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ABSTRACT. In 1990, Rieffel defined a notion of proper action of a group H
on a C∗-algebra A. He then defined a generalized fixed point algebra Aα for
this action and showed that Aα is Morita equivalent to an ideal of the reduced
crossed product. We generalize Rieffel’s notion to define proper groupoid dy-
namical systems and show that the generalized fixed point algebra for proper
groupoid actions is Morita equivalent to a subalgebra of the reduced crossed
product. We give some nontrivial examples of proper groupoid dynamical
systems and show that if (A , G, α) is a groupoid dynamical system such that
G is principal and proper, then the action of G on A is saturated, that is the
generalized fixed point algebra is Morita equivalent to the reduced crossed
product.
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1. INTRODUCTION

In an effort to study deformation quantization of Poisson manifolds, Rieffel
introduced a notion of proper group actions on C∗-algebras [27]. These actions
are meant to behave like proper actions of groups on spaces. To that end, he also
defined a generalized fixed point algebra for proper dynamical systems which
has some of the same properties as the generalized fixed point algebra, C0(G\X),
for a proper action of a group G on a space X. The main theorem of [27] (The-
orem 1.5) shows that the generalized fixed point algebra for a proper dynamical
system is Morita equivalent to an ideal of the reduced crossed product. This gen-
eralizes a theorem of Green’s ([7], Corollary 15) which gives a Morita equivalence
between C0(X) o G and C0(G\X) whenever G acts freely and properly on X.
Since Rieffel introduced proper actions they have been studied in [9], [10], [11],
[13], [15], [8].
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In [27], Rieffel also identifies a class of proper actions with the property that
the generalized fixed point algebra is Morita equivalent to the reduced crossed
product, Rieffel calls these actions saturated. Saturated actions not only more
closely resemble the situation in Green’s theorem, they have also proved to be
the actions most useful in applications [9], [10], [11].

The study of generalized fixed point algebras for proper group dynamical
systems has lead to a wide range of interesting results in operator theory. For
example they have been used to prove results in nonabelian duality theory [13],
graph algebras [10], [15] and the equivariant Brauer semigroup [9]. When one is
interested in extending these results to the groupoid setting, one is naturally lead
to seek an appropriate notion of a generalized fixed point algebra for groupoid
dynamical systems and therefore a notion of proper groupoid dynamical systems.

In this paper we propose a definition of proper groupoid dynamical systems
and define a generalized fixed point algebra for these systems. Our main theorem
is as follows:

THEOREM. If a groupoid dynamical system is proper, then the generalized fixed
point algebra for the action is Morita equivalent to a subalgebra of the reduced crossed
product.

Note that this theorem generalizes both Theorem 1.5 of [27] and Corollary 15
of [7]. We also present some examples of proper groupoid dynamical systems and
give conditions that guarantee that these examples are saturated. To prove satu-
ration in our examples, we needed to use a new averaging argument to overcome
the fact that translations of open sets in groupoids are not necessarily open. We
believe this argument can be applied to prove other density results. Along the
way we recover a result in [19] showing that C∗(G) has continuous trace when
G is principal and proper. Although our results are about reduced crossed prod-
ucts, the work of Corollary 2.1.17 and Proposition 6.1.10 in [1] shows that the
groupoids in our examples are amenable, so in these examples our results apply
to the full crossed product.

There has been considerable interest recently in groupoid crossed products
and groupoid dynamical systems. To learn more about these objects the reader is
encouraged to look at the excellent exposition in [21]. To our knowledge groupoid
crossed products were first introduced by Renault in [24]. They have since been
studied in terms of their ideal structure in [3], [20], [24], [25], [21], [4], [5], [6], im-
plicitly in the study of the equivariant Brauer Group and groupoid cohomology
in [12] and with relation to inverse semigroups [14], [22]. The present paper hopes
to provided a tool to illuminate the study of these fascinating objects further.

We should note that there is some debate in the literature about the correct
definition of proper group dynamical systems [2], [16], [28]. We have chosen to
generalize Rieffel’s original definition [27] because (while it is not intrinsic) it
gives a Morita equivalence result with the generalized fixed point algebra and is
thus the definition most widely used in applications.
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We begin with a section on preliminaries which includes a brief introduc-
tion to groupoid dynamical systems, induced representations and the reduced
groupoid crossed product. In Section 3 we define proper groupoid dynamical
systems and the generalized fixed point algebra and prove our main theorem.
Section 4 is devoted to fleshing out two examples and Section 5 is devoted show-
ing freeness guarantees that these examples are saturated.

