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SEMICROSSED PRODUCTS AND REFLEXIVITY
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ABSTRACT. Given a w*-closed unital algebraA acting on H0 and a contractive
w*-continuous endomorphism β of A, there is a w*-closed (non-selfadjoint)
unital algebraZ+×βA acting on H0⊗ `2(Z+), called the w*-semicrossed prod-
uct of A with β. We prove that Z+×βA is a reflexive operator algebra pro-
vided A is reflexive and β is unitarily implemented, and that Z+×βA has
the bicommutant property if and only if so does A. Also, we show that the
w*-semicrossed product generated by a commutative C∗-algebra and a con-
tinuous map is reflexive.
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INTRODUCTION

As is well known, to construct the C∗-crossed product of a unital C∗-algebra
C by a ∗-isomorphism α : C → C, we begin with the Banach space `1(Z, C, α)
which is the closed linear span of the monomials δn ⊗ x, n ∈ Z, x ∈ C, under

the norm
∣∣∣ k

∑
n=−k

δn ⊗ xn

∣∣∣
1
=

k
∑

n=−k
‖xn‖C , equipped with the (isometric) involu-

tion (δn ⊗ x)∗ = δ−n ⊗ α−n(x∗). Now, there are two “natural” ways to define
multiplication in `1(Z, C, α); either the left multiplication (δn ⊗ x) ∗l (δm ⊗ y) =
δn+m ⊗ am(x)y, or the right one (δn ⊗ x) ∗r (δm ⊗ y) = δn+m ⊗ xan(y). Then the
corresponding algebras are isometrically ∗-isomorphic via the map Ψ(δn ⊗ x) =
δ−n ⊗ a−n(x). We can see that (`1(Z, C, α)l)

opp = `1(Z, Copp, α)r, where for an al-
gebra B, Bopp is the space B along with the multiplication x� y := yx; hence, in
case C is commutative, each algebra is the opposite of the other. The left and right
crossed product are the completion of the corresponding involutive Banach alge-
bras under a universal norm induced by the | · |1-contractive ∗-representations
(hence, they are C∗-algebras characterized by a universal property) and the map
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Ψ extends to a C∗-isomorphism. Moreover, it can be proved that the crossed prod-
uct is ∗-isomorphic to the reduced crossed product C∗l (C), i.e. the norm closure
of the range of the left regular representation, and thus we end up with just one
object to which we refer as the crossed product of the dynamical system (C, α). The
key fact is that there is a bijection between the | · |1-contractive ∗-representations
of each of these `1-algebras and the (left or right) covariant unitary pairs (see
Section 1).

If we wish to construct a non-selfadjoint analogue, we can see that there
are more possibilities. For example, Peters defined the semicrossed product as
the completion of the Banach algebra `1(Z+, C, α)l under the universal norm that
arises from the left covariant isometric pairs and examined the case when α is an
injective ∗-endomorphism of C. He proved that this semicrossed product embeds
isometrically in a crossed product (see [12]) and, for the commutative case, that
this crossed product is the C∗-envelope of the semicrossed product (see [13]).

In Section 1 we use an alternative definition using “sufficiently many” ho-
momorphisms of the Banach algebra `1(Z+, C, α)l (see also [4]). The advantage
is that there is a bijection between the left covariant contractive pairs and the
homomorphisms of the Banach algebra `1(Z+, C, α)l. Moreover, there is a dual-
ity between the left covariant contractive pairs and the right covariant contrac-
tive pairs, which induce the homomorphisms of the Banach algebra `1(Z+, C, α)r;
hence, we get similar results for the right version. Also, using a dilation theo-
rem of [10], we can see that this definition gives the one in [12]. If we consider
the maximal operator space structure, then the semicrossed products are opera-
tor algebras with a universal property that characterizes them up to completely
isometric isomorphism. In Theorem 1.4 we prove that the semicrossed product is
independent of the way C is (faithfully) represented and in Theorem 1.5 we prove
that in case α is a ∗-isomorphism, its C∗-envelope is exactly the crossed product.
So, in order to define a w*-analogue of the semicrossed product that arises by a
w*-continuous contractive endomorphism β of a w*-closed subalgebraA of some
B(H0) (for example, a von Neumann algebra), either we take the w*-closed linear
span of a non-selfadjoint left regular representation or the w*-closed linear span
of the analytic polynomials of the von Neumann crossed product, depending on
the properties of β.

In Section 2 we analyze the properties of the w*-semicrossed product, in
case β is unitarily implemented. First of all, we study the connection between
the semicrossed product and the w*-tensor product A⊗T , where T is the al-
gebra of the analytic Toeplitz operators, and give an example when these two
algebras are incomparable. A main result of this section is the reflexivity of the
w*-semicrossed product, when A is reflexive. Recall that a subspace S ⊆ B(H)
is reflexive if it coincides with its reflexive cover, namely Ref(S) = {T ∈ B(H) :
Tξ ∈ Sξ, for all ξ ∈ H} (see [8]); unlike [8], we will call S hereditarily reflexive
if every w*-closed subspace of S is reflexive. As a consequence we have that,
when a unitary implementation condition holds, the w*-closed image of ltπ (see
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Example 1.1) induced by a representation (H0, π) of C is reflexive. Also, we get
several known results as applications. As another main result, we prove that the
w*-semicrossed product is the commutant of a w*-semicrossed product and is its
own bicommutant if and only if the same holds for A.

In the last section we consider the semicrossed product of a commutative
C∗-algebra C(K) with a continuous map φ : K → K. As observed in Theorem 1.4,
the representations induced by a character of C(K), say evt, t ∈ K, suffice to obtain
the norm of the semicrossed product and play a significant role for its study. First,
we show that the w*-closure of such representations is always reflexive; in fact,
it has the form (TPn0)⊕ (T P0)⊕ · · · ⊕ (T Pp−1), where T is the algebra of lower
triangular operators in B(`2(Z+)), T is the algebra of analytic Toeplitz operators
and Pn0 , P0, . . . , Pp−1 some projections determined by the orbit of the point t ∈ K.

