SEMICROSSED PRODUCTS AND REFLEXIVITY

EVGENIOS T.A. KAKARIADIS

Communicated by Kenneth R. Davidson

ABSTRACT. Given a w*-closed unital algebra \mathcal{A} acting on H_0 and a contractive w*-continuous endomorphism β of \mathcal{A} , there is a w*-closed (non-selfadjoint) unital algebra $\mathbb{Z}_+ \overline{\times}_{\beta} \mathcal{A}$ acting on $H_0 \otimes \ell^2(\mathbb{Z}_+)$, called the w*-semicrossed product of \mathcal{A} with β . We prove that $\mathbb{Z}_+ \overline{\times}_{\beta} \mathcal{A}$ is a reflexive operator algebra provided \mathcal{A} is reflexive and β is unitarily implemented, and that $\mathbb{Z}_+ \overline{\times}_{\beta} \mathcal{A}$ has the bicommutant property if and only if so does \mathcal{A} . Also, we show that the w*-semicrossed product generated by a commutative C^* -algebra and a continuous map is reflexive.

KEYWORDS: *C*^{*}*-envelope, reflexive subspace, semicrossed product.*

MSC (2000): Primary 47L65; Secondary 47L75.

INTRODUCTION

As is well known, to construct the *C**-crossed product of a unital *C**-algebra *C* by a *-isomorphism $\alpha : C \to C$, we begin with the Banach space $\ell^1(\mathbb{Z}, C, \alpha)$ which is the closed linear span of the monomials $\delta_n \otimes x$, $n \in \mathbb{Z}$, $x \in C$, under the norm $\Big| \sum_{n=-k}^{k} \delta_n \otimes x_n \Big|_1 = \sum_{n=-k}^{k} \|x_n\|_C$, equipped with the (isometric) involution $(\delta_n \otimes x)^* = \delta_{-n} \otimes \alpha^{-n}(x^*)$. Now, there are two "natural" ways to define multiplication in $\ell^1(\mathbb{Z}, C, \alpha)$; either the left multiplication $(\delta_n \otimes x) *_1 (\delta_m \otimes y) = \delta_{n+m} \otimes a^m(x)y$, or the right one $(\delta_n \otimes x) *_r (\delta_m \otimes y) = \delta_{n+m} \otimes xa^n(y)$. Then the corresponding algebras are isometrically *-isomorphic via the map $\Psi(\delta_n \otimes x) = \delta_{-n} \otimes a^{-n}(x)$. We can see that $(\ell^1(\mathbb{Z}, C, \alpha)_1)^{\text{opp}} = \ell^1(\mathbb{Z}, C^{\text{opp}}, \alpha)_r$, where for an algebra \mathcal{B} , \mathcal{B}^{opp} is the space \mathcal{B} along with the multiplication $x \odot y := yx$; hence, in case C is commutative, each algebra is the opposite of the other. The left and right crossed product are the completion of the corresponding involutive Banach algebras under a universal norm induced by the $|\cdot|_1$ -contractive *-representations (hence, they are C^* -algebras characterized by a universal property) and the map

 Ψ extends to a C^* -isomorphism. Moreover, it can be proved that the crossed product is *-isomorphic to the reduced crossed product $C_1^*(\mathcal{C})$, i.e. the norm closure of the range of the left regular representation, and thus we end up with just one object to which we refer as *the crossed product of the dynamical system* (\mathcal{C}, α). The key fact is that there is a bijection between the $|\cdot|_1$ -contractive *-representations of each of these ℓ^1 -algebras and the (left or right) covariant unitary pairs (see Section 1).

If we wish to construct a non-selfadjoint analogue, we can see that there are more possibilities. For example, Peters defined the semicrossed product as the completion of the Banach algebra $\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_1$ under the universal norm that arises from the left covariant isometric pairs and examined the case when α is an injective *-endomorphism of \mathcal{C} . He proved that this semicrossed product embeds isometrically in a crossed product (see [12]) and, for the commutative case, that this crossed product is the C^* -envelope of the semicrossed product (see [13]).

In Section 1 we use an alternative definition using "sufficiently many" homomorphisms of the Banach algebra $\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_1$ (see also [4]). The advantage is that there is a bijection between the left covariant contractive pairs and the homomorphisms of the Banach algebra $\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_1$. Moreover, there is a duality between the left covariant contractive pairs and the right covariant contractive pairs, which induce the homomorphisms of the Banach algebra $\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_r$; hence, we get similar results for the right version. Also, using a dilation theorem of [10], we can see that this definition gives the one in [12]. If we consider the maximal operator space structure, then the semicrossed products are operator algebras with a universal property that characterizes them up to completely isometric isomorphism. In Theorem 1.4 we prove that the semicrossed product is independent of the way C is (faithfully) represented and in Theorem 1.5 we prove that in case α is a *-isomorphism, its C*-envelope is exactly the crossed product. So, in order to define a w*-analogue of the semicrossed product that arises by a w*-continuous contractive endomorphism β of a w*-closed subalgebra \mathcal{A} of some $\mathcal{B}(H_0)$ (for example, a von Neumann algebra), either we take the w*-closed linear span of a non-selfadjoint left regular representation or the w*-closed linear span of the analytic polynomials of the von Neumann crossed product, depending on the properties of β .

In Section 2 we analyze the properties of the w*-semicrossed product, in case β is unitarily implemented. First of all, we study the connection between the semicrossed product and the w*-tensor product $\mathcal{A} \otimes \mathcal{T}$, where \mathcal{T} is the algebra of the analytic Toeplitz operators, and give an example when these two algebras are incomparable. A main result of this section is the reflexivity of the w*-semicrossed product, when \mathcal{A} is reflexive. Recall that a subspace $\mathcal{S} \subseteq B(H)$ is *reflexive* if it coincides with its *reflexive cover*, namely $\text{Ref}(\mathcal{S}) = \{T \in \mathcal{B}(H) : T\xi \in \overline{\mathcal{S}\xi}, \text{ for all } \xi \in \mathcal{H}\}$ (see [8]); unlike [8], we will call \mathcal{S} hereditarily reflexive if every w*-closed subspace of \mathcal{S} is reflexive. As a consequence we have that, when a unitary implementation condition holds, the w*-closed image of lt_{π} (see

Example 1.1) induced by a representation (H_0, π) of C is reflexive. Also, we get several known results as applications. As another main result, we prove that the w*-semicrossed product is the commutant of a w*-semicrossed product and is its own bicommutant if and only if the same holds for A.

In the last section we consider the semicrossed product of a commutative C^* -algebra C(K) with a continuous map $\phi : K \to K$. As observed in Theorem 1.4, the representations induced by a character of C(K), say ev_t , $t \in K$, suffice to obtain the norm of the semicrossed product and play a significant role for its study. First, we show that the w*-closure of such representations is always reflexive; in fact, it has the form $(\mathfrak{T}P_{n_0}) \oplus (\mathcal{T}P_0) \oplus \cdots \oplus (\mathcal{T}P_{p-1})$, where \mathfrak{T} is the algebra of lower triangular operators in $\mathcal{B}(\ell^2(\mathbb{Z}_+))$, \mathcal{T} is the algebra of analytic Toeplitz operators and $P_{n_0}, P_0, \ldots, P_{p-1}$ some projections determined by the orbit of the point $t \in K$.

In what follows we use standard notation, as in [5] for example. $\mathbb{Z}_+ = \{0, 1, 2, ...\}$ and all infinite sums are considered in the strong-convergent sense. Throughout, we use the symbol v for the unilateral shift on $\mathcal{B}(\ell^2(\mathbb{Z}_+))$, given by $v(e_n) = e_{n+1}$. A useful tool for the proofs in Sections 2 and 3 is a *Féjer-type Lemma*; consider the unitary action of \mathbb{T} on $H = H_0 \overline{\otimes} \ell^2(\mathbb{Z}_+)$ induced by the operators $U_s, s \in \mathbb{R}$, given by $U_s(\xi \otimes e_n) = e^{ins}\xi \otimes e_n$. For every $T \in \mathcal{B}(H)$ and every $m \in \mathbb{Z}$ we define the "*m-Fourier coefficient*"

$$G_m(T) = \int_0^{2\pi} U_s T U_s^* \mathrm{e}^{-\mathrm{i}ms} \frac{\mathrm{d}s}{2\pi},$$

the integral taken as the w*-limit of Riemann sums. If we set

$$\sigma_{\rm I}(T)(t) = \frac{1}{l+1} \sum_{n=0}^{l} \sum_{m=-n}^{n} G_m(T) \exp({\rm i}mt),$$

then $\sigma_1(T)(0) \xrightarrow{w^*} T$. Note that $G_m(\cdot)$ is w*-continuous for every $m \in \mathbb{Z}$.

