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INTRODUCTION

Kumjian and Pask introduced k-graph C∗-algebras in [3] as generalizations
of the higher-rank Cuntz–Krieger algebras studied by Robertson and Steger in
[8], [9], and [10]. There are two immediate difficulties that arise in the theory of k-
graphs. The first difficulty is presented by sources. For directed graphs, a source
is simply a vertex that receives no edge. For k-graphs, a source is a vertex that
fails to receive an edge of some degree. The notion of local convexity was intro-
duced in [4] in order to associate a C∗-algebra to certain well-behaved k-graphs
with sources. The second major obstruction in studying k-graphs is presented by
infinite receivers. Finitely aligned k-graphs were introduced in [5] in order to asso-
ciate a C∗-algebra to row-infinite k-graphs graphs (possibly containing sources)
that satisfy a mild condition.

In [3], Kumjian and Pask introduce an aperiodicity hypothesis for row-finite
k-graphs without sources and show that if Λ satisfies this condition, then C∗(Λ) is
simple if and only if Λ is cofinal. The aperiodicity condition of Kumjian and Pask
also serves as a critical hypothesis for a number of important structural results
concerning k-graph C∗-algebras. A number of different aperiodicity conditions
have appeared in the literature for the variety of classes of k-graphs in [4], [5],
[11], [2], [6], and [7].

For row-finite k-graph without sources, Robertson and Sims introduce the
notion of no local periodicity [6]. This formulation of aperiodicity is formally wea-
ker than the condition introduced by Kumjian and Pask. Nonetheless, Robertson
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and Sims show that no local periodicity is equivalent to a number of other aperi-
odicity hypotheses for row-finite k-graphs without sources. The advantage of no
local periodicity is that its negation is strong enough to prove that C∗(Λ) is simple
if and only if Λ is cofinal and has no local periodicity. Robertson and Sims fur-
thermore use this condition to classify k-graph C∗-algebras in which every ideal
is gauge-invariant. This work is similar to the result from directed graph algebras
stating that C∗(E) is simple if and only if E is cofinal and every cycle has an exit.

In [1], Farthing constructs a sourceless k-graph Λ from a k-graph Λ in such
a way that C∗(Λ) is Morita equivalent to C∗(Λ) when Λ is row-finite. Robertson
and Sims make use of this result in [6] to generalize their previous work to the
locally convex row-finite k-graphs. Robertson and Sims’ simplicity result is lim-
ited to the locally convex case because of an unexpected difficulty with projecting
paths from Λ

∞ onto Λ6∞.
For the finitely aligned case, a number of aperiodicity hypotheses have ap-

peared, often defined on different boundary path spaces. In [5], Raeburn, Sims,
and Yeend use a similar condition to Condition B from [4] to prove their version of
the Cuntz–Krieger uniqueness theorem. Farthing, Muhly, and Yeend introduce a
version of Kumjian and Pasks’ aperiodicity condition in [2] to prove a version of
the Cuntz–Krieger uniqueness theorem using groupoid methods. The condition
in [2] is much different than that in [4], partly because it operates on the closure
of the boundary path space employed by Raeburn, Sims, and Yeend.

In this paper, the work of Robertson and Sims is generalized to the finitely
aligned case. We show that the condition in [2] is equivalent to an appropriate for-
mulation of no local periodicity. In Section 2, we briefly introduce the standard
definitions and results from the literature. In Section 3, we introduce a condition
called strong no local periodicity for finitely aligned k-graphs without sources and
show that the condition is equivalent to no local periodicity in this situation. This
allows us to exactly follow the proof of Lemma 2.2 from [6] to prove that no local
periodicity implies the aperiodicity condition in [2]. We then show how to reduce
the arbitrary finitely aligned case to that of no sources by introducing a source-
less (k − a)-graph that carries information about aperiodic paths in the original
k-graph. In Section 4, we use these results to construct the usual simplicity argu-
ment as in [6] and [7].

1. PRELIMINARIES

Let k ∈ N and regard Nk as a monoid with identity 0. Let ei denote the ith

generator ofNk. For m, n ∈ Nk write m 6 n to mean mi 6 ni for i = 1, 2, . . . , k. For
m, n ∈ N let m∨ n and m∧ n denote the coordinatewise maximum and minimum
of m and n, respectively.
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DEFINITION 1.1 ([3], Definition 1). A k-graph consists of a countable small
category Λ together with a functor d : Λ→ Nk which satisfies the unique factoriza-
tion property: For every λ ∈ Λ and m, n ∈ Nk such that d(λ) = m + n, there exist
unique ν, µ ∈ Λ such that λ = µν, d(µ) = m, and d(ν) = n.

