ON EXTENSIONS OF STABLY FINITE C*-ALGEBRAS

HONGLIANG YAO

Communicated by William Arvenson

ABSTRACT. In this paper, we prove that for any C^* -algebra A with an approximate unit of projections, there is a smallest ideal I of A, in which quotient A/I is stably finite. We give a sufficient condition and a necessary condition on which I is the smallest ideal in this case for A by K-theory.

KEYWORDS: *Extension, stably finite C*-algebra, index map.*

MSC (2000): 13B02, 46L05, 46L80.

1. INTRODUCTION AND MAIN RESULTS

Extension theory is important in many contexts, since it describes how more complicated C^* -algebras can be constructed out of simpler "building blocks". There are many important applications of extension theory (see [2]). A C^* -algebra A is called *finite* if it admits an approximate unit of projections and all projections in A are finite. If $A \otimes \mathcal{K}$ is finite, then A is called *stably finite*. About extensions of stably finite C^* -algebras, J.S. Spielberg gave an important result:

THEOREM 1.1 ([6]). Let A be a C^{*}-algebra, let I be an ideal in A, and suppose that I and A/I are stably finite. Then A is stably finite if and only if

$$\partial(K_1(A/I)) \cap K_0(I)_+ = 0.$$

In this short paper, we will prove that for any C^* -algebra A with an approximate unit of projections, there is a smallest ideal I in which quotient A/I is stably finite. Thus if Q is a stably finite quotient of C^* -algebra A, then there is a canonical surjective *-homomorphism from Q to A/I. Give a sufficient condition and a necessary condition on which I is a smallest ideal in this case for A by K-theory. When the ideal I is simple and has real rank zero, the former result is equivalent to Theorem 1.1.

THEOREM 1.2. Let A be a C^{*}-algebra with an approximate unit of projections, $\{I_{\lambda}\}_{\lambda \in \Lambda}$ is a set of ideals of A.

(i) If quotient A/I_{λ} is a finite C*-algebra for each $\lambda \in \Lambda$, then $A/\bigcap_{\lambda \in \Lambda} I_{\lambda}$ is a finite C*-algebra.

C*-algebra;

(ii) If quotient A/I_{λ} is a stably finite C^* -algebra for each $\lambda \in \Lambda$, then $A/\bigcap_{\lambda \in \Lambda} I_{\lambda}$ is a stably finite C^* -algebra.

Let $\{I_{\lambda}\}_{\lambda \in \Lambda}$ be the set of all ideals I_{λ} of A with A/I_{λ} is stably finite. Throughout this paper, we denote the ideal $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ of A by I(A).

THEOREM 1.3. Let A be a C*-algebra with an approximate unit of projections, and let I be an ideal of A, which has real rank zero. If A/I is stably finite and for any $x \in K_0(I)_+$, there is an y in $\partial(K_1(A/I)) \cap K_0(I)_+$ such that $x \leq y$, then I = I(A).

COROLLARY 1.4. Let A be a C^{*}-algebra with real rank zero. If $K_0(A)_+ = K_0(A)$, then I(A) = A.

THEOREM 1.5. Let A be a C^* -algebra with an approximate unit of projections. Let J be the ideal of A generated by

 $\{q : there is a hyponormal partial isometry v \in A such that vv^* - v^*v = q\}.$

Then for any $x = [p]_0$ in $K_0(I(A))_+$, where $p \in J$, there is an y in $\partial(K_1(A/I(A))) \cap K_0(I(A))_+$ such that $x \leq y$.

COROLLARY 1.6. Let

 $0 \longrightarrow I \longrightarrow A \longrightarrow B \longrightarrow 0$

be an extension of C^* -algebras. Suppose that A has an approximate unit of projections and that I and B are two stably finite C^* -algebras. If I is a non-zero simple C^* -algebra with real rank zero, then the following conditions are equivalent:

(i) A is not stably finite;

(ii) I = I(A);

(iii) for any $x \in K_0(I)_+$, there is an y in $\partial(K_1(A/I)) \cap K_0(I)_+$ such that $x \leq y$.

COROLLARY 1.7. Let A be a simple C*-algebra with real rank zero. Then I(A) = A if and only if $K_0(A)_+ = K_0(A)$. Furthermore, either $(K_0(A), K_0(A)_+)$ is an order group or $K_0(A)_+ = K_0(A)$.