Now, for every $\kappa, \lambda \in \mathbb{Z}_+$, and $T \in \mathcal{B}(H)$ let the "matrix elements" $T_{\kappa,\lambda} \in \mathcal{B}(H_0)$ be defined by $\langle T_{\kappa,\lambda}\xi,\eta \rangle = \langle T(\xi \otimes e_{\lambda}),\eta \otimes e_{\kappa} \rangle, \xi,\eta \in H_0$; then we can write the Fourier coefficients explicitly by the formula

$$G_m(T) = \begin{cases} V^m \Big(\sum_{n \ge 0} T_{m+n,n} \otimes p_n \Big) & \text{when } m \ge 0, \\ \Big(\sum_{n \ge 0} T_{n,-m+n} \otimes p_n \Big) (V^*)^{-m} & \text{when } m < 0, \end{cases}$$

where $V = 1_{H_0} \otimes v$. For simplicity, we define the diagonal matrices

$$T_{(m)} = \begin{cases} \sum_{n \ge 0} T_{m+n,n} \otimes p_n & \text{when } m \ge 0, \\ \sum_{n \ge 0} T_{n,-m+n} \otimes p_n & \text{when } m < 0. \end{cases}$$

Note that the sums converge in the w*-topology as well, since the partial sums are uniformly bounded by ||T||. Hence, $G_m(T)$ is the *m*-diagonal of *T*, when we view *H* as the ℓ^2 -sum of copies of H_0 .

1. SEMICROSSED PRODUCTS OF C*-ALGEBRAS

Let C be a unital C^* -algebra and $\alpha : C \to C$ a *-morphism; define $\ell^1(\mathbb{Z}_+, C, \alpha)$ to be the closed linear span of the monomials $\delta_n \otimes x$, $n \in \mathbb{Z}_+$, $x \in C$, under the norm

$$\Big|\sum_{n=0}^k \delta_n \otimes x_n\Big|_1 = \sum_{n=0}^k \|x_n\|_{\mathcal{C}}.$$

We endow $\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)$ either with the left multiplication $(\delta_n \otimes x) *_1 (\delta_m \otimes y) = \delta_{n+m} \otimes a^m(x)y$, or with the right one $(\delta_n \otimes x) *_r (\delta_m \otimes y) = \delta_{n+m} \otimes xa^n(y)$, and denote the corresponding Banach algebras by $\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_1$ and $\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_r$, respectively. One can see that $(\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_1)^{\text{opp}}$ is exactly $\ell^1(\mathbb{Z}_+, \mathcal{C}^{\text{opp}}, \alpha)_r$, where, if \mathcal{B} is an algebra, \mathcal{B}^{opp} is the space \mathcal{B} with the multiplication $x \odot y := yx$. Thus, in case \mathcal{C} is commutative, each algebra is the opposite of the other.

Let (H, π) be a *-representation of C and T a contraction in $\mathcal{B}(H)$. The pair (π, T) is called a *left covariant contractive* (*l-cov.con.*) pair, if the left covariance relation is satisfied, i.e. $\pi(x)T = T\pi(\alpha(x)), x \in C$. If, in particular, T is an isometry, pure isometry, co-isometry or unitary, then we will call such a pair *a left covariant isometric, purely isometric, co-isometric or unitary pair*. We can see that every l-cov.con. pair induces a $|\cdot|_1$ -contractive representation $(H, T \times \pi)$ of $\ell^1(\mathbb{Z}_+, C, \alpha)_1$, given by

$$(T \times \pi) \Big(\sum_{n=0}^k \delta_n \otimes x_n \Big) = \sum_{n=0}^k T^n \pi(x_n).$$

Conversely, if $\rho : \ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_1 \to \mathcal{B}(H)$ is a contractive representation, then (H, ρ) restricts to a contractive representation (H, π) of the *C*^{*}-algebra *C*, thus a *-representation. If we set $\rho(\delta_1 \otimes e) = T$, then $||T^n|| \leq 1$, for every $n \in \mathbb{Z}_+$. It is easy to check that the pair (π, T) satisfies the left covariance relation.

Analogously, there is a bijection between the *right covariant contractive* (*rcov.con.*) pairs (π, T) , (i.e. satisfying the right covariance condition $T\pi(x) = \pi(\alpha(x))T$, $x \in C$) and the $|\cdot|_1$ -contractive representations $\pi \times T$ of the algebra $\ell^1(\mathbb{Z}_+, C, \alpha)_r$. Note that if (π, T) is a l-cov.con. pair then (π, T^*) is a r-cov.con. pair. Thus TT^* commutes with $\pi(C)$.

EXAMPLE 1.1. Let (H_0, π) be a faithful *-representation of C and define on $H_0 \otimes \ell^2(\mathbb{Z}_+)$ the representation $\tilde{\pi}(x) = \text{diag}\{\pi(\alpha^n(x)) : n \in \mathbb{Z}_+\}$ and $V = 1_{H_0} \otimes v$, where v is the unilateral shift. Then $(\tilde{\pi}, V)$ is a l-cov.is. pair. For simplicity we will denote the corresponding representation $V \times \tilde{\pi}$, by lt_{π} . As mentioned before,

the pair $(\tilde{\pi}, V^*)$ is a r-cov.con. pair which induces the representation $rt_{\pi} := \tilde{\pi} \times V^*$. One can check that lt_{π} and rt_{π} are faithful.

DEFINITION 1.2. The (*left*) *semicrossed product* $\mathbb{Z}_+ \times_{\alpha} C$ is the completion of $\ell^1(\mathbb{Z}_+, C, \alpha)_1$ under the norm

$$||F||_1 = \sup\{||(T \times \pi)(F)|| : (\pi, T) \text{ is a l-cov.con. pair}\}.$$

The (*right*) *semicrossed product* $C \times_{\alpha} \mathbb{Z}_+$ is the completion of $\ell^1(\mathbb{Z}_+, C, \alpha)_r$ under the norm

 $||F||_{\mathbf{r}} = \sup\{||(\pi \times T)(F)|| : (\pi, T) \text{ is a r-cov.con. pair}\}.$

The left semicrossed product is endowed with an operator space structure (the maximal one, see 1.2.22 of [2]) induced by the matrix norms

 $\|[F_{i,j}]\|_1 = \sup\{\|[(T \times \pi)(F_{i,j})]\| : (\pi, T) \text{ l-con.cov. pair}\}.$

We note that there is a bijective correspondence between the l-cov.con. pairs (π, T) and the unital completely contractive representations of $\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_l$. So, the left semicrossed product has the following universal property (up to completely isometric isomorphisms): for any unital operator algebra \mathcal{B} and for any unital completely contractive morphism $\rho : \ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_l \to \mathcal{B}$, there exists a unique unital completely contractive morphism $\tilde{\rho} : \mathbb{Z}_+ \times_{\alpha} \mathcal{C} \to \mathcal{B}$ that extends ρ .

In Theorem 1.4, we prove that the semicrossed product, as an operator algebra, is independent of the way C is (faithfully) represented. In order to do so, we use some dilations theorems of [10] and [12] and arguments similar to the ones in Theorem 6.2 of [7].

First of all, every l-cov.con. pair (π, T) on a Hilbert space H dilates to a l-cov.is. pair (η, W) on a Hilbert space $H_1 \supseteq H$, such that $\eta(x)H \subseteq H$ and $\eta(x)|_H = \pi(x)$, for every $x \in C$, and $T^n = P_H W^n|_H$, for every $n \in \mathbb{Z}_+$, where W is an isometry (see [10]). Hence, by II.5 of [12] we see that the norm $\|\cdot\|_1$ is the supremum over all left covariant purely isometric pairs. By Proposition I.4 of [12], for such a pair (η, W) on a Hilbert space H_1 there is a representation (H_2, π') of C such that $W \times \eta$ is unitarily equivalent to $lt_{\pi'}$. Thus, eventually we have that, for $F \in \ell^1(\mathbb{Z}_+, C, \alpha)_L$, $\|F\|_1 = \sup\{\|lt_{\pi}(F)\| : (H, \pi)$ a *-representation of $C\}$. Moreover, $\|[F_{i,j}]\|_1 = \sup\{\|[lt_{\pi}(F_{i,j})]\| : (H, \pi)$ a *-representation of $C\}$.

PROPOSITION 1.3. If $F_{i,j} \in \ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_l$, then $\|[F_{i,j}]\|_l = \|[lt_{\pi_u}(F_{i,j})]\|$, where (H_u, π_u) is the universal representation of \mathcal{C} . Analogously, if $F_{i,j} \in \ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_r$, then $\|[F_{i,j}]\|_r = \|[rt_{\pi_u}(F_{i,j})]\|$.

Proof. Let (H, π) be a *-representation of C. By definition of the universal representation we have that $\pi_u|_H = \pi$ and $\pi_u(x)H \subseteq H$. Let $H_0 = H \otimes \ell^2(\mathbb{Z}_+)$. We denote by P_{H_0} the projection onto $H \otimes \ell^2(\mathbb{Z}_+) \subseteq H_u \otimes \ell^2(\mathbb{Z}_+)$ and observe that $P_{H_0}(\mathbf{1}_{H_u} \otimes v)^n|_{H_0} = (\mathbf{1}_{H_0} \otimes v)^n$, for every $n \in \mathbb{Z}_+$. Thus, for every $v \in \mathbb{Z}_+$ and for every $[F_{i,j}] \in \mathcal{M}_v(\ell^1(\mathbb{Z}_+, C, \alpha))$, we have that $[lt_\pi(F_{i,j})] = (P_{H_0} \otimes I_v)[lt_{\pi_u}(F_{i,j})]|_{(H_0)^{(\nu)}}$, and so $\|[lt_\pi(F_{i,j})]\| \leq \|[lt_{\pi_u}(F_{i,j})]\|$.