Let Λn = d−1(n) and let r and s denote the range and source maps of Λ

respectively. Obj(Λ) is naturally identified with Λ0 via the unique factorization
property and thus r, s : Λ → Λ0. For v ∈ Λ0 and E ⊆ Λ, put vE = {µ ∈ E :
r(µ) = v} and Ev = {µ ∈ E : s(µ) = v}.

For n ∈ Nk, define as in Definition 3.1 from [4]

Λ6n = {λ ∈ Λ : d(λ) 6 n and d(λ) + ei 6 n⇒ s(λ)Λei = ∅}.
Note that vΛ6n 6= ∅ for all v ∈ Λ0 and n ∈ Nk. Furthermore, Λ6n = Λn if Λ has
no sources.

Given λ, µ ∈ Λ, a minimal common extension of λ and µ is a pair (α, β) ∈
Λ×Λ such that λα = µβ and d(λα) = d(λ) ∨ d(µ). The set of minimal com-
mon extensions of λ and µ is denoted by Λmin(λ, µ). Define MCE(λ, µ) = {λα :
(α, β) ∈ Λmin(λ, µ)}. Recall from Definition 2.2 of [5] the following definition.

DEFINITION 1.2. A k-graph Λ is finitely aligned if Λmin(λ, µ) is finite for all
λ, µ ∈ Λ.

DEFINITION 1.3 ([5], Definition 2.4). Let Λ be a k-graph, v ∈ Λ0, and E ⊆
vΛ. E is exhaustive if for every µ ∈ vΛ there is λ ∈ E such that Λmin(λ, µ) 6= ∅.
Define

FE(Λ) = {F ⊆ vΛ\ {v} : v ∈ Λ0, F is finite exhaustive}.

REMARK 1.4. If Λ has no sources, then Λn is exhaustive for all n ∈ Nk. More
generally, Λ is locally convex if and only if Λ6n is exhaustive for all n ∈ Nk.

DEFINITION 1.5 ([2], Definition 3.10). For η ∈ Λ and F ⊆ r(η)Λ,

Ext(η; F) :=
⋃

λ∈F
{α ∈ Λ : (α, β) ∈ Λmin(η, λ) for some β ∈ Λ}.

If F ∈ vFE(Λ) and η ∈ vΛ, then Ext(η; F) ∈ s(η)FE(Λ) as in Proposition 3.11
from [2].

DEFINITION 1.6 ([5], Definition 2.6). Let (Λ, d) be a finitely aligned k-graph.
A Cuntz–Krieger Λ-family is a collection of partial isometries {sλ : λ ∈ Λ} in a
C∗-algebra B satisfying:

(i) {sv : v ∈ Λ0} is a family of mutually orthogonal projections;
(ii) sλsµ = sλµ when s(λ) = r(µ);

(iii) s∗λsµ = ∑
(α,β)∈Λmin(λ,µ)

sαs∗β for all λ, µ ∈ Λ;

(iv) ∏
λ∈E

(sv − sλs∗λ) = 0 for all E ∈ vFE(Λ).

Denote by C∗(Λ) the universal C∗-algebra containing a Cuntz–Krieger Λ family.
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1.1. BOUNDARY PATHS. Given a finitely aligned k-graph, let XΛ be the collection
of graph morphisms x : Ωk,m → Λ. For such x, define d(x) = m. As in Defi-
nition 2.8 from [5], let Λ6∞ be the collection of paths x ∈ XΛ for which there is
nx ∈ Nk such that nx 6 d(x) and

n ∈ Nk, nx 6 n 6 m and ni = mi imply that x(n)Λei = ∅.

Note that when Λ is locally convex, we may take nx = 0.
Let ∂Λ be the collection of paths x ∈ XΛ such that for all n 6 d(x) and for

all finite exhaustive E ⊆ x(n)Λ, there is λ ∈ E such that x(n, n + d(λ)) = λ ([2],
Definition 5.10). We have Λ6∞ ⊆ ∂Λ, but Λ6∞ 6= ∂Λ in general. If Λ is row-finite
and without sources, then Λ6∞ = Λ∞.

If x ∈ ∂Λ and n 6 d(x), define σnx by σnx(0, p) = x(n, n + p) for all p 6
d(x)− n. Then σnx ∈ ∂Λ by Lemma 5.13 in [2]. If λ ∈ Λx(0), there is a unique
path λx ∈ ∂Λ such that λx(0, d(λ)) = λ and λx(0, p) = λx(0, p − d(λ)) for
p ∈ Nk satisfying p + d(λ) 6 d(x) ([2], Lemma 5.13).

