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ABSTRACT. This paper is devoted to the study of L2-solutions of the operator
equations f − BMFaF−1 f = g, where a is the operator of multiplication by a
matrix a ∈ Lm×m

∞ (Rs), m, s ∈ N, F denotes the Fourier transform, and BM is
the dilation operator BM f (x) := f (Mx), x ∈ Rs, generated by a non-singular
matrix M ∈ Rm×m. This class of equations contains discrete and continuous
refinement equations widely used in wavelet analysis, signal processing, com-
puter graphics and other fields of mathematics and in applications.

It is shown that the set of nontrivial solutions of the homogeneous equation
is either empty or contains a subset isomorphic to a space L∞(VM), where VM
is a Lebesgue measurable set with positive Lebesgue measure. It follows that
the operator I− BMFaF−1 is Fredholm if and only if it is invertible. Moreover,
if the dilation M satisfies some mild conditions, then ker (I − BMFaF−1) ⊂
im (I − BMFaF−1).
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INTRODUCTION

Refinement equations play an important role in wavelet analysis and com-
putational mathematics. Discrete homogeneous refinement equations are used to
construct orthonormal wavelet bases in spaces Lm

2 (Rs), m > 1, s > 1 [9], [14], [15],
whereas discrete non-homogeneous equations arise while considering wavelets
on compactly supported subsets of Rs [15], [37], [39] and also in signal processing
to obtain multi-channel filters with good localization properties in time and fre-
quency domains [41]. On the other hand, continuous refinement equations have
important applications in non-stationary subdivision processes [11], multiresolu-
tion analysis and wavelets [5], and invariant densities for model sets and quasi-
crystals [3]. Therefore, solvability and properties of the solutions of refinement
equations have attracted a wide audience.
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However, despite a steady growth of results available in literature, many is-
sues remain open. This can probably be attributed to the widespread use of spe-
cific methods to establish solvability. For example, two approaches are normally
employed to show that a homogeneous refinement equation has a non-trivial so-
lution in some normed space. One approach uses distributional solutions, and
the other relies upon the convergence of certain approximation methods. Thus it
is relatively simple to find sufficient conditions for the existence of distributional
solutions of a discrete or continuous homogeneous refinement equation. More-
over, it is also possible to obtain effective representations for such solutions [4],
[11], [16], [43]. The next step is more demanding — viz. to show that the distri-
butional solution obtained belongs to a desired Hilbert or Banach space, which
uses different tools. Among the most effective are joint spectral radii of auxiliary
matrices [10], [17] and auxiliary operators [6], [7], [8], [44]. Another approach
exploits the convergence of various approximation methods in the normed space
of interest [14], [28], [31], [36], [45]. Of course, such methods depend upon the
approximation method adopted and the initial approximation chosen.

Let us note that the above classification is somewhat arbitrary and in many
cases the method can be assigned to either of these two groups. Indeed, although
each of these two strategies provides additional information about the possible
solution of refinement equations, neither discloses the whole picture — certain
peculiarities of the initial problem remain unexplored. The solvability of refine-
ment equations in the spaces L1 and L2 is the most completely studied, but even
then the results obtained are mainly concerned with refinement equations gen-
erated by polynomials or by functions with compact support — and aimed at
solutions with compact supports. Although such solutions play an important
role in applications, they are not the only solutions. The Haar refinement equa-
tion is one of the simplest examples, but in the space L2(R) it possesses a very
rich solution set in addition to the well-known and widely-used Haar function
[38].

The aim of this paper is to study L2-solutions of homogeneous and non-
homogeneous refinement equations, but our approach is not based on a distribu-
tional solution or approximation method. Moreover, different types of refinement
equations are considered from a unified point of view. This allows us to describe
common properties of such equations and their solutions. Thus the properties
established here do not depend on whether a refinement equation is discrete or
continuous, scalar or vector — or whether univariate or multivariate case is con-
sidered. They rely upon properties of the dilation matrix; and if this matrix sat-
isfies certain quite general conditions, then the solutions of the corresponding re-
finement equation have distinctive features. For example, for any homogeneous
refinement equation, the set of non-trivial L2-solutions is either empty or contains
a set isomorphic to a space L∞(VM) with a set VM having a positive Lebesgue
measure, and the corresponding refinement operator is Fredholm if and only if it
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is invertible. Thus if an homogeneous refinement equation has a non-trivial solu-
tion, the set of its solutions is quite large. Note that for some discrete refinement
equations with special dilations, the non-uniqueness of L2-solutions has already
been mentioned [12], [16], [20], [38], [40], [46]. Furthermore, in the present paper,
a description of the structure of the kernel space for refinement operators is given.
Necessary and certain sufficient conditions of the L2-solvability of homogeneous
and non-homogeneous equations are also obtained. Some conditions provide
the solvability of the refinement equation for any right-hand side from the space
Lm

