ON EXTENSIONS OF STABLY FINITE C*-ALGEBRAS

HONGLIANG YAO

Communicated by William Arvenson

Abstract

In this paper, we prove that for any C^{*}-algebra A with an approximate unit of projections, there is a smallest ideal I of A, in which quotient A / I is stably finite. We give a sufficient condition and a necessary condition on which I is the smallest ideal in this case for A by K-theory.

Keywords: Extension, stably finite C*-algebra, index map.
MSC (2000): 13B02, 46L05, 46L80.

1. INTRODUCTION AND MAIN RESULTS

Extension theory is important in many contexts, since it describes how more complicated C^{*}-algebras can be constructed out of simpler "building blocks". There are many important applications of extension theory (see [2]). A C*-algebra A is called finite if it admits an approximate unit of projections and all projections in A are finite. If $A \otimes \mathcal{K}$ is finite, then A is called stably finite. About extensions of stably finite C^{*}-algebras, J.S. Spielberg gave an important result:

THEOREM 1.1 ([6]). Let A be a C^{*}-algebra, let I be an ideal in A, and suppose that I and A / I are stably finite. Then A is stably finite if and only if

$$
\partial\left(K_{1}(A / I)\right) \cap K_{0}(I)_{+}=0 .
$$

In this short paper, we will prove that for any C^{*}-algebra A with an approximate unit of projections, there is a smallest ideal I in which quotient A / I is stably finite. Thus if Q is a stably finite quotient of C^{*}-algebra A, then there is a canonical surjective $*$-homomorphism from Q to A / I. Give a sufficient condition and a necessary condition on which I is a smallest ideal in this case for A by K-theory. When the ideal I is simple and has real rank zero, the former result is equivalent to Theorem 1.1.

THEOREM 1.2. Let A be a C^{*}-algebra with an approximate unit of projections, $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ is a set of ideals of A.
(i) If quotient A / I_{λ} is a finite C^{*}-algebra for each $\lambda \in \Lambda$, then $A / \bigcap_{\lambda \in \Lambda} I_{\lambda}$ is a finite C*-algebra;
(ii) If quotient A / I_{λ} is a stably finite C^{*}-algebra for each $\lambda \in \Lambda$, then $A / \bigcap_{\lambda \in \Lambda} I_{\lambda}$ is a stably finite C^{*}-algebra.

Let $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ be the set of all ideals I_{λ} of A with A / I_{λ} is stably finite. Throughout this paper, we denote the ideal $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ of A by $I(A)$.

THEOREM 1.3. Let A be a C^{*}-algebra with an approximate unit of projections, and let I be an ideal of A, which has real rank zero. If A / I is stably finite and for any $x \in K_{0}(I)_{+}$, there is an y in $\partial\left(K_{1}(A / I)\right) \cap K_{0}(I)_{+}$such that $x \leqslant y$, then $I=I(A)$.

Corollary 1.4. Let A be a C^{*}-algebra with real rank zero. If $K_{0}(A)_{+}=K_{0}(A)$, then $I(A)=A$.

THEOREM 1.5. Let A be a C^{*}-algebra with an approximate unit of projections. Let J be the ideal of A generated by
$\left\{q\right.$: there is a hyponormal partial isometry $v \in A$ such that $\left.v v^{*}-v^{*} v=q\right\}$.
Then for any $x=[p]_{0}$ in $K_{0}(I(A))_{+}$, where $p \in J$, there is an y in $\partial\left(K_{1}(A / I(A))\right) \cap$ $K_{0}(I(A))+$ such that $x \leqslant y$.

Corollary 1.6. Let

$$
0 \longrightarrow I \longrightarrow A \longrightarrow B \longrightarrow 0
$$

be an extension of C^{*}-algebras. Suppose that A has an approximate unit of projections and that I and B are two stably finite C^{*}-algebras. If I is a non-zero simple C^{*}-algebra with real rank zero, then the following conditions are equivalent:
(i) A is not stably finite;
(ii) $I=I(A)$;
(iii) for any $x \in K_{0}(I)_{+}$, there is an y in $\partial\left(K_{1}(A / I)\right) \cap K_{0}(I)_{+}$such that $x \leqslant y$.