For each λ ∈ ∂Λ, define Sλ ∈ B(`2(∂Λ)) by

Sλex =

{
eλx if r(x) = λ,
0 else.

PROPOSITION 1.7 ([11], Lemma 4.6). The operators {Sλ : λ ∈ Λ} form a
Cuntz–Krieger Λ-family on `2(∂Λ) such that Sv 6= 0. This is called the boundary-path
representation.

2. APERIODICITY CONDITIONS

A number of aperiodicity hypotheses have appeared in the literature for
the variety of k-graphs. We collect some of them here as they have appeared for
finitely aligned k-graphs.

DEFINITION 2.1. Let Λ be a finitely aligned k-graph.
(i) Λ satisfies Condition (A) if for all v ∈ Λ0 there is x ∈ v∂Λ such that n ∨m 6

d(x) and σmx = σnx implies m = n ([2], Theorem 7.1).
(ii) Λ satisfies Condition (B′) if for all v ∈ Λ0 there is x ∈ v∂Λ such that λ, µ ∈

Λv and λx = µx implies λ = µ ([2], Remarks 7.3).
(iii) Λ satisfies Condition (B) if for all v ∈ Λ0 there is x ∈ vΛ6∞ such that

λ, µ ∈ Λv and λx = µx implies λ = µ ([5], Theorem 4.5).

Condition (A) has sometimes been referred to as the aperiodicity condition in
[2], [3], [6], and [7]. We shall do so below. When Λ is row-finite without sources,
∂Λ = Λ∞. Therefore, Condition (A) presented in Theorem 7.1 from [2] for finitely
aligned k-graphs reduces to the version of Condition (A) in Definition 4.3 from
[3] for row-finite k-graphs without sources.
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For row-finite k-graphs without sources Λ, Conditions (B) and (B′) reduce
to precisely the same condition because Λ6∞ = ∂Λ = Λ∞. When Λ is row-finite
and locally convex, Condition (B) introduced in Theorem 4.5 of [4] is precisely
the same as that presented in Theorem 4.3 from [5]. However, Λ6∞ is in general
a proper subset of ∂Λ. Some discussion about the differences between these two
conditions may be found in the Remarks 7.3 of [2].

Finally, there is the notion of no local periodicity (NLP), introduced by Robert-
son and Sims for row-finite k-graphs without sources in [6] and for row-finite lo-
cally convex k-graphs in [7]. For row-finite k-graphs without sources Λ, the two
notions of no local periodicity coincide because Λ6∞ = Λ∞.

DEFINITION 2.2. Let Λ be a row-finite k-graph.
(i) If Λ has no sources, then Λ has no local periodicity if for all v ∈ Λ0 and for

all n 6= m ∈ Nk, there is x ∈ vΛ∞ such that σnx 6= σmx ([6], Definition 1).
(ii) If Λ is locally convex, then Λ has no local periodicity if for all v ∈ Λ0 and for

all n 6= m ∈ Nk, there is x ∈ vΛ6∞ such that either n− n ∧ d(x) 6= m−m ∧ d(x)
or σn∧d(x)x 6= σm∧d(x)x ([7], Definition 3.2).

For finitely aligned k-graphs, we introduce the following version of no lo-
cal periodicity. We do not address the extent to which our version of no local
periodicity is related to the version for row-finite locally convex k-graphs. In the
row-finite no sources setting, our version is equivalent to the previous versions
of no local periodicity.

DEFINITION 2.3. Let Λ be a finitely aligned k-graph. Λ has no local periodicity
(NLP) if for every v ∈ Λ0 and every m 6= n ∈ Nk, there exists x ∈ v∂Λ such that
either d(x) � m ∨ n or σmx 6= σnx.

DEFINITION 2.4. Let Λ be a finitely aligned k-graph without sources. Λ has
strong no local periodicity (SNLP) if for every v ∈ Λ0 and every m 6= n ∈ Nk, there
exists x ∈ v∂Λ such that d(x) > m ∨ n and σmx 6= σnx.

REMARK 2.5. If no local periodicity fails at v ∈ Λ0, then there are n 6= m ∈
Nk such that σnx = σmx for all x ∈ v∂Λ. In this case, Λ has local periodicity n,
m at v ∈ Λ0. For row-infinite finitely aligned k-graphs (with or without sources)
and fixed n 6= m ∈ Nk, there may exist boundary paths x ∈ v∂Λ such that d(x) �
n∨m. It is not immediately clear whether or not Λ can satisfy no local periodicity,
yet satisfy σnx = σmx whenever d(x) > n ∨ m for some n 6= m ∈ Nk. The next
section will establish that this is not possible for finitely aligned k-graphs without
sources.