2 (Rs), while others deal with a more delicate situation when the corresponding
equation is solvable under additional conditions — e.g. if an associated operator
is normally solvable and the right-hand side g of the non-homogeneous equation

(0.1) f − BMFaF−1 f = g

is a solution of the corresponding homogeneous equation, then equation (0.1) is
solvable.

It is also worth noting that the refinement operators are closely connected
with the weighted shift operators, and there is vast literature where such oper-
ators have been studied. In particular, Fredholmness of operators from differ-
ent algebras of weighted shift operators and properties of solutions of the cor-
responding equations are presented in [1], [2]. Nevertheless, it seems that prop-
erties of the refinement operators established here, have not been observed for
other classes of weighted shift operators.

1. REFINEMENT OPERATORS AND REFINEMENT EQUATIONS

Let s and m be positive integers, and let F and F−1, respectively, denote the
direct and inverse Fourier transforms, i.e.

(F f )(t) =
1

(2π)s/2

∫
Rs

e−i(y,t) f (y)dy, t ∈ Rs

(F−1 f )(t) =
1

(2π)s/2

∫
Rs

ei(y,t) f (y)dy, t ∈ Rs,

where

(y, t) :=
s

∑
k=1

yktk,

is the scalar product of vectors y = (y1, y2, . . . , ys) and t = (t1, t2, . . . , ts) of Rs.
Let Lm

2 (Rs) denote the set of vector-functions f = ( f1, f2, . . . , fm) with en-
tries from the space L2(Rs) and the norm

‖ f ‖2 =
( m

∑
j=1
‖ f j‖2

L2(Rs)

)1/2
.
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It is well known that if a ∈ Lm×m
∞ (Rs), then the convolution operator C(a) :=

FaF−1 is bounded on the space Lm
2 (Rs) and

‖FaF−1‖2 = ‖a‖∞,

where

(1.1) ‖a‖∞ = max
16j6m

ess sup
x∈Rs

√
λj(x),

and λj(x), j = 1, 2, . . . , m are the eigenvalues of the matrix a∗a. Note that for
any m > 1 we use the same symbol F to denote the Fourier transform on space
Lm

2 (Rs). If M is a non-singular s× s matrix of real numbers, then one can consider
an operator RM

a : Lm
2 (Rs)→ Lm

2 (Rs) defined by

(1.2) RM
a := BMFaF−1,

where

BM f (x) := f (Mx), x ∈ Rs.

The operator RM
a is called the refinement operator generated by the matrix function a

and matrix M, or simply the refinement operator. The matrix function a is called the
symbol of the operator RM

a . In wavelet literature it is usually assumed that M ∈ Zs×s

and

(1.3) lim
n→∞

M−n = 0.

Such matrices are called dilation matrices. For convenience, we will also use the
term “dilation" while speaking about the matrix M but now this term is attributed
not only to integer matrices with the property (1.3) but to any non-singular matrix
of real numbers.

In this work we study Fredholm properties of the operator I − RM
a and L2-

solutions of the corresponding homogeneous and non-homogeneous equations

f − RM
a f = 0;(1.4)

f − RM
a f = g, g ∈ Lm

2 (Rs).(1.5)

There are various papers where the solvability of equations (1.4) and (1.5) has
been studied under different assumptions on the symbol a and dilation matrix
M, and some results are discussed below. These investigations usually rely on
whether the refinement equation generated by a and M is discrete or continuous,
whether it is univariate or multivariate, and whether this is an equation for a
vector or scalar unknown function.

Throughout this paper, I − RM
a will be also referred as the refinement oper-

ator. Moreover, although the null function f0(x) = 0 almost everywhere on Rs

is always a solution of the equation (1.4), for convenience this equation is called
solvable if it has a non-trivial solution.
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EXAMPLE 1.1. Let m = s = 1, M = 2 and let a be a trigonometric polyno-
mial

a(t) =
N

∑
k=0

aktk, t = eix, x ∈ R.

