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1. INTRODUCTION

We start with a review on weighted Hardy–Hilbert spaces and on orbit
reflexivity. After that, in the next section, we prove the two main results of this
paper, Theorem 2.8 and Theorem 2.9, which assert that every composition opera-
tor and every adjoint of a composition operator is orbit reflexive.

1.1. WEIGHTED HARDY–HILBERT SPACES. For a sequence of positive numbers
β = {β(j)}∞

j=0 with β(0) = 1, we follow Allen Shields [7] in defining the weighted
Hardy–Hilbert space, denoted H2(β), to be the set of formal power series f =
∞
∑

j=0
ajzj whose coefficients are square-summable when weighted by β’s; i.e.,

H2(β) =
{

f =
∞

∑
j=0

ajzj : ‖ f ‖2
β =

∞

∑
j=0
|aj|2β(j)2 < ∞

}
,

with the inner product given by

〈 ∞

∑
j=0

ajzj,
∞

∑
j=0

cjzj
〉
=

∞

∑
j=0

ajcjβ(j)2.
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In order to ensure that the formal power series
∞
∑

j=0
ajzj actually represents an an-

alytic function on the unit disk, we will assume that

(1.1) lim
j→∞

β(j + 1)
β(j)

= 1.

It is immediate from Proposition 15 and Theorem 10 in [7] that this condition im-
plies that the formal power series in H2(β) represent functions which are analytic
in the unit disk.

Let D be the open unit disk in the complex plane. For ω ∈ D, the linear
functional of evaluation at ω is continuous, so, by the Riesz representation theo-
rem, there is a function Kω in H2(β) such that f (ω) = 〈 f , Kω〉 for all f ∈ H2(β).
The function Kω is called the reproducing kernel. The reproducing kernel is an-
alytic on the open unit disk and can be written using the generating function

k(z) =
∞
∑

j=0

zj

β(j)2 as Kω(z) = k(ωz). Moreover, we also have ‖Kω‖2 = k(|ω|2).

Let ϕ be a map from D to itself. We define Cϕ, the composition operator
induced by ϕ, acting on H2(β), by

(Cϕ f )(z) = f (ϕ(z)) ∀z ∈ D and f ∈ H2(β).

The action of the adjoint of the composition operators C∗ϕ on the reproducing
kernels is easily seen to be given by C∗ϕKω = Kϕ(ω).

It is well known that, on the classical Hardy–Hilbert space where β(j) ≡ 1,
every composition operator is a bounded operator. On a general H2(β) space not
every composition operator is bounded. We will restrict our attention to spaces
on which all composition operators are bounded. Our next assumption on the
sequence of β’s is that they are decreasing; i.e., they satisfy

(1.2) β(0) > β(1) > β(2) > · · · .

We have the following result from [1], page 119: on such a space, if ϕ satisfies
ϕ(0) = 0, then Cϕ is bounded on H2(β) and ‖Cϕ‖ = 1. We also note that this
condition automatically guarantees the following:

(1.3) k(1) =
∞

∑
j=0

1
β(j)2 = ∞,

which, in addition to being important by itself (see Proposition 2.5), also guaran-
tees that the simple relation C−1

ϕ = Cϕ−1 is valid whenever ϕ is invertible (Theo-
rems 1.6 and 2.15 of [1]).

We say that H2(β) is disk-automorphism invariant if all disk-automorphis-
ms induce bounded composition operators. Our final requirement on the se-
quence of the β’s is that the space H2(β) is disk-automorphism invariant. There
are several sufficient conditions for a space to be disk-automorphism invariant
which, for example, can be found in [1], page 119. The nested family Sα, α 6 0
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corresponding to β(j) = (j + 1)α, is an example of a family which satisfies all of
our conditions, and can be considered as a prototype.

We are now in position to show that condition (1.2) and disk-automorphism
invariance guarantee the boundness of composition operators.

PROPOSITION 1.1. Let the sequence of β’s be decreasing and such that the space
H2(β) is disk-automorphism invariant. Then every composition operator on H2(β) is
bounded.

Proof. Let ϕ be any analytic function from the unit disk into itself. Let ϕ0 =
ψ ◦ ϕ, where

ψ(z) =
ϕ(0)− z

1− ϕ(0)z
.

