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ABSTRACT. We prove a Künneth formula computing the Connes–Shlyakh-
tenko L2-Betti numbers of the algebraic tensor product of two tracial ∗-alge-
bras in terms of the L2-Betti numbers of the two original algebras. As an
application, we construct examples of compact quantum groups with a non-
vanishing first L2-Betti number.
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INTRODUCTION

The theory of L2-invariants originates from the work of Atiyah [1] and was
further developed by Cheeger and Gromov in [3] and later by Lück in [11], [12]
and [13]. One of the pleasant features of Lück’s approach is the algebraic setup
which allows the usage of all the powerful tools of homological algebra; for in-
stance the L2-homology of a discrete group Γ can be written as

H(2)
n (Γ) = TorCΓ

n (L (Γ),C),

where L (Γ) denotes the group von Neumann algebra. The L2-Betti numbers
of Γ are then obtained by applying the extended dimension function to the L2-
homology; in symbols β

(2)
n (Γ) = dimL (Γ) H(2)

n (Γ). These L2-Betti numbers per-
mit a Künneth formula ([3], 2.7); i.e. for two discrete groups Γ and Λ we have
that

β
(2)
n (Γ×Λ) = ∑

k+l=n
β
(2)
k (Γ)β

(2)
l (Λ).

In the beginning of the present century, Connes and Shlyakhtenko [4] took the
development of L2-invariants a step further by defining L2-homology and L2-
Betti numbers for any weakly dense ∗-subalgebra A in a tracial von Neumann
algebra (M, τ); these are denoted H(2)

n (A, τ) and β
(2)
n (A, τ) respectively. The
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Connes–Shlyakhtenko L2-Betti numbers generalize the classical L2-Betti numbers
for groups by means of the formula

β
(2)
n (CΓ, τ) = β

(2)
n (Γ),

where τ is the natural trace on the group von Neumann algebra L (Γ). The aim
of the present note is to prove a Künneth formula for the Connes–Shlyakhtenko
L2-Betti numbers; i.e. to show that for weakly dense ∗-subalgebras A and B of
tracial von Neumann algebras (M, τ) and (N, ρ) we have

β
(2)
n (A� B, τ ⊗ ρ) = ∑

k+l=n
β
(2)
k (A, τ)β

(2)
l (B, ρ).

0.1. NOTATION. Above, and in what follows, � is used to denote algebraic ten-
sor products which, unless specified otherwise, are assumed to be over the com-
plex numbers. The symbol⊗will be reserved to denote the minimal tensor prod-
uct of C∗-algebras, while ⊗ will be used to denote the tensor product in the cat-
egory of von Neumann algebras as well as the tensor product in the category of
Hilbert spaces. Moreover, for any algebra A we denote by Aop the opposite alge-
bra and by Aev the enveloping algebra A� Aop. For a von Neumann algebra M
we let Mev denote the completed tensor product M⊗Mop.

0.2. STRUCTURE. The rest of the paper is organized in the following way: Sec-
tion 1 is devoted to prove some minor results concerning the extended dimension
function. These will be used in the proof of the Künneth formula (Theorem 2.1)
which is presented in Section 2. In the fourth and final section we show how
the Künneth formula can be used to manufacture non-trivial compact quantum
groups with a non-vanishing first L2-Betti number.

1. A BIT OF DIMENSION THEORY

In this section we prove a few minor results related to Lück’s generalized
Murray–von Neumann dimension dimM(−); this is a dimension function de-
fined on the category of all (algebraic) modules over a finite von Neumann al-
gebra M taking values in the interval [0, ∞]. For the definition and properties
of this dimension function the reader is referred to Chapter 6 in [14]. All three
results in this section are derived, without much effort, from the work of Lück,
but since they are not made explicit in the literature we present them here for the
convenience of the reader.

Throughout this section, M will denote a finite von Neumann algebra with
a specified normal, faithful, tracial state τ and all calculations of Murray–von
Neumann dimensions of M-modules are implicitly assumed to be with respect to
the trace τ. To fix notation, we recall that if X is a submodule of an M-module Y
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the algebraic closure of X (relative to Y) is defined as

Xalg
=

⋂
ϕ∈Hom(Y,M), X⊆ker(ϕ)

ker(ϕ).

