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ABSTRACT. The Baire category theorem for operators, concerning the dense-
ness of the intersection of the ranges of certain sequences of continuous op-
erators in Banach spaces, is generalized to multivalued linear operators. As
an application we obtain a result which gives the denseness of the domains
and ranges of certain sequences of paracomplete linear relations in Banach
spaces. Results of Lennard and of Burlando about operators in Banach spaces
are recovered.
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INTRODUCTION

In 2.10 of [8], Burlando applies the Baire property for operators to obtain a
result which deals with the iterates of a paracomplete operator having nonempty
lower essential resolvent set. The purpose of this paper is to extend the results of
the type mentioned above to linear relations.

Section 1 contains the auxiliary results that we will need to prove the main
theorems of Section 2. We define and present some properties of the paracomplete
linear relations in Banach spaces and we also establish several entirely algebraic
results about linear relations in vector spaces.

In Section 2 we obtain the Baire category theorem for multivalued linear
operators (Theorem 2.2 below) which is applied to generalize a result of Burlando
([8], 2.10) to paracomplete linear relations in Banach spaces (Theorem 2.4 below).

0.1. NOTATIONS. We recall some basic definitions from the theory of linear rela-
tions in vector spaces following the notation and terminology of the book [11].

Let X be a vector space over K = R or C. A linear relation or multivalued
linear operator in X is a mapping T from a subspace D(T) of X, called the domain
of T, into P(X) \ {∅} (the collection of nonempty subsets of X) such that T(αx1 +
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βx2) = αTx1 + βTx2 for all nonzero scalars α, β and x1, x2 ∈ D(T). The class
of such relations T is denoted by LR(X). If T maps the points of its domain to
singletons then T is said to be a single valued or simply an operator.

A linear relation T is uniquely determined by its graph, G(T), defined by
G(T) := {(x, y) : x ∈ D(T), y ∈ Tx} which is a subspace of X × X. Let
T, S ∈ LR(X) . The sum T + S is the linear relation whose graph is G(T + S) :=
{(x, y + z) : (x, y) ∈ G(T), (x, z) ∈ G(S)}. If R(T) ∩ D(S) is nonempty, then the
composition or product ST is the linear relation defined by G(ST) := {(x, z) :
∃y ∈ X, (x, y) ∈ G(T), (y, z) ∈ G(S)}. The product of linear relations is clearly
associative. Hence Tn, n ∈ N, is defined as usual with T0 = I and T1 = T. Let
n ∈ N and let a0, a1, . . . , an ∈ K, with an 6= 0 if n > 1. If p denotes the polynomial

of degree n defined by p(λ) :=
n
∑

k=0
akλk for any λ ∈ K, then the linear relation

p(T) is defined by p(T) :=
n
∑

k=0
akTk. Notice that clearly D(p(T)) = D(Tn).

Let T ∈ LR(X). The inverse of T is the linear relation T−1 defined by
G(T−1) := {(y, x) : (x, y) ∈ G(T)}. The null space of T, denoted N(T), is the
subspace T−1(0) and the range of T is the subspace R(T) := T(D(T)). If T−1

is single valued, then T is called injective, that is, T is injective if and only if
N(T) = {0} and T is said to be surjective if its range coincides with the whole
space X.

Assume now that X is a normed space. Let QX
T(0)

(or simply QT), denote

the natural quotient map from X onto X/T(0). Clearly QTT is single valued. For
x ∈ D(T), ‖Tx‖ := ‖QTTx‖ and the norm of T is defined by ‖T‖ := ‖QTT‖. We
note that this quantity is not a true norm since ‖T‖ = 0 does not imply T = 0.

A linear relation T ∈ LR(X) is said to be continuous if ‖T‖ < ∞, bounded,
denoted T ∈ BR(X), if T is continuous and D(T) = X, open if T−1 is continuous
equivalently if γ(T) > 0 where γ(T) := sup{λ > 0 : λdist(x, N(T)) 6 ‖Tx‖, x ∈
D(T)} and T is called closed if its graph is a closed subspace.

Throughout this paper X will denote an infinite dimensional Banach space
and T will always denote an element of LR(X) except where stated otherwise.
We will denote the set of nonnegative integers by N.