We have ϕ0(0) = 0. Since ψ−1 = ψ is an automorphism, we also have

Cϕ = Cϕ0 Cψ−1 = Cϕ0 Cψ.

Thus
‖Cϕ‖ 6 ‖Cϕ0‖ · ‖Cψ‖ = 1 · ‖Cψ‖ = ‖Cψ‖ < ∞,

where in the last step we have used the fact that H2(β) is disk-automorphism
invariant.

We denote the n-th iteration of ϕ by ϕ(n); i.e.,

ϕ(n) = ϕ ◦ ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
n times

,

with the corresponding composition operator

Cϕ(n) = Cn
ϕ.

The definition and the existence of the Denjoy–Wolff point is included in the next
theorem (see, for example, [1], [6]):

THEOREM 1.2 (Denjoy–Wolff Theorem). Let ϕ be an analytic self-map of the
unit disk other than an elliptic disk-automorphism. Then ϕ has a unique fixed point in D
(called the Denjoy–Wolff point) such that |ϕ′(a)| 6 1, and, if a ∈ ∂D, then 0 < ϕ′(a) 6
1. Moreover, ϕ(n) → a uniformly on compact subsets of D.

PROPOSITION 1.3. Let the sequence of β’s satisfy (1.2) and be such that the space
H2(β) is disk-automorphism invariant. Assume further that ϕ, an analytic self-map of
the unit disk, has its Denjoy–Wolff point a in D. Then Cϕ is power bounded.

Proof. The proof is similar to the proof of Proposition 1.1. Define the func-
tion ϕ0 = ψ ◦ ϕ ◦ ψ−1, where ψ is the following automorphism:

ψ(z) =
a− z

1− az
.
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We have ϕ0(0) = 0, as a is a fixed point of ϕ. Furthermore,

ϕ0 = ψ ◦ ϕ ◦ ψ−1 =⇒ ϕ = ψ−1 ◦ ϕ0 ◦ ψ =⇒ ϕ(n) = ψ−1 ◦ ϕ
(n)
0 ◦ ψ.

Notice that we have ϕ
(n)
0 (0) = 0 for all n. Using the relation CψCϕ = Cϕ◦ψ, we

obtain Cϕ(n) = CψC
ϕ
(n)
0

Cψ−1 . Thus

‖Cn
ϕ‖=‖Cϕ(n)‖=‖CψC

ϕ
(n)
0

Cψ−1‖6‖Cψ‖·‖C
ϕ
(n)
0
‖·‖Cψ−1‖=‖Cψ‖·1·‖Cψ−1‖<∞,

where in the last step we have used the fact that H2(β) is disk-automorphism
invariant.

Finally, we need to know the multiplier set of H2(β), which we denote by
H∞(β). The following is an easy corollary of Problem 68 in [4] and Lemma 5
in [8].

COROLLARY 1.4. H∞(β) = H∞(D) with equal norms.

This corollary will be used in the proof of Proposition 2.6.

1.2. ORBIT REFLEXIVITY.

DEFINITION 1.5. An operator A is orbit reflexive if whenever an operator B
leaves invariant all closed sets invariant under A, then B is in the strongly closed
semigroup generated by A and the identity operator I.

Orbit reflexive operators have been studied extensively in [3], where the
authors give sufficient conditions for an operator to be orbit reflexive. They also
conjectured that there were operators that were not orbit reflexive. An example
has recently been found by Grivaux and Roginskaya [2]. The operator in their
example is obtained by a modified Read-type construction and it is quite compli-
cated. Another example was also found very recently by Muller and Vršovský
[5]. They gave a simple Hilbert space example, and also a second example, this
time on a Banach space, of an operator which is reflexive but not orbit reflexive.

In [3] it is proven that any Hilbert space operator similar to a contraction
is orbit reflexive. Thus, whenever ϕ has its Denjoy–Wolff point a in D then Cϕ :
H2(β)→H2(β) is orbit reflexive since it is similar to the contraction Cϕ0 for ϕ0 =

ψ ◦ ϕ ◦ ψ, where ψ(z) = a−z
1−az . Nevertheless, we will prove orbit reflexivity of

composition operators and their adjoints without reliance on any result from [3].