2.1. FINITELY ALIGNED, NO SOURCES. Throughout this subsection, let Λ be a
finitely aligned k-graph without sources. First we show that, in this situation,
NLP is equivalent to SNLP. This will allow us to use the methods in the proof
of Lemma 3.3 in [6] to show equivalence between the aperiodicity condition and
no local periodicity. The main strategy is to realize that, if a boundary path has
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degree with some finite component, then since Λ has no sources, we can find
infinite receivers along the path. Our strict assumptions in this situation will
provide sufficiently many edges to construct an aperiodic boundary path.

PROPOSITION 2.6. Λ satisfies NLP if and only if it satisfies SNLP.

Proof. It is clear that SNLP implies NLP. Suppose that Λ has NLP and fails
SNLP at v ∈ Λ0. Then we may fix m 6= n ∈ Nk such that σny = σmy for all y ∈
v∂Λ with d(y) > m ∨ n. We will derive a contradiction by constructing w ∈ v∂Λ
satisfying d(w) > m ∨ n and σmw 6= σnw. Fix x ∈ vΛ∞. Set n1 = n ∨ m − m,
m1 = n ∨m− n, v1 = x(n), and v2 = x(n + n). Note that n1 ∧m1 = 0.

Claim 1. σn1 y = σm1 y for each y ∈ v1∂Λ or y∈v2∂Λ satisfying d(y)>n1∨m1.

Proof of Claim 1. Let y ∈ v1∂Λ satisfy d(y) > n1 ∨ m1. Set w = x(0, n)y.
Then σnw = σmw, since d(w) > n ∨m. In particular,

σn∨mw = σn∨m−nσnw = σn∨m−ny.

Also,
σn∨mw = σn∨m−mσmw = σn∨m−mσnw = σn∨m−my.

Therefore, σn1 y = σn∨m−my = σn∨m−ny = σm1 y, as required. A similar proof
shows that the result holds for each y ∈ v2∂Λ.

Claim 2. We may assume that either v1Λn1 or v2Λn1 is finite.

Proof of Claim 2. Suppose that both v1Λn1 and v2Λn1 are infinite sets. Then
v1Λn and v2Λn are also infinite sets because n > n1. Also, x(n + m)Λn1 is an
infinite set because x(n + m) = x(n + n) = v2. Thus,

{x(n, n + m)α : α ∈ x(n + m)Λn1}

is an infinite set. Notice that if α ∈ x(n + m)Λn1 , then

d(x(n, n + m)α) = m + n1 = m ∨ n.

Thus, x(n, n + m)α ∈ MCE(x(n, n + m), λ) for some λ ∈ v1Λn. This implies that⋃
λ∈v1Λn

MCE(x(n, n + m), λ)

is infinite. Because Λ is finitely aligned, MCE(x(n, n+m), λ) is finite for each λ ∈
v1Λn. Hence, Λmin(x(n, n + m), λ) is non-empty for infinitely many λ ∈ v1Λn.

By the above work, we may choose λ ∈ v1Λn satisfying

Λmin(x(n, n + m), λ) 6= ∅ and λ 6= x(m, m + n).

Fix (α, β) ∈ Λmin(x(n, n + m), λ), set ξ = x(0, n + m)α, and choose w ∈ vΛ∞ such
that w(0, d(ξ)) = ξ. Then we have:

σnw(0, n) = λ, σmw(0, n) = x(m, m + n).
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Therefore, σnw 6= σmw. This contradicts our assumption that σny = σmy for all
y ∈ v∂Λ with d(y) > m ∨ n.

By Claim 1 and the fact that Λ is assumed to satisfy NLP, there is z ∈ v1∂Λ
and i0 ∈ {1, . . . , k} such that d(z)i0 < (n1 ∨m1)i0 . If v1Λn1 is finite, then it is also
exhaustive by the assumption of no sources. Hence, the definition of ∂Λ gives
λ ∈ v1Λn1 satisfying z(0, d(λ)) = λ. Thus, d(z) > n1, which also implies d(z)i0 <
(m1)i0 . If v1Λn1 is infinite, instead take z ∈ v2∂Λ such that d(z)i0 < (n1 ∨m1)i0 for
some i0 ∈ {1, . . . , k}. Since v2Λn1 is finite exhaustive, we may similarly conclude
that d(z) > n1 and d(z)i0 < (m1)i0 . Note that in either case, (n1)i0 = 0 because
n1 ∧m1 = 0.