Moreover, the projective part P(X) of a module X is defined as X/{0}alg
and if X

is finitely generated, P(X) is in fact a finitely generated projective module. In the
sequel, we will denote by πX the natural surjection of X onto P(X). As is easily
seen, P(−) becomes an endo-functor on the category of M-modules.

LEMMA 1.1. For a homomorphism f : X → Y between finitely generated M-
modules we have dimM Im( f ) = dimM Im(P( f )).

Proof. Since Im(P( f )) = Im(πY ◦ f ) = πY(Im( f )) we have a short exact
sequence

0 −→ ker(πY|Im( f ))
⊆−→ Im( f )

πY−→ Im(P( f )) −→ 0.(1.1)

The kernel ker(πY|Im( f )) is contained in the zero-dimensional M-module ker(πY)

and is therefore itself zero dimensional. Applying additivity of dimM(−) to the
short exact sequence (1.1) we therefore get, as desired, the following:

dimM Im(P( f )) = dimM Im( f )− dimM ker(πY|Im( f )) = dimM Im( f ).

LEMMA 1.2. Let f : P → Q be a homomorphism of finitely generated projective
M-modules and consider the continuous extension f (2) : L2(P) −→ L2(Q) of f between
the Hilbert M-module completions of P and Q. Then

dimM Im( f ) = dimM Im( f (2)),

where the closure on the right hand side is with respect to the Hilbert space norm.

More details about the notion of L2-completion of projective modules can
be found in [11].

Proof. By Theorem 6.24 of [14], the completion-functor L2(−), from the cate-
gory of finitely generated projective M-modules to the category of finitely gener-
ated Hilbert M-modules, is weakly exact and dimension preserving with weakly
exact and dimension preserving inverse. Applying this to the weakly exact se-
quence

P
f−→ Im( f )

alg −→ 0

we get the following, where the last identity follows from Theorem 6.7 of [14]:

dimM Im( f (2)) = dimM L2(Im( f )
alg

) = dimM Im( f )
alg

= dimM Im( f ).

The above two lemmas are included in order to prove the following re-
sult which will be essential in the proof of the Künneth formula. The claim in
Lemma 1.3 is nested in the proof of Theorem 6.54 in [14], but in order to clarify
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the proof of Theorem 2.1 we have extracted the result as a separate lemma and
included a proof.

LEMMA 1.3. Let F = (F∗, f∗) and G = (G∗, g∗) be chain complexes consist-
ing of finitely generated projective M-modules and consider a morphism of complexes
ϕ : F → G. Denote by L2(F) = (L2(F∗), f (2)∗ ) and L2(G) = (L2(G∗), g(2)∗ ) the com-
pletions of F and G into Hilbert M-chain complexes and by ϕ(2) : L2(F) → L2(G) the
morphism induced by ϕ. From these data we obtain three induced morphisms on the level
of homology:

Hn(ϕ) : Hn(F) −→ Hn(G)
def=

ker(gn)

Im(gn+1)
;

Hn(ϕ) : Hn(F) −→ Hn(G)
def=

ker(gn)

Im(gn+1)
alg ;

H(2)
n (ϕ(2)) : H(2)

n (L2(F)) −→ H(2)
n (L2(G))

def=
ker(g(2)n )

Im(g(2)n+1)
.

The claim now is that dimM Im(Hn(ϕ)) = dimM Im(H(2)
n (ϕ(2))).

Proof. We first note that the homology modules Hn(F) and Hn(G) appear-
ing in Lemma 1.3 are finitely generated so that Lemma 1.1 and Lemma 1.2 apply;
this is due to the fact that M is a semihereditary ring and therefore ([11], 0.2) its
category of finitely presented modules is abelian. From Lemma 6.52 of [14] we get
an isomorphism Hn(F) ' P(Hn(F)) under which Hn(ϕ) corresponds to PHn(ϕ)

and an isomorphism L2(PHn(F)) ' H(2)
n (L2(F)) under which (PHn(ϕ))(2) cor-

responds to H(2)
n (ϕ(2)). Hence

dimM Im(Hn(ϕ)) = dimM Im(PHn(ϕ)) (by Lemma 1.1)

= dimM Im((PHn(ϕ))(2)) (by Lemma 1.2)

= dimM Im(H(2)
n (ϕ(2))).