If (H, π) is a faithful *-representation of C, we denote by $C^*(\pi, V)$ the C^* algebra generated by the representation lt_{π} in $\mathcal{B}(H \otimes \ell^2(\mathbb{Z}_+))$. The covariance relation shows that $C^*(\pi, V)$ is the norm-closed linear span of the monomials $V^m \tilde{\pi}(x)(V^*)^{\lambda}$, $m, \lambda \in \mathbb{Z}_+$. Since, $C^*(\pi, V)$ is a direct summand of $C^*(\pi_u, V_u)$, the compression $\Phi : \mathcal{B}(H_u \otimes \ell^2(\mathbb{Z}_+)) \to \mathcal{B}(H \otimes \ell^2(\mathbb{Z}_+))$ is a *-epimorphism when restricted on $C^*(\pi_u, V_u)$. We will prove that it is also faithful, hence completely isometric.

To this end, for every $s \in [0, 2\pi]$, we define $u_s : \ell^2(\mathbb{Z}_+) \to \ell^2(\mathbb{Z}_+)$ by $u_s(e_m) = e^{2\pi i s} e_m$. Let $\widetilde{U}_s = \mathbf{1}_{H_u} \otimes u_s$ and $U_s = \mathbf{1}_H \otimes u_s$. The map $\widetilde{\gamma}_s = \operatorname{ad}_{\widetilde{U}_s}$ is a *-automorphism of $C^*(\pi_u, V_u)$, since $\widetilde{\gamma}_s(\widetilde{\pi}_u(x)) = \widetilde{\pi}_u(x)$ and $\widetilde{\gamma}_s(\widetilde{V}_u^n) = e^{2\pi i n s} \widetilde{V}_u^n$. Similarly, $\gamma_s = \operatorname{ad}_{U_s}$ is a *-automorphism of $C^*(\pi, V)$. It is clear that $\Phi \circ \widetilde{\gamma}_s = \gamma_s \circ \Phi$, because $\Phi(\widetilde{U}_s) = U_s$. We denote by $C^*(\pi_u, V_u)^{\widetilde{\gamma}}$ the fixed point algebra of $\widetilde{\gamma}$ and define the contractive, faithful projection $\widetilde{E} : C^*(\pi_u, V_u) \to C^*(\pi_u, V_u)^{\widetilde{\gamma}}$ by

$$\widetilde{E}(X) := \int_{0}^{2\pi} \widetilde{\gamma}_{s}(X) \frac{\mathrm{d}s}{2\pi},$$

(as a Riemann integral of a norm-continuous function). Let

$$\mathcal{B}_k := \Big\{ \sum_{n=0}^k V_{\mathbf{u}}^n \widetilde{\pi}_{\mathbf{u}}(x_n) (V_{\mathbf{u}}^*)^n : x_n \in \mathcal{C} \Big\};$$

then we can check that $C^*(\pi_u, V_u)^{\widetilde{\gamma}}$ is the norm-closure of $\bigcup_{k \in \mathbb{Z}_+} \mathcal{B}_k$. Let X_k be an element of \mathcal{B}_k . Since, $V_u^n \widetilde{\pi}_u(x) (V_u^*)^n = \text{diag}\{\underbrace{0, \ldots, 0}_{n-\text{times}}, \pi_u(\alpha), \pi_u(\alpha(x)), \ldots\}$, we see that X_k is a diagonal matrix whose (m, m)-entry is the element $(X_k)_{m,m} = \lim_{\substack{k \in \mathbb{Z}_+ \\ min\{m,k\}}} \mathbb{E}_k$.

$$\pi_{\mathbf{u}} \Big(\sum_{i=0}^{\infty} \alpha^{m-j}(x_{m-j}) \Big)$$
. So, if (H, π) is a faithful *-representation of \mathcal{C} ,

$$\|(X_k)_{m,m}\| = \left\| \pi_{\mathbf{u}} \Big(\sum_{j=0}^{\min\{m,k\}} \alpha^{m-j}(x_{m-j}) \Big) \right\| = \left\| \sum_{j=0}^{\min\{m,k\}} \alpha^{m-j}(x_{m-j}) \right\|_{\mathcal{C}}$$
$$= \left\| \pi \Big(\sum_{j=0}^{\min\{m,k\}} \alpha^{m-j}(x_{m-j}) \Big) \right\| = \|(\Phi(X_k))_{m,m}\|.$$

So $||X_k|| = \sup_m \{||(X_k)_{m,m}||\} = \sup_m \{||(\Phi(X_k))_{m,m}||\} = ||\Phi(X_k)||$; hence Φ : $C^*(\pi_u, V_u) \to C^*(\pi, V)$ is isometric on each \mathcal{B}_k . Thus, Φ is injective when restricted to the fixed point algebra $C^*(\pi_u, V_u)^{\widetilde{\gamma}}$.

THEOREM 1.4. The left semicrossed product $\mathbb{Z}_+ \times_{\alpha} C$ is completely isometrically isomorphic to the norm-closed linear span of $\sum_{n=0}^{k} V^n \widetilde{\pi}(x_n)$, $x_n \in C$, where (H, π) is any faithful *-representation of C. Respectively, the right semicrossed product $C \times_{\alpha} \mathbb{Z}_+$ is

completely isometrically isomorphic to the norm-closed linear span of $\sum_{n=0}^{k} \widetilde{\pi}(x_n)(V^*)^n$, $x_n \in C$, where (H, π) is any faithful *-representation of C.

Proof. It suffices to prove that the natural *-epimorphism Φ is faithful, hence a (completely) *-isometric isomorphism. Let $X \in \ker \Phi$, then $X^*X \in \ker \Phi$. Hence,

$$\Phi(\widetilde{E}(X^*X)) = \Phi\left(\int_{0}^{2\pi} \widetilde{\gamma_s}(X^*X) \frac{\mathrm{d}s}{2\pi}\right) = \int_{0}^{2\pi} \Phi(\widetilde{\gamma_s}(X^*X)) \frac{\mathrm{d}s}{2\pi} = \int_{0}^{2\pi} \gamma_s(\Phi(X^*X)) \frac{\mathrm{d}s}{2\pi} = 0.$$

Now $\tilde{E}(X^*X)$ is in $C^*(\pi_u, V_u)^{\tilde{\gamma}}$ and Φ is faithful there; hence $\tilde{E}(X^*X) = 0$ and so $X^*X = 0$. For the right semicrossed product, note that $C^*(\pi, V^*) = C^*(\pi, V)$.

If, in particular, α is a *-isomorphism, then there is a natural way to identify the left semicrossed product as a closed subalgebra of the (reduced) crossed product, i.e. $C_1^*(\mathcal{C})$. In this case, we refer to this closed subalgebra as the *left reduced semicrossed product*. In a dual way, we can define the *right reduced semicrossed product*. The following is proved in [13], when \mathcal{C} is abelian.

THEOREM 1.5. If α is a *-isomorphism, then the C*-envelope of the semicrossed product is the (reduced) crossed product.

Proof. Since α is a *-isomorphism, we can view $\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_1$ as a $|\cdot|_1$ -closed subalgebra of $\ell^1(\mathbb{Z}, \mathcal{C}, \alpha)_1$. First we prove that the inclusion map $\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha) \hookrightarrow \ell^1(\mathbb{Z}, \mathcal{C}, \alpha)$ is completely isometric. The key is to prove that

$$||F||_1 = \sup\{||(U \times \pi)(F)|| : (\pi, U) \text{ l-cov.un. pair of } \ell^1(\mathbb{Z}, \mathcal{C}, \alpha)_1\},\$$

for every $F \in \ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_1$, since the right hand side is exactly the norm of the (left) crossed product. For simplicity, we denote this norm by $\|\cdot\|$. It is obvious that $||F|| \leq ||F||_1$, since every l-cov.un. pair of $\ell^1(\mathbb{Z}, \mathcal{C}, \alpha)_1$ restricts to a l-cov.un. pair of the subalgebra $\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_l$. Also, if (H_0, π) is a faithful *representation of C_{t} then lt_{π} is the compression of the left regular representation of $\ell^1(\mathbb{Z}, \mathcal{C}, \alpha)_1$ induced by π , denoted simply by lt. So, $\|lt_{\pi}(F)\| \leq \|lt(F)\|$, thus $||F||_1 \leq ||F||$ by Theorem 1.4. Arguing in the same way, we get that $||[F_{i,j}]|| \leq ||F||_1 \leq ||F||_1 \leq ||F||_1$ $\|[F_{i,j}]\|_1$ and $\|[It_{\pi}(F_{i,j})]\| \leq \|[It(F_{i,j})]\|$, for every $[F_{i,j}] \in \mathcal{M}_{\nu}(\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_1)$. But lt is a *-morphism of the crossed product, hence completely contractive. Thus, $\|[F_{i,j}]\|_1 \leq \|[F_{i,j}]\|$ and equality holds. Hence, if $\hat{\pi}(x) = \text{diag}\{\pi(a^m(x)), m \in \mathbb{Z}\}$ and $U = 1_{H_0} \otimes u$, where *u* is the bilateral shift, then the map $\delta_n \otimes x \mapsto U^n \widehat{\pi}(x)$ extends to a complete isometry ι : $\mathbb{Z}_+ \times_{\alpha} \mathcal{C} \to C_1^*(\mathcal{C})$, whose image generates $C_1^*(\mathcal{C})$ as a C^* -algebra. Let \mathcal{B} be the C^* -envelope of $\mathbb{Z}_+ \times_{\alpha} \mathcal{C}$. Then, by the universal property of C^* -envelopes, there is a surjective C^* -homomorphism Ψ : $C_1^*(\mathcal{C}) \to \mathcal{B}$, which restricts to a completely isometry on $\iota(\mathbb{Z}_+ \times_{\alpha} \mathcal{C})$. Let $G \in \ker \Phi$ be of unit norm, and choose $F = \sum_{n=-k}^{k} U^n \widehat{\pi}(x_n)$ with ||G - F|| < 1/2.