Suppose v1Λn1 is finite, let z ∈ v1∂Λ be as above, and set q = d(z)i0 ei0 .
We claim that d(z) > n1 + n1. To see this, assume otherwise. Fix z ∈ v1Λ∞

satisfying z(0, q + n1) = z(0, q + n1). By Claim 1, σn1 z = σm1 z. If d(z) � n1 + n1,
then z(n1 + q)Λn1 is infinite (otherwise we could find λ ∈ z(n1 + q)Λn1 such that
z(n1 + q, n1 + q + d(λ)) = λ, which would give d(z) > n1 + q + n1). Therefore,
z(m1 + q)Λn1 is infinite. This is a contradiction of the assumption that v1Λn1 is
finite. To see this contradiction, recall that Lemma C.4 of [5] yields that Ext(η; F) is
finite exhaustive if F is finite exhaustive. In our case, we have assumed that v1Λn1

is finite exhaustive and therefore Ext(z(0, m1 + q), v1Λn1) is also finite exhaustive.
Moreover, if α ∈ z(m1 + q)Λn1 , then

d(z(0, m1 + q)α) = m1 + q + n1 = (m1 + q) ∨ n1.

Therefore, α ∈ Ext(z(0, m1 + q); v1Λn1) so that

z(m1 + q)Λn1 ⊆ Ext(z(0, m1 + q); v1Λn1).

Thus, we can conclude d(z) > n1 + n1.
Similarly, if v2Λn1 is finite, we may take z ∈ v2∂Λ and conclude that d(z) >

n1 + n1. Without loss of generality, assume v1Λn1 is finite and fix z, z as above.
We have σn1 z = σm1 z by Claim 1, so z(n1 + q)Λei0 = z(m1 + q)Λei0 is an in-

finite set. Also, the above work shows that z(m1 + q + n1)Λ
ei0 is infinite. Arguing

similarly to the proof of Claim 2⋃
λ∈z(m1+q)Λ

ei0

MCE(z(m1 + q, m1 + q + n1), λ)

is an infinite set.
This implies that Λmin(z(m1 + q, m1 + q + n1), λ) is non-empty for infinitely

many λ ∈ z(m1 + q)Λei0 . Therefore, we may choose λ ∈ z(m1 + q)Λei0 such that

λ 6= z(n1 + q, n1 + q + ei0) and Λmin(z(m1 + q, m1 + q + n1), λ) 6= ∅.

Let (α, β) ∈ Λmin(z(m1 + q, m1 + q + n1), λ) and set

ξ = z(0, m1 + q + n1)α.
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Choose w ∈ v1Λ∞ such that w(0, d(ξ)) = ξ. Then we have

σm1 w(q, q + ei0) = ξ(m1 + q, m1 + q + ei0) = λ,

σn1 w(q, q + ei0) = w(n1 + q, n1 + q + ei0) = z(n1 + q, n1 + q + ei0).

However, λ is chosen such that λ 6= z(n1 + q, n1 + q + ei0). Therefore, σm1 w 6=
σn1 w, as required.

PROPOSITION 2.7. Let Λ be a finitely aligned k-graph without sources. The fol-
lowing are equivalent:

(i) Λ has no local periodicity;
(ii) Λ satisfies the aperiodicity condition.

Proof. It is clear that the aperiodicity condition implies no local periodicity.
Assume that Λ satisfies NLP and fails the aperiodicity condition. The above work
shows we may assume that for every v ∈ Λ0 and n 6= m ∈ Nk, there is x ∈ vΛ∞

such that d(x) > n ∨m and σnx 6= σmx. A proof identical to that for Lemma 3.3
of [6] now shows that Λ satisfies the aperiodicity condition.

2.2. FINITELY ALIGNED, WITH SOURCES. This subsection is dedicated to proving
the following proposition.

PROPOSITION 2.8. Let Λ be a finitely aligned k-graph. Then Λ satisfies the aperi-
odicity condition if and only if Λ has no local periodicity.

Suppose that Λ has no local periodicity but fails the aperiodicity condition
at some v1 ∈ Λ0.