The corresponding discrete homogeneous refinement equation has the form

(1.6) f (x) =
N

∑
k=0

ak f (2x− k).

The study of the solvability of equation (1.6) in different spaces has a long history
[4], [10], [14], [15], [16], [17], [31], [36], [44]. In particular, if

(1.7)
N

∑
k=0

ak = 2,

then equation (1.6) has the distributional solution

(1.8) f0 = F−1
( ∞

∏
j=1

a(2−j·)
)

.

Note that both condition (1.7) and solution (1.8) are especially valuable for the re-
finement equations considered in the space L1(R). Thus if equation (1.6) is solv-
able in L1(R) under condition (1.7), then the space of its solutions kerL1(R)(I −
R2

a) = span { f0}. On the other hand, if equation (1.6) is solvable, then the coeffi-
cients ak, k = 0, 1, . . . , N satisfy the condition

N

∑
k=0

ak = 2n

for certain n ∈ N, [16]. However, for the L2-solvability the condition (1.7) is not
as important as for the L1 case. Nevertheless, this condition is often used to study
the solvability of (1.6) not only in the space L1 but also in other normed spaces.

For the space L2(0, N), the solvability of the associate non-homogeneous
equation has been studied in [29], [42], and [29] also discusses the multivariate
analogue of equation (1.6). Distributional solutions of discrete non-homogeneous
equations were investigated in [24], [25], [30], [42]. Moreover, for compactly sup-
ported right-hand sides certain conditions of Lp-solvability of discrete non-ho-
mogeneous equations are presented in [42].

EXAMPLE 1.2. Let m > 1, s > 1 and c ∈ Lm×m
1 (Rs) and let M be an s × s

matrix of real numbers. We define the matrix function a by

a := (2π)s/2F−1(c).

Then by the convolution theorem, RM
a is the continuous refinement operator

RM
a f (x) =

∫
Rs

c(Mx− y) f (y)dy.
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For m = 1, s = 1, the solvability of the corresponding refinement equations and
spectral properties of the operator RM

a have been studied in [27], [32], [34], [35],
[43], and the multivariate case has also been investigated [33].

There are also papers where continuous and discrete refinement equations
are treated simultaneously. Distributional solutions of homogeneous equations
are considered in [11], and non-homogeneous refinement equations in [29], where
the multivariate case is studied as well.

2. NECESSARY CONDITIONS OF SOLVABILITY

Let us recall notions associated with Fredholm operators. For any normed
space X and bounded linear operator A on X, let im X A and kerX A denote the
range and null space of the operator A on X, respectively. The subscript X is
usually omitted if that does not cause confusion. The operator A : X 7→ X is called
Fredholm if it is normally solvable and the dimensions of the subspaces ker A and
ker A∗ are finite. Recall that the normal solvability of the operator A is equivalent
to the property that the range im X A of A is a closed subspace of X — i.e. an
operator A : X 7→ X is normally solvable if and only if im X A = im X A, where Y
denotes the closure of the subset Y in X, [26].

LEMMA 2.1. Let a ∈ Lm×m
∞ (Rs) and let M̂ := (MT)−1, where MT denotes the

matrix transpose to M. Equation (1.4) is solvable in space Lm
2 (Rs) if and only if the

equation

(2.1) BMT f − a
|det M| f = 0

is solvable in Lm
2 (Rs), and

dim kerLm
2 (Rs)(I − RM

a ) = dim kerLm
2 (Rs)

(
BMT −

a
|det M| I

)
(2.2)

= dim kerLm
2 (Rs)

(
I − a
|det M|BM̂

)
.

Proof. It is easily seen that

(2.3) F−1BM−1 = |det M| · BMTF−1.

Since F is a unitary operator on the space Lm
2 (Rs), the refinement operator RM

a is
unitary equivalent to the operator

(2.4) CM(a) :=
a

|det M|BM̂.

Therefore, the spectra of the operators RM
a and CM(a) coincide, and relations (2.1),

(2.2) follow.
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Let a ∈ Lm×m
∞ (Rs). For a non-singular matrix M ∈ Rs×s, let us consider the

non-negative number

∆M(a) := lim
n→∞

∥∥∥ n−1

∏
j=0

a((MT)j·)
∥∥∥1/n

∞
.