1.1. CONVENTIONS. Throughout this paper we will use the following conven-
tions. If A is a C∗-algebra, then M(A) will denote the multiplier algebra of A and
Z(A) will denote its center. If π : A → B is nondegenerate, then π will denote
its extension to M(A). If X1 and X2 are spaces equipped with maps τi : Xi → T,
then X1 ∗ X2 denotes the set {(x, y) ∈ X1 × X2 : τ1(x) = τ2(y)}. Throughout, G
will denote a second countable locally compact Hausdorff groupoid with Haar
system {λu}u∈G(0) ([23], Definition I.2.2). We will use the notational conventions
for groupoids established in [17] which are the same as those in [23] except that
we use s to denote the source map. If G acts on a topological space X (on the left),
then X is fibred over G(0) by a map rX ([17], Definition 2.13). Furthermore there
exists a map Φ : G ∗ X → X × X given by (γ, x) 7→ (γ · x, x). We say that the
action of G on X is free if this map is injective and we say the action is proper if
Φ is a proper map. Note that if G acts properly on a locally compact Hausdorff
space X, then the orbit space X/G is locally compact and Hausdorff ([1], Proposi-
tion 2.1.12). We say G is principal if the natural action of G on its unit space given
by γ · s(γ) = r(γ) is free, we say G is proper if this action is proper. We will show
in Proposition 4.1 that proper actions of groupoids on spaces give rise to proper
groupoid dynamical systems as defined in Definition 3.1, so there should be no
cause for confusion between the two uses of the word proper. Unless otherwise
stated we will assume that all of our C∗-algebras are separable and all spaces X
are locally compact and Hausdorff. We use χE to denote the characteristic func-
tion of the set E.

2. PRELIMINARIES

2.1. C0(X)-ALGEBRAS. Groupoids must act on fibred objects, so to construct
groupoid dynamical systems we need fibred C∗-algebras. To that end, for a lo-
cally compact Hausdorff space X, a C0(X)-algebra is a C∗-algebra A together with
a nondegenerate homomorphism of C0(X) into Z(M(A)). C0(X)-algebras are
well studied objects in their own right, but for our needs it is enough to know
that they have an associated fibred structure. Specifically, if C0,x(X) is the set of
functions in C0(X) vanishing at x ∈ X, then Ix := C0,x(X) · A is an ideal in A and
A(x) := A/Ix is called the fibre of A over x. The image of a in A(x) is denoted by
a(x), and the set {A(x) : x ∈ X} gives rise to an upper semicontinuous C∗-bundle
A over X ([32], Theorem C.26).
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DEFINITION 2.1. Let X be a locally compact Hausdorff space. An upper semi-
continuous C∗-bundle over X is a topological space A together with a continuous
open surjection p = pA : A → X such that each fibre A(x) := p−1({x}) is a
C∗-algebra and A satisfies the following axioms:

(i) the map a 7→ ‖a‖ is upper semicontinuous from A to R+ (that is, for all
ε > 0, {a ∈ A : ‖a‖ < ε} is open);

(ii) the maps (a, b) 7→ a + b and (a, b) 7→ ab are continuous from A ∗A to A ;
(iii) for each k ∈ C, the maps a 7→ ka and a 7→ a∗ are continuous from A to A ;
(iv) if {ai} is a net in A such that p(ai)→ x and ‖ai‖ → 0, then ai → 0x (where

0x is the zero element of A(x)).

The point is, if we let A = Γ0(X, A ) be the C∗-algebra of continuous sec-
tions of A vanishing at infinity, then A is a C0(X)-algebra. The relationship
A = Γ0(X, A ) defines a one-to-one correspondence between C0(X)-algebras and
upper semicontinuous C∗-bundles. Throughout this paper we will denote bun-
dles by script letters A and the corresponding section algebras by the correspond-
ing Roman letter A. For a more detailed discussion of C0(X)-algebras the reader
is encouraged to see Appendix C of [32].