Assume there exists x1 ∈ v1Λ6∞ such that d(x1)i1 < ∞ for some i1 ∈
{1, . . . , k}. If no such x1 ∈ v1Λ6∞ exists, then v1Λ6∞ = v1Λ∞. Fix t1 ∈ Nk

such that x1(t1)Λ
ei1 = ∅. Set v2 = x1(t1) and note that d(y)i1 = 0 for every

y ∈ v2Λ6∞.
Suppose there is x2 ∈ v2Λ6∞ such that 0 < d(x2)i2 < ∞ for some i2 ∈

{1, . . . , k}. Then i1 6= i2 and we may find t2 ∈ Nk such that x2(t2)Λ
ei2 = ∅. Set

v3 = x2(t2). We may continue in this fashion to find va ∈ Λ0 and an arrangement

{i1, . . . , ia, ia+1, . . . , ik}

of {1, . . . , k} such that, for every x ∈ vaΛ6∞,

d(x)i =

{
0 if i = ij, j 6 a,
∞ if i = ij, a + 1 6 j 6 k.

Let { f j} be the standard generators in Nk−a. Define π : Nk → Nk−1 and ι :
Nk−a → Nk by:

π
( k

∑
j=1

bij eij

)
=

k−a

∑
j=1

bij+a f j, ι
(

∑
j=1

bj f j

)
=

k−a

∑
j=1

bjej+a.
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Define a category Γ by setting:

Obj(Γ) = {w ∈ Λ0 : vaΛw 6= ∅}, Hom(Γ) = {λ ∈ Λ : vaΛr(λ) 6= ∅}.

Define a degree functor d′ : Γ → Nk−a by

d′(λ) = π(d(λ)).

Claim 1. (Γ, d′) is a finitely aligned (k− a)-graph without sources.

Proof of Claim 1. It is clear that Γ is a category, with range and source maps
coming from Λ. It must be checked that d′ is a well-defined functor satisfying
unique factorization.

That d′ is a well-defined functor follows immediately from its definition. To
see that d′ satisfies unique factorization, let λ ∈ Γ and suppose d′(λ) = m′ + n′,
where m′, n′ ∈ Nk−a. Set m = ι(m′) and n = ι(n′). Note that d(λ) = m + n,
since otherwise d(λ)ij > 0 for some j ∈ {1, . . . , a}, a contradiction of the fact

that vaΛ
eij = ∅ for j ∈ {1, . . . , a}. Thus, there are µ, ν ∈ Λ such that λ = µν,

d(µ) = m, and d(ν) = n. It is clear that d′(µ) = m′ and d′(ν) = n′, so d′ satisfies
unique factorization.

Γ is finitely aligned because |Γmin(λ, µ)| = ∞ readily implies that Λmin(λ, µ)
is infinite.

Finally, suppose that w ∈ Γ0 is such that wΓ f j = ∅ for some j ∈ {1, . . . , k−
a}. Fix λ ∈ vaΛw 6= ∅ and choose x ∈ Λ6∞ such that x(0, d(λ)) = λ. Then
d(x)j+a = ∞, a contradiction. Therefore, Γ has no sources

Claim 2. Γ has NLP.

Proof of Claim 2. Fix w ∈ Γ0 and m′ 6= n′ ∈ Nk−a. Let m = ι(m′), n = ι(n′),
where ι : Nk−a → Nk is standard injection. Because Λ is assumed to satisfy NLP,
there is x ∈ w∂Λ such that d(x) � m ∨ n or σmx 6= σnx.

Suppose that d(x) � m ∨ n for some x ∈ w∂Λ. Then d(x)i < (m ∨ n)i for
some i ∈ {1, . . . , k}. Since (m ∨ n)i = 0 for i ∈ {i1, . . . , ia}, this implies that
d(x)ij < (m ∨ n)ij for some j ∈ {a + 1, . . . , k}. Define y ∈ w∂Γ by y(0, l) =

x(0, ι(l)). Then d′(y)ij < (m′ ∨ n′)ij , so that d′(y) � m′ ∨ n′.
Suppose that σnx 6= σmx for some x ∈ w∂Λ. Define y ∈ w∂Γ by y(0, l) =

x(0, ι(l)). Note that d(x)i = 0 for i ∈ {i1, . . . , ia}. It follows immediately that
σn′y 6= σm′y.

Claim 3. Γ fails the aperiodicity condition.

Proof of Claim 3. It is assumed that Λ fails the aperiodicity condition at v1 ∈
Λ0. Let y ∈ va∂Γ. We will find n′ 6= m′ ∈ Nk−a such that σn′y = σm′y.

For t ∈ Nk define x ∈ va∂Λ by x(0, t) = y(0, π(t)) and fix µ ∈ v1Λva (using
the fact that v1Λva 6= ∅ by construction of va). Since Λ fails the aperiodicity
condition at v1 ∈ Λ0, there are n 6= m ∈ Nk such that σn(µx) = σm(µx). Notice
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that d(x)i = 0 when i ∈ {i1, . . . , ia} and that d(x)i = ∞ whenever mi 6= ni. Thus,
ni 6= mi for some i ∈ {ia+1, . . . , ik}.