Corollary 1.7. Let A be a simple C^{*}-algebra with real rank zero. Then $I(A)=$ A if and only if $K_{0}(A)_{+}=K_{0}(A)$. Furthermore, either $\left(K_{0}(A), K_{0}(A)_{+}\right)$is an order group or $K_{0}(A)_{+}=K_{0}(A)$.

2. PROOFS

Lemma 2.1 ([3], 1.11.42). Let A be a C^{*}-algebra with an approximate unit of projections. Then every ideal I of $M_{n}(A)$ has the form $M_{n}(J)$ for some ideal J of A. So $M_{n}(A) / I \cong M_{n}(A / J)$.

Proof of Theorem 1.2. (i) Let $\left\{p_{i}\right\}$ be an approximate unit of projections in A. π is the quotient map form A to $A / \bigcap_{\lambda \in \Lambda} I_{\lambda}$. Then $\pi\left(p_{i}\right)$ becomes an approximate
unit of projections in $A / \bigcap_{\lambda \in \Lambda} I_{\lambda}$. For any i, we assume that $v^{*} v=\pi\left(p_{i}\right)$. There is $w \in p_{i} A p_{i}$ such that $\pi(w)=v$. Since $\pi\left(w^{*} w\right)=\pi\left(p_{i}\right), w^{*} w \in p_{i}+\bigcap_{\lambda \in \Lambda} I_{\lambda}$. By the hypothesis of the theorem, $w w^{*} \in p_{i}+I_{\lambda}$ for all λ, so $w w^{*} \in p_{i}+\bigcap_{\lambda \in \Lambda}^{\lambda \in \Lambda} I_{\lambda}$, $v v^{*}=\pi\left(w w^{*}\right)=\pi\left(p_{i}\right)$. Therefore $A / \bigcap_{\lambda \in \Lambda} I_{\lambda}$ is a finite C^{*}-algebra.
(ii) By Lemma 2.1 and (i), (ii) is obvious.

Lemma 2.2. Let A be a C^{*}-algebra with an approximate unit of projections. Then:
(i) if B is an ideal of A, with an approximate unit of projections, then $I(B) \subset I(A)$;
(ii) $I(\widetilde{A})=I(A)$;
(iii) $I\left(M_{n}(A)\right)=M_{n}(I(A)), I(A \otimes \mathcal{K})=I(A) \otimes \mathcal{K}$.

Proof. Note that every ideal I of $M_{n}(A)$ has the form $M_{n}(J)$ for some ideal J of A. (iii) is trivial.
(i) Let $\left\{I_{\lambda}\right\}$ be the set of all ideal of A with A / I_{λ} is stably finite. Then $\operatorname{ker} \pi_{\lambda} \circ i=B \cap I_{\lambda} . I(B) \subset \bigcap_{\lambda \in \Lambda} I_{\lambda}=I(A)$.
(ii) By (i), $I(A) \subset I(\widetilde{A})$ and conversely, $I(\widetilde{A}) \subset I(A)$ is trivial.

Let A be a C^{*}-algebra and let $M_{n}(A)$ denote the $n \times n$ matrices whose entries are elements of A. Let $M_{\infty}(A)$ denote the algebraic limit of the direct system $\left(M_{n}(A), \phi_{n}\right)$, where $\phi_{n}: M_{n}(A) \rightarrow M_{n+1}(A)$ is given by

$$
a \mapsto\left(\begin{array}{cc}
a & 0 \\
0 & 0
\end{array}\right)
$$

Let $M_{\infty}(A)_{+}$(respectively $\left.M_{n}(A)_{+}\right)$denote the positive elements in $M_{\infty}(A)$ (respectively $M_{n}(A)$).