In what follows we use standard notation, as in [5] for example. Z+ =
{0, 1, 2, . . . } and all infinite sums are considered in the strong-convergent sense.
Throughout, we use the symbol v for the unilateral shift on B(`2(Z+)), given by
v(en) = en+1. A useful tool for the proofs in Sections 2 and 3 is a Féjer-type Lemma;
consider the unitary action of T on H = H0⊗`2(Z+) induced by the operators
Us, s ∈ R, given by Us(ξ ⊗ en) = einsξ ⊗ en. For every T ∈ B(H) and every
m ∈ Zwe define the “m-Fourier coefficient”

Gm(T) =
2π∫
0

UsTU∗s e−ims ds
2π

,

the integral taken as the w*-limit of Riemann sums. If we set

σl(T)(t) =
1

l + 1

l

∑
n=0

n

∑
m=−n

Gm(T) exp(imt),

then σl(T)(0)
w∗→ T. Note that Gm(·) is w*-continuous for every m ∈ Z.

Now, for every κ, λ ∈ Z+, and T ∈ B(H) let the “matrix elements” Tκ,λ ∈
B(H0) be defined by 〈Tκ,λξ, η〉 = 〈T(ξ ⊗ eλ), η⊗ eκ〉, ξ, η ∈ H0; then we can write
the Fourier coefficients explicitly by the formula

Gm(T) =


Vm
(

∑
n>0

Tm+n,n ⊗ pn

)
when m > 0,(

∑
n>0

Tn,−m+n ⊗ pn

)
(V∗)−m when m < 0,

where V = 1H0 ⊗ v. For simplicity, we define the diagonal matrices

T(m) =


∑

n>0
Tm+n,n ⊗ pn when m > 0,

∑
n>0

Tn,−m+n ⊗ pn when m < 0.
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Note that the sums converge in the w*-topology as well, since the partial sums
are uniformly bounded by ‖T‖. Hence, Gm(T) is the m-diagonal of T, when we
view H as the `2-sum of copies of H0.

1. SEMICROSSED PRODUCTS OF C∗-ALGEBRAS

Let C be a unital C∗-algebra and α : C → C a ∗-morphism; define `1(Z+, C, α)
to be the closed linear span of the monomials δn ⊗ x, n ∈ Z+, x ∈ C, under the
norm ∣∣∣ k

∑
n=0

δn ⊗ xn

∣∣∣
1
=

k

∑
n=0
‖xn‖C .

We endow `1(Z+, C, α) either with the left multiplication (δn ⊗ x) ∗l (δm ⊗ y) =
δn+m ⊗ am(x)y, or with the right one (δn ⊗ x) ∗r (δm ⊗ y) = δn+m ⊗ xan(y), and
denote the corresponding Banach algebras by `1(Z+, C, α)l and `1(Z+, C, α)r, re-
spectively. One can see that (`1(Z+, C, α)l)

opp is exactly `1(Z+, Copp, α)r, where,
if B is an algebra, Bopp is the space B with the multiplication x� y := yx. Thus,
in case C is commutative, each algebra is the opposite of the other.

Let (H, π) be a ∗-representation of C and T a contraction in B(H). The
pair (π, T) is called a left covariant contractive (l-cov.con.) pair, if the left covari-
ance relation is satisfied, i.e. π(x)T = Tπ(α(x)), x ∈ C. If, in particular, T is
an isometry, pure isometry, co-isometry or unitary, then we will call such a pair
a left covariant isometric, purely isometric, co-isometric or unitary pair. We can see
that every l-cov.con. pair induces a | · |1-contractive representation (H, T × π) of
`1(Z+, C, α)l, given by

(T × π)
( k

∑
n=0

δn ⊗ xn

)
=

k

∑
n=0

Tnπ(xn).

Conversely, if ρ : `1(Z+, C, α)l → B(H) is a contractive representation, then
(H, ρ) restricts to a contractive representation (H, π) of the C∗-algebra C, thus
a ∗-representation. If we set ρ(δ1 ⊗ e) = T, then ‖Tn‖6 1, for every n∈Z+. It is
easy to check that the pair (π, T) satisfies the left covariance relation.

Analogously, there is a bijection between the right covariant contractive (r-
cov.con.) pairs (π, T), (i.e. satisfying the right covariance condition Tπ(x) =
π(α(x))T, x ∈ C) and the | · |1-contractive representations π × T of the alge-
bra `1(Z+, C, α)r. Note that if (π, T) is a l-cov.con. pair then (π, T∗) is a r-cov.con.
pair. Thus TT∗ commutes with π(C).

EXAMPLE 1.1. Let (H0, π) be a faithful ∗-representation of C and define on
H0⊗ `2(Z+) the representation π̃(x) = diag{π(αn(x)) : n ∈ Z+} and V = 1H0 ⊗
v, where v is the unilateral shift. Then (π̃, V) is a l-cov.is. pair. For simplicity we
will denote the corresponding representation V× π̃, by ltπ . As mentioned before,
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the pair (π̃, V∗) is a r-cov.con. pair which induces the representation rtπ := π̃ ×
V∗. One can check that ltπ and rtπ are faithful.

DEFINITION 1.2. The (left) semicrossed product Z+ ×α C is the completion of
`1(Z+, C, α)l under the norm

‖F‖l = sup{‖(T × π)(F)‖ : (π, T) is a l-cov.con. pair}.
The (right) semicrossed product C ×α Z+ is the completion of `1(Z+, C, α)r under
the norm

‖F‖r = sup{‖(π × T)(F)‖ : (π, T) is a r-cov.con. pair}.
The left semicrossed product is endowed with an operator space structure

(the maximal one, see 1.2.22 of [2]) induced by the matrix norms

‖[Fi,j]‖l = sup{‖[(T × π)(Fi,j)]‖ : (π, T) l-con.cov. pair}.
We note that there is a bijective correspondence between the l-cov.con. pairs (π, T)
and the unital completely contractive representations of `1(Z+, C, α)l. So, the left
semicrossed product has the following universal property (up to completely iso-
metric isomorphisms): for any unital operator algebra B and for any unital com-
pletely contractive morphism ρ : `1(Z+, C, α)l → B, there exists a unique unital
completely contractive morphism ρ̃ : Z+ ×α C → B that extends ρ.

In Theorem 1.4, we prove that the semicrossed product, as an operator alge-
bra, is independent of the way C is (faithfully) represented. In order to do so, we
use some dilations theorems of [10] and [12] and arguments similar to the ones in
Theorem 6.2 of [7].