2. THE KÜNNETH FORMULA

Let (M, τ) and (N, ρ) be tracial von Neumann algebras and let A ⊆ M and
B ⊆ N be weakly dense ∗-subalgebras. Then the algebraic tensor product A� B is
a weakly dense ∗-subalgebra in the tracial von Neumann algebra (M⊗N, τ ⊗ ρ),
and our aim now is to prove the following Künneth formula for the Connes–
Shlyakhtenko L2-Betti numbers introduced in [4].
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THEOREM 2.1. For every n > 0 we have

β
(2)
n (A� B, τ ⊗ ρ) = ∑

k+l=n
β
(2)
k (A, τ)β

(2)
l (B, ρ),

where β
(2)
∗ (−,−) are the Connes–Shlyakhtenko L2-Betti numbers of the tracial ∗-algebra

in question.

Note that the L2-Betti numbers might be infinite and the Künneth formula
is therefore to be understood with respect to the standard rules for addition and
multiplication in [0, ∞].

Proof. Let F = (F∗, f∗) and G = (G∗, g∗) denote the bar-resolutions ([10],
1.1.12) of A and B respectively. Consider their tensor product F � G = E which
in degree n has the module

En =
⊕

k+l=n

Fk � Gl ,

and whose n-th differential en : En → En−1 is given by the formula

en(x⊗ y) = fk(x)⊗ y + (−1)kx⊗ gl(y),

for a homogeneous element x ⊗ y ∈ Fk � Gl . Since both F and G are acyclic the
same is true for E (see e.g. 2.7.3 of [16]) and E therefore constitutes a resolution
of A� B in the category of A� B-bimodules — a category we will freely identify
with the category of left modules over (A � B)ev = (A � B) � (A � B)op. As
proven in Lemma 2.2 of [4], the bar resolution F can be written as an inductive
limit of a family of subcomplexes (F∗,i, f∗,i)i∈I where each Fi = (F∗,i, f∗,i) is a
complex of finite length consisting of finitely generated free Aev-modules. If we
denote the n-th homology of the complex

FvN
i

def= (M⊗Mop �A�Aop F∗,i, 1⊗ f∗,i)

by Hn(FvN
i ) and by Hn(ϕvN

i2i1
) : Hn(FvN

i1
) → Hn(FvN

i2
) the map induced by the

inclusion ϕi2i1 : Fi1 ↪→ Fi2 whenever i2 > i1, then the L2-homology H(2)
n (A, τ)

can be calculated as the inductive limit lim−→(Hn(FvN
i ), Hn(ϕvN

i2i1
)). Since each Fn,i is

finitely generated, it follows from Theorem 6.13 of [14] that

β
(2)
n (A, τ) = sup

i1
inf

i2>i1
dimM⊗Mop Im(Hn(ϕvN

i2i1))

= sup
i1

inf
i2>i1

dimM⊗Mop Im(H(2)
n (ϕ

(2)
i2i1

)),(2.1)

where the last equality follows from Lemma 1.3. In a similar manner we obtain
the L2-homology H(2)

n (B, ρ) as the inductive limit lim−→(Hn(GvN
j ), Hn(ψvN

j2 j1
)) aris-

ing from a family of finite length subcomplexes (G∗,j, g∗,j)j∈J , each consisting of
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finitely generated free Bev-modules, and hence

β
(2)
n (B, ρ) = sup

j1
inf

j2>j1
dimN⊗Nop Im(Hn(ψ

vN
j2 j1))

= sup
j1

inf
j2>j1

dimN⊗Nop Im(H(2)
n (ψ

(2)
j2 j1

)).(2.2)

The two families (Fi)i∈I and (Gj)j∈J define a directed family of subcomplexes
(Fi � Gj)(i,j)∈I×J of E (I × J is ordered by setting (i1, j1) 6 (i2, j2) if and only if
i1 6 i2 and j1 6 j2) which has E as its inductive limit. We now put Ei,j = Fi � Gj

and denote by Hn(EvN
i,j ) the n-th homology of the induced complex

EvN
i,j

def= ((M⊗N)⊗(M⊗N)op �(A�B)ev E∗,i,j, 1⊗ e∗,i,j).