The importance of investigation of linear relations is demonstrated by the
necessity of taking conjugates of operators with a non-dense domain used in ap-
plications to the theory of generalized differential equations ([9] and [25]) or by
the need of considering the inverse of certain operators, used, for example, in the
study of some Cauchy problems associated to parabolic type equations in Banach
spaces [13]. The spectral theory of multivalued linear operators provides tools for
studying important problems of operator theory as for example: the pseudoresol-
vent theory for operators, the spectral theory of ordered pair of operators and the
study of linear bundles (see [7], [14] and the references therein).
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Interesting works on multivalued linear operators include the treatise on
partial differential relations by Gromov [20], the application of multivalued meth-
ods to solution of differential equations by Favini and Yagi [13], the development
of fixed point theory for linear relations to the existence of mild solutions of quasi-
linear differential inclusions of evolution and also to many problems of fuzzy
theory (see, for example [1], [18], [24] and [27]), the application of multivalued
methods to Invariant Subspace problems ([19], [30]) and several papers on linear
relations type semiFredholm in normed spaces and in Hilbert spaces (see [2], [4],
[5], [11] and [15] among others).

Recall that a subspace M of X is called paracomplete or an operator range
or an endomorphism range if it is the image of an injective bounded operator
defined on some Banach space Z (see, for example, [10]).

We note that the injectivity condition is not too restrictive since if M is the
image of a bounded operator S with domain a Banach space Y, we could consider
the injective operator Ŝ defined by Ŝ : [y] ∈ Y/N(S) → Ŝ[y] := Sy. Therefore M
is an operator range with Z := Y/N(S).

Many normed spaces that appear in applications are paracomplete sub-
spaces, like the space C[0, 1] with the norm of L2[0, 1], some Sobolev spaces with
suitable L2-norms and the domain and range of a linear relation with complete
graph are operator ranges. But not all subspaces of a Banach space are paracom-
plete; for example the null space of a discontinuous linear functional.

Operator ranges are natural objects of investigation because every operator
range is the domain of a closed operator (see Lemma 1.6 below). There are many
reasons for their investigation, for example, one is that the Burnside theorem on
invariant subspaces of algebras of operators in finite dimensional spaces admits
an adequate generalization to strongly closed algebras of operators in Hilbert
spaces in terms of invariant operator ranges and other reason for their investiga-
tion is that every bounded operator defined on an operator range has a compact
spectrum set [5].

Paracomplete subspaces in Banach spaces were studied in the papers [5],
[6], [12], [17], [21], [26] and [31] among others.

1. BASIC ALGEBRAIC RESULTS AND PARACOMPLETE LINEAR RELATIONS

We begin this section giving some entirely algebraic results about linear re-
lations in vector spaces which will be need in Section 2. In the second part of this
section we define and obtain several properties of paracomplete linear relations
in Banach spaces which we will use in Section 2.

The following result, together with its proof, can be found in [28].

LEMMA 1.1. Let A be a linear relation in a vector space E and let λ ∈ K. Then
(i) For all n, m ∈ N
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D(An+m) ⊂ D(An), R(An+m) ⊂ R(An),

N(An+m) ⊃ N(An), An+m(0) ⊃ An(0),

N(An) ⊂ D(Am), An(0) ⊂ R(Am).

(ii) For all n, m ∈ N

D((λ− A)n) = D(An), (λ− A)n(0) = An(0),

N((λ− A)n) ⊂ D(Am), An(0) ⊂ R((λ− A)m).

We now establish the following four lemmata which were proved by Bur-
lando ([8], 2.1, 2.2, 2.3 and 2.4) for the case when A is an operator.

LEMMA 1.2. let A be a linear relation in a vector space E and let p be a nonzero
polynomial with coefficients in K. Then

(i) N(p(A)) ⊂ ⋂
m∈N

D(Am).