First of all, every l-cov.con. pair (π, T) on a Hilbert space H dilates to a
l-cov.is. pair (η, W) on a Hilbert space H1 ⊇ H, such that η(x)H ⊆ H and
η(x)|H = π(x), for every x ∈ C, and Tn = PHWn|H , for every n ∈ Z+, where W
is an isometry (see [10]). Hence, by II.5 of [12] we see that the norm ‖ · ‖l is the
supremum over all left covariant purely isometric pairs. By Proposition I.4 of [12],
for such a pair (η, W) on a Hilbert space H1 there is a representation (H2, π′) of C
such that W × η is unitarily equivalent to ltπ′ . Thus, eventually we have that, for
F ∈ `1(Z+, C, α)l, ‖F‖l = sup{‖ltπ(F)‖ : (H, π) a ∗-representation of C}. More-
over, ‖[Fi,j]‖l = sup{‖[ltπ(Fi,j)]‖ : (H, π) a ∗-representation of C}.

PROPOSITION 1.3. If Fi,j ∈ `1(Z+, C, α)l, then ‖[Fi,j]‖l = ‖[ltπu(Fi,j)]‖, where
(Hu, πu) is the universal representation of C. Analogously, if Fi,j ∈ `1(Z+, C, α)r, then
‖[Fi,j]‖r = ‖[rtπu(Fi,j)]‖.

Proof. Let (H, π) be a ∗-representation of C. By definition of the universal
representation we have that πu|H = π and πu(x)H ⊆ H. Let H0 = H ⊗ `2(Z+).
We denote by PH0 the projection onto H ⊗ `2(Z+) ⊆ Hu ⊗ `2(Z+) and observe
that PH0(1Hu ⊗ v)n|H0 = (1H0 ⊗ v)n, for every n ∈ Z+. Thus, for every ν ∈
Z+ and for every [Fi,j] ∈ Mν(`1(Z+, C, α)), we have that [ltπ(Fi,j)] = (PH0 ⊗
Iν)[ltπu(Fi,j)]|(H0)(ν)

, and so ‖[ltπ(Fi,j)]‖ 6 ‖[ltπu(Fi,j)]‖.
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If (H, π) is a faithful ∗-representation of C, we denote by C∗(π, V) the C∗-
algebra generated by the representation ltπ in B(H ⊗ `2(Z+)). The covariance
relation shows that C∗(π, V) is the norm-closed linear span of the monomials
Vmπ̃(x)(V∗)λ, m, λ ∈ Z+. Since, C∗(π, V) is a direct summand of C∗(πu, Vu), the
compression Φ : B(Hu ⊗ `2(Z+)) → B(H ⊗ `2(Z+)) is a ∗-epimorphism when
restricted on C∗(πu, Vu). We will prove that it is also faithful, hence completely
isometric.

To this end, for every s ∈ [0, 2π], we define us : `2(Z+) → `2(Z+) by
us(em) = e2πisem. Let Ũs = 1Hu ⊗ us and Us = 1H ⊗ us. The map γ̃s = adŨs

is a

∗-automorphism of C∗(πu, Vu), since γ̃s(π̃u(x)) = π̃u(x) and γ̃s(Ṽn
u ) = e2πinsṼn

u .
Similarly, γs = adUs is a ∗-automorphism of C∗(π, V). It is clear that Φ ◦ γ̃s =

γs ◦Φ, because Φ(Ũs) = Us. We denote by C∗(πu, Vu)γ̃ the fixed point algebra of
γ̃ and define the contractive, faithful projection Ẽ : C∗(πu, Vu)→ C∗(πu, Vu)γ̃ by

Ẽ(X) :=
2π∫
0

γ̃s(X)
ds
2π

,

(as a Riemann integral of a norm-continuous function). Let

Bk :=
{ k

∑
n=0

Vn
u π̃u(xn)(V∗u )

n : xn ∈ C
}

;

then we can check that C∗(πu, Vu)γ̃ is the norm-closure of
⋃

k∈Z+
Bk. Let Xk be an

element of Bk. Since, Vn
u π̃u(x)(V∗u )n = diag{0, . . . , 0︸ ︷︷ ︸

n−times

, πu(x), πu(α(x)), . . . }, we

see that Xk is a diagonal matrix whose (m, m)-entry is the element (Xk)m,m =

πu

(min{m,k}
∑

j=0
αm−j(xm−j)

)
. So, if (H, π) is a faithful ∗-representation of C,

‖(Xk)m,m‖ =
∥∥∥πu

(min{m,k}

∑
j=0

αm−j(xm−j)
)∥∥∥ =

∥∥∥min{m,k}

∑
j=0

αm−j(xm−j)
∥∥∥
C

=
∥∥∥π
(min{m,k}

∑
j=0

αm−j(xm−j)
)∥∥∥ = ‖(Φ(Xk))m,m‖.

So ‖Xk‖ = sup
m
{‖(Xk)m,m‖} = sup

m
{‖(Φ(Xk))m,m‖} = ‖Φ(Xk)‖; hence Φ :

C∗(πu, Vu)→ C∗(π, V) is isometric on each Bk. Thus, Φ is injective when restricted
to the fixed point algebra C∗(πu, Vu)γ̃.

THEOREM 1.4. The left semicrossed product Z+ ×α C is completely isometrically

isomorphic to the norm-closed linear span of
k
∑

n=0
Vnπ̃(xn), xn ∈ C, where (H, π) is any

faithful ∗-representation of C. Respectively, the right semicrossed product C ×α Z+ is
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completely isometrically isomorphic to the norm-closed linear span of
k
∑

n=0
π̃(xn)(V∗)n,

xn ∈ C, where (H, π) is any faithful ∗-representation of C.

Proof. It suffices to prove that the natural ∗-epimorphism Φ is faithful, hence
a (completely) ∗-isometric isomorphism. Let X ∈ ker Φ, then X∗X ∈ ker Φ.
Hence,

Φ(Ẽ(X∗X))=Φ
( 2π∫

0

γ̃s(X∗X)
ds
2π

)
=

2π∫
0

Φ(γ̃s(X∗X))
ds
2π

=

2π∫
0

γs(Φ(X∗X))
ds
2π

=0.