Define p ∈ Nk by

pi =

{
d(σn(µx))i if i = ij, j 6 a,
d(µ)i if i = ij, a + 1 6 j 6 k.

Then p 6 d(σn(µx)), p + n > d(µ), and

σn∨m−nσn+p(µx) = σn∨m−mσn+p(µx).

Let q = n + p− d(µ). Then

(n ∨m− n + q) ∨ (n ∨m−m + q) 6 d(x)

because ((n ∨m− n) ∨ (n ∨m−m))i > 0 implies d(x)i = ∞ and ((n ∨m− n +
q) ∨ (n ∨m−m + q))i = qi 6 d(x)i otherwise. Moreover,

σn∨m−n+qx=σn∨m+p(µx)=σn∨m−nσn+p(µx)=σn∨m−mσn+p(µx)=σn∨m−m+qx.

Set n′ = π(n ∨m−m + q) and m′ = π(n ∨m− n + q). Notice that n′ 6= m′, since
otherwise (n ∨ m− n)ij = (n ∨ m− m)ij for each j ∈ {a + 1, . . . , k}. Finally, the

above work shows that σn′y = σm′y. Therefore, Γ fails the aperiodicity condition
at va ∈ Γ0.

Proof of Proposition 2.8. It is clear that the aperiodicity condition implies no
local periodicity.

If Λ has no local periodicity but fails the aperiodicity condition, then Claims 2
and 3 establish the existence of a lower rank graph Γ without sources, which has
both no local periodicity and fails the aperiodicity condition. This is a contradic-
tion of Proposition 2.6.

2.3. EQUIVALENT CONDITIONS. The following lemma (and its proof) is more or
less identical to Lemma 3.4 in [6].

LEMMA 2.9. Suppose Λ is a finitely aligned k-graph which has local periodicity
n, m at v ∈ Λ0. Then d(x) > n ∨m and σnx = σmx for every x ∈ v∂Λ. Fix x ∈ v∂Λ
and set µ = x(0, m), α = x(m, m ∨ n), and ν = µα(0, n). Then µαy = ναy for every
y ∈ s(α)∂Λ.

Proof. Let y ∈ s(α)∂Λ and set w = µαy. Then we have d(w) > n ∨ m
and σnw = σmw by assumption. Moreover, w(0, n) = ν, so w = νσnw. Since
σmw = σnw, it follows that σnw = αy, so µαy = w = ναy.

DEFINITION 2.10 ([2]). Let Λ be a finitely aligned k-graph. Λ satisfies Con-
dition B if for each v ∈ Λ0, there is x ∈ v∂Λ such that λ 6= µ ∈ Λv implies
λx 6= µx.
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PROPOSITION 2.11. Let Λ be a finitely aligned k-graph. The following are equiv-
alent:

(i) Λ has no local periodicity;
(ii) Λ satisfies the aperiodicity condition;

(iii) Λ satisfies Condition (B’).

Proof. Proposition 2.8 establishes that (i) is equivalent to (ii).
(iii) ⇒ (i). Suppose Λ has local periodicity n, m at v ∈ Λ0. Choose µ, ν, α

as in Lemma 2.9 and note d(µα) = m ∨ n, d(να) = n + m ∨ n − m, and that
n + m ∨ n − m 6= m ∨ n if m 6= n. Thus, µα 6= να and µαy = ναy for each
y ∈ s(α)∂Λ. Therefore, Λ fails Condition B at s(α).

(ii) ⇒ (iii). Suppose that Λ fails Condition B at v ∈ Λ0. Then for each
x ∈ v∂Λ, there are λx 6= µx ∈ Λv such that λxx = µxx. Notice d(λx) 6= d(µx),
since then λx = (λxx)(0, d(λx)) = (µxx)(0, d(µx)) = µx.

If d(λx)i 6= d(µx)i for some i ∈ {1, . . . , k}, then d(x)i + d(λx)i = d(x)i +
d(µx)i implies d(x)i = ∞. Hence,

(d(λx) ∨ d(µx)− d(µx)) ∨ (d(λx) ∨ d(µx)− d(λx)) 6 d(x).

Therefore,

σd(λx)∨d(µx)−d(µx)x = σd(λx)∨d(µx)−d(µx)σd(µx)(µx) = σd(λx)∨d(µx)µx.

Similarly,
σd(λx)∨d(µx)−d(λx)x = σd(λx)∨d(µx)λx.

Since we have λxx = µxx, this yields

σd(λx)∨d(µx)−d(µx)x = σd(λx)∨d(µx)−d(λx)x.