2. ORBIT REFLEXIVITY OF COMPOSITION OPERATORS

In this section we prove that every composition operator and every adjoint
of a composition operator is orbit reflexive. We start by stating a proposition that
we call “the standard argument”, and then apply it to composition operators and
their adjoints.
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2.1. PRELIMINARIES. The following proposition is fundamental.

PROPOSITION 2.1. Let I be any uncountable subset of D. Then∨
ω∈I
{Kω} = H2(β).

Proof. Assume f ∈
( ∨

ω∈I
{Kω}

)⊥
. Then f (ω) = 〈 f , Kω〉 = 0 for all ω ∈ I.

Since I is uncountable it has an accumulation point in D. Since f is analytic in D,
and has zeros with an accumulation point in D, f must be the zero function. Thus( ∨

ω∈I
{Kω}

)⊥
= 0, and hence

∨
ω∈I
{Kω} = H2(β).

We are now ready to state and prove our standard argument.

PROPOSITION 2.2 (The standard argument). Assume that A and B are opera-
tors on H2(β) such that A is not an iterate of B and, for every ω in D, AKω is in the
closure of the orbit of Kω with respect to B. Then there exists a dense subset E of D (D \ E
is countable) such that, for every ω in E, AKω is a limit in H2(β) of a subsequence of the
sequence of iterates of B applied to Kω.

Proof. Let G be the set of ω’s in D such that AKω is an iterate of B applied
to Kω. If G is uncountable, then there exists a nonnegative integer m such that
AKω = BmKω for an uncountable set of ω’s in G. Since, by Proposition 2.1, the
closed linear span of an uncountable set of Kω, ω in D, is H2(β), we get that A is
the m-th iterate of B, contrary to the assumption. Thus G is countable, so the set
E = D \ G has the required property.

In order to be able to apply Proposition 2.2 to composition operators we need
some more preliminaries.

The following proposition is well known for H2(D).

PROPOSITION 2.3. If { fn}
β→ f in H2(β), then { fn} → f uniformly on compact

subsets of D.

Proof. Let K be a compact subset of D. For a fixed ω ∈ D, using the Cauchy-
Schwartz inequality, we obtain

(2.1) | fn(ω)− f (ω)| = |( fn − f )(ω)| = |( fn − f , Kω)| 6 ‖ fn − f ‖β · ‖Kω‖β.

We know that ‖Kω‖2 = k(|ω|2), so if we take M2 = sup
ω∈K

k(|ω|2) < ∞ we obtain

‖Kω‖ 6 M for all ω ∈ K. Using this in equation (2.1) gives

| fn(ω)− f (ω)| 6 M‖ fn − f ‖β ∀ω ∈ K,

which clearly implies the proposition.

We need two more technical results about the reproducing kernel Kω. We
start with a simple proposition.
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PROPOSITION 2.4. Let {an}∞
n=1 be a sequence of complex numbers inside D such

that lim
n→∞

an = a, where a ∈ D. Then {Kan}∞
n=1 converges in norm to Ka.

Proof. We have

‖Kan − Ka‖2
β = 〈Kan − Ka, Kan − Ka〉 = 〈Kan , Kan〉−〈Kan , Ka〉−〈Ka, Kan〉+〈Ka, Ka〉

= ‖Kan‖2 − Kan(a)− Ka(an) + ‖Ka‖2 = k(|an|2)− k(ana)− k(aan)

+ k(|a|2) n→∞−→ k(|a|2)− k(|a|2)− k(|a|2) + k(|a|2) = 0.

PROPOSITION 2.5. Let a ∈ D. If A is a bounded operator that satisfies AKω =
Kω(a) for all ω ∈ D, then a ∈ D.

Proof. Let us assume that a ∈ ∂D, and deduce a contradiction. We will prove
that

sup
ω∈D

‖AKω‖
‖Kω‖

= ∞,

contradicting the hypothesis that A is bounded.
Let ωn =

(
1− 1

n
)
a ∈ D. Then

‖AKω‖
‖Kω‖

=
Kω(a)
‖Kω‖

=
k(ωa)√
k(|ω|2)

.