Now Ẽ(X∗X) is in C∗(πu, Vu)γ̃ and Φ is faithful there; hence Ẽ(X∗X) = 0 and so
X∗X = 0. For the right semicrossed product, note that C∗(π, V∗) = C∗(π, V).

If, in particular, α is a ∗-isomorphism, then there is a natural way to iden-
tify the left semicrossed product as a closed subalgebra of the (reduced) crossed
product, i.e. C∗l (C). In this case, we refer to this closed subalgebra as the left re-
duced semicrossed product. In a dual way, we can define the right reduced semicrossed
product. The following is proved in [13], when C is abelian.

THEOREM 1.5. If α is a ∗-isomorphism, then the C∗-envelope of the semicrossed
product is the (reduced) crossed product.

Proof. Since α is a ∗-isomorphism, we can view `1(Z+, C, α)l as a | · |1-closed
subalgebra of `1(Z, C, α)l. First we prove that the inclusion map `1(Z+, C, α) ↪→
`1(Z, C, α) is completely isometric. The key is to prove that

‖F‖l = sup{‖(U × π)(F)‖ : (π, U) l-cov.un. pair of `1(Z, C, α)l},

for every F ∈ `1(Z+, C, α)l, since the right hand side is exactly the norm of
the (left) crossed product. For simplicity, we denote this norm by ‖ · ‖. It is
obvious that ‖F‖ 6 ‖F‖l, since every l-cov.un. pair of `1(Z, C, α)l restricts to
a l-cov.un. pair of the subalgebra `1(Z+, C, α)l. Also, if (H0, π) is a faithful ∗-
representation of C, then ltπ is the compression of the left regular representation
of `1(Z, C, α)l induced by π, denoted simply by lt. So, ‖ltπ(F)‖ 6 ‖lt(F)‖, thus
‖F‖l 6 ‖F‖ by Theorem 1.4. Arguing in the same way, we get that ‖[Fi,j]‖ 6
‖[Fi,j]‖l and ‖[ltπ(Fi,j)]‖ 6 ‖[lt(Fi,j)]‖, for every [Fi,j] ∈ Mν(`1(Z+, C, α)l). But
lt is a ∗-morphism of the crossed product, hence completely contractive. Thus,
‖[Fi,j]‖l 6 ‖[Fi,j]‖ and equality holds. Hence, if π̂(x) = diag{π(am(x)), m ∈ Z}
and U = 1H0 ⊗ u, where u is the bilateral shift, then the map δn ⊗ x 7→ Unπ̂(x)
extends to a complete isometry ι : Z+ ×α C → C∗l (C), whose image gener-
ates C∗l (C) as a C∗-algebra. Let B be the C∗-envelope of Z+ ×α C. Then, by
the universal property of C∗-envelopes, there is a surjective C∗-homomorphism
Ψ : C∗l (C) → B, which restricts to a completely isometry on ι(Z+ ×α C). Let

G ∈ ker Φ be of unit norm, and choose F =
k
∑

n=−k
Unπ̂(xn) with ‖G− F‖ < 1/2.
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Thus UkG ∈ ker Ψ, ι−1(UkF) ∈ Z+ ×α C, ‖ι−1(UkF)‖ = ‖UkF‖ = ‖F‖ > 1/2
and ‖UkG −UkF‖ = ‖G − F‖ < 1/2. Then 1/2 < ‖i−1(UkF)‖ = ‖Ψ(UkF)‖ =
‖Ψ(UkF−UkG)‖ 6 ‖UkF−UkG‖ < 1/2, which is a contradiction.

2. w*-SEMICROSSED PRODUCTS

Let A ⊆ B(Ho) be a unital subalgebra, closed in the w*-operator topol-
ogy, and β : A → A, a contractive w*-continuous endomorphism of A. From
now on we fix H = Ho ⊗ `2(Z+) and π := ĩdA, as in Example 1.1. Then π is
a faithful representation of A on H, and we can write π(b) = ∑

n>0
βn(b) ⊗ pn,

where pn ∈ B(`2(Z+)) is the projection onto [en]. Note that the sum converges
in the w*-topology as well. Hence, π(b) belongs to the w*-tensor product algebra
A⊗B(`2(Z+)). This is, by definition, the w*-closed linear span in B(H) of the
operators b⊗ a, with b ∈ A and a ∈ B(`2(Z+)). We also represent Z+ on H by
the isometries Vn = 1Ho ⊗ vn, where v is the unilateral shift on `2(Z+). Thus,
Vn ∈ A⊗B(`2(Z+)).

DEFINITION 2.1. The w*-semicrossed product Z+×βA is the w*-closure of

the linear space of the “analytic polynomials”
k
∑

n=0
Vnπ(bn), bn ∈ A, k > 0.

It is easy to check that the left covariance relation π(b)V = Vπ(β(b)) holds.
Hence, (π, V) is a left covariant isometric pair. Thus, the w*-semicrossed product
is a unital (non-selfadjoint) subalgebra of B(H) and by definition, Z+×βA ⊆
A⊗B(`2(Z+)).

PROPOSITION 2.2. An operator T ∈ B(H) is in the w*-semicrossed product if
and only if Tκ,λ ∈ A and Gm(T) = Vmπ(Tm,0), when m ∈ Z+, while Gm(T) = 0
for m < 0. Equivalently, when Tκ,λ ∈ A and β(Tm+λ,λ) = Tm+λ+1,λ+1 for every
m, λ ∈ Z+, while Tκ,λ = 0 when κ < λ.