(ii) N(p(A)) ⊂ D(q(A)) and q(A)N(p(A)) ⊂ N(p(A)) + q(A)(0) for any poly-
nomial q with coefficients in K

Proof. (i) Follows immediately from Lemma 1.1.
(ii) The first inclusion of this assertion is an obvious consequence of Lem-

ma 1.1. Observe that clearly p(A) and q(A) commute, that is, p(A)q(A) =
q(A)p(A) in the sense of the product of linear relations. Therefore we have that
N(p(A)) ⊂ N(q(A)p(A)) (Lemma 1.1) = N(p(A)q(A)) so that we have the fol-
lowing which completes the proof:

q(A)N(p(A)) ⊂ q(A)N(p(A)q(A)) = q(A)q(A)−1N(p(A))

= {N(p(A)) ∩ R(p(A))}+ q(A)(0) ([11], I.3.1)

⊂ N(p(A)) + q(A)(0).

LEMMA 1.3. Let A be a linear relation in a vector space E and let p, q be polyno-
mials with coefficients in K without common roots in C. Then

(i) N(p(A)) + q(A)(0) = q(A)N(p(A)).
(ii) R(p(A)) ∩ R(q(A)) = R(p(A)q(A)).

Proof. (i) According to Lemma 1.2, it remains to show that

N(p(A)) + q(A)(0) ⊂ q(A)N(p(A)).

Since p and q have no common roots in K, there are polynomials u and v with
coefficients in K such that p(λ)u(λ) + q(λ)v(λ) = 1 for every λ ∈ K and hence

p(A)u(A) + q(A)v(A) = I.(1.1)

Let x ∈ N(p(A)) + q(A)(0), so that x = x1 + x2 for some x1 ∈ N(p(A)) and
some x2 ∈ q(A)(0). Since x1 ∈ N(p(A)), we have

p(A)u(A)x1 = p(A)u(A)(0) (by Lemma 1.1 and I.2.8 of [11]);(1.2)

v(A)x1 ⊂ N(p(A)) + v(A)(0) (by Lemma 1.2).
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Combining (1.1) and (1.2) we obtain

x ∈ p(A)u(A)x1 + q(A)v(A)x1 + q(A)(0)

⊂ p(A)u(A)(0) + q(A)N(p(A)) + q(A)v(A)(0) + q(A)(0)

= q(A)N(p(A)) + q(A)(0) = q(A)N(p(A)).

(ii) This statement is immediate from 3.3 of [28].

LEMMA 1.4. Let A be a linear relation in a vector space E and let p be a polynomial
of degree n, with coefficients in K. Then for any m ∈ N we have that p(A)D(An+m) =
p(A)(0) + {R(p(A)) ∩ D(Am)}.

Proof. Since D(p(A)) = D(An) we infer that D(An+m) = D(p(A)Am) =
D(Am p(A)) and so from this equality combined with I.3.1 of [11] we conclude
that p(A)D(An+m) = p(A)(0) + {R(p(A)) ∩ D(Am))}.

LEMMA 1.5. Let A be a linear relation in a vector space E. If for some m ∈ N,
dim(R(Am)/R(Am+1)) < ∞, then

dim(R(An)/R(An+k)) < ∞ for any n > m and for any k ∈ N.

Proof. Since for each i ∈ N one has

(D(Ai) + R(A))/(N(Ai) + R(A)) ∼= D(Ai)/(D(Ai) ∩ {N(Ai) + R(A)})
∼= R(Ai)/R(Ai+1) (by 2.3 and 4.1 of [29])

and D(An+k) ⊂ D(Am) and N(Am) ⊂ N(An+k) if n > m (by Lemma 1.1). It now
is easy to verify the desired statement.

The following elementary lemma concerning paracomplete subspaces will
be useful in the sequel.

LEMMA 1.6. Let M be a subspace of a Banach space X. The following properties
are equivalent:

(i) M is an operator range.
(ii) There exists a norm ‖ · ‖M on M such that (M, ‖ · ‖M) is a Banach space and

‖m‖ 6 ‖m‖M for any m ∈ M.
(iii) M is the domain of a closed operator S : D(S) ⊂ X → Y where Y is a Banach

space.

Proof. (i) ⇒ (ii) Let M be the image of a bounded operator defined in a
Banach space (M1, ‖ · ‖1) and we denote the operator mapping M1 onto M by αM
and the inverse of αM by βM.