Note that the quantity ∆M(a) is connected with the spectral radius of the oper-
ator RM

a . For some classes of symbols a and dilations M, the number ∆M(a) is
evaluated in [18], [19], [21], [23].

THEOREM 2.2. Let the matrices M and a be as above, and λj, j = 1, 2, . . . , m
denote the eigenvalues of the matrix a∗a. If equation (1.4) has a non-trivial solution, then

(2.5)
√
|det M| 6 ∆M(a).

If, in addition,

(2.6) min
16j6m

ess inf
x∈Rs

√
λj(x) > 0,

then

(2.7)
√
|det M| ∈ [∆−1

M (a−1), ∆M(a)].

Proof. Since the refinement operator RM
a and the operator CM(a) of (2.4) are

unitarily equivalent the spectral radii ρ(RM
a ) and ρ(CM(a)) are equal. However,

the spectral radius of the operator CM(a) can be calculated by the formula [1], [2],

ρ(CM(a)) =
∆M(a)√
|det M|

,

that implies relation (2.5). On the other hand, if condition (2.6) is also satisfied,
the operator of multiplication by a is invertible, and repeating the previous argu-
ments for the operator a−1|det M| · BM̂−1 leads to inclusion (2.7).

COROLLARY 2.3. Let a ∈ Lm×m
∞ (Rs). If

(2.8)
√
|det M| /∈ [∆−1

M (a−1), ∆M(a)],

then the homogeneous refinement equation (1.4) has the trivial solution only; whereas the
non-homogeneous equation (1.5) is solvable for any right-hand side g ∈ L2(Rs), and its
solution is unique.

Note that if the operator of multiplication by the matrix a is not invertible,
then we set ∆−1

M (a−1) := 0 .
Consider now refinement equation (1.6) with a symbol a under the condi-

tion (1.7). Our analysis [18] shows that for such symbols

∆2(a) > 2,

so condition (2.5) of Theorem 2.2 is always satisfied. However, for invertible sym-
bols a, additional effort to verify condition (2.7) is needed. In fact, the author is
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not sure whether this has ever been done before. Instead, one usually considers
symbols that satisfy condition (2.5) and vanish somewhere in [0, 2π]. In wavelet
theory, the last requirement is often satisfied by imposing an additional condition
on the Fourier coefficients of the symbol a, viz.

∑
j

a2j+1 = ∑
j

a2j = 1,

[17]. For the continuous refinement equation

f (x) = α
∫
R

c(αx− y) f (y)dy,

with a dilation α 6= 0, one often considers kernels c ∈ L1(R) that satisfy the
condition [27], [32] ∫

R

c(y)dy = 1.

In this case ∆α(a) =
√

α, see[21], so the inequality (2.5) is obviously satisfied.
In order to study the Fredholm properties of refinement operators, let us

introduce certain notions concerning Lebesgue measurable sets of Rs, where all
relations for such sets are always understood to be modulo sets of Lebesgue mea-
sure zero. Let M ∈ Rs×s be an invertible matrix. We say that S ⊂ Rs is a quasi-
wandering set for M, or that the matrix M has a quasi-wandering set S, if S is a
Lebesgue measurable set and for any k, j ∈ Z, k 6= j either MkS ∩ MjS = ∅ or
Mkx = Mjx for all x ∈ S. Recall that in theory of dynamical systems, a set S is
called a wandering set for a matrix M if MkS ∩ MjS = ∅ for all k, j ∈ Z, k 6= j.
A quasi-wandering set is said to be complete if Rs =

⋃
k∈Z

MkS. The class of ma-

trices possessing complete quasi-wandering sets is large enough, for it contains
the dilation matrices used in wavelet analysis, and it also includes a variety of
other non-singular matrices. Some examples of matrices with complete quasi-
wandering sets are given below.

Of course, if a matrix M has a complete quasi-wandering set S, then it is al-
ways possible to choose an index set A such that MkS ∩MjS = ∅ for all k, j ∈ A,
k 6= j and Rs =

⋃
k∈A

MkS. The cardinality of such a set A is called the wandering

index of the set S under the action M, or simply the wandering index of S. The wan-
dering index is needed below to describe properties of null spaces of refinement
operators.