Proof. If T =
n
∑

κ=0
Vκπ(bκ) with bκ ∈ A, then Gm(T) = Vmπ(bm) when

m ∈ {0, 1, . . . , n} and Gm(T) = 0 otherwise. Let T ∈ Z+×βA and a net Ai =
ni
∑

κ=0
Vκπ(bi,κ) of analytic polynomials converging to T in the w*-topology. Since

Gm is w*-continuous, we have that Gm(T) = w*- lim
i

Gm(Ai) for every m ∈
Z. Thus Gm(T) = 0 when m < 0. If m > 0, then T(m) = (V∗)mGm(T) =

w*- lim
i
(V∗)mGm(Ai) = w*- lim

i
π(bi,m). Let φ ∈ B(H0)∗ and k ∈ Z+, then

φ⊗ωeκ ,eκ ∈ B(H)∗; hence we get

φ(Tm+κ,κ) = (φ⊗ωeκ ,eκ )(T(m)) = lim
i
(φ⊗ωeκ ,eκ )(π(bi,n)) = lim

i
φ(βk(bi,n)).
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Thus Tm+κ,κ = w*- lim
i

βκ(bi,m), for every κ ∈ Z+, so Tm+κ,κ ∈ A. Also, since

β is w*-continuous, we get that βκ(Tm,o) = w*- lim
i

βκ(bi,m) = Tm+κ,κ , for every

κ ∈ Z+. Hence, we get that Gm(T) = Vmπ(Tm,o), for every m > 0. For the
opposite direction, if T ∈ B(H) satisfies the conditions, we can see that Gm(T) ∈
Z+×βA, and so by the Féjer Lemma, T ∈ Z+×βA as well. The last equivalence
is trivial.

REMARK 2.3. Note that each adUs leaves Z+×βA invariant, and hence, be-
ing unitarily implemented, also leaves its reflexive cover invariant. Thus, so does
Gm(·).

Suppose now that the endomorphism β is implemented by a unitary w acting
on H0, so that β(b) = wbw∗, for all b ∈ A. Let ρ(b) = b ⊗ 1`2(Z+), for b ∈ A
and W = w∗ ⊗ v. Then (ρ, W) is a left covariant isometric pair and we denote by

Z+ ×w A the w*-closure of the linear space of the “analytic polynomials”
k
∑

n=0
Wnρ(bn),

bn ∈ A, k > 0.
It is easy to check that Z+ ×w A is unitarily equivalent to Z+×βA, via

Q = ∑
n>0

w−n ⊗ pn. Thus we refer to Z+×wA as the w*-semicrossed product,

as well. Using the unitary operator Q and Proposition 2.2 we get the following
characterization.

PROPOSITION 2.4. An operator T ∈ B(H) is in Z+×wA if and only if Gm(T) =
Wmρ(bm), for some bm ∈ A, when m ∈ Z+ and Gm(T) = 0 for m < 0. Equivalently,
when Tm+λ,λ = (w∗)mbm, for every m, λ ∈ Z+ and Tκ,λ = 0, when κ < λ.

The relation between the w*-tensor productA⊗T and Z+×wA depends on
some properties of w. Specifically,

• A⊗T = Z+×wA if and only if w, w∗ ∈ A.
• A⊗T  Z+×wA if and only if w∗ /∈ A, w ∈ A.
• Z+×wA  A⊗T if and only if w /∈ A, w∗ ∈ A.
• (Z+×wA) ∩ (A⊗T ) = ρ(A), if and only if (wnA) ∩A = {0}, ∀ n ∈ Z+.

It is easy to verify that, when (wnA)∩A = {0} for every n ∈ Z+, then w, w∗ /∈ A,
but the converse is not always true.

EXAMPLE 2.5. Take A = L∞(T) acting on L2(T) and β( f )(z) = f (λz),
where λ is a q-th root of unity. Then β is unitarily implemented by w ∈ B(L2(T)),
with (w(g))(z) = g(λz). Then wmq = IH0 , for every m ∈ Z+, hence wmqA∩A =
A. In this case, (Z+×wA) ∩ (A⊗T ) contains the w*-closed algebra generated by

k
∑

n=0
Wnqρ(bn), bn ∈ A, which properly contains ρ(A).

The following lemma will be superseded below (Theorem 2.9).
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LEMMA 2.6. The w*-semicrossed productZ+×wB(H0) is reflexive, for every uni-
tary w ∈ B(H0).

Proof. Let T ∈ Ref(Z+×wB(H0)). Then, by Remark 2.3, each Gm(T) be-
longs to the reflexive cover of the w*-semicrossed product. Thus, for κ < λ
and ξ, η ∈ H0, there is a sequence An ∈ Z+×wB(H0) such that 〈T(ξ ⊗ eλ), η ⊗
eκ〉 = lim

n
〈An(ξ ⊗ eλ), η ⊗ eκ〉. Hence, 〈Tκ,λξ, η〉 = lim

n
〈(An)κ,λξ, η〉 = 0, since

each (An)κ,λ = 0, for κ < λ. So Gm(T) = 0 for every m < 0. Now, fix
m ∈ Z+ and consider ξ ∈ H0, gr = ∑

n
rnen, 0 6 r < 1. We can check that

the subspace F = [(bξ)⊗ gr : b ∈ B(H0)] is (Z+×wB(H0))
∗-invariant, and as

a consequence, Gm(T)∗-invariant. Since ξ ⊗ gr ∈ F , there is a sequence (bn)
in B(H0) such that Gm(T)∗(ξ ⊗ gr) = lim

n
(bnξ) ⊗ gr. Thus, ∑

κ
rm+κT∗m+κ,κξ ⊗

eκ = lim
n
(bnξ) ⊗ gr. Taking scalar product with η ⊗ eκ , where η ∈ H0 and

κ > 0, we have that rm+κ〈T∗m+κ,κξ, η〉 = lim
n

rκ〈bnξ, η〉. Hence, rm〈T∗m+κ,κξ, η〉 =
lim

n
〈bnξ, η〉 = rm〈T∗m,0ξ, η〉, for every η. Thus, T∗m+κ,κξ = T∗m,0ξ, for arbitrary

ξ ∈ H0, so Tm+κ,κ = Tm,0 for every κ ∈ Z+. Hence, Gm(T) ∈ B(H0)⊗T , which
coincides with Z+×wB(H0) since w ∈ B(H0).

Let S be a w*-closed subspace of B(H). We say that S is G-invariant if
Gm(S) ⊆ S for every m ∈ Z. If, in particular, S is a w*-closed subspace of
Z+×wB(H0), then Gm(S) = 0, for every m < 0. In the next proposition we prove
that we can associate a sequence (Sm)m>0 of w*-closed subspaces of B(H0) to
such an S , and vice versa.

PROPOSITION 2.7. A w*-closed subspace S of B(H) is a G-invariant subspace
of Z+×wB(H0) if and only if it is the w*-closure of the linear space of the analytic

polynomials
k
∑

n=0
Wnρ(xn), xn∈Sn, k∈Z+, where Sn are w*-closed subspaces of B(H0).