Thus $U^k G \in \ker \Psi$, $\iota^{-1}(U^k F) \in \mathbb{Z}_+ \times_{\alpha} C$, $\|\iota^{-1}(U^k F)\| = \|U^k F\| = \|F\| > 1/2$ and $\|U^k G - U^k F\| = \|G - F\| < 1/2$. Then $1/2 < \|i^{-1}(U^k F)\| = \|\Psi(U^k F)\| = \|\Psi(U^k F)\| = \|\Psi(U^k F - U^k G)\| \le \|U^k F - U^k G\| < 1/2$, which is a contradiction.

2. w*-SEMICROSSED PRODUCTS

Let $\mathcal{A} \subseteq B(H_o)$ be a unital subalgebra, closed in the w*-operator topology, and $\beta : \mathcal{A} \to \mathcal{A}$, a contractive w*-continuous endomorphism of \mathcal{A} . From now on we fix $H = H_o \otimes \ell^2(\mathbb{Z}_+)$ and $\pi := id_{\mathcal{A}}$, as in Example 1.1. Then π is a faithful representation of \mathcal{A} on H, and we can write $\pi(b) = \sum_{n \ge 0} \beta^n(b) \otimes p_n$, where $p_n \in \mathcal{B}(\ell^2(\mathbb{Z}_+))$ is the projection onto $[e_n]$. Note that the sum converges in the w*-topology as well. Hence, $\pi(b)$ belongs to the *w**-*tensor product algebra* $\mathcal{A} \otimes \mathcal{B}(\ell^2(\mathbb{Z}_+))$. This is, by definition, the w*-closed linear span in $\mathcal{B}(H)$ of the operators $b \otimes a$, with $b \in \mathcal{A}$ and $a \in \mathcal{B}(\ell^2(\mathbb{Z}_+))$. We also represent \mathbb{Z}_+ on H by the isometries $V^n = \mathbf{1}_{H_o} \otimes v^n$, where v is the unilateral shift on $\ell^2(\mathbb{Z}_+)$. Thus, $V^n \in \mathcal{A} \otimes \mathcal{B}(\ell^2(\mathbb{Z}_+))$.

DEFINITION 2.1. The w*-semicrossed product $\mathbb{Z}_+ \times_{\beta} \mathcal{A}$ is the w*-closure of the linear space of the "analytic polynomials" $\sum_{n=0}^{k} V^n \pi(b_n), b_n \in \mathcal{A}, k \ge 0.$

It is easy to check that the left covariance relation $\pi(b)V = V\pi(\beta(b))$ holds. Hence, (π, V) is a left covariant isometric pair. Thus, the w*-semicrossed product is a unital (non-selfadjoint) subalgebra of $\mathcal{B}(H)$ and by definition, $\mathbb{Z}_+ \times_{\beta} \mathcal{A} \subseteq \mathcal{A} \otimes \mathcal{B}(\ell^2(\mathbb{Z}_+))$.

PROPOSITION 2.2. An operator $T \in \mathcal{B}(H)$ is in the w*-semicrossed product if and only if $T_{\kappa,\lambda} \in \mathcal{A}$ and $G_m(T) = V^m \pi(T_{m,0})$, when $m \in \mathbb{Z}_+$, while $G_m(T) = 0$ for m < 0. Equivalently, when $T_{\kappa,\lambda} \in \mathcal{A}$ and $\beta(T_{m+\lambda,\lambda}) = T_{m+\lambda+1,\lambda+1}$ for every $m, \lambda \in \mathbb{Z}_+$, while $T_{\kappa,\lambda} = 0$ when $\kappa < \lambda$.

Proof. If $T = \sum_{\kappa=0}^{n} V^{\kappa} \pi(b_{\kappa})$ with $b_{\kappa} \in \mathcal{A}$, then $G_m(T) = V^m \pi(b_m)$ when $m \in \{0, 1, ..., n\}$ and $G_m(T) = 0$ otherwise. Let $T \in \mathbb{Z}_+ \overline{\times}_\beta \mathcal{A}$ and a net $A_i = \sum_{\kappa=0}^{n_i} V^{\kappa} \pi(b_{i,\kappa})$ of analytic polynomials converging to T in the w*-topology. Since G_m is w*-continuous, we have that $G_m(T) = w^*-\lim_i G_m(A_i)$ for every $m \in \mathbb{Z}$. Thus $G_m(T) = 0$ when m < 0. If $m \ge 0$, then $T_{(m)} = (V^*)^m G_m(T) = w^*-\lim_i (V^*)^m G_m(A_i) = w^*-\lim_i \pi(b_{i,m})$. Let $\phi \in \mathcal{B}(H_0)_*$ and $k \in \mathbb{Z}_+$, then $\phi \overline{\otimes} \omega_{e_{\kappa},e_{\kappa}} \in \mathcal{B}(H)_*$; hence we get

$$\phi(T_{m+\kappa,\kappa}) = (\phi \overline{\otimes} \omega_{e_{\kappa},e_{\kappa}})(T_{(m)}) = \lim_{i} (\phi \overline{\otimes} \omega_{e_{\kappa},e_{\kappa}})(\pi(b_{i,n})) = \lim_{i} \phi(\beta^{k}(b_{i,n}))$$

Thus $T_{m+\kappa,\kappa} = w^* - \lim_i \beta^{\kappa}(b_{i,m})$, for every $\kappa \in \mathbb{Z}_+$, so $T_{m+\kappa,\kappa} \in \mathcal{A}$. Also, since β is w*-continuous, we get that $\beta^{\kappa}(T_{m,o}) = w^* - \lim_i \beta^{\kappa}(b_{i,m}) = T_{m+\kappa,\kappa}$, for every $\kappa \in \mathbb{Z}_+$. Hence, we get that $G_m(T) = V^m \pi(T_{m,o})$, for every $m \ge 0$. For the opposite direction, if $T \in \mathcal{B}(H)$ satisfies the conditions, we can see that $G_m(T) \in \mathbb{Z}_+ \times_\beta \mathcal{A}$, and so by the Féjer Lemma, $T \in \mathbb{Z}_+ \times_\beta \mathcal{A}$ as well. The last equivalence is trivial.

REMARK 2.3. Note that each ad_{U_s} leaves $\mathbb{Z}_+ \times_{\beta} \mathcal{A}$ invariant, and hence, being unitarily implemented, also leaves its reflexive cover invariant. Thus, so does $G_m(\cdot)$.

Suppose now that the endomorphism β is *implemented* by a unitary w acting on H_0 , so that $\beta(b) = wbw^*$, for all $b \in \mathcal{A}$. Let $\rho(b) = b \otimes \mathbf{1}_{\ell^2(\mathbb{Z}_+)}$, for $b \in \mathcal{A}$ and $W = w^* \otimes v$. Then (ρ, W) is a left covariant isometric pair and we denote by $\mathbb{Z}_+ \times_w \mathcal{A}$ the w^* -closure of the linear space of the "analytic polynomials" $\sum_{n=0}^k W^n \rho(b_n)$, $b_n \in \mathcal{A}, k \ge 0$. It is easy to check that $\mathbb{Z}_+ \times_w \mathcal{A}$ is unitarily equivalent to $\mathbb{Z}_+ \times_\beta \mathcal{A}$, via

 $Q = \sum_{n \ge 0} w^{-n} \otimes p_n$. Thus we refer to $\mathbb{Z}_+ \times \mathbb{Z}_w \mathcal{A}$ as the w*-semicrossed product, as well. Using the unitary operator Q and Proposition 2.2 we get the following characterization.

PROPOSITION 2.4. An operator $T \in \mathcal{B}(H)$ is in $\mathbb{Z}_+ \overline{\times}_w \mathcal{A}$ if and only if $G_m(T) = W^m \rho(b_m)$, for some $b_m \in \mathcal{A}$, when $m \in \mathbb{Z}_+$ and $G_m(T) = 0$ for m < 0. Equivalently, when $T_{m+\lambda,\lambda} = (w^*)^m b_m$, for every $m, \lambda \in \mathbb{Z}_+$ and $T_{\kappa,\lambda} = 0$, when $\kappa < \lambda$.

The relation between the w*-tensor product $\mathcal{A} \overline{\otimes} \mathcal{T}$ and $\mathbb{Z}_+ \overline{\times}_w \mathcal{A}$ depends on some properties of *w*. Specifically,

- $\mathcal{A}\overline{\otimes}\mathcal{T} = \mathbb{Z}_+ \overline{\times}_w \mathcal{A}$ if and only if $w, w^* \in \mathcal{A}$.
- $\mathcal{A} \otimes \mathcal{T} \subsetneq \mathbb{Z}_+ \times \mathcal{W} \mathcal{A}$ if and only if $w^* \notin \mathcal{A}, w \in \mathcal{A}$.
- $\mathbb{Z}_+ \times w \mathcal{A} \subsetneq \mathcal{A} \boxtimes \mathcal{T}$ if and only if $w \notin \mathcal{A}, w^* \in \mathcal{A}$.
- $(\mathbb{Z}_+ \overline{\times}_w \mathcal{A}) \cap (\mathcal{A} \overline{\otimes} \mathcal{T}) = \rho(\mathcal{A})$, if and only if $(w^n \mathcal{A}) \cap \mathcal{A} = \{0\}, \forall n \in \mathbb{Z}_+$.