2. PROOFS

LEMMA 2.1 ([3], 1.11.42). Let A be a C*-algebra with an approximate unit of projections. Then every ideal I of $M_n(A)$ has the form $M_n(J)$ for some ideal J of A. So $M_n(A)/I \cong M_n(A/J)$.

Proof of Theorem 1.2. (i) Let $\{p_i\}$ be an approximate unit of projections in *A*. π is the quotient map form *A* to $A / \bigcap_{\lambda \in A} I_{\lambda}$. Then $\pi(p_i)$ becomes an approximate

unit of projections in $A / \bigcap_{\lambda \in \Lambda} I_{\lambda}$. For any *i*, we assume that $v^*v = \pi(p_i)$. There is $w \in p_i A p_i$ such that $\pi(w) = v$. Since $\pi(w^*w) = \pi(p_i)$, $w^*w \in p_i + \bigcap_{\lambda \in \Lambda} I_{\lambda}$. By the hypothesis of the theorem, $ww^* \in p_i + I_{\lambda}$ for all λ , so $ww^* \in p_i + \bigcap_{\lambda \in \Lambda} I_{\lambda}$, $vv^* = \pi(ww^*) = \pi(p_i)$. Therefore $A / \bigcap_{\lambda \in \Lambda} I_{\lambda}$ is a finite C^* -algebra.

(ii) By Lemma 2.1 and (i), (ii) is obvious.

LEMMA 2.2. Let A be a C*-algebra with an approximate unit of projections. Then: (i) if B is an ideal of A, with an approximate unit of projections, then $I(B) \subset I(A)$; (ii) $I(\widetilde{A}) = I(A)$; (iii) $I(\widetilde{A}) = I(A)$;

(iii) $I(M_n(A)) = M_n(I(A)), I(A \otimes \mathcal{K}) = I(A) \otimes \mathcal{K}.$

Proof. Note that every ideal *I* of $M_n(A)$ has the form $M_n(J)$ for some ideal *J* of *A*. (iii) is trivial.

(i) Let $\{I_{\lambda}\}$ be the set of all ideal of A with A/I_{λ} is stably finite. Then ker $\pi_{\lambda} \circ i = B \cap I_{\lambda}$. $I(B) \subset \bigcap I_{\lambda} = I(A)$.

(ii) By (i),
$$I(A) \subset I(\widetilde{A})$$
 and conversely, $I(\widetilde{A}) \subset I(A)$ is trivial.

Let *A* be a *C*^{*}-algebra and let $M_n(A)$ denote the $n \times n$ matrices whose entries are elements of *A*. Let $M_{\infty}(A)$ denote the algebraic limit of the direct system $(M_n(A), \phi_n)$, where $\phi_n : M_n(A) \to M_{n+1}(A)$ is given by

$$a\mapsto \left(\begin{array}{cc}a&0\\0&0\end{array}
ight).$$

Let $M_{\infty}(A)_+$ (respectively $M_n(A)_+$) denote the positive elements in $M_{\infty}(A)$ (respectively $M_n(A)$).

Given $a, b \in M_{\infty}(A)_+$, we say that *a* is Cuntz subequivalent to *b*, written $a \preceq b$, if there is a sequence $\{x_n\}_{n=1}^{\infty}$ of elements of $M_{\infty}(A)$ such that

$$\lim_{n\to\infty}\|x_nbx_n^*-a\|=0.$$

We say that *a* and *b* are Cuntz equivalent (written $a \sim b$) if $a \preceq b$ and $b \preceq a$. It is easy to see that if *p* and *q* are projections, $p \preceq q$ is equivalent to the existence of a partial isometry $u \in A$ with $u^*u = p$ and $uu^* \leq q$.

PROPOSITION 2.3 ([4], [5]). Let A be a C*-algebra, and $a, b \in A_+$. Then (a) $(a - \varepsilon)_+ \preceq a$ for every $\varepsilon > 0$. (b) The following are equivalent: (i) $a \preceq b$; (ii) for all $\varepsilon > 0$, $(a - \varepsilon)_+ \preceq b$; (iii) for all $\varepsilon > 0$, there exists $\delta > 0$ such that $(a - \varepsilon)_+ \preceq (b - \delta)_+$; (iv) there are $x_n, y_n \in \widetilde{A}$ with $\lim_{n \to \infty} ||x_n b y_n - a|| = 0$, where \widetilde{A} is the unitiza-

(c) If $\varepsilon > 0$ and $||a - b|| < \varepsilon$, then $(a - \varepsilon)_+ \preceq b$.