Given $a, b \in M_{\infty}(A)_{+}$, we say that a is Cuntz subequivalent to b, written $a \precsim b$, if there is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of elements of $M_{\infty}(A)$ such that

$$
\lim _{n \rightarrow \infty}\left\|x_{n} b x_{n}^{*}-a\right\|=0
$$

We say that a and b are Cuntz equivalent (written $a \sim b$) if $a \precsim b$ and $b \precsim a$. It is easy to see that if p and q are projections, $p \precsim q$ is equivalent to the existence of a partial isometry $u \in A$ with $u^{*} u=p$ and $u u^{*} \leqslant q$.

Proposition 2.3 ([4], [5]). Let A be a C^{*}-algebra, and $a, b \in A_{+}$. Then
(a) $(a-\varepsilon)_{+} \precsim$ a for every $\varepsilon>0$.
(b) The following are equivalent:
(i) $a \precsim b$;
(ii) for all $\varepsilon>0,(a-\varepsilon)_{+} \precsim b$;
(iii) for all $\varepsilon>0$, there exists $\delta>0$ such that $(a-\varepsilon)_{+} \precsim(b-\delta)_{+}$;
(iv) there are $x_{n}, y_{n} \in \widetilde{A}$ with $\lim _{n \rightarrow \infty}\left\|x_{n} b y_{n}-a\right\|=0$, where \widetilde{A} is the unitization of A.
(c) If $\varepsilon>0$ and $\|a-b\|<\varepsilon$, then $(a-\varepsilon)_{+} \precsim b$.

Lemma 2.4. Let A be $a C^{*}$-algebra, $a, b \in A_{+}$, then $a+b \precsim a \oplus b$. If A has real rank zero and $a \perp b$, then $a+b \sim a \oplus b$.

Proof. Since

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
a+b & 0 \\
0 & 0
\end{array}\right)
$$

$a+b \precsim a \oplus b$. Let A have real rank zero, and let $a \perp b$. Sine A has real rank zero, for any $\varepsilon>0$, there is a projection $p \in \overline{a A a}$ such that $\|a-p a p\|<\varepsilon$, and there is a projection $q \in \overline{b A b}$ such that $\|b-q a q\|<\varepsilon$. Note that $p \perp q$. Since

$$
\left(\begin{array}{cc}
p & 0 \\
q & 0
\end{array}\right)\left(\begin{array}{cc}
p a p+q b q & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
p & q \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
p a p & 0 \\
0 & q b q
\end{array}\right)
$$

Hence

$$
(a \oplus b-\varepsilon)_{+} \precsim p a p \oplus q b q \precsim p a p+q b q \precsim a+b .
$$

By (b) of Proposition 2.3, $a+b \sim a \oplus b$.
The following lemma is a generalization of Lemma 3.3.6 in [3].
LEMMA 2.5. If $B \subset A_{+}$is a subset of a C^{*}-algebra A, and p is a projection in the ideal generated by B, then there are x_{1}, \ldots, x_{k} in A, and a_{1}, \ldots, a_{k} in B such that

$$
p=\sum_{i=1, k} x_{i} a_{i} x_{i}^{*}
$$

Proof. There are y_{1}, \ldots, y_{k} and z_{1}, \ldots, z_{k} in A such that

$$
\left\|\sum_{i=1}^{k} y_{i} a_{i} z_{i}-p\right\|<\frac{1}{2}
$$

Let $b=p \sum_{i=1}^{k} y_{i} a_{i} z_{i} p$. Then b is invertible in $p A p$. So $p=\sum_{i=1}^{k} b^{-1} y_{i} a_{i} z_{i} p$, where the inverse is taken in $p A p$. To save notation, we obtain g_{1}, \ldots, g_{k} and f_{1}, \ldots, f_{k} such that $p=\sum_{i=1}^{k} g_{i} a_{i} f_{i}$. Set

$$
\begin{gathered}
g=\left(\begin{array}{cccc}
g_{1} & g_{2} & \cdots & g_{k} \\
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0
\end{array}\right), \quad f=\left(\begin{array}{cccc}
f_{1} & 0 & \cdots & 0 \\
f_{2} & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
f_{k} & 0 & \cdots & 0
\end{array}\right), \\
e=\operatorname{diag}(p, 0, \ldots, 0), \quad \text { and } a=\operatorname{diag}\left(a_{1}, \ldots, a_{k}\right) .
\end{gathered}
$$