It is easy to verify that, when $(w^n A) \cap A = \{0\}$ for every $n \in \mathbb{Z}_+$, then $w, w^* \notin A$, but the converse is not always true.

EXAMPLE 2.5. Take $\mathcal{A} = L^{\infty}(\mathbb{T})$ acting on $L^{2}(\mathbb{T})$ and $\beta(f)(z) = f(\lambda z)$, where λ is a *q*-th root of unity. Then β is unitarily implemented by $w \in \mathcal{B}(L^{2}(\mathbb{T}))$, with $(w(g))(z) = g(\lambda z)$. Then $w^{mq} = I_{H_{0}}$, for every $m \in \mathbb{Z}_{+}$, hence $w^{mq}\mathcal{A} \cap \mathcal{A} = \mathcal{A}$. In this case, $(\mathbb{Z}_{+} \times w\mathcal{A}) \cap (\mathcal{A} \otimes \mathcal{T})$ contains the w*-closed algebra generated by $\sum_{n=0}^{k} W^{nq} \rho(b_{n}), b_{n} \in \mathcal{A}$, which properly contains $\rho(\mathcal{A})$.

The following lemma will be superseded below (Theorem 2.9).

LEMMA 2.6. The w*-semicrossed product $\mathbb{Z}_+ \times \mathcal{B}(H_0)$ is reflexive, for every unitary $w \in \mathcal{B}(H_0)$.

Proof. Let *T* ∈ Ref($\mathbb{Z}_+ \times_w \mathcal{B}(H_0)$). Then, by Remark 2.3, each *G_m*(*T*) belongs to the reflexive cover of the w*-semicrossed product. Thus, for *κ* < *λ* and $\xi, \eta \in H_0$, there is a sequence $A_n \in \mathbb{Z}_+ \times_w \mathcal{B}(H_0)$ such that $\langle T(\xi \otimes e_\lambda), \eta \otimes e_\kappa \rangle = \lim_n \langle A_n(\xi \otimes e_\lambda), \eta \otimes e_\kappa \rangle$. Hence, $\langle T_{\kappa,\lambda}\xi, \eta \rangle = \lim_n \langle (A_n)_{\kappa,\lambda}\xi, \eta \rangle = 0$, since each $(A_n)_{\kappa,\lambda} = 0$, for $\kappa < \lambda$. So $G_m(T) = 0$ for every m < 0. Now, fix $m \in \mathbb{Z}_+$ and consider $\xi \in H_0, g_r = \sum_n r^n e_n, 0 \leq r < 1$. We can check that the subspace $\mathcal{F} = \overline{[(b\xi) \otimes g_r : b \in \mathcal{B}(H_0)]}$ is $(\mathbb{Z}_+ \times_w \mathcal{B}(H_0))^*$ -invariant, and as a consequence, $G_m(T)^*$ -invariant. Since $\xi \otimes g_r \in \mathcal{F}$, there is a sequence (b_n) in $\mathcal{B}(H_0)$ such that $G_m(T)^*(\xi \otimes g_r) = \lim_n (b_n\xi) \otimes g_r$. Thus, $\sum_{\kappa} r^{m+\kappa} T^*_{m+\kappa,\kappa} \xi \otimes e_{\kappa} = \lim_n (b_n\xi) \otimes g_r$. Taking scalar product with $\eta \otimes e_{\kappa}$, where $\eta \in H_0$ and $\kappa \ge 0$, we have that $r^{m+\kappa} \langle T^*_{m+\kappa,\kappa} \xi, \eta \rangle = \lim_n r^{\kappa} \langle b_n \xi, \eta \rangle$. Hence, $r^m \langle T^*_{m+\kappa,\kappa} \xi, \eta \rangle = \lim_n \langle b_n \xi, \eta \rangle = r^m \langle T^*_{m,0} \xi, \eta \rangle$, for every η . Thus, $T^*_{m+\kappa,\kappa} \xi = T^*_{m,0} \xi$, for arbitrary $\xi \in H_0$, so $T_{m+\kappa,\kappa} = T_{m,0}$ for every $\kappa \in \mathbb{Z}_+$. Hence, $G_m(T) \in \mathcal{B}(H_0) \overline{\otimes} \mathcal{T}$, which coincides with $\mathbb{Z}_+ \overline{\times} w \mathcal{B}(H_0)$ since $w \in \mathcal{B}(H_0)$.

Let S be a w*-closed subspace of $\mathcal{B}(H)$. We say that S is *G*-invariant if $G_m(S) \subseteq S$ for every $m \in \mathbb{Z}$. If, in particular, S is a w*-closed subspace of $\mathbb{Z}_+ \times w \mathcal{B}(H_0)$, then $G_m(S) = 0$, for every m < 0. In the next proposition we prove that we can associate a sequence $(S_m)_{m \ge 0}$ of w*-closed subspaces of $\mathcal{B}(H_0)$ to such an S, and vice versa.

PROPOSITION 2.7. A w*-closed subspace S of $\mathcal{B}(H)$ is a G-invariant subspace of $\mathbb{Z}_+ \overline{\times}_w \mathcal{B}(H_0)$ if and only if it is the w*-closure of the linear space of the analytic polynomials $\sum_{n=0}^k W^n \rho(x_n)$, $x_n \in S_n$, $k \in \mathbb{Z}_+$, where S_n are w*-closed subspaces of $\mathcal{B}(H_0)$.

Proof. Let *S* be a *G*-invariant w*-closed subspace of $\mathbb{Z}_+ \overline{\times}_w \mathcal{B}(H_0)$ and let $S_m = \{w^m T_{m,0} : T \in S\}$, for every $m \ge 0$. Then S_m is a w*-closed subspace of $\mathcal{B}(H_0)$. Indeed, let $x = w^*-\lim_i w^m(T_i)_{m,0}$, for $T_i \in S$. Then $\rho((w^*)^m x) = w^*-\lim_i \rho((T_i)_{m,0})$, so $W^m \rho(x) = w^*-\lim_i V^m \rho((T_i)_{m,0}) = w^*-\lim_i G_m(T_i)$, since $T_i \in \mathbb{Z}_+ \overline{\times}_w \mathcal{B}(H_0)$. But *S* is *G*-invariant, hence $W^m \rho(x) \in S$, which gives that $x = w^m(V^m \rho(x))_{m,0} \in S_m$. A use of the Féjer Lemma and Proposition 2.4, completes the forward implication. For the converse, let *S* be a w*-closed subspace as in the statement and $A \in S$; so $A = w^*-\lim_i A_i$, where $A_i = \sum_{\kappa=0}^{n_i} W^{\kappa} \rho(x_{i,\kappa})$, with $x_{i,\kappa} \in S_{\kappa}$. Then $A \in \mathbb{Z}_+ \overline{\times}_w \mathcal{B}(H_0)$ and $G_m(A) = w^*-\lim_i G_m(A_i) = w^*-\lim_i W^m \rho(x_{i,\kappa})$. So, $w^m A_{m,0} = w^*-\lim_i x_{i,m} \in S_m$. Hence, we have that $G_m(A) = W^m \rho(w^m A_{m,0}) \in S$. ∎

THEOREM 2.8. Let $(S_m)_{m \ge 0}$ be the sequence associated to a *G*-invariant w*closed subspace S of $\mathbb{Z}_+ \overline{\times}_w \mathcal{B}(H_0)$. If every S_m is reflexive then S is reflexive.

Proof. By Lemma 2.6, $\operatorname{Ref}(S) \subseteq \operatorname{Ref}(\mathbb{Z}_+ \overline{\times}_w \mathcal{B}(H_0)) = \mathbb{Z}_+ \overline{\times}_w \mathcal{B}(H_0)$. So, for every *T* in the reflexive cover of *S* and every $m, \lambda \in \mathbb{Z}_+$, we have that $T_{m+\lambda,\lambda} = (w^*)^m b_m$, where $b_m \in \mathcal{B}(H_0)$. Thus, it suffices to prove that $b_m \in \mathcal{S}_m$. Since $T \in \operatorname{Ref}(S)$, then, for every $\xi, \eta \in H_0$, there is a sequence (A_n) in *S* such that $\langle T(\xi \otimes e_{\lambda}), (w^*)^m \eta \otimes e_{m+\lambda} \rangle = \lim_n \langle A_n(\xi \otimes e_{\lambda}), (w^*)^m \eta \otimes e_{m+\lambda} \rangle$. So, $\langle b_m \xi, \eta \rangle =$ $\langle T_{m+\lambda,\lambda}\xi, (w^*)^m \eta \rangle = \lim_n \langle (A_n)_{m+\lambda,\lambda}\xi, (w^*)^m \eta \rangle$. Since each $A_n \in S$, we get that $(A_n)_{m+\lambda,\lambda} = (w^*)^m b_{n,m}$ for some $b_{n,m} \in \mathcal{S}_m$. Thus $\langle b_m \xi, \eta \rangle = \lim_n \langle b_{n,m} \xi, \eta \rangle$, which means that $b_m \in \operatorname{Ref}(\mathcal{S}_m) = \mathcal{S}_m$.