LEMMA 2.4. Let A be a C*-algebra, $a, b \in A_+$, then $a + b \preceq a \oplus b$. If A has real rank zero and $a \perp b$, then $a + b \sim a \oplus b$.

Proof. Since

$$\left(\begin{array}{cc}1&1\\0&0\end{array}\right)\left(\begin{array}{cc}a&0\\0&b\end{array}\right)\left(\begin{array}{cc}1&0\\1&0\end{array}\right)=\left(\begin{array}{cc}a+b&0\\0&0\end{array}\right),$$

 $a + b \preceq a \oplus b$. Let *A* have real rank zero, and let $a \perp b$. Sine *A* has real rank zero, for any $\varepsilon > 0$, there is a projection $p \in \overline{aAa}$ such that $||a - pap|| < \varepsilon$, and there is a projection $q \in \overline{bAb}$ such that $||b - qaq|| < \varepsilon$. Note that $p \perp q$. Since

$$\left(\begin{array}{cc}p&0\\q&0\end{array}\right)\left(\begin{array}{cc}pap+qbq&0\\0&0\end{array}\right)\left(\begin{array}{cc}p&q\\0&0\end{array}\right)=\left(\begin{array}{cc}pap&0\\0&qbq\end{array}\right)$$

Hence

$$(a \oplus b - \varepsilon)_+ \precsim pap \oplus qbq \precsim pap + qbq \precsim a + b.$$

By (b) of Proposition 2.3, $a + b \sim a \oplus b$.

The following lemma is a generalization of Lemma 3.3.6 in [3].

LEMMA 2.5. If $B \subset A_+$ is a subset of a C^* -algebra A, and p is a projection in the ideal generated by B, then there are x_1, \ldots, x_k in A, and a_1, \ldots, a_k in B such that

$$p = \sum_{i=1,k} x_i a_i x_i^*.$$

Proof. There are y_1, \ldots, y_k and z_1, \ldots, z_k in A such that

$$\Big\|\sum_{i=1}^k y_i a_i z_i - p\Big\| < \frac{1}{2}.$$

Let $b = p \sum_{i=1}^{k} y_i a_i z_i p$. Then *b* is invertible in *pAp*. So $p = \sum_{i=1}^{k} b^{-1} y_i a_i z_i p$, where the inverse is taken in *pAp*. To save notation, we obtain g_1, \ldots, g_k and f_1, \ldots, f_k such that $p = \sum_{i=1}^{k} g_i a_i f_i$. Set

$$g = \begin{pmatrix} g_1 & g_2 & \cdots & g_k \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \quad f = \begin{pmatrix} f_1 & 0 & \cdots & 0 \\ f_2 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ f_k & 0 & \cdots & 0 \end{pmatrix},$$

 $e = \operatorname{diag}(p, 0, \dots, 0), \text{ and } a = \operatorname{diag}(a_1, \dots, a_k).$

Then e = gaf in $M_k(A)$. So $e = egaff^*ag^*e$. We have $e \leq ||ff^*||egaag^*e$. Let $c = egaag^*e$. Then *c* has an inverse c^{-1} in $eM_k(A)e = pAp$. Note that

$$gaag^* = \sum_{i=1}^k (g_i a^{1/2}) a (g_i a^{1/2})^*.$$

Therefore

$$p = \sum_{i=1}^{k} c^{-1/2} e(g_i a^{1/2}) a(g_i a^{1/2}) e^{-1/2}.$$

Set $x_i = c^{-1/2} e(g_i a^{1/2})$. The lemma then follows.

Proof of Theorem 1.3. For any projection p in I, there is a projection q in $M_n(I)$ for some positive integer n, such that $[p]_0 \leq [q]_0$ and $[q]_0$ belongs to $\partial(K_1(A/I))$. If q = 0, then $p \in I(A)$. We may assume that $q \neq 0$. Let u be a unitary in $M_m(\widetilde{A}/I)$ with $\partial([u]_1) = [q]_0$. By K-theory, there is a unitary w in $M_{2m}(\widetilde{A})$ such that $\pi(w) = u \oplus u^*$, where π is the quotient map from A to A/I. Then

$$\partial([u]_1)=[w(1_m\oplus 0_m)w^*]_0-[1_m\oplus 0_m]_0.$$

Therefore

$$[w(1_m\oplus 0_m)w^*\oplus 0_n]_0=[1_m\oplus 0_m\oplus q]_0$$

So there are integer *r*, *s* and a unitary *v* in $M_{2m+n+r+s}(\tilde{I})$ such that

$$v(w(1_m\oplus 0_m)w^*\oplus 0_n\oplus 1_r\oplus 0_s)v^*=1_m\oplus 0_m\oplus q\oplus 1_r\oplus 0_s$$