Renorm M with ‖m‖M := ‖m‖+ ‖βMm‖1 for m ∈ M. It is easy to see that
‖ · ‖M is a complete norm on M.

(ii)⇒ (i) It is obvious, since the identity map from (M, ‖ · ‖M) onto (M, ‖ · ‖)
is bounded.

(i)⇒ (iii) If (i) holds then βM satisfies (iii).
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(iii) ⇒ (i) Assume that M is the domain of a closed operator S : D(S) ⊂
X → Y where Y is a Banach space.

Renorm M as follows: ‖m‖M := ‖m‖+ ‖Sm‖, m ∈ M. It is easy to prove
that this quantity defines a complete norm on M, as desired.

The notion of a paracomplete operator due to 2.1.2 of [8], can be naturally
generalized to linear relations.

DEFINITION 1.7. T is said to be paracomplete, denoted T ∈ PC(X), if its
graph is a paracomplete subspace of X× X.

Observe that a subclass of paracomplete linear relations in Hilbert spaces is
given by the class of quasi-Fredholm relations introduced and studied in [22].

PROPOSITION 1.8. Let T ∈ LR(X) with T(0) closed. Then T is paracomplete if
and only if so is QTT.

Proof. It is easy to prove that

If T(0) is closed, then (x, y) ∈ G(T)⇔ (x, QTy) ∈ G(QTT).(1.3)

Assume that T is paracomplete. Then G(T) is the image of a bounded opera-
tor S defined in a Banach space Z. Now, if we consider the map (IX , QT) : (x, y) ∈
X×X → (x, QTy) ∈ X×X/T(0) we obtain immediately from (1.3) that G(QTT)
is the image of the bounded operator (IX , QT)S. Therefore, G(QTT) is an oper-
ator range. Conversely, let G(QTT) be a paracomplete subspace of X × X/T(0).
Then by Lemma 1.6, there exist a closed operator U and a Banach space W such
that U : D(U) = G(QTT) ⊂ X × X/T(0) → W and applying again (1.3) we
deduce that G(T) is the domain of the closed operator U(IX , QT).

Evidently, every closed linear relation is paracomplete. However there ex-
ists a paracomplete linear relation T in a Banach space such that T(0) is not closed
(and hence T is not closed by II.5.3 of [11]). Indeed, it follows from 1.1 of [8] that
every infinite dimensional Banach space X has a non-closed paracomplete sub-
space M. Thus, let T ∈ LR(X) be the linear relation whose graph is X×M. Then
it is clear that T is paracomplete and T(0) = M is not closed.

PROPOSITION 1.9. Let T be paracomplete. Then:
(i) D(T) and R(T) are paracomplete subspaces of X.

(ii) If dimX/R(T) < ∞, then R(T) is closed.
(iii) If D(T) = X and T(0) is closed, then T is bounded and closed.

Proof. (i) Since the sum of two paracomplete subspaces of a Banach space
is a paracomplete subspace ([21], 2.2) and D(T) × Y = G(T) + ({0} × X), X ×
R(T) = G(T) + (X× {0}) ([11], I. 3.1), it follows the desired assertion.

(ii) Combining (i) and 2.1.1 of [21].
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(iii) By Proposition 1.8, QTT is a paracomplete operator with D(QTT) =
D(T) and thus from 2.1.5 of [21], QTT is bounded and since ‖T‖ := ‖QTT‖ ([11],
II.1.3), T ∈ BR(X) and now the closedness of T follows from II.5.1 of [11].

PROPOSITION 1.10. Let S, T ∈ PC(X) such that S(0) = S(0) ⊂ T(0) = T(0)
and D(T) ⊂ D(S). Then T + S ∈ PC(X).

Proof. Since S(0) = S(0) ⊂ T(0) = T(0) we have that T(0) = (T + S)(0)
is closed, QT = QT+S and QT = QX/S(0)

T(0)/S(0)QS by virtue of IV.5.2 in [11]. These
properties combined with Proposition 1.8 and the fact that the class of paracom-
plete operators is closed under sum and product ([21], 2.1.3) yield QT+S(T + S) =
QTT + QTS is a paracomplete operator and it follows again from Proposition 1.8
that T + S is a paracomplete linear relation.