THEOREM 2.9. If \mathcal{A} is a reflexive algebra, then $\mathbb{Z}_+ \overline{\times}_w \mathcal{A}$ is reflexive. In addition, if \mathcal{A} is hereditarily reflexive, then every *G*-invariant w*-closed subspace of $\mathbb{Z}_+ \overline{\times}_w \mathcal{A}$ is reflexive.

Proof. The algebra $\mathbb{Z}_+ \times \mathbb{X}_w \mathcal{A}$ is associated to the sequence $(\mathcal{A})_{m \ge 0}$; hence it is reflexive by the previous theorem.

APPLICATIONS 2.10. A. (*Sarason's result*, Theorem 3 in [15]). Consider the case of a reflexive subalgebra \mathcal{A} of $M_n(\mathbb{C})$ and a unitary $w \in M_n(\mathbb{C})$ such that $w\mathcal{A}w^* \subseteq \mathcal{A}$. Then $\mathbb{Z}_+ \times w\mathcal{A}$ is reflexive. Note that $\mathbb{Z}_+ \times w\mathcal{A} = \mathcal{T}$ when n = 1 and $w = I_{H_0}$.

B. (*Ptak's result*, Theorem 2 in [14]). More generally, $\mathcal{A} \overline{\otimes} \mathcal{T}$ coincides with $\mathbb{Z}_+ \overline{\times}_{I_{H_0}} \mathcal{A}$. So $\mathcal{A} \overline{\otimes} \mathcal{T}$ is reflexive, when \mathcal{A} is reflexive.

C. If \mathcal{M} is a maximal abelian selfadjoint algebra and β is a *-automorphism, then $\mathbb{Z}_+ \overline{\times}_{\beta} \mathcal{M}$ is reflexive, since every *-automorphism of a m.a.s.a. is unitarily implemented. For example let $\mathcal{M} = L^{\infty}(\mathbb{T})$ acting on $L^2(\mathbb{T})$ and β the rotation by $\theta \in \mathbb{R}$. Also $\mathbb{Z}_+ \overline{\times}_{\beta} \mathcal{A}$ is reflexive whenever \mathcal{A} is a β -invariant w*-closed subalgebra of \mathcal{M} , since \mathcal{M} is hereditarily reflexive (see [8]).

D. Consider \mathcal{T} acting on $H^2(\mathbb{T})$ and β as in the previous example. Then, \mathcal{T} is reflexive and so $\mathbb{Z}_+ \overline{\times}_{\beta} \mathcal{T}$ is a reflexive subalgebra of $\mathcal{B}(H^2(\mathbb{T})) \overline{\otimes} \mathcal{B}(\ell^2(\mathbb{Z}_+))$.

E. If \mathcal{A} is a nest algebra and β is an isometric automorphism, then it is unitarily implemented (see [3]). Thus, $\mathbb{Z}_+ \times_{\beta} \mathcal{A}$ is reflexive.

F. Consider a C*-algebra C and a *-morphism $\alpha : C \to C$. Let (H_0, σ) be a faithful *-representation of C such that the induced *-morphism

$$\beta: \sigma(\mathcal{C}) \to \sigma(\mathcal{C}): \sigma(x) \mapsto \beta(\sigma(x)) = \sigma(\alpha(x))$$

is implemented by a unitary $w \in \mathcal{B}(H_0)$. Then the induced representation lt_{σ} is faithful on $\mathbb{Z}_+ \times_{\alpha} \mathcal{C}$. Thus, $\overline{lt_{\sigma}(\mathbb{Z}_+ \times_{\alpha} \mathcal{C})}^{w^*}$ is the w*-closed linear span of the

analytic polynomials $\sum_{n=0}^{k} V^n \pi(\sigma(x))$, and it is unitarily equivalent to the algebra $\mathfrak{C} := \overline{\operatorname{span}\{\rho(\sigma(x)), W^n : x \in \mathcal{C}, n \in \mathbb{Z}_+\}}^{w^*}$, via $Q = \sum_{n \ge 0} w^{-n} \otimes p_n$. But \mathfrak{C} is exactly the w*-semicrossed product $\mathbb{Z}_+ \times w \overline{\sigma(\mathcal{C})}^{w^*}$. Thus, $\overline{lt_{\sigma}(\mathbb{Z}_+ \times \alpha \mathcal{C})}^{w^*}$ is reflexive. In particular, let *K* be a compact, Hausdorff space, μ a positive, regular Borel measure on *K* and $\sigma : \mathcal{C}(K) \to B(L^2(K, \mu)) : f \mapsto M_f$. Consider a homeomorphism ϕ of *K*, such that ϕ and ϕ^{-1} preserve the μ -null sets and let $\alpha(f) = f \circ \phi$. Then the map $M_f \to M_{f \circ \phi}$ extends to a *-automorphism of $L^{\infty}(K, \mu)$, hence it is unitarily implemented. Thus, $\overline{lt_{\sigma}(\mathbb{Z}_+ \times_{\alpha} \mathcal{C}(K))}^{w^*}$ is reflexive.

G. Let (\mathcal{M}, τ) be a von Neumann algebra with a faithful, normal, tracial state τ and let $L^2(\mathcal{M}, \tau)$ be the Hilbert space associated to (\mathcal{M}, τ) . Let $\beta : \mathcal{M} \to \mathcal{M}$ be a trace-preserving *-automorphism and consider \mathcal{M} acting on $L^2(\mathcal{M}, \tau)$ by left multiplication. Then β is unitarily implemented and it can be verified that the w*-semicrossed product $\mathbb{Z}_+ \times \mathcal{M}$ coincides with the adjoint of the analytic semicrossed product defined in [9] and [11]. Hence, we obtain Proposition 4.5 of [11] for p = 2.

REMARK 2.11. An analogous result to Theorem 2.8 is proved in [1]. They also obtain Ptak's result (see 2.10 **B**).

We conclude the analysis of the w*-semicrossed product $\mathbb{Z}_+ \overline{\times}_w \mathcal{A}$ by finding its commutant. We know that $U_s(\mathbb{Z}_+ \overline{\times}_w \mathcal{A})U_s^* = \mathbb{Z}_+ \overline{\times}_w \mathcal{A}$, for all $s \in [0, 2\pi]$, hence, $U_s(\mathbb{Z}_+ \overline{\times}_w \mathcal{A})'U_s^* = (\mathbb{Z}_+ \overline{\times}_w \mathcal{A})'$. Thus, $T \in (\mathbb{Z}_+ \overline{\times}_w \mathcal{A})'$ if and only if $G_m(T) \in (\mathbb{Z}_+ \overline{\times}_w \mathcal{A})'$, for every $m \in \mathbb{Z}$. Now, recall that $w\mathcal{A}w^* \subseteq \mathcal{A}$, hence $w^*\mathcal{A}'w \subseteq \mathcal{A}'$. So, we can define the w*-semicrossed product $\mathbb{Z}_+ \overline{\times}_\gamma \mathcal{A}'$, where $\gamma \equiv \mathrm{ad}_{w^*} : \mathcal{A}' \to \mathcal{A}'$.

THEOREM 2.12. If $\gamma \equiv \operatorname{ad}_{w^*}$, then $(\mathbb{Z}_+ \overline{\times}_w \mathcal{A})' = \mathbb{Z}_+ \overline{\times}_{\gamma} \mathcal{A}'$.

Proof. Obviously $T \in (\mathbb{Z}_+ \overline{\times}_w \mathcal{A})'$ if and only if $T \in \{b \otimes \mathbf{1}, w^* \otimes v : b \in \mathcal{A}\}'$; note also that $V \in (\mathbb{Z}_+ \overline{\times}_w \mathcal{A})'$. Let $T \in (\mathbb{Z}_+ \overline{\times}_w \mathcal{A})'$, then for $m \ge 0$ and $b \in \mathcal{A}$, $n \ge 0$,

$$G_m(T)(b \otimes \mathbf{1}) = (b \otimes \mathbf{1})G_m(T) \quad \text{and} \quad G_m(T)(w^* \otimes v) = (w^* \otimes v)G_m(T),$$

hence, $T_{m+n,n}b = bT_{m+n,n}$ and $T_{m+n+1,n+1}(w^*)^n = (w^*)^n T_{m+n,n},$
so, $T_{m+n,n} \in \mathcal{A}'$ and $T_{m+n,n} = \gamma^n(T_{m,0}).$

Thus, if we set $\pi'(T_{m,0}) = \sum_{n \ge 0} \gamma^n(T_{m,0}) \otimes p_n$, we get that $G_m(T) = V^m \pi'(T_{m,0})$, for $m \ge 0$. Now, let m < 0, hence $G_m(T) = T_{(m)}(V^*)^{-m}$. Since, $V \in (\mathbb{Z}_+ \overline{\times}_w \mathcal{A})'$, we have that $T_{(m)} = G_m(T)V^{-m} \in (\mathbb{Z}_+ \overline{\times}_w \mathcal{A})'$. Thus, $G_0(T_{(m)}) = T_{(m)} \in (\mathbb{Z}_+ \overline{\times}_w \mathcal{A})'$ and so, by what we have proved, $T_{n,-m+n} = \gamma^n(T_{0,-m})$. Since $G_m(T)(\xi \otimes e_0) = 0$, then

$$G_m(T)(w^* \otimes v)^{-m}(\xi \otimes e_0) = (w^* \otimes v)^{-m}G_m(T)(\xi \otimes e_0) = 0,$$

so $(T_{0,-m}(w^*)^{-m}\xi) \otimes e_0 = 0$; hence $T_{0,-m} = 0$. Therefore $T_{n,-m+n} = \gamma^n(T_{0,-m}) = 0$, for every $n \ge 0$; hence $G_m(T) = 0$, for every m < 0. Hence, by Proposition 2.2, we get that $T \in \mathbb{Z}_+ \overline{\times}_\gamma \mathcal{A}'$. For the converse, let $T \in \mathbb{Z}_+ \overline{\times}_\gamma \mathcal{A}'$, then $G_m(T) \in \mathbb{Z}_+ \overline{\times}_\gamma \mathcal{A}'$ for every $m \in \mathbb{Z}$, and we can see that $G_m(T) \in \{b \otimes 1, w^* \otimes v : b \in \mathcal{A}\}'$. Hence, $G_m(T) \in (\mathbb{Z}_+ \overline{\times}_w \mathcal{A})'$ for every $m \in \mathbb{Z}$, so $T \in (\mathbb{Z}_+ \overline{\times}_w \mathcal{A})'$.