Then $e=g a f$ in $M_{k}(A)$. So $e=e g a f f^{*} a g^{*} e$. We have $e \leqslant\left\|f f^{*}\right\|$ egaag $^{*} e$. Let $c=e^{\prime} a a g^{*} e$. Then c has an inverse c^{-1} in $e M_{k}(A) e=p A p$. Note that

$$
g a a g^{*}=\sum_{i=1}^{k}\left(g_{i} a^{1 / 2}\right) a\left(g_{i} a^{1 / 2}\right)^{*}
$$

Therefore

$$
p=\sum_{i=1}^{k} c^{-1 / 2} e\left(g_{i} a^{1 / 2}\right) a\left(g_{i} a^{1 / 2}\right) e c^{-1 / 2}
$$

Set $x_{i}=c^{-1 / 2} e\left(g_{i} a^{1 / 2}\right)$. The lemma then follows.
Proof of Theorem 1.3. For any projection p in I, there is a projection q in $M_{n}(I)$ for some positive integer n, such that $[p]_{0} \leqslant[q]_{0}$ and $[q]_{0}$ belongs to $\partial\left(K_{1}(A / I)\right)$. If $q=0$, then $p \in I(A)$. We may assume that $q \neq 0$. Let u be a unitary in $M_{m}(\widetilde{A} / I)$ with $\partial\left([u]_{1}\right)=[q]_{0}$. By K-theory, there is a unitary w in $M_{2 m}(\widetilde{A})$ such that $\pi(w)=u \oplus u^{*}$, where π is the quotient map from A to A / I. Then

$$
\partial\left([u]_{1}\right)=\left[w\left(1_{m} \oplus 0_{m}\right) w^{*}\right]_{0}-\left[1_{m} \oplus 0_{m}\right]_{0} .
$$

Therefore

$$
\left[w\left(1_{m} \oplus 0_{m}\right) w^{*} \oplus 0_{n}\right]_{0}=\left[1_{m} \oplus 0_{m} \oplus q\right]_{0} .
$$

So there are integer r, s and a unitary v in $M_{2 m+n+r+s}(\widetilde{I})$ such that

$$
v\left(w\left(1_{m} \oplus 0_{m}\right) w^{*} \oplus 0_{n} \oplus 1_{r} \oplus 0_{s}\right) v^{*}=1_{m} \oplus 0_{m} \oplus q \oplus 1_{r} \oplus 0_{s} .
$$

Let $R=v\left(w\left(1_{m} \oplus 0_{m}\right) \oplus 0_{n} \oplus 1_{r} \oplus 0_{s}\right)$ in $M_{2 m+n+r+s}(\widetilde{A})$, then R is cohyponormal partial isometry and $R R^{*}-R^{*} R=0_{2 m} \oplus q \oplus 0_{r+s}$ belongs to $I\left(M_{2 m+n+r+s}(\widetilde{A})\right)$. By Lemma 2.2, q belongs to $I\left(M_{n}(A)\right)$. Since $[p]_{0} \leqslant[q]_{0}$, there is a projection p^{\prime} in $M_{l}(I)$ such that $[p]_{0}+\left[p^{\prime}\right]_{0}=[q]_{0}$, without loss of generality, we may assume that $p \oplus p^{\prime}$ and q belong to $M_{k}(I)$. There are integers i, j and a unitary x in $M_{k+i+j}(\widetilde{I})$, such that

$$
p \oplus p^{\prime} \oplus 1_{i} \oplus 0_{j}=x\left(q \oplus 1_{i} \oplus 0_{j}\right) x^{*}
$$