Concerning product of paracomplete linear relations we will only need two
properties which are established in the following propositions.

PROPOSITION 1.11. Let T, S ∈ PC(X). Then:
(i) TS ∈ PC(X) if T is paracomplete and S is a bounded single valued.

(ii) TS ∈ PC(X) if S is paracomplete and there is a bounded injective operator P such
that T = P−1.

Proof. (i) It is clear that G(TS) = {(x, z) : (Sx, z) ∈ G(T)}. Now since G(T)
is paracomplete, G(T) is the domain of a closed operator U (Lemma 1.6) and it is
easy to show that then G(TS) is the domain of the closed operator U(S, IX) and
applying again Lemma 1.6 we obtain that TS is paracomplete.

(ii) By Lemma 1.6, there is a Banach space R and a closed operator V :
D(V) ⊂ X × X → R such that D(V) = G(S). Moreover, by the injectivity of
T we deduce that G(TS) = {(x, Ty) : (x, y) ∈ G(S)} and now it is immedi-
ate to prove that V(IX , P) is a closed operator with domain G(TS) and thus by
Lemma 1.6, TS is a paracomplete linear relation, as desired.

For a linear relation A ∈ LR(E) where E is a vector space, Sandovici, Snoo
and Winkler ([29], 3.2) introduced the concept of singular chain manifold by

Rc(A) :=
( ∞⋃

n=1

N(An)
)
∩
( ∞⋃

n=1

An(0)
)

and they proved that many of the results concerning the relationship between as-
cent, descent, nullity and defect for the case operators remain valid in the context
of linear relations only under the additional condition that the linear relation has
a trivial singular chain manifold, that is, Rc(A) = {0}.

PROPOSITION 1.12. Let T ∈ PC(X) with Rc(T) = {0}. Then Tn is paracom-
plete for any n ∈ N.
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Proof. Clearly, the condition Rc(T) = {0} implies that if (x, y) ∈ G(Tn+m)
with n, m ∈ N then there exists an unique z ∈ X such that (x, z) ∈ G(Tm) and
(z, y) ∈ G(Tn).

The proof is by induction. For n = 1 the result is trivial. Assume the as-
sertion for n, and let (x, y) ∈ G(Tn+1). Then there is an unique z ∈ X such that
(x, z) ∈ G(T) and (z, y) ∈ G(Tn) and it is easy to see that ‖(x, y)‖2

G(Tn+1)
:=

‖(x, z)‖2
G(T) + ‖(z, y)‖2

G(Tn) defines a norm on G(Tn+1) and proceeding as for the
single valued case ([21], 2.1.3), we conclude that ‖ · ‖G(Tn+1) is a complete norm
such that the canonical embedding of (G(Tn+1), ‖ · ‖G(Tn+1)) into G(Tn+1) is con-
tinuous, that is, G(Tn+1) is paracomplete.

We do not know if, in general, the product of two paracomplete linear rela-
tions is a paracomplete linear relation.

2. THE BAIRE PROPERTY AND THE DOMAIN OF ITERATES
OF A PARACOMPLETE LINEAR RELATION

Recall the following result due to Burlando ([8], 2.10) related to paracom-
plete operators T with nonempty lower essential spectrum, that is, such that the
set ρPC−(T) := {λ ∈ K : λ− T ∈ PC(X), dimX/R(λ− T) < ∞} is nonempty.

THEOREM 2.1. Let X be a complex Banach space and let T be an operator whose
domain is a subspace of X, whose range is contained in X and its lower essential resol-
vent set is nonempty. If (αn)n∈N and (βn)n∈N are scalar sequences such that (αnT +
βn IX)(D(T)) is dense in X for any nonnegative integer n, then

∞⋂
n=1

(αoT + βo IX) · · · (αn−1T + βn−1 IX)(D(Tn)) is dense in X.

It is the purpose of this section to extend the above theorem to multivalued
linear operators. For this end, we shall use Lemmata 1.1, 1.2, 1.3, 1.4 and 1.5, the
properties concerning paracomplete subspaces and paracomplete linear relations
established in Section 1 and also the following Baire property for linear relations.