THEOREM 2.13. The double commutant of $\mathbb{Z}_+ \overline{\times}_w \mathcal{A}$ is $\mathbb{Z}_+ \overline{\times}_w \mathcal{A}''$. Thus, the w*semicrossed product is its own bicommutant if and only if $\mathcal{A} = \mathcal{A}''$.

Proof. We recall that $Q(\mathbb{Z}_+ \overline{\times}_{\beta} \mathcal{A})Q^* = \mathbb{Z}_+ \overline{\times}_w \mathcal{A}$, where $Q = \sum_n w^{-n} \otimes p_n$; hence $Q^*(\mathbb{Z}_+ \overline{\times}_{\gamma} \mathcal{A}')Q = \mathbb{Z}_+ \overline{\times}_{w^*} \mathcal{A}'$. Thus, $(\mathbb{Z}_+ \overline{\times}_w \mathcal{A})'' = (\mathbb{Z}_+ \overline{\times}_{\gamma} \mathcal{A}')' = (Q(\mathbb{Z}_+ \overline{\times}_{w^*} \mathcal{A}')Q^*)' = Q(\mathbb{Z}_+ \overline{\times}_{w^*} \mathcal{A}')Q^* = Q(\mathbb{Z}_+ \overline{\times}_{w^*} \mathcal{A}')Q^* = \mathbb{Z}_+ \overline{\times}_w \mathcal{A}''$.

We end this section with a note on the *reduced w**-*semicrossed products* (see the definition below). Let \mathcal{M} be a von Neumann algebra acting on a Hilbert space H_0 , β a *-automorphism of \mathcal{M} and consider $\mathbb{Z} \times_{\beta} \mathcal{M}$ to be the usual *w**-crossed product, a von Neumann subalgebra of $\mathcal{M} \otimes \mathcal{B}(\ell^2(\mathbb{Z}))$. This is by definition the von Neuman algebra $\{\widehat{\pi}(b), U : b \in \mathcal{M}\}''$, where $\widehat{\pi}(b) = \sum_{n \in \mathbb{Z}} \beta^n(b) \otimes p_n$ and $U = 1_{H_0} \otimes u$, the ampliation of the bilateral shift $u \in \mathcal{B}(\ell^2(\mathbb{Z}))$.

DEFINITION 2.14. The reduced w*-semicrossed product $\mathbb{Z}_+ \overline{\rtimes}_{\beta} \mathcal{M}$ is the w*closure of the linear space of "analytic polynomials" $\sum_{n=0}^{k} U^n \widehat{\pi}(b_n), b_n \in \mathcal{M}, k \ge 0.$

Since $(\hat{\pi}, U)$ is a l-cov.un. pair, the reduced w*-semicrossed product is a (w*closed) subalgebra of the w*-crossed product. In fact, note that $\mathbb{Z}_+ \overline{\rtimes}_{\beta} \mathcal{M}$ is the intersection of $\mathbb{Z}\overline{\rtimes}_{\beta} \mathcal{M}$ with the "lower triangular" matrices. Hence, we have the following proposition.

PROPOSITION 2.15. The reduced w*-semicrossed product of a von Neumann algebra is reflexive.

Now, take \mathcal{A} to be a w*-closed subalgebra of \mathcal{M} which is invariant under β . We define $\mathbb{Z}_+ \Join_{\beta} \mathcal{A}$ to be *the w*-closure of the linear space of "analytic polynomials"* $\sum_{n=0}^{k} U^n \widehat{\pi}(b_n), b_n \in \mathcal{A}, k \ge 0$. Using the technique of Theorem 2.9 one can show the following.

COROLLARY 2.16. If A is reflexive subalgebra of M which is invariant under β , then $\mathbb{Z}_+ \overline{\rtimes}_{\beta} A$ is reflexive.

3. THE COMMUTATIVE CASE

Now, we examine the case where C is a commutative, unital C^* -algebra, C = C(K), and the *-endomorphism α is induced by a continuous map $\phi : K \rightarrow C$

K. Let ev_t be the evaluation at $t \in K$, i.e. $\operatorname{ev}_t(f) = f(t)$; then $(\ell^2(K), \bigoplus_t \operatorname{ev}_t)$ is a faithful *-representation of C(K). If some $t \in K$ has dense orbit, we obtain a faithful representation of C(K) on $\ell^2(\mathbb{Z}_+)$. As observed in Theorem 1.4, such representations play a fundamental role for the semicrossed product $\mathbb{Z}_+ \times_{\alpha} C(K)$, since they are "enough" to obtain the norm. Let $\pi_t := \widetilde{\operatorname{ev}}_t$, as in Example 1.1. So, $\pi_t : C(K) \to \mathcal{B}(\ell^2(\mathbb{Z}_+))$ is given by $\pi_t(f) := \sum_{n \ge 0} f(\phi^n(t))p_n$, where p_n is the onedimensional projection on $[e_n]$. Then (π_t, v) is a left covariant isometric pair. We define the *one point w*-semicrossed product* to be $C_t = \overline{\operatorname{It}_{\pi_t}(\mathbb{Z}_+ \times_{\alpha} C(K))}^{\mathsf{w}^*}$, i.e. the w*-closed linear span in $\mathcal{B}(\ell^2(\mathbb{Z}_+))$ of the "analytic polynomials" $\sum_{n=0}^k v^n \pi_t(f_n)$, $f_n \in C(K)$.

Let $t' = \phi^{n_0}(t)$ be the first periodic element of the orbit of t with period p(as in the diagram that follows). Then $\operatorname{orb}(t) = \{t, \ldots, \phi^{n_0-1}(t), t', \ldots, \phi^{p-1}(t')\}$ induces a family of projections $\{P_{n_0}, P_0, \ldots, P_{p-1}\}$ such that $I = P_{n_0} \oplus P_0 \oplus \cdots \oplus P_{p-1}$. Indeed, let P_{n_0} be the projection on $[e_0, \ldots, e_{n_0-1}]$ and P_i be the projection on $[e_{n_0+i+pj}: j \in \mathbb{Z}_+]$ for $i = 0, \ldots, p-1$. Note that if $f \in C(K)$, then $\pi_t(f)(e_{n_0+i+pj}) = f(\phi^{n_0+i+pj}(t))e_{n_0+i+pj} = f(\phi^i(t'))e_{n_0+i+pj}$, for $j \in \mathbb{Z}_+$. Hence, $\pi_t(f)P_i = f(\phi^i(t'))P_i$, for every $i = 0, \ldots, p-1$.

PROPOSITION 3.1. The algebra C_t is the linear sum $(\mathfrak{T}P_{n_0}) \oplus (\mathcal{T}P_0) \oplus \cdots \oplus (\mathcal{T}P_{p-1})$, where \mathfrak{T} is the algebra of lower triangular operators in $\mathcal{B}(\ell^2(\mathbb{Z}_+))$, \mathcal{T} is the algebra of analytic Toeplitz operators and $P_{n_0}, P_0, \ldots, P_{p-1}$ are the projections induced by the orbit of t.

