Namely, there exist even states ϕj, on A{1}, i = 1, 2,
and an even state ϕ either on A{1}, or on (e22(1)A{0}e22(1)) ∨ A{1} such that, for
x ∈ A{0}, y ∈ A{1},

ε(xy) =
2

∑
j=1

Tr(xe11(1)ejj(2))ϕj(y)e11(1)ejj(2) + ϕ(y)e22(1)xe22(1) ,

respectively

ε(xy) =
2

∑
j=1

Tr(xe11(1)ejj(2))ϕj(y)e11(1)ejj(2) + ϕ(e22(1)xe22(1)y)e22(1) .
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Next, put P := e(1,2)(1,2) + e(2,1)(2,1) and choose {e(i,i)(i,i) , P : i = 1, 2} as the
generators of Z(R(ε)). Again, we have two possibilities. Namely, there ex-
ist even states ϕj, on A{1}, i = 1, 2, and an even state ϕ either on A{1}, or on
(PA{0}P) ∨A{1} such that, for x ∈ A{0}, y ∈ A{1},

ε(xy) =
2

∑
j=1

Tr(xe11(1)ejj(2))ϕj(y)e11(1)ejj(2) + ϕ(y)PxP ,

respectively

ε(xy) =
2

∑
j=1

Tr(xe11(1)ejj(2))ϕj(y)e11(1)ejj(2) + ϕ(PxPy)P .

Notice that the last possibilities correspond to nontrivial cases withR(ε) ⊂ A+.

6.6. CASE 6. Z(R(ε)) ∼ C3, # of orbits of ΘdZ(R(ε))= 2.
For χ ∈ T, choose {e11(1)Q±χ , e22(1)} as the generators of Z(R(ε)). We

have two possibilities. Namely, choose a state ϕ on e11(1)QχA[0,1]e11(1)Qχ, and
an even state ψ either on A{1}, or on (e22(1)A{0}e22(1)) ∨ A{1} such that, for x ∈
A{0}, y ∈ A{1},

ε(xy)= ϕ(e11(1)Qχxye11(1)Qχ)e11(1)Qχ+ϕ(e11(1)QχΘ(xy)e11(1)Qχ)e11(1)Q−χ

+ψ(y)e22(1)xe22(1) ,

respectively

ε(xy)= ϕ(e11(1)Qχxye11(1)Qχ)e11(1)Qχ+ϕ(e11(1)QχΘ(xy)e11(1)Qχ)e11(1)Q−χ

+ψ(e22(1)xe22(1)y)e22(1) .

6.7. CASE 7. Z(R(ε)) ∼ C2, # of orbits of ΘdZ(R(ε))= 2.
We treat only the following cases, the remaining ones follow analogously.

Choose p = e(1,1)(1,1), p⊥ as the generators ofZ(R(ε)). We have two possibilities.
Namely, there exists an even state ϕ on A{1}, and an even state ψ either on A{1},
or on (p⊥A{0}p⊥) ∨A{1} such that, for x ∈ A{0}, y ∈ A{1},

ε(xy) = Tr(xp)ϕ(y)p + ψ(y)p⊥xp⊥ ,

respectively
ε(xy) = Tr(xp)ϕ(y)p + ψ(p⊥xp⊥y)p⊥ .

6.8. CASE 8. Z(R(ε)) ∼ C2, # of orbits of ΘdZ(R(ε))= 1.
Choose {Q±χ} as the generators of Z(R(ε)). We have two possibilities.

First
ε(x) = ϕ(QχxQχ)Qχ + ϕ(QχΘ(x)Qχ)Q−χ , x ∈ A[0,1] ,

ϕ being a state on QχA[0,1]Qχ. Second, let B ⊂ A[0,1] be the tensor completion of
A{0} in A[0,1]. (According to (2.4), the subalgebra B is obtained by constructing
a systems {ekl(j) , fkl(j) : j, k, l = 1, 2} of four mutually commuting 2× 2 matrix
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units for A[0,1]. Notice that B is localized in the whole A[0,1], and is Θ-invariant.)
Then there exists a state ϕ on B such that for x ∈ A{0}, y ∈ B,

ε(xy) = ϕ(y)QχxQχ + ϕ(Θ(y))Q−χxQ−χ .

6.9. CASE 9. Z(R(ε)) ∼ C.
We treat only one possibility, the two remaining ones generating one step

product states (see e.g. Subsection 6.1 of [6]). Let N, N be the algebra generated
by a1, a†

1, a2, a†
2 respectively. Then there exists an even state ϕ on N ∨ A{1} such

that for x ∈ N, y ∈ N ∨A{1},

ε(xy) = ϕ(y)x .

Notice that this example is nothing but that the two block factor treated in Sub-
section 6.3 of [6]. This is easily seen by passing in [6], to the two point regrouped
algebra.

6.10. CASE 10. Two examples with A{n} ∼M23(C).
We describe two examples relative to more complicated situations than the

previous ones. Let {ai, a†
i : i = 1, 2, 3}, {bi, b†

i : i = 1, 2, 3} be the generators
of A{0}, A{1} respectively. Let {ekl(j) , fkl(j) : j, k, l = 1, 2} of commuting 2× 2
matrix units obtained according to (2.4), and realizing the isomorphism A[0,1] ∼
M2(C)⊗ · · · ⊗M2(C)︸ ︷︷ ︸

6–times

. Put for χ ∈ T,

Pχ :=
1
2
(1I + χa1 + χa†

1) .

First define Ni, Ni as the algebras generated by {eii(1)a2 , eii(1)a†
2}, {eii(1)a3 , eii(1)

a†
3}, i = 1, 2 respectively. Choose even states ϕi on Ni ∨ A{1}. Then for xi ∈ Ni,

y ∈ Ni ∨A{1},

ε
( 2

∑
i=1

xiyi

)
=

2

∑
i=1

ϕi(yi)xi .

Second define Nχ, Mχ as the algebras generated by {Pχeij(2) : i, j = 1, 2}, {Pχeij(3)
fkl(n) : i, j, k, l = 1, 2 , n = 1, 2, 3} respectively. Choose a state ϕ on Mχ. Then for
x±χ ∈ N±χ, y±χ ∈ M±χ,

ε(xχyχ + x−χy−χ) = ϕ(yχ)xχ + ϕ(Θ(y−χ))x−χ .
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