Since aa = |a|2 = 1 we have

sup
ω∈D

‖AKω‖
‖Kω‖

= sup
ω∈D

k(ωa)√
k(|ω|2)

> sup
n

k(ωna)√
k(|ωn|2)

= sup
n

k
(
1− 1

n
)√

k
((

1− 1
n
)2) .

Finally, since we are also assuming that k(1) = ∞ (equation (1.3)), this last supre-
mum is obviously infinite.

2.2. APPLICATION TO COMPOSITION OPERATORS. For the proof that every com-
position operator and every adjoint of a composition operator is orbit reflexive,
we need the following two propositions.

PROPOSITION 2.6. Let ϕ be an analytic self-map of the unit disk with Denjoy–
Wolff point a ∈ D. Let the operator A be defined by the equations A f = 〈 f , Ka〉 for all
f ∈ H2(β). If Az belongs to the H2(β)-closure of {ϕ(n)}∞

n=0, then

A = lim
n→∞

Cn
ϕ

in the strong operator topology.

Proof. If a = Az = ϕ(k) for some positive integer k, we have ϕ = a (since
every analytic function which is not constant is an open map). This would imply
A = 〈·, Ka〉 = Ca = Cϕ, and so the result follows. So, without loss of general-
ity, assume that there is a subsequence {mj}∞

j=0 of the sequence of nonnegative
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integers such that

(2.2) Az = lim
j→∞

C
mj
ϕ

z.

For a fixed n > 1 we have

‖(Cmj
ϕ
−A)zn‖=‖(ϕ(mj))n−an‖=‖(ϕ(mj)−a)((ϕ(mj))n−1+a(ϕ(mj))n−1+· · ·+an−1)‖

(♥)
6 ‖ϕ(mj) − a‖ · ‖(ϕ(mj))n−1 + · · ·+ an−1‖H∞(D)

6 ‖ϕ(mj) − a‖ · (‖(ϕ(mj))n−1‖H∞ + · · ·+ ‖an−1‖H∞)

6 n · ‖ϕ(mj) − a‖ = n · ‖(Cmj
ϕ
− A)z‖ j→∞−→ 0,

where we applied Corollary 1.4 in the step (♥), and used equation (2.2) in the last
step. Hence we proved that

(2.3) A(zn) = lim
j→∞

C
mj
ϕ
(zn) ∀ n > 1.

We also have

(2.4) A1 = 〈1, Ka〉 = 1 = lim
j→∞

C
mj
ϕ

1.

From equations (2.3) and (2.4) it follows that {Cmj
ϕ
} converges to A on the basis

elements {zn}∞
n=0. So, A = lim

j→∞
C

mj
ϕ

on a dense set. Since ϕ has Denjoy–Wolff

point a ∈ D, we know by Theorem 1.3 that Cϕ is power bounded. Hence, we
conclude that A = lim

j→∞
C

mj
ϕ

in the strong operator topology.

We now claim that A = lim
n→∞

Cn
ϕ

in the strong operator topology. Let f ∈
H2(β) and ε > 0. Let M be such that ‖Cn

ϕ‖ 6 M for all n ∈ N ∪ {0}. Choose j
large enough so that

‖Cmj
ϕ f − A f ‖ < ε

M
.

For each n > mj, we have

‖Cn
ϕ f − A f ‖ = ‖Cn−mj

ϕ (C
mj
ϕ f − A f )‖ 6 M‖Cmj

ϕ f − A f ‖ < ε,

the key here being that composition operators leave constant functions alone.

For the adjoint of a composition operator we have the following similar
result.

PROPOSITION 2.7. Let ϕ be an analytic self-map of the unit disk with Denjoy–
Wolff point a ∈ D. Let the operator A be defined by A f = 〈 f , 1〉Ka for all f ∈ H2(β).
Then A = lim

n→∞
(C∗ϕ)n in the strong operator topology.
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Proof. Using the definition of the operator and the Denjoy–Wolff Theorem
together with Proposition 2.4, for each ω ∈ D we have the following:

‖((C∗ϕ)n − A)Kω‖2
β = ‖Kϕ(n)(ω) − Ka‖2 n→∞−→ 0.