Proof. For any $n \in \mathbb{Z}_+$ and $f \in C(K)$, we have

$$v^n \pi_t(f) = v^n \pi_t(f) P_{n_0} \oplus f(t') v^n P_0 \oplus f(\phi^{p-1}(t')) v^n P_{p-1}.$$

Thus, $C_t \subseteq (\mathfrak{T}P_{n_0}) \oplus (\mathcal{T}P_0) \oplus \cdots \oplus (\mathcal{T}P_{p-1})$. For the converse, first let $TP_{n_0} \in \mathfrak{T}P_{n_0}$ and note that $(TP_{n_0})_{\kappa,\lambda} = 0$ when $\kappa < \lambda$ or $n_0 - 1 < \lambda$. Then we get that $G_m(TP_{n_0}) = 0$, when m < 0, and $G_m(TP_{n_0}) = v^m \Big(\sum_{n=0}^{n_0-1} (TP_{n_0})_{m+n,n} p_n\Big)$, when $m \ge 0$. Note that $(TP_{n_0})_{\kappa,\lambda} \in \mathbb{C}$ for every $\kappa, \lambda \in \mathbb{Z}_+$. Fix $m \ge 0$ and let $n \in \{0, \ldots, n_0 - 1\}$. Then by Urysohn's Lemma there is a sequence $(f_{n,j})_j$ of continuous functions on K, such that $\lim_i f_{n,j}(\phi^n(t)) = (TP_{n_0})_{m+n,n}$ and $f_{n,j}(s) =$

0 for $s \in \operatorname{orb}(t) \setminus \{\phi^n(t)\}$. Hence, $(TP_{n_0})_{m+n,n}p_n = w^* - \lim_j \pi_t(f_{n,j}) \in C_t$ and so $v^m(TP_{n_0})_{m+n,n}p_n \in C_t$. Thus $G_m(TP_{n_0}) \in C_t$, and, by the Féjer Lemma, $TP_{n_0} \in C_t$. So, $\mathfrak{T}P_{n_0} \subseteq C_t$. Also, for fixed $i \in \{0, \ldots, p-1\}$ and $m \in \mathbb{Z}_+$, consider $v^m P_i \in \mathcal{T}P_i$. Again by Urysohn's Lemma, there is a sequence $(f_{i,j})_j$ of continuous functions on K, such that $\lim_j f_{i,j}(\phi^i(t')) = 1$ and $f_{i,j}(s) = 0$ for $s \in \operatorname{orb}(t) \setminus \{\phi^i(t')\}$. Then $w^* - \lim_j \pi_t(f_{i,j}) = P_i$, so $v^m P_i \in C_t$. Hence, $\mathcal{T}P_i \subseteq C_t$, for every $i \in \{0, \ldots, p-1\}$. Thus, $(\mathfrak{T}P_{n_0}) \oplus (\mathcal{T}P_0) \oplus \cdots \oplus (\mathcal{T}P_{p-1}) \subseteq C_t$.

Note that if $\operatorname{orb}(t)$ has no periodic points, then $C_t = \mathfrak{T}$, since $P_{n_0} = \mathbf{1}_{\ell^2(\mathbb{Z}_+)}$. Also, if $\operatorname{orb}(t)$ has exactly one periodic point t', then $\phi^n(t) = t'$ for every $n \ge n_0$ (i.e. t' is a fixed point); thus $C_t = \mathfrak{T}P_{n_0} \oplus \mathcal{T}P_{n_0}^{\perp}$. If t is itself a fixed point, then $C_t = \mathcal{T}$.

REMARK 3.2. Let \mathcal{D} be the algebra of diagonal operators in $\mathcal{B}(\ell^2(\mathbb{Z}_+))$ and $\mathcal{D}_{\phi} = \{T \in \mathcal{D} : T_{\kappa,\kappa} = T_{n,n} \text{ when } \phi^{\kappa}(t) = \phi^n(t)\}$ which is a w*-closed subalgebra of \mathcal{D} . Hence, $T \in \mathcal{D}_{\phi}$ if and only if T is of the form

$$T = \text{diag}\{y_0, \dots, y_{n_0-1}, y_{n_0}, \dots, y_{p-1}, y_{n_0}, \dots, y_{p-1}, \dots\}.$$

It is immediate from the previous proposition that C_t is generated by the unilateral shift in $\mathcal{B}(\ell^2(\mathbb{Z}_+))$ and the diagonal matrices id \mathcal{D}_{ϕ} . Thus, an operator $T \in \mathcal{B}(\ell^2(\mathbb{Z}_+))$ is in C_t if and only if for every m < 0, $G_m(T) = 0$, and for every $m \ge 0$, $G_m(T) = v^m \sum_n T_{m+n,n} p_n$ where $T_{m+\kappa,\kappa} = T_{m+n,n}$, whenever $\phi^{\kappa}(t) = \phi^n(t)$.

THEOREM 3.3. The algebra C_t is reflexive.

Proof. If $T \in \operatorname{Ref}(\mathcal{C}_t)$, then $G_m(T) \in \operatorname{Ref}(\mathcal{C}_t)$; thus $G_m(T) = 0$, for m < 0. Let $g_r = \sum_{n \ge 0} r^n e_n$, with $0 \le r < 1$, and $\mathcal{F} = [\overline{\pi_t(f)g_r} : f \in C(K)]$. Then \mathcal{F} is $(\mathcal{C}_t)^*$ -invariant; thus $G_m(T)^*$ -invariant, for $m \in \mathbb{Z}_+$. So, there is a sequence of $f_j \in C(K)$ such that $G_m(T)^*g_r = \lim_j \pi_t(f_j)g_r$. Hence $r^m\overline{T}_{m+n,n} = \lim_j (f_j(\phi^n(t)))$, for every $n \in \mathbb{Z}_+$. Thus, $T_{m+n,n} = T_{m+\kappa,\kappa}$, if $\phi^{\kappa}(t) = \phi^n(t)$. So, by Remark 3.2, $T \in \mathcal{C}_t$.

REMARK 3.4. In order to construct C_t , it is sufficient to take coefficients from any uniform algebra \mathfrak{A} on K. Indeed, let \mathfrak{A} be a norm closed subalgebra of C(K) containing the constant functions which separates the points of K and form the polynomials $\sum_{n=0}^{k} v^n \pi_t(f_n)$, $f_n \in \mathfrak{A}$. By Remark 3.2, it suffices to prove that $\pi_t(\text{ball}(\mathfrak{A}))$ is w*-dense in ball (\mathcal{D}_{ϕ}) . Fix $z \in \mathbb{T}$ and $n_0 \in \mathbb{Z}_+$, and take $T \in \mathcal{D}_{\phi}$, such that $T_{n_0,n_0} = z$ and $T_{n,n} = 1$, if $\phi^n(t) \neq \phi^{n_0}(t)$. Using the argument of the claim of Theorem 2.9 of [6] we can find a sequence of $(f_j)_j$ in ball (\mathfrak{A}) such that w*-lim $\pi_t(f_j) = T$. To complete the proof, observe that products of elements of this form approximate the unitaries in \mathcal{D}_{ϕ} in the w*-topology and that the strong closure of $\pi_t(\text{ball}(\mathfrak{A}))$ is closed under multiplication.

Acknowledgements. I wish to give my sincere thanks to A. Katavolos for his kind help and advice during the preparation of this paper. I also wish to thank E. Katsoulis for bringing Remark 3.4 to my attention. Finally, I wish to thank I.Sis. and T.o.Ol. for the support and inspiration.

The author was supported by an SSF scholarship.

REFERENCES

- M. ANOUSSIS, A. KATAVOLOS, I. TODOROV, Operator algebras from the discrete Heisenberg semigroup, *Proc. Edinburgh Math. Soc.* (2) 55(2012), 1–22.
- [2] D.P. BLECHER, C. LE MERDY, Operator Algebras and their Modules An Operator Space Approach, London Math. Soc. Monographs (N. S.), vol. 30, The Clarendon Press, Oxford Univ. Press, Oxford 2004.
- [3] K.R. DAVIDSON, Nest Algebras. Triangular Forms for Operator Algebras on Hilbert Space, Pitman Res. Notes Math. Ser., vol. 191, Longman Sci. Tech., Harlow; John Wiley and Sons, Inc., New York 1988.
- [4] K.R. DAVIDSON, E.G. KATSOULIS, Operator algebras for multivariable dynamics, 2007, arXiv.org:math/0701514.
- [5] R.V. KADISON, J.R. RINGROSE, Fundamentals of the Theory of Operator Algebras. Vol. II, Grad. Stud. Math., vol. 16, Amer. Math. Soc., Providence, RI 1997.
- [6] E.G. KATSOULIS, Geometry of the unit ball and representation theory for operator algebras, *Pacific J. Math.* 216(2004), 267–292.
- [7] T. KATSURA, On C*-algebras associated with C*-correspondences, J. Funct. Anal. 217(2004), 366–401.
- [8] A.N. LOGINOV, V.S. ŠUL'MAN, Hereditary and intermediate reflexivity of W*algebras, *Izv. Akad. Nauk SSSR Ser. Mat.* 39(1975), 1260–1273.
- [9] M. MCASEY, P.S. MUHLY, K.-S. SAITO, Nonselfadjoint crossed products (invariant subspaces and maximality), *Trans. Amer. Math. Soc.* 248(1979), 381–409.
- [10] P.S. MUHLY, B. SOLEL, Extensions and dilations for C*-dynamical systems, Contemp. Math. 414(2006), 375–381.
- [11] C. PELIGRAD, Reflexive operator algebras on noncommutative Hardy spaces, *Math. Ann.* 253(1980), 165–175.
- [12] J.R. PETERS, Semicrossed products of C*-algebras, J. Funct. Anal. 59(1984), 498–534.
- [13] J.R. PETERS, The C*-envelope of a semicrossed product and nest representations, 2008, arXiv.org:0810.5364.
- [14] M. PTAK, On the reflexivity of pairs of isometries and of tensor products of some operator algebras, *Studia Math.* 83(1986), 47–55.

[15] D. SARASON, Invariant subspaces and unstarred operator algebras, *Pacific J. Math.* 17(1966), 511–517.

EVGENIOS T.A. KAKARIADIS, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ATHENS, PANEPISTIMIOUPOLIS, GR-157 84, ATHENS, GREECE *E-mail address*: mavro@math.uoa.gr

Received July 8, 2009.