2.2. THE REDUCED CROSSED PRODUCT.

DEFINITION 2.2. Let G be a second countable locally compact groupoid
with Haar system {λu}u∈G(0) and A be an upper semicontinuous C∗-bundle over
G(0). Suppose the associated C0(X)-algebra, A = Γ0(G(0), A ) is separable. An ac-
tion α of G on A is a family of ∗-isomorphisms {αγ}γ∈G such that:

(i) for each γ ∈ G, αγ : A(s(γ))→ A(r(γ));
(ii) for all (γ, η) ∈ G(2), αγη = αγ ◦ αη ;

(iii) the map (γ, a) 7→ αγ(a) is a continuous map from G ∗A to A .
The triple (A , G, α) is called a (groupoid) dynamical system.

Given a dynamical system, we can construct a convolution algebra which
we then complete to obtain the reduced crossed product. The remainder of this
section is devoted to a sketch of this construction. First we need the following
definition.

DEFINITION 2.3. Let (A , G, α) be a groupoid dynamical system, we define
a bundle over G called the pullback bundle of A via r to be

(2.1) r∗A := {(γ, a) : r(γ) = pA (a)} ⊂ G×A ,

with bundle map pr∗A : (γ, a) 7→ γ.

First note that the fibre of r∗A over γ, p−1
r∗A (γ), is naturally isomorphic to

A(r(γ)), the fibre of A over r(γ). Now the underlying function space for the
convolution algebra in the construction of the reduced crossed product is given
by Γc(G, r∗A ), the set of continuous compactly supported sections of r∗A . Note
that for f ∈ Γc(G, r∗A ), we can view f (γ) as an element in A(r(γ)), and so for
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η ∈ G with s(η) = r(γ), αη( f (γ)) makes sense as an element of A(r(η)). We now
use the following proposition to define a ∗-algebra structure on Γc(G, r∗A ).

PROPOSITION 2.4 ([21], Proposition 4.4). Let G be a groupoid with Haar system
{λu}u∈G(0) , and Γc(G, r∗A ) be the set of continuous compactly supported sections of
r∗A . Then Γc(G, r∗A ) is a ∗-algebra with respect to the operations

f ∗ g(γ) :=
∫
G

f (η)αη(g(η−1γ))dλr(γ)(η) and f ∗(γ) = αγ( f (γ−1)∗).

The goal is to complete this convolution algebra in the norm induced by
regular representations. Since we use regular representations extensively in the
sequel we will sketch their construction here. To continue we need the notion
of a Borel Hilbert bundle. For our purposes a Borel Hilbert bundle X ∗ H over
X is bundle of Hilbert spaces, X ∗ H = {H(x)}x∈X , along with a Borel structure
satisfying some technical conditions (see Definition F.1 of [32]). Given a measure
µ on X we can form the Hilbert space L2(X ∗ H, µ) in the obvious way. This
Hilbert space is just the direct integral

∫
X

⊕H(x)dµ(x) and gives us the notion of a

fibred Hilbert space that we need for groupoid representations.
Suppose π is a (separable) C0(G(0))-linear representation of A onHπ . Then

by Proposition F.26 of [32] there exists a Borel Hilbert bundle G(0) ∗ H, a finite
measure µπ = µ on G(0) (note: µ need not be quasi invariant) and a Borel family
of representations {πu}u∈G(0) of A on H(u) such that π is unitarily equivalent to
the representation

ρ=
∫

G(0)

⊕
πudµ(u) given by (ρ(a)h)(u)=πu(a)(h(u)), for h∈L2(X ∗H, µ).(2.2)

Using the proof of Proposition F.26 of [32] we see that Iu ⊂ ker(πu) µ-almost ev-
erywhere so that πu descends to a well defined representation on A(u). Therefore

(2.3) πu(a)h(u) = πu(a(u))h(u) µ-almost everywhere.

We can then form the pull-back Hilbert bundle s∗(G(0) ∗H) =: G ∗s H and define
the measure ν−1 =

∫
G(0)

λudµ (where λu(E) = λu(E−1)) to form a new Hilbert

space L2(G ∗s H, ν−1). Now the functions h ∈ L2(G ∗s H, ν−1) have the property
that h(γ) ∈ H(s(γ)). So that,

(2.4) Ind π( f )h(γ) =
∫
G

πs(γ)(α
−1
γ ( f (η)))h(η−1γ)dλr(γ)