EXAMPLE 2.4. Let s be any positive integer and M ∈ Rs×s be an expansive
matrix — i.e. all eigenvalues of M have modulus greater than 1. From [13] the
matrix M has a complete wandering set S, so Rs =

⋃
k∈Z

MkS. As was already

mentioned, in wavelet theory one usually considers expansive matrices M ∈ Zs

as dilation matrices.
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The next two examples show that not expansive matrices can possess com-
plete quasi-wandering sets as well.

EXAMPLE 2.5. Let s = 2, l be a positive integer, and let M be the rotation
matrix

M =

 cos
π

l
− sin

π

l

sin
π

l
cos

π

l

 .

The set

S =
{
(x, y) ∈ R2 : x > 0, y > 0 and 0 < tan−1

( y
x

)
6

π

l

}
is a complete quasi-wandering set for M and R2 =

2l−1⋃
k=0

MkS.

EXAMPLE 2.6. Let s = 2, and let M be the diagonal matrix

M =

(
r 0

0 p

)
where 0 < r < 1 and p 6= 0. Then the set

S = {(x, y) ∈ R2 : x ∈ (−r−1,−1] ∪ [1, r−1) and y ∈ R}
is a complete quasi-wandering set for M and R2 =

⋃
k∈Z

MkS.

THEOREM 2.7. Let a ∈ Lm×m
∞ (Rs), and let the matrix MT ∈ Rs×s have a com-

plete quasi-wandering set. Then either

kerLm
2 (Rs)(I − RM

a ) = 0

or there is a subspace S ⊂ kerLm
2 (Rs)(I − RM

a ) and a set V ⊂ Rs, the Lebesgue measure
of which is positive, such that S is isomorphic to the space L∞(V).

Proof. Let SM ⊂ Rs be a complete quasi-wandering set for the matrix MT .
If the homogeneous refinement equation (1.4) has a non-trivial solution, then by
Lemma 2.1, there is a function f0 ∈ Lm

2 (Rs), f0 6= 0 such that

(2.9) f0(MTx) =
a(x)
|det M| f0(x), x ∈ Rs.

Moreover, since f0 6= 0, there is at least one j0 ∈ Z and a σ > 0 such that the set

VM = Vσ
M := {x ∈ (MT)j0 SM : | f0(x)| > σ}

has a positive Lebesgue measure. For any q0 ∈ L∞((MT)j0 SM) such that the
restriction of q0 onto VM is a non-zero element from L∞(VM), we define its ex-
tension q̃0 on the whole space Rs by

q̃0(x) =

{
q0((MT)−jx) if x ∈ (MT)j+j0VM, j ∈ Z,
0 otherwise.
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The function q̃0 is well-defined, belongs to the class L∞(Rs), and satisfies the
equation

q̃0(x) = q̃0(MTx) for all x ∈ Rs.(2.10)

Multiplying equations (2.10) and (2.9), one obtains that q̃0 f0 also is a solution
of equation (2.1), and it is not hard to show that ‖q̃0 f0‖2 6= 0. Thus the space
kerLm

2 (Rs)(BMT − (a/|det M|)I) contains a subset isomorphic to L∞(VM) and so
is the space ker(I − RM

a ).

The results of Theorem 2.7 allows us to characterise the Fredholmness of the
operator I − RM

a .

COROLLARY 2.8. Let matrices a and M satisfy the conditions of Theorem 2.7. If
the refinement operator I − RM

a is Fredholm, then:
(i) dim kerLm

2 (Rs)(I − RM
a ) = 0;

(ii) dim kerLm
2 (Rs)(I − (RM

a )∗) = 0.

Proof. If the operator I − RM
a is Fredholm, then dim kerLm

2 (Rs)(I − RM
a ) <

∞. However, if the dilation matrix MT possesses a complete quasi-wandering
set, then by Theorem 2.7 either dim kerLm

2 (Rs)(I − RM
a ) = 0 or dim kerLm

2 (Rs)(I −
RM

a ) = ∞ and relation (i) follows. To establish relation (ii) let us rewrite the
adjoint operator (I − RM

a )∗ as

(I − RM
a )∗ =

1
|det M|F(BM̂ − a∗ I)F−1BM−1 .