Proof. Let S be a G-invariant w*-closed subspace of Z+×wB(H0) and let
Sm = {wmTm,0 : T ∈ S}, for every m > 0. Then Sm is a w*-closed subspace
of B(H0). Indeed, let x = w*- lim

i
wm(Ti)m,0, for Ti ∈ S. Then ρ((w∗)mx) =

w*- lim
i

ρ((Ti)m,0), so Wmρ(x) = w*- lim
i

Vmρ((Ti)m,0) = w*- lim
i

Gm(Ti), since

Ti ∈ Z+×wB(H0). But S is G-invariant, hence Wmρ(x) ∈ S , which gives that x =
wm(Vmρ(x))m,0 ∈ Sm. A use of the Féjer Lemma and Proposition 2.4, completes
the forward implication. For the converse, let S be a w*-closed subspace as in the

statement and A ∈ S ; so A = w*- lim
i

Ai, where Ai =
ni
∑

κ=0
Wκρ(xi,κ), with xi,κ ∈

Sκ . Then A ∈ Z+×wB(H0) and Gm(A)=w*- lim
i

Gm(Ai)=w*- lim
i

Wmρ(xi,κ). So,

wm Am,0=w*- lim
i

xi,m∈Sm. Hence, we have that Gm(A)=Wmρ(wm Am,0)∈S .
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THEOREM 2.8. Let (Sm)m>0 be the sequence associated to a G-invariant w*-
closed subspace S of Z+×wB(H0). If every Sm is reflexive then S is reflexive.

Proof. By Lemma 2.6, Ref(S) ⊆ Ref(Z+×wB(H0)) = Z+×wB(H0). So, for
every T in the reflexive cover of S and every m, λ ∈ Z+, we have that Tm+λ,λ =
(w∗)mbm, where bm ∈ B(H0). Thus, it suffices to prove that bm ∈ Sm. Since
T ∈ Ref(S), then, for every ξ, η ∈ H0, there is a sequence (An) in S such that
〈T(ξ ⊗ eλ), (w∗)mη ⊗ em+λ〉 = lim

n
〈An(ξ ⊗ eλ), (w∗)mη ⊗ em+λ〉. So, 〈bmξ, η〉 =

〈Tm+λ,λξ, (w∗)mη〉 = lim
n
〈(An)m+λ,λξ, (w∗)mη〉. Since each An ∈ S , we get that

(An)m+λ,λ = (w∗)mbn,m for some bn,m ∈ Sm. Thus 〈bmξ, η〉 = lim
n
〈bn,mξ, η〉,

which means that bm ∈ Ref(Sm) = Sm.

THEOREM 2.9. If A is a reflexive algebra, then Z+×wA is reflexive. In addition,
if A is hereditarily reflexive, then every G-invariant w*-closed subspace of Z+×wA is
reflexive.

Proof. The algebra Z+×wA is associated to the sequence (A)m>0; hence it is
reflexive by the previous theorem.

APPLICATIONS 2.10. A. (Sarason’s result, Theorem 3 in [15]). Consider the
case of a reflexive subalgebra A of Mn(C) and a unitary w ∈ Mn(C) such that
wAw∗ ⊆ A. Then Z+×wA is reflexive. Note that Z+×wA = T when n = 1 and
w = IH0 .

B. (Ptak’s result, Theorem 2 in [14]). More generally, A⊗T coincides with
Z+×IH0

A. So A⊗T is reflexive, when A is reflexive.

C. IfM is a maximal abelian selfadjoint algebra and β is a ∗-automorphism,
then Z+×βM is reflexive, since every ∗-automorphism of a m.a.s.a. is unitarily
implemented. For example letM = L∞(T) acting on L2(T) and β the rotation by
θ ∈ R. Also Z+×βA is reflexive whenever A is a β-invariant w*-closed subalge-
bra ofM, sinceM is hereditarily reflexive (see [8]).

D. Consider T acting on H2(T) and β as in the previous example. Then, T
is reflexive and so Z+×βT is a reflexive subalgebra of B(H2(T))⊗B(`2(Z+)).

E. If A is a nest algebra and β is an isometric automorphism, then it is
unitarily implemented (see [3]). Thus, Z+×βA is reflexive.

F. Consider a C∗-algebra C and a ∗-morphism α : C → C. Let (H0, σ) be a
faithful ∗-representation of C such that the induced ∗-morphism

β : σ(C)→ σ(C) : σ(x) 7→ β(σ(x)) = σ(α(x))

is implemented by a unitary w ∈ B(H0). Then the induced representation ltσ

is faithful on Z+ ×α C. Thus, ltσ(Z+ ×α C)
w*

is the w*-closed linear span of the
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analytic polynomials
k
∑

n=0
Vnπ(σ(x)), and it is unitarily equivalent to the alge-

bra C := span{ρ(σ(x)), Wn : x ∈ C, n ∈ Z+}
w*

, via Q = ∑
n>0

w−n ⊗ pn. But C is

exactly the w*-semicrossed product Z+×wσ(C)w*
. Thus, ltσ(Z+ ×α C)

w*
is reflex-

ive. In particular, let K be a compact, Hausdorff space, µ a positive, regular Borel
measure on K and σ : C(K) → B(L2(K, µ)) : f 7→ M f . Consider a homeomor-
phism φ of K, such that φ and φ−1 preserve the µ-null sets and let α( f ) = f ◦ φ.
Then the map M f → M f ◦φ extends to a ∗-automorphism of L∞(K, µ), hence it is

unitarily implemented. Thus, ltσ(Z+ ×α C(K))
w*

is reflexive.

G. Let (M, τ) be a von Neumann algebra with a faithful, normal, tracial
state τ and let L2(M, τ) be the Hilbert space associated to (M, τ). Let β : M→
M be a trace-preserving ∗-automorphism and consider M acting on L2(M, τ)
by left multiplication. Then β is unitarily implemented and it can be verified that
the w*-semicrossed product Z+×wM coincides with the adjoint of the analytic
semicrossed product defined in [9] and [11]. Hence, we obtain Proposition 4.5 of
[11] for p = 2.

REMARK 2.11. An analogous result to Theorem 2.8 is proved in [1]. They
also obtain Ptak’s result (see 2.10 B).