Hence, Λ fails the aperiodicity condition at v ∈ Λ0.

3. MAIN RESULT

DEFINITION 3.1 ([12], Definition 5.1). Let Λ be a finitely aligned k-graph
and let H ⊆ Λ0. H is hereditary if, for all λ ∈ Λ, r(λ) ∈ H implies s(λ) ∈ H. H is
saturated if for all v ∈ Λ0, F ∈ vFE(Λ) and s(F) ⊆ H imply v ∈ H.

Given a saturated and hereditary set H, IH denotes the ideal generated by
{sv : v ∈ H}.

DEFINITION 3.2 ([12], Definition 8.4). Let Λ be a k-graph. Λ is cofinal if, for
every v ∈ Λ0 and x ∈ ∂Λ, there is n 6 d(x) such that vΛx(n) 6= ∅.

PROPOSITION 3.3. Let Λ be a finitely aligned k-graph. The following are equiva-
lent:

(i) Λ is cofinal;
(ii) If I is an ideal of C∗(Λ) and sv ∈ I for some v ∈ Λ0, then I = C∗(Λ).
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Proof. (i)⇒ (ii). Suppose that Λ is cofinal and let H ⊆ Λ0 be a non-empty,
saturated, and hereditary set. Suppose that H 6= Λ0. By Claim 8.6 of [12], there is
a path x ∈ ∂Λ such that x(n) /∈ H for all n 6 d(x). This, however, is a contradic-
tion: Let v ∈ H. By the assumption that Λ is cofinal, there is n 6 d(x) for which
vΛx(n) 6= ∅. Let λ ∈ vΛx(n). Then r(λ) ∈ H and hence x(n) = s(λ) ∈ H by the
assumption that H is hereditary.

Suppose that I is an ideal of C∗(Λ) and that sv ∈ I for some v ∈ Λ0. Let
HI = {v ∈ Λ0 : sv ∈ I}. Then HI is non-empty and Lemma 3.3 from [12] shows
that HI is a saturated and hereditary subset of Λ0, whence HI = Λ0. This implies
sv ∈ I for all v ∈ Λ0, which yields I = C∗(Λ). Hence, the only non-empty
saturated hereditary subset of Λ0 is Λ0 itself.

(ii)⇒ (i). Assume that Λ is not cofinal. Then there is a vertex v ∈ Λ and a
path x ∈ ∂Λ such that vΛx(n) = ∅ for all n ∈ Nk with n 6 d(x). Let

Hx = {w ∈ Λ0 : wΛx(n) = ∅ ∀ n ∈ Nk such that n 6 d(x)}.

The proof of Proposition 8.5 in [12] shows that Hx is a non-trivial saturated and
hereditary set in Λ0. Hence, IHx is a non-trivial ideal of C∗(Λ) containing a vertex
projection.

PROPOSITION 3.4. Let Λ be a finitely aligned k-graph. The following are equiva-
lent:

(i) Λ has no local periodicity;
(ii) every non-zero ideal of C∗(Λ) contains a vertex projection;

(iii) the boundary-path representation πS is faithful.

Proof. (i)⇒ (ii). Suppose that Λ has no local periodicity. Then Λ satisfies the
aperiodicity condition. Therefore, the Cuntz–Krieger uniqueness theorem given
in Theorem 7.1 of [2] yields that every ideal of C∗(Λ) contains a vertex projection.

(ii) ⇒ (i). If ker(πS) 6= {0}, then sv ∈ ker(πS) for some v ∈ Λ0. This is
a contradiction because πS is non-zero on vertex projections given that v∂Λ is
non-empty for each v ∈ Λ0.

(iii) ⇒ (i). Suppose that Λ has local periodicity n, m at v ∈ Λ0. Let µ, ν, α
be as in Lemma 2.9 and put a := sµαs∗µα − sναs∗να. A proof identical to that for
Proposition 3.5 in [6] now shows that a ∈ ker(πS)\{0} after replacing Λ∞ by
∂Λ.

THEOREM 3.5. Let Λ be a finitely aligned k-graph. Then C∗(Λ) is simple if and
only if Λ is cofinal and has no local periodicity.

Proof. Proposition 3.4 shows that every non-zero ideal of C∗(Λ) contains
a vertex projection. Proposition 3.3 shows that every such ideal is equal to all
of C∗(Λ). Therefore, C∗(Λ) has no non-trivial ideals. If C∗(Λ) is simple, then
Proposition 3.3 shows that Λ is cofinal and Proposition 3.4 gives that Λ has no
local periodicity.
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