In the above transformation we used equation (2.3) with the matrix M instead of
M−1. Thus, the adjoint homogeneous equation

(2.11) (I − RM
a )∗ϕ = 0

has a non-trivial L2-solution if and only if the equation

(2.12) BM̂ ϕ = a∗ϕ

has a non-trivial L2-solution. If S is a complete quasi-wandering set for a ma-
trix MT , then it is also a complete quasi-wandering set for the matrix M̂ :=
(MT)−1. Following the proof of Theorem 2.7, one can show that the assump-
tion dim kerLm

2 (Rs)(I − RM
a )∗ 6= 0 implies dim kerLm

2 (Rs)(I − RM
a )∗ = ∞. The latter

relation contradicts the assumption that I − RM
a is a Fredholm operator.

Corollary 2.8 implies the following Fredholmness criterion for the operator
I − RM

a .

COROLLARY 2.9. Let matrices a and M satisfy the conditions of Theorem 2.7. The
refinement operator I − RM

a is Fredholm if and only if it is invertible.
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REMARK 2.10. There are similar results for some classes of weighted shift
operators. Their proof is based on the fact that a C∗-algebra generated by the
corresponding weighted shift operator, contains no non-trivial compact opera-
tors ([1], Theorem 8.3). However, our approach allows us to obtain additional
information concerning the kernels of the operators under consideration.

The operator

Ga,M := BMT −
a

|det M| I

plays a remarkable role in investigation of solvability of refinement equations.
Let us study this operator in more detail. Consider the adjoint operator

G∗a,M =
1

|det M| (BM̂ − a∗ I)

for the operator Ga,M.
For any f , ϕ ∈ Lm

2 (Rs), f = ( f1, f2, . . . , fm), ϕ = (ϕ1, ϕ2, . . . , ϕm), we define
a product 〈 f , ϕ〉 of f and ϕ by

〈 f , ϕ〉 :=
m

∑
k=1

fk ϕk.

LEMMA 2.11. Let matrices a and M satisfy the conditions of Theorem 2.7. If the
matrix MT has a complete quasi-wandering set S with infinite wandering index, then for
any f ∈ ker Ga,M and for any ϕ ∈ ker G∗a,M the function Ψf ,ϕ : Rs 7→ C defined by

(2.13) Ψf ,ϕ := 〈 f (MT ·), ϕ〉,

is equal to zero almost everywhere on Rs.

Proof. Rewriting the homogeneous equations Ga,M f = 0 and G∗a,M ϕ = 0 in
the form

(2.14) |det M| f (MTx) = a(x) f (x)

and

(2.15) a∗(MTx)ϕ(MTx) = ϕ(x),

and considering the products 〈·, ·〉 for the corresponding parts of (2.14), (2.15) one
obtains

|det M|〈 f (MT ·), a∗(MT ·)ϕ(MT ·)〉 = 〈a f , ϕ〉.
Hence

(2.16) |det M|〈a(MT ·) f (MT ·), ϕ(MT ·)〉 = 〈a f , ϕ〉.

Let us recall that a ∈ Lm×m
∞ (Rs) whereas both the elements f and ϕ belong to the

space Lm
2 (Rs). The function ψ f ,ϕ : Rs 7→ C defined by

ψ f ,ϕ := 〈a f , ϕ〉,
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therefore belongs to the space L1(Rs) and satisfies the equation

(2.17) ψ f ,ϕ = |det M|ψ f ,ϕ(MT ·)

almost everywhere on Rs. Then for any k ∈ Z, one obtains

(2.18) ψ f ,ϕ = |det M|k ψ f ,ϕ((MT)k·).

Using relations (2.17), (2.18) and the fact that the set S has infinite wandering
index, the L1-norm of the function ψ f ,ϕ may be represented as

‖ψ f ,ϕ‖L1(Rs) =
∫
Rs

|ψ f ,ϕ(x)|dx = ∑
k∈Z

∫
(MT)kS

|ψ f ,ϕ(x)|dx

= ∑
k∈Z
|det M|k

∫
S

|ψ f ,ϕ((MT)kx)|dx = ∑
k∈Z

∫
S

|ψ f ,ϕ(x)|dx.