Hence, for every ω ∈ D,
AKω = lim

n→∞
(C∗ϕ)

nKω.

Also, for any finite combination of Kω’s, we have∥∥∥((C∗ϕ)n − A)
( N

∑
j=0

bjKωj

)∥∥∥ =
∥∥∥ N

∑
j=0

bj((C∗ϕ)
n − A)Kωj

∥∥∥
6

N

∑
j=0
|bj|‖((C∗ϕ)n − A)Kωj‖

n→∞−→ 0.

By Proposition 2.1, we know that
∨

ω∈D
{Kω} = H2(β). We also note that, since

a ∈ D, we have by Proposition 1.3 that Cϕ is power bounded, and hence so is C∗ϕ.
Thus {(C∗ϕ)n}∞

n=1 is a bounded sequence of operators that converges strongly to
A on a dense set. We conclude that A = lim

n→∞
(C∗ϕ)n in the strong topology.

We are finally ready to state and prove the two main results of this paper.

THEOREM 2.8. Every composition operator is orbit reflexive.

Proof. Let a be the Denjoy–Wolff point of ϕ. Then the sequence of iterates of
Cϕ applied to Kω converges pointwise on D to Kω(a). Thus, if A is an operator
on H2(β) such that A f is in the closure of the orbit of Cϕ applied to f for every f
in H2(β), and is not an iterate of Cϕ, we get by the standard argument (Proposi-
tion 2.2), and the fact that convergence in H2(β) implies pointwise convergence
in D (Proposition 2.3), that AKω = Kω(a), for a dense set of ω’s in D. Since both
sides of this equality are continuous functions (of ω) from D to H2(β) (the right
hand side is even continuous from D to C), the equality holds for all ω in D.
Thus, by Proposition 2.5, a is in D, so AKω = CaKω for all ω in D. Consequently
A = Ca, and therefore, since we also know that Az is in the closure of the orbit of
Cϕ applied to the function z, we get from Proposition 2.6 that A is in the strong
closure of the set of iterates of Cϕ.

We have a similar result for the adjoint of a composition operator.

THEOREM 2.9. Every adjoint of a composition operator is orbit reflexive.

Proof. Let a be the Denjoy–Wolff point of ϕ. For every fixed z in D, the
function Kω(z) of the variable ω is continuous on the closed unit disc. Therefore
the sequence of iterates of C∗ϕ applied to Kω converges pointwise on D to Ka. Now,
if a is in the unit circle, then the function Ka is not in H2(β). Therefore, since
convergence in H2(β) implies pointwise convergence in D (Proposition 2.3), in
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this case the above sequence has no convergent subsequence in H2(β), for every
ω in D. Thus, if A is an operator on H2(β) such that A f belongs to the closure
in H2(β) of the orbit of f by C∗ϕ, for every f in H2(β), then for f = Kω, this
orbit has no convergent subsequence in H2(β). Since this holds for every ω in
D, the standard argument (Proposition 2.2) shows that in this case there exists
a nonnegative integer m such that A is the m-th iterate of C∗ϕ. This proves the
assertion for a in the unit circle.

Assume next that a is in D. Since the function mapping ω to Kω is continu-
ous from D to H2(β), it follows that for every ω in D, the the sequence of iterates
of C∗ϕ applied to Kω converges in H2(β) to Ka = C∗a Kω. Since this holds for every
ω in D and C∗ϕ is power bounded, we conclude that the sequence of iterates of
C∗ϕ converges strongly to the operator C∗a . Thus, A satisfies the above condition,
and is different from an iterate of C∗ϕ. We get, by the standard argument (Propo-
sition 2.2), that AKω = C∗a Kω, for all ω in D except perhaps for a countable set of
ω’s. Therefore A = C∗a , which we know, by Proposition 2.7, is the strong limit of
the iterates C∗ϕ. This concludes the proof.

REMARK 2.10. The results of Theorem 2.8 and 2.9 can easily be generalized
to finite direct sums instead of one operator; i.e., every finite direct sum of compo-
sition operators, every finite direct sum of adjoint of composition operators, and
every finite direct sum of composition operators and the adjoints of composition
operators is orbit reflexive.
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