Let $R = v(w(1_m \oplus 0_m) \oplus 0_n \oplus 1_r \oplus 0_s)$ in $M_{2m+n+r+s}(\widetilde{A})$, then R is cohyponormal partial isometry and $RR^* - R^*R = 0_{2m} \oplus q \oplus 0_{r+s}$ belongs to $I(M_{2m+n+r+s}(\widetilde{A}))$. By Lemma 2.2, q belongs to $I(M_n(A))$. Since $[p]_0 \leq [q]_0$, there is a projection p' in $M_l(I)$ such that $[p]_0 + [p']_0 = [q]_0$, without loss of generality, we may assume that $p \oplus p'$ and q belong to $M_k(I)$. There are integers i, j and a unitary x in $M_{k+i+j}(\widetilde{I})$, such that

$$p \oplus p' \oplus 1_i \oplus 0_j = x(q \oplus 1_i \oplus 0_j)x^*.$$

Let π' be the quotient map from \tilde{I} to $\tilde{I}/I(A)$. Then

$$\pi'(q\oplus 1_i\oplus 0_j)=0_k\oplus 1_i\oplus 0_j,$$

and

$$\pi'(x(q\oplus 1_i\oplus 0_j)x^*)=\pi'(p\oplus p'\oplus 1_i\oplus 0_j)=\pi'(p\oplus p')\oplus 1_i\oplus 0_j.$$

Since $\tilde{I}/I(A)$ is stably finite, $\pi'(p \oplus p') = 0_k$. So $p \in I(M_k(A))$. By Lemma 2.2, $p \in I(A)$.

Proof of Theorem 1.5. By Lemma 2.2(iii), without loss of generality, we may assume that *I*, *A* and *A*/*I* are stable. Note that *J* is the ideal of *A* generated by $C = \{q : \text{there is a hyponormal partial isometry } v \in A \text{ such that } vv^* - v^*v = q\}$. $J \subset I(A)$. For any $p \in J$, by Lemma 2.5, there are projections q_1, \ldots, q_k in *C* and there are x_1, \ldots, x_k in *A* such that

$$p = \sum_{i=1}^k x_i q_i x_i^*.$$

By Lemma 2.4,

$$p \precsim \bigoplus_{i=1}^k x_i q_i x_i^* \precsim \bigoplus_{i=1}^k q_i.$$

So $[p]_0 \leq \sum_{i=1}^k [q_i]_0$. Note from the construction of *C*, that $\sum_{i=1}^k [q_i]_0$ belongs to $\partial(K_1(A/I)) \cap K_0(I)_+$.

Finally, we end with the following question.

QUESTION 2.6. Let A be a C*-algebra which has real rank zero. For any $x \in K_0(I(A))_+$, is there an y in $\partial(K_1(A/I(A))) \cap K_0(I(A))_+$ such that $x \leq y$?

Acknowledgements. This paper was supported by the National Natural Science Foundation of China (No.11001131) and the NUST Research Funding (No.2010ZYTS068).

REFERENCES

- [1] W. ARVESON, Notes on extensions of C*-algebras, Duke Math. J. 44(1977), 329–355.
- [2] B. BLACKADAR, K-Theory for Operator Algebras, Springer-Verlag, New York 1986.
- [3] H. LIN, An Introduction to the Classification of Amenable C*-Algebras, World Sci., New Jersey-London-Singapore-Hong Kong 2001.
- [4] E, KIRCHBERG, M. RØRDAM, Non-simple purely infinite C*-algebras, Amer. J. Math. 122(2000), 637–666.
- [5] M. RØRDAM, On the structure of simple C*-algebras tensored with an UHF-algebra. II, J. Funct. Anal. 107(1992), 255–269.
- [6] J.S. SPIELBERG, Embedding C*-algebra extensions into AF-algebras, J. Funct. Anal. 81(1988), 325–344.
- [7] S. ZHANG, C*-algebras with real rank zero and the internal structure of their corona and multiplier algebras. I, *Pacific J. Math.* 155(1992), 169–197.

HONGLIANG YAO, SCHOOL OF SCIENCE, NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY, NANJING 210094, P. R. CHINA *E-mail address*: hlyao@mail.njust.edu.cn

Received May 13, 2009; revised June 30, 2009.

334