Thus if ∫
S

|ψ f ,ϕ(x)|dx 6= 0

then ψ f ,ϕ /∈ L1(Rs). Hence ψ f ,ϕ = 0 almost everywhere on S, and using the
equation (2.18) once more it follows that 〈a f , ϕ〉 = 0 almost everywhere on Rs.
The application of the equation (2.14) leads to the equality

〈BMT f , ϕ〉 = 1
|det M| 〈a f , ϕ〉 = 0,

and the proof is complete.

For any set X ⊂ Lm
2 (Rs), let X⊥ denote the orthogonal complement of X in

Lm
2 (Rs).

COROLLARY 2.12. If matrices a and M satisfy the conditions of Lemma 2.11, then

(2.19) BMT (ker Ga,M) ⊂ (ker G∗a,M)⊥.

Proof. For any f ∈ ker Ga,M and for any ϕ ∈ ker G∗a,M, the function
Ψf ,ϕ(x) = 0 almost everywhere on Rs, so the inner product

(2.20) (BMT f , ϕ) =
∫
Rs

Ψf ,ϕ(x)dx = 0.

This finishes the proof.

THEOREM 2.13. If matrices a and M satisfy the conditions of Lemma 2.11, then

(2.21) ker (I − RM
a ) ⊂ im (I − RM

a ).
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Proof. Let f̃ and ϕ̃ be solutions of the equations (1.4) and (2.11), respectively.
Then f = F−1 f̃ and ϕ = F−1BM−1 ϕ̃ are solutions of the homogeneous equations
(2.1) and (2.12), respectively. From (2.3) and (2.20)

( f̃ , ϕ̃) = (F f , BMFϕ) = (B∗MF f ,Fϕ) =
1

|det M| (BM−1F f ,Fϕ)

=
1

|det M| (F
−1BM−1F f , ϕ) = (BMT f , ϕ) = 0,

hence

(2.22) ker (I − RM
a ) ⊂ (ker(I − RM

a )∗)⊥,

and since (ker A∗)⊥ = im A for any linear operator A [26], the inclusion (2.21)
follows.

Immediate application of this result leads to a solvability condition of non-
homogeneous refinement equations.

COROLLARY 2.14. Let matrices a and M satisfy the conditions of Lemma 2.11.
If the operator I − RM

a : Lm
2 (Rs) 7→ Lm

2 (Rs) is normally solvable, then for any g ∈
ker (I − RM

a ) the non-homogeneous refinement equation (1.5) is solvable.

Note that some methods for construction of wavelet bases on interval use
non-homogeneous equations with right-hand sides obtained from the solutions
of homogeneous refinement equations [39]. Thus the solvability conditions of
non-homogeneous equations presented in Corollary 2.14 can have a straightfor-
ward application in this case.

On the other hand, the normal solvability of the operator I − RM
a required

in Corollary 2.14, is not particularly well studied. Thus for operators with poly-
nomial symbols, conditions of normal solvability can be formulated in terms of
sequences of singular values of matrices arising in Galerkin approximations of
some auxiliary operators ([22], Theorem 6.3). However, it is desirable to have
more practical and more general results related to this issue.

In conclusion, we would like to emphasize that results of this paper are
valid for refinement equations of any kind: scalar or vector, univariate or mul-
tivariate, discrete or continuous, or even for combination of discrete and con-
tinuous equations. It is interesting to compare them with known results for L1-
solvability. For definiteness, consider a discrete refinement equation with a poly-
nomial symbol on R. The most obvious difference is the number of solutions
for the homogeneous equation. Thus if a discrete homogeneous equation has a
compactly supported solution then dim kerL1(R)(I− RM

a ) = 1, whereas in similar
circumstances dim kerL2(R)(I − RM

a ) = ∞. The spectrum structure of the opera-
tor RM

a considered on L2(R) and L1(−K, K), where (−K, K) is an interval of R,
is also different. In the L1(−K, K)-case, the spectrum of the operator RM

a consists
of disjoint points of the real line R with zero as the only possible accumulation
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point, whereas for the L2(R)-case the spectrum of the same operator can include
intervals as well [38]. It would probably be more appropriate to make compar-
ison with the spectra of the operator RM

a considered on the space L1(R) but the
author is not aware of the corresponding results. Nevertheless it is evident that
the spectral properties of this operator are very different for different normed
spaces. Indeed, although solutions with compact support play an extremely im-
portant role in the solvability of refinement equations, their choice as a starting
point for the study of solvability in other normed spaces can lead to a loss of
useful information.
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