THEOREM 2.2 (The Baire property for linear relations). Let (Xn, ‖ · ‖n)∞
n=0

be a sequence of Banach spaces and let (Tn)∞
n=1 be a sequence of bounded linear relations

such that each Tn maps Xn into Xn−1 with dense range and Tn(0) is closed for any n > 1.
Then

∞⋂
n=1

T1T2 · · · TnXn is dense in (Xo, ‖ · ‖o).

Proof. For m, n ∈ N with m 6 n we define

fm,n := Tm+1Tm+2 · · · Tn if m < n, and fm,n := IXm if m = n.
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Let xo ∈ Xo and let ε > 0. For n > 1, select xn ∈ Xn such that

d(xn−1, fn−1,n(xn)) <
ε2−(n−1)

‖T1‖‖T2‖‖Tn−1‖
if n > 1,(2.1)

where To is considered to be the identity in Xo.
For any n > 1, it is clear that Tn(0) ⊂ R(Tn) ⊂ Xn−1 = D(Tn−1) with Tn

and Tn−1 continuous and thus by II.3.13 of [11], ‖Tn−1Tn‖ 6 ‖Tn−1‖‖Tn‖.
Fixing m ∈ N, it follows that for n > m

‖ fm,n‖ 6 ‖Tm+1‖ · · · ‖Tn‖ if m < n, and ‖ fm,n‖ = 1 if m = n.(2.2)

Since d( fm,n(xn), fm,n+1(xn+1)) = d( fm,n(xn), fm,n( fn,n+1(xn+1)) 6 ‖ fm,n‖
d(xn, fn,n+1(xn+1)) 6 ε2−n/(‖T1‖ · · · ‖Tm‖) (by (2.1) and (2.2)) we have that

d( fm,n(xn), fm,n+1(xn+1)) 6 ε
2−n

(‖T1‖ · · · ‖Tm‖
.(2.3)

Furthermore if p > m and q > 0, by using (2.1), (2.2) and (2.3) we obtain

d( fm,p(xp), fm,p+q(xp+q))

= d( fm,p(xp), fm,p( fp,p+q(xp+q)) 6 ‖ fm,p‖d(xp, fp,p+q(xp+q))

6 ‖ fm,p‖[d(xp, fp,p+1(xp+1)) + d( fp,p+1(xp+1), fp+1,p+2(xp+2))

+ · · ·+ d( fp,p+q−1(xp+q−1), fp,p+q(xp+q))]

6
‖ fm,p‖ε ∑

i=p+q−1
i=p 2−i

‖T1‖ · · · ‖Tp‖
.

In particular, if p = m and n > m we have

d(xm, fm,n(xn)) <
ε

‖T1‖ · · · ‖Tm‖
n

∑
i=m

2−i := δm,n.(2.4)

For each n > m, choose zm,n ∈ fm,n(xn) = Tm+1Tm+2 · · · Tn(xn) ⊂ R(Tm+1)
⊂ Xm such that ‖xm − zm,n‖ < δm,n + ε/(‖T1‖ · · · ‖Tm‖). Then, it follows from the
above that (zm,n)n>m is a Cauchy sequence and since Xm is complete, (zm,n)n>m
converges to some zm ∈ Xm. Furthermore ‖xm − zm‖ < (2ε)/(‖T1‖ · · · ‖Tm‖).

Now, for n > m + 1 we have

d(zm,n, fm,m+1(zm+1,n))6d(zm,n, fm,n(xn)) + d( fm,n(xn), fm,m+1(zm+1,n))

=d( fm,m+1( fm+1,n(xn)), fm,m+1(zm+1,n))

6‖ fm,m+1‖d(zm+1,n, fm+1,n(xn))=0 (as zm,n ∈ fm,n(xn)))

that is

for n > m + 1, d(zm,n, fm,m+1(zm+1,n)) = 0.(2.5)

Moreover, since zm,n → zm if n → ∞ and fm,m+1 = Tm+1 is continuous it
follows that

d(zm, fm,m+1(zm+1)) = 0(2.6)
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that is, zm ∈ fm,m+1(zm+1) and thus

Q fm,m+1 zm

∈ Q fm,m+1 fm,m+1(zm+1) ⊂ Q fm,m+1 fm,m+1(zm+1)