We conclude the analysis of the w*-semicrossed product Z+×wA by find-
ing its commutant. We know that Us(Z+×wA)U∗s = Z+×wA, for all s ∈ [0, 2π],
hence, Us(Z+×wA)′U∗s = (Z+×wA)′. Thus, T ∈ (Z+×wA)′ if and only if
Gm(T) ∈ (Z+×wA)′, for every m ∈ Z. Now, recall that wAw∗ ⊆ A, hence
w∗A′w ⊆ A′. So, we can define the w*-semicrossed product Z+×γA′, where
γ ≡ adw∗ : A′ → A′.

THEOREM 2.12. If γ ≡ adw∗ , then (Z+×wA)′ = Z+×γA′.
Proof. Obviously T ∈ (Z+×wA)′ if and only if T ∈ {b⊗ 1, w∗ ⊗ v : b∈A}′;

note also that V∈ (Z+×wA)′. Let T ∈ (Z+×wA)′, then for m>0 and b∈A, n>0,

Gm(T)(b⊗ 1) = (b⊗ 1)Gm(T) and Gm(T)(w∗ ⊗ v) = (w∗ ⊗ v)Gm(T),

hence, Tm+n,nb = bTm+n,n and Tm+n+1,n+1(w∗)n = (w∗)nTm+n,n,

so, Tm+n,n ∈ A′ and Tm+n,n = γn(Tm,0).

Thus, if we set π′(Tm,0) = ∑
n>0

γn(Tm,0)⊗ pn, we get that Gm(T) = Vmπ′(Tm,0),

for m > 0. Now, let m < 0, hence Gm(T) = T(m)(V∗)−m. Since, V ∈ (Z+×wA)′,
we have that T(m) = Gm(T)V−m ∈ (Z+×wA)′. Thus, G0(T(m)) = T(m) ∈
(Z+×wA)′ and so, by what we have proved, Tn,−m+n =γn(T0,−m). Since Gm(T)(ξ
⊗e0) = 0, then

Gm(T)(w∗ ⊗ v)−m(ξ ⊗ e0) = (w∗ ⊗ v)−mGm(T)(ξ ⊗ e0) = 0,
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so (T0,−m(w∗)−mξ)⊗ e0 = 0; hence T0,−m = 0. Therefore Tn,−m+n = γn(T0,−m) =
0, for every n > 0; hence Gm(T) = 0, for every m < 0. Hence, by Proposition 2.2,
we get that T ∈ Z+×γA′. For the converse, let T ∈ Z+×γA′, then Gm(T) ∈
Z+×γA′ for every m ∈ Z, and we can see that Gm(T) ∈ {b⊗ 1, w∗ ⊗ v : b ∈ A}′.
Hence, Gm(T) ∈ (Z+×wA)′ for every m ∈ Z, so T ∈ (Z+×wA)′.

THEOREM 2.13. The double commutant of Z+×wA is Z+×wA′′. Thus, the w*-
semicrossed product is its own bicommutant if and only if A = A′′.

Proof. We recall that Q(Z+×βA)Q∗ = Z+×wA, where Q = ∑
n

w−n ⊗ pn;

hence Q∗(Z+×γA′)Q = Z+×w∗A′. Thus, (Z+×wA)′′=(Z+×γA′)′=(Q(Z+×w∗

A′)Q∗)′ = Q(Z+×w∗A′)′Q∗ = Q(Z+×βA′′)Q∗ = Z+×wA′′.

We end this section with a note on the reduced w*-semicrossed products (see the
definition below). Let M be a von Neumann algebra acting on a Hilbert space
H0, β a ∗-automorphism ofM and consider ZoβM to be the usual w*-crossed
product, a von Neumann subalgebra ofM⊗B(`2(Z)). This is by definition the
von Neuman algebra {π̂(b), U : b ∈ M}′′, where π̂(b) = ∑

n∈Z
βn(b) ⊗ pn and

U = 1H0 ⊗ u, the ampliation of the bilateral shift u ∈ B(`2(Z)).

DEFINITION 2.14. The reduced w*-semicrossed product Z+oβM is the w*-

closure of the linear space of “analytic polynomials”
k
∑

n=0
Unπ̂(bn), bn ∈ M, k > 0.

Since (π̂, U) is a l-cov.un. pair, the reduced w*-semicrossed product is a (w*-
closed) subalgebra of the w*-crossed product. In fact, note that Z+oβM is the
intersection of ZoβM with the “lower triangular” matrices. Hence, we have the
following proposition.

PROPOSITION 2.15. The reduced w*-semicrossed product of a von Neumann al-
gebra is reflexive.

Now, take A to be a w*-closed subalgebra of M which is invariant under
β. We define Z+oβA to be the w*-closure of the linear space of “analytic polynomials”

k
∑

n=0
Unπ̂(bn), bn ∈ A, k > 0. Using the technique of Theorem 2.9 one can show

the following.

COROLLARY 2.16. If A is reflexive subalgebra ofM which is invariant under β,
then Z+oβA is reflexive.

3. THE COMMUTATIVE CASE

Now, we examine the case where C is a commutative, unital C∗-algebra,
C = C(K), and the ∗-endomorphism α is induced by a continuous map φ : K →
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K. Let evt be the evaluation at t ∈ K, i.e. evt( f ) = f (t); then (`2(K),
⊕

t evt)
is a faithful ∗-representation of C(K). If some t ∈ K has dense orbit, we obtain
a faithful representation of C(K) on `2(Z+). As observed in Theorem 1.4, such
representations play a fundamental role for the semicrossed product Z+×α C(K),
since they are “enough” to obtain the norm. Let πt := ẽvt, as in Example 1.1. So,
πt : C(K)→ B(`2(Z+)) is given by πt( f ) := ∑

n>0
f (φn(t))pn, where pn is the one-

dimensional projection on [en]. Then (πt, v) is a left covariant isometric pair. We

define the one point w*-semicrossed product to be Ct = ltπt(Z+ ×α C(K))
w*

, i.e. the

w*-closed linear span in B(`2(Z+)) of the “analytic polynomials”
k
∑

n=0
vnπt( fn),

fn ∈ C(K).
Let t′ = φn0(t) be the first periodic element of the orbit of t with period p

(as in the diagram that follows). Then orb(t) = {t, . . . , φn0−1(t), t′, . . . , φp−1(t′)}
induces a family of projections {Pn0 , P0, . . . , Pp−1} such that I = Pn0 ⊕ P0 ⊕ · · · ⊕
Pp−1. Indeed, let Pn0 be the projection on [e0, . . . , en0−1] and Pi be the projec-
tion on [en0+i+pj : j ∈ Z+] for i = 0, . . . , p − 1. Note that if f ∈ C(K), then
πt( f )(en0+i+pj) = f (φn0+i+pj(t))en0+i+pj = f (φi(t′))en0+i+pj, for j ∈ Z+. Hence,
πt( f )Pi = f (φi(t′))Pi, for every i = 0, . . . , p− 1.