For (i2, j2) > (i1, j1), the inclusion ϕi2i1 ⊗ ψj2 j1 induces a map

Hn((ϕi2i1 ⊗ ψj2 j1)
vN) : Hn(EvN

i1,j1) −→ Hn(EvN
i2,j2),

and just as above we get

H(2)
n (A� B, τ ⊗ ρ) = lim−→ (Hn(EvN

i,j ), Hn((ϕi2i1 ⊗ ψj2 j1)
vN)).

Denoting the completed tensor product (M⊗N)⊗(M⊗N)op by (M⊗N)ev we get

β
(2)
n (A� B, τ ⊗ ρ) = sup

(i1,j1)
inf

(i2,j2)>(i1,j1)
dim(M⊗N)ev Im(Hn((ϕi2i1 ⊗ ψj2 j1)

vN))

= sup
(i1,j1)

inf
(i2,j2)>(i1,j1)

dim(M⊗N)ev Im(H(2)
n ((ϕi2i1 ⊗ ψj2 j1)

(2))).(2.3)

For each (i, j) ∈ I × J we now have two finitely generated Hilbert chain com-
plexes; namely the Hilbert (M⊗N)ev-chain complex L2(Ei,j) and the tensor prod-
uct of Hilbert chain complexes L2(Fi)⊗L2(Fj) (see e.g [14]) which becomes a
Hilbert chain complex for the von Neumann algebra Mev⊗Nev. The two von
Neumann algebras in question are ∗-isomorphic in a trace-preserving way via
the map

(M⊗Mop)⊗(N⊗Nop)
α−→ (M⊗N)⊗(M⊗N)op,

given by a⊗ cop ⊗ b⊗ dop 7→ a⊗ b⊗ (c⊗ d)op. Through the isomorphism α we
may therefore consider L2(Ei,j) as a Hilbert Mev⊗Nev-chain complex; when do-
ing so we write it as αL2(Ei,j). The Hilbert chain complex αL2(Ei,j) is nothing but
the tensor product complex L2(Fi)⊗L2(Gj) and by Lemma 1.22 of [14] this iden-
tification gives rise to an Mev⊗Nev-isomorphism on the level of L2-homology:

α H(2)
n (L2(Ei,j)) = H(2)

n (αL2(Ei,j))
∼−→

⊕
k+l=n

H(2)
k (L2(Fi))⊗H(2)

l (L2(Gj)).
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For each (i1, j1) 6 (i2, j2) we therefore get a commutative diagram of Hilbert
Mev⊗Nev-modules

α H(2)
n (L2(Ei1,j1))

∼ //

α H(2)
n ((ϕi2 i1

⊗ψj2 j1
)(2))

��

⊕
k+l=n

H(2)
k (L2(Fi1))⊗H(2)

l (L2(Gj1))

⊕
k+l=n

H(2)
k (ϕ

(2)
i2 i1

)⊗H(2)
l (ψ

(2)
j2 j1

)

��

α H(2)
n (L2(Ei2,j2))

∼ //
⊕

k+l=n

H(2)
k (L2(Fi2))⊗H(2)

l (L2(Gj2)).

For any finitely generated Hilbert (M⊗N)ev-module X we have

dim(M⊗N)ev X = dimMev⊗Nev αX,

simply because α is a trace-preserving ∗-isomorphism. We therefore get

dim(M⊗N)ev Im(H(2)
n ((ϕi2i1 ⊗ ψj2 j1)

(2)))

= dimMev⊗Nev Im(α H(2)
n ((ϕi2i1 ⊗ ψj2 j1)

(2)))

= dimMev⊗Nev Im
( ⊕

k+l=n

H(2)
k (ϕ

(2)
i2i1

)⊗ H(2)
l (ψ

(2)
j2 j1

)
)

= dimMev⊗Nev

⊕
k+l=n

Im(H(2)
k (ϕ

(2)
i2i1

))⊗ Im(H(2)
l (ψ

(2)
j2 j1

))

= ∑
k+l=n

dimMev (Im(H(2)
k (ϕ

(2)
i2i1

)))dimNev (Im(H(2)
l (ψ

(2)
j2 j1

))),(2.4)

where the last equality follows from Theorem 1.12 of [14]. Combining all the
formulas obtained so far, the desired identity follows:

β
(2)
n (A� B, τ ⊗ ρ)