= Q fm,m+1 fm,m+1(zm+1) (since Q fm,m+1 fm,m+1 = QTm,m+1 Tm+1 is single valued)

⇒ zm ∈ fm,m+1(zm+1) + N(Q fm,m+1) = fm,m+1(zm+1) + fm,m+1(0),

and since fm,m+1(0) = Tm+1(0) is closed, we obtain that

zm ∈ fm,m+1(zm+1).(2.7)

Since m ∈ N was fixed arbitrarily, it follows that zo ∈ f0,1(z1) = T1z1 ⊂
T1X1, z1 ∈ f1,2(z2) = T2z2 ⊂ T2X2 and thus zo ∈ T1T2X2 and continuing in this

way, we obtain that zo ∈
∞⋂

n=1
T1T2 · · · TnXn and, since ‖xo − zo‖ < 2ε with ε > 0

arbitrary, we conclude that
∞⋂

n=1
T1T2 · · · TnXn is dense in Xo, as desired.

The notion of lower essential resolvent set of an operator introduced in [8]
is generalized to linear relations as follows.

DEFINITION 2.3. Let T ∈ LR(X) where X is a complex Banach space. The
lower essential resolvent set of T is defined by ρPC−(T) := {λ ∈ C : λ − T ∈
PC(X), dimX/R(λ− T) < ∞}.

THEOREM 2.4. Let X be a complex Banach space and let T ∈ LR(X) such that
Rc(T) = {0}, Tn(0) is closed for any n ∈ N and ρPC−(T) 6= ∅. If (αn)n∈N and
(βn)n∈N are scalar sequences such that (αnT + βn IX)(D(T)) is dense in X for any
n ∈ N, then

∞⋂
n=1

(αoT + βo IX) · · · (αn−1T + βn−1 IX)(D(Tn)) is dense in X.

In particular, it follows that

(i)
∞⋂

n=1
D(Tn) is dense in X.

(ii)
∞⋂

n=1
R(Tn) is dense in X if R(T) is dense in X.

Proof. Since T has a lower essential resolvent set nonempty and T(0) is
closed we obtain from Proposition 1.10 that T is a paracomplete linear relation
and since T has a trivial singular chain manifold we conclude from Proposi-
tion 1.12 that Tn ∈ PC(X) for any n ∈ N. This last fact and Proposition 1.9
imply that for each n ∈ N, one has that D(Tn) is a paracomplete subspace of X.

Now for n ∈ N, we define Xo := (X, ‖ · ‖o) where ‖ · ‖o denotes the norm
of X and if n > 1, Xn := (D(Tn), ‖ · ‖n) where ‖ · ‖n denote a complete norm on
D(Tn) such that the canonical injection Γn from Xn into X is continuous.
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For any n ∈ N, we define the linear relations Tn, Jn : Xn+1 → Xn by

Tnx := Tx and Jnx := x for any x ∈ Xn+1.

Let n ∈ N. Clearly Tn = Γ−1
n TΓn+1. Since T is paracomplete and Γn+1 is a

bounded operator, TΓn+1 is paracomplete by virtue of Proposition 1.11 and thus
Γ−1

n (TΓn+1) is also a paracomplete linear relation by Proposition 1.11. Hence

Tn ∈ PC(Xn+1, Xn).(2.8)

Furthermore, by using I.1.2 and I.1.3 of [11] we have that

D(Tn) := D(Γ−1
n TΓn+1) = (TΓn+1)

−1D(Γ−1
n ) = Γ−1

n+1T−1D(Γ−1
n )

= Γ−1
n+1T−1R(Γn) = Γ−1

n+1T−1D(Tn) = Γ−1
n+1D(Tn+1) = D(Tn+1).

Consequently

D(Tn) = D(Tn+1).(2.9)

We note that D(T2) = T−1D(T) := {x ∈ D(T) : Tx∩D(T) 6= ∅} ([11], I.1.2
and I.1.3), so that T(0) ⊂ D(T) and continuing in this way, T(0) ⊂ D(Tn) for all
n ∈ N. In this situation, we have that Tn(0) is closed since

ΓnTn(0) ⊂ ΓnTn(0) = IR(Γn)T(0) = ID(Tn)T(0) = T(0) = T(0)

which implies that

Tn(0) ⊂ Γ−1
n T(0) = Tn(0).