φn0−1(t)
))

φn0(t) = t′

))
t

%%
φ(t)

  . . .

55

φp−1(t′)

==

φ(t′)

__. . .

ii

PROPOSITION 3.1. The algebra Ct is the linear sum (TPn0) ⊕ (T P0) ⊕ · · · ⊕
(T Pp−1), where T is the algebra of lower triangular operators in B(`2(Z+)), T is the
algebra of analytic Toeplitz operators and Pn0 , P0, . . . , Pp−1 are the projections induced
by the orbit of t.

Proof. For any n ∈ Z+ and f ∈ C(K), we have

vnπt( f ) = vnπt( f )Pn0 ⊕ f (t′)vnP0 ⊕ f (φp−1(t′))vnPp−1.

Thus, Ct ⊆ (TPn0) ⊕ (T P0) ⊕ · · · ⊕ (T Pp−1). For the converse, first let TPn0 ∈
TPn0 and note that (TPn0)κ,λ = 0 when κ < λ or n0 − 1 < λ. Then we get

that Gm(TPn0) = 0, when m < 0, and Gm(TPn0) = vm
( n0−1

∑
n=0

(TPn0)m+n,n pn

)
,

when m > 0. Note that (TPn0)κ,λ ∈ C for every κ, λ ∈ Z+. Fix m > 0 and
let n ∈ {0, . . . , n0 − 1}. Then by Urysohn’s Lemma there is a sequence ( fn,j)j of
continuous functions on K, such that lim

j
fn,j(φ

n(t)) = (TPn0)m+n,n and fn,j(s) =
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0 for s ∈ orb(t) \ {φn(t)}. Hence, (TPn0)m+n,n pn = w*- lim
j

πt( fn,j) ∈ Ct and so

vm(TPn0)m+n,n pn ∈ Ct. Thus Gm(TPn0) ∈ Ct, and, by the Féjer Lemma, TPn0 ∈ Ct.
So, TPn0 ⊆ Ct. Also, for fixed i ∈ {0, . . . , p− 1} and m ∈ Z+, consider vmPi ∈ T Pi.
Again by Urysohn’s Lemma, there is a sequence ( fi,j)j of continuous functions
on K, such that lim

j
fi,j(φ

i(t′)) = 1 and fi,j(s) = 0 for s ∈ orb(t) \ {φi(t′)}. Then

w*- lim
j

πt( fi,j) = Pi, so vmPi ∈ Ct. Hence, T Pi ⊆ Ct, for every i ∈ {0, . . . , p− 1}.

Thus, (TPn0)⊕ (T P0)⊕ · · · ⊕ (T Pp−1) ⊆ Ct.

Note that if orb(t) has no periodic points, then Ct = T, since Pn0 = 1`2(Z+).
Also, if orb(t) has exactly one periodic point t′, then φn(t) = t′ for every n > n0
(i.e. t′ is a fixed point); thus Ct = TPn0 ⊕ T P⊥n0

. If t is itself a fixed point, then
Ct = T .

REMARK 3.2. Let D be the algebra of diagonal operators in B(`2(Z+)) and
Dφ = {T ∈ D : Tκ,κ = Tn,n when φκ(t) = φn(t)} which is a w*-closed subalgebra
of D. Hence, T ∈ Dφ if and only if T is of the form

T = diag{y0, . . . , yn0−1, yn0 , . . . , yp−1, yn0 , . . . , yp−1, . . . }.

It is immediate from the previous proposition that Ct is generated by the uni-
lateral shift in B(`2(Z+)) and the diagonal matrices id Dφ. Thus, an operator
T ∈ B(`2(Z+)) is in Ct if and only if for every m < 0, Gm(T) = 0, and for every
m > 0, Gm(T) = vm ∑

n
Tm+n,n pn where Tm+κ,κ = Tm+n,n, whenever φκ(t) = φn(t).

THEOREM 3.3. The algebra Ct is reflexive.

Proof. If T ∈ Ref(Ct), then Gm(T) ∈ Ref(Ct); thus Gm(T) = 0, for m < 0.
Let gr = ∑

n>0
rnen, with 0 6 r < 1, and F = [πt( f )gr : f ∈ C(K)]. Then F is

(Ct)∗-invariant; thus Gm(T)∗-invariant, for m ∈ Z+. So, there is a sequence of
f j ∈ C(K) such that Gm(T)∗gr = lim

j
πt( f j)gr. Hence rmTm+n,n = lim

j
( f j(φ

n(t))),

for every n ∈ Z+. Thus, Tm+n,n = Tm+κ,κ , if φκ(t) = φn(t). So, by Remark 3.2,
T ∈ Ct.

REMARK 3.4. In order to construct Ct, it is sufficient to take coefficients from any
uniform algebra A on K. Indeed, let A be a norm closed subalgebra of C(K) con-
taining the constant functions which separates the points of K and form the poly-

nomials
k
∑

n=0
vnπt( fn), fn ∈ A. By Remark 3.2, it suffices to prove that πt(ball(A))

is w*-dense in ball(Dφ). Fix z ∈ T and n0 ∈ Z+, and take T ∈ Dφ, such
that Tn0,n0 = z and Tn,n = 1, if φn(t) 6= φn0(t). Using the argument of the
claim of Theorem 2.9 of [6] we can find a sequence of ( f j)j in ball(A) such that
w*- lim

j
πt( f j) = T. To complete the proof, observe that products of elements of
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this form approximate the unitaries in Dφ in the w*-topology and that the strong
closure of πt(ball(A)) is closed under multiplication.
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