(2.3)
= sup

(i1,j1)
inf

(i2,j2)>(i1,j1)
dim(M⊗N)ev Im(H(2)

n ((ϕi2i1 ⊗ ψj2 j1)
(2)))

(2.4)
= sup

(i1,j1)
inf

(i2,j2)>(i1,j1)
∑

k+l=n
dimMev (Im(H(2)

k (ϕ
(2)
i2i1

)))dimNev (Im(H(2)
l (ψ

(2)
j2 j1

)))

= ∑
k+l=n

(
sup

i1
inf

i2>i1
dimMev Im(H(2)

k (ϕ
(2)
i2i1

))
)(

sup
j1

inf
j2>j1

dimNev Im(H(2)
l (ψ

(2)
j2 j1

))
)

(2.1),(2.2)
= ∑

k+l=n
β
(2)
k (A, τ)β

(2)
l (B, ρ).

The Künneth formula gives an alternative proof of the following fact which
is usually derived from Theorem 2.4 in [4].
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COROLLARY 2.2. The n-th L2-Betti number of the hyperfinite factor R is either
zero or infinite.

Proof. Denote by τ the unique trace on R and by ρ the normalized trace on
M2(C). Since R is hyperfinite it absorbs M2(C) tensorially and since both R and
M2(C) are factors any isomorphism R ' R �M2(C) is bound to preserve the
traces. Moreover, it follows from Proposition 2.9 of [4] that

β
(2)
k (M2(C), ρ) =

{
1
4 if k = 0,
0 if k > 1.

Hence

β
(2)
n (R, τ)=β

(2)
n (R�M2(C), τ ⊗ ρ)= ∑

k+l=n
β
(2)
k (R, τ)β

(2)
l (M2(C), ρ)=β

(2)
n (R, τ)

1
4

,

which forces β
(2)
n (R, τ) to be either zero or infinite.

It is, to the best of the author’s knowledge, still not known what the L2-Betti
numbers of the hyperfinite factor are, except in degree zero where it follows from
Corollary 2.8 of [4] that β

(2)
0 (R, τ) = 0. However, having in mind the well known

analogy between hyperfiniteness and amenability, it is of course natural to expect
that also the higher L2-Betti numbers of R vanish.

3. AN APPLICATION TOWARDS QUANTUM GROUPS

We take as our starting point Woronowicz’s definition [17] of a compact
quantum group. Thus, a compact quantum group G consists of a (not necessarily
commutative) unital, separable C∗-algebra C(G) together with a coassociative,
unital ∗-homomorphism ∆G : C(G)→ C(G)⊗C(G), called the comultiplication,
which furthermore has to satisfy a certain non-degeneracy condition. We remind
the reader that such a C∗-algebraic quantum group automatically gives rise to
a purely algebraic quantum group (i.e. a Hopf ∗-algebra [5]), whose underlying
algebra will be denoted Pol(G), as well as a von Neumann algebraic quantum
group, in the sense of [6], whose underlying algebra will be denoted L∞(G).

EXAMPLE 3.1. The canonical example of a compact quantum group, on
which the general definition is modeled, is obtained by considering a compact,
second countable, Hausdorff topological group G and its commutative C∗-alge-
bra C(G) of continuous, complex valued functions. In this case the von Neumann
algebra becomes L∞(G, µ), where µ denotes the Haar probability measure, and
the associated Hopf ∗-algebra becomes the algebra generated by matrix coeffi-
cients arising from the irreducible representations of G. Moreover, every compact
quantum group whose underlying C∗-algebra is commutative is of this form.



AN L2-KÜNNETH FORMULA FOR TRACIAL ALGEBRAS 325

Recall that the C∗-algebra C(G) of a compact quantum group G comes with
a distinguished state hG, called the Haar state, which plays the role corresponding
to the Haar measure on a genuine, compact group. If G and H are two compact
quantum groups they give rise to a third quantum group, denoted G×H, whose
underlying C∗-algebra is C(G) ⊗ C(H) and whose comultiplication is given by
∆G×H = (id⊗σ ⊗ id)∆G ⊗ ∆H; here σ : C(G)⊗ C(H) → C(H)⊗ C(G) denotes
the flip-isomorphism. The Haar state hG×H is given by hG ⊗ hH and Pol(G ×
H) = Pol(G)� Pol(H). See [15] for more details.

In [7] and [8] the notion of L2-invariants was studied in the setting of com-
pact quantum groups of Kac type; i.e. those quantum groups for which the Haar
state is a trace. If G is such a quantum group its n-th L2-homology H(2)

n (G) is
defined as TorPol(G)

n (L∞(G),C) and the n-th L2-Betti number β
(2)
n (G) is defined

by applying Lück’s generalized Murray–von Neumann dimension dimL∞(G)(−)
to the L∞(G)-module H(2)

n (G). As a consequence of Theorem 2.1 we also obtain
a Künneth formula for these quantum group L2-Betti numbers.

COROLLARY 3.2. Let G and H be compact quantum groups of Kac type. Then,
for every n > 0,

β
(2)
n (G×H) = ∑

k+l=n
β
(2)
k (G)β

(2)
l (H).

Proof. It was shown in Theorem 4.1 of [8] that β
(2)
n (G) coincides with the

n-th Connes–Shlyakhtenko L2-Betti number β
(2)
n (Pol(G), hG), and since we have

Pol(G×H) = Pol(G) � Pol(H) and hG×H = hG ⊗ hH (see e.g. [15]) the result
follows from Theorem 2.1.

Next we explain how the Künneth formula provides us with non-trivial ex-
amples of quantum groups with non-vanishing L2-Betti numbers.

Any cocommutative quantum group is isomorphic to a quantum group of
the form (C∗red(Γ), ∆red) where Γ is a discrete group and ∆red(γ) = γ ⊗ γ. It
follows from the Proposition 1.3 of [8] that the L2-Betti numbers of such a quan-
tum group coincide with the classical L2-Betti numbers of the underlying group
Γ. Considering, for instance, the case of the free group on two generators F2

with β
(2)
1 (F2) = 1 we therefore get, in a somewhat trivial way, a compact quan-

tum group with a non-vanishing first L2-Betti number. Another trivial source of
non-vanishing results is the class of finite quantum groups (i.e. those whose C∗-
algebra is finite dimensional); for such a quantum group G the zeroth L2-Betti
number equals dimC(C(G))−1 and all the higher L2-Betti numbers vanish [8]. So
far, these are the only known examples of quantum groups with non-vanishing
L2-Betti numbers and the following question is therefore natural.

QUESTION 3.3. What is an example of an infinite, non-cocommutative com-
pact quantum group with a positive L2-Betti number?
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The Künneth formula provides an answer to this question. For this, let G be
a finite, non-cocommutative quantum group and denote by N the dimension of
C(G) and let H be the compact quantum group arising from F2. We then have

β
(2)
p (G) =

{
1
N when p = 0,
0 otherwise;

and β
(2)
p (H) =

{
1 when p = 1,
0 otherwise;

and the Künneth formula therefore yields

β
(2)
1 (G×H) = β

(2)
0 (G)β

(2)
1 (H) + β

(2)
1 (G)β

(2)
0 (H) =

1
N

.

By construction, C(G×H) has infinite linear dimension and since G is assumed
non-cocommutative G×H becomes non-cocommutative.

REMARK 3.4. For the free group on k generators Fk the only non-vanishing
L2-Betti number is the first which has value k − 1. Also, for each n ∈ N it is
easy to produce a finite quantum group of dimension n; one may simply take
a group G with n elements and consider the associated commutative quantum
group C(G). By copying the example from above we can therefore construct
quantum groups with any prescribed positive, rational number as its first L2-Betti
number. Note, however, that if the group G is chosen (or forced) to be abelian the
example becomes cocommutative.

In the opposite direction, the Künneth formula also gives rise to the follow-
ing vanishing result.

COROLLARY 3.5. Let G and H be compact quantum groups of Kac type and as-
sume one of them to be infinite and coamenable. Then β

(2)
n (G×H) = 0 for all n > 0.

We remind the reader that a compact quantum group is called coamenable
[2] if the counit ε : Pol(G)→ C extends to a character on the image of C(G) under
the GNS-representation arising from hG.

Proof. Corollary 6.2 in [7] together with Proposition 5.1.5 of [9] shows that
all L2-Betti numbers of an infinite, coamenable quantum group vanish and the
claim now follows from Corollary 3.2.
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