Let π^{\prime} be the quotient map from \widetilde{I} to $\widetilde{I} / I(A)$. Then

$$
\pi^{\prime}\left(q \oplus 1_{i} \oplus 0_{j}\right)=0_{k} \oplus 1_{i} \oplus 0_{j}
$$

and

$$
\pi^{\prime}\left(x\left(q \oplus 1_{i} \oplus 0_{j}\right) x^{*}\right)=\pi^{\prime}\left(p \oplus p^{\prime} \oplus 1_{i} \oplus 0_{j}\right)=\pi^{\prime}\left(p \oplus p^{\prime}\right) \oplus 1_{i} \oplus 0_{j} .
$$

Since $\widetilde{I} / I(A)$ is stably finite, $\pi^{\prime}\left(p \oplus p^{\prime}\right)=0_{k}$. So $p \in I\left(M_{k}(A)\right)$. By Lemma 2.2, $p \in I(A)$.

Proof of Theorem 1.5. By Lemma 2.2(iii), without loss of generality, we may assume that I, A and A / I are stable. Note that J is the ideal of A generated by $C=\left\{q\right.$: there is a hyponormal partial isometry $v \in A$ such that $\left.v v^{*}-v^{*} v=q\right\}$. $J \subset I(A)$. For any $p \in J$, by Lemma 2.5 , there are projections q_{1}, \ldots, q_{k} in C and there are x_{1}, \ldots, x_{k} in A such that

$$
p=\sum_{i=1}^{k} x_{i} q_{i} x_{i}^{*} .
$$

By Lemma 2.4,

$$
p \precsim \bigoplus_{i=1}^{k} x_{i} q_{i} x_{i}^{*} \precsim \bigoplus_{i=1}^{k} q_{i} .
$$

So $[p]_{0} \leqslant \sum_{i=1}^{k}\left[q_{i}\right]_{0}$. Note from the construction of C, that $\sum_{i=1}^{k}\left[q_{i}\right]_{0}$ belongs to $\partial\left(K_{1}(A / I)\right)$ $\cap K_{0}(I)_{+}$.

Finally, we end with the following question.
Question 2.6. Let A be a C^{*}-algebra which has real rank zero. For any $x \in$ $K_{0}(I(A))_{+}$, is there an y in $\partial\left(K_{1}(A / I(A))\right) \cap K_{0}(I(A))_{+}$such that $x \leqslant y$?

Acknowledgements. This paper was supported by the National Natural Science Foundation of China (No.11001131) and the NUST Research Funding (No.2010ZYTS068).

REFERENCES

[1] W. Arveson, Notes on extensions of C ${ }^{*}$-algebras, Duke Math. J. 44(1977), 329-355.
[2] B. BLACKADAR, K-Theory for Operator Algebras, Springer-Verlag, New York 1986.
[3] H. Lin, An Introduction to the Classification of Amenable C*-Algebras, World Sci., New Jersey-London-Singapore-Hong Kong 2001.
[4] E, Kirchberg, M. Rørdam, Non-simple purely infinite C*-algebras, Amer. J. Math. 122(2000), 637-666.
[5] M. RøRDAM, On the structure of simple C^{*}-algebras tensored with an UHF-algebra. II, J. Funct. Anal. 107(1992), 255-269.
[6] J.S. Spielberg, Embedding C^{*}-algebra extensions into AF-algebras, J. Funct. Anal. 81(1988), 325-344.
[7] S. Zhang, C^{*}-algebras with real rank zero and the internal structure of their corona and multiplier algebras. I, Pacific J. Math. 155(1992), 169-197.

Hongliang yao, School of Science, Nanjing University of Science and Technology, Nanjing 210094, P. R. China

E-mail address: hlyao@mail.njust.edu.cn

Received May 13, 2009; revised June 30, 2009.