Now, it follows immediately from (2.8), (2.9) and Proposition 1.9 that

Tn ∈ BR(Xn+1, Xn) and αTn + βJn ∈ BR(Xn+1, Xn) for all α, β ∈ C.(2.10)

Let α, β ∈ C such that (αT + βIX)(D(T)) is dense in X. We shall prove that
then

(αTn + βJn)(D(Tn+1) is dense in (D(Tn), ‖ · ‖n) for any n ∈ N.

Let η ∈ ρPC−(T), so that η − T ∈ PC(X) and dimX/R(η − T) < ∞ . Let
n ∈ N. Then arguing as in the single valued case (see the proof of 2.10 in [8]) by
using the algebraic results obtained in Section 1 we obtain that

N((η − T)n) ⊂ R(αTn + βJn) and(2.11)

R((η − T)n) ∩ (αT + βIX)(D(T)) = (η − T)n(R(αTn + βJn)).

Furthermore, it is known ([29], 7.1), that if A is a linear relation in a vector
space and α ∈ K, then the singular chain manifold of A coincides with the sin-
gular chain manifold of α − T. This fact combined with Proposition 1.12 yields
(η − T)n ∈ PC(X) if η ∈ ρPC−(T). Now, from Proposition 1.11, (η − T)nΓn ∈
PC(Xn, X) and since R(Γn) = D(Tn) = D((η − T)n) and Tn(0) is closed we de-
duce applying Proposition 1.9 that (η − T)nΓn ∈ BR(Xn, X) and it is clear that
R((η − T)nΓn) = R((η − T)n).
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Furthermore, by virtue of Lemma 1.5 we have that dimX/R((η− T)n) < ∞
and therefore R((η − T)nΓn) = R((η − T)n) is a closed subspace of X and thus
it follows from Closed Graph Theorem for linear relations ([11], III.5.4) that (η −
T)nΓn is open and proceeding exactly as in the proof of 2.10 of [8] we conclude
that

R(αTn + βJn) is dense in Xn.(2.12)

Now, by (2.11), (2.12) and the Baire property for linear relations (Theo-
rem 2.2) we have that

∞⋂
n=1

(α0T + β0 IX)(α1T + β1 IX) · · · (αn−1T + βn−1 IX)(D(Tn)) is dense in X0.

If αn = 0 and βn = 1 for all n ∈ N, then
∞⋂

n=1
D(Tn) is dense in X. Similarly,

(ii) follows if we take αn = 1 and βn = 0 for all n ∈ N.

Theorem 2.4 has the following interesting consequence.

COROLLARY 2.5. Let X be a complex Banach space and let T ∈ LR(X) be closed
and continuous such that D(T) = X and ρ(T) 6= ∅. If

(αnT + βn IX)(D(T)) is dense in X for any n ∈ N,

then
∞⋂

n=1

(αoT + βo IX) · · · (αn−1T + βn−1 IX(D(Tn)) is dense in X.

In particular, it follows that:

(i)
∞⋂

n=1
D(Tn) is dense in X.

(ii)
∞⋂

n=1
R(Tn) is dense in X if R(T) is dense in X.

Proof. Let T ∈ LR(X) be closed and continuous such that D(T) = X and
ρ(T) 6= ∅. Then T ∈ PC(X) (as T is closed). Assume that η ∈ ρ(T) ⊂ ρPC−(T).
Then η − T is closed and bijective and thus it follows from VI.5.2 of [11] that for
each n ∈ N (η− T)n has the same properties; in particular N(η− T)∩R(η− T) =
{0} which implies that Rc(η − T) = {0} by virtue of 3.3 in [29] and (η − T)n(0)
is closed. Hence the result follows by Theorem 2.4 upon noting that Rc(T) =
Rc(α − T) for any α ∈ C\{0} by 7.1 of [29] and that for each n ∈ N one has
(η − T)n(0) = Tn(0).

We note that the result of Corollary 2.5 extends a result due to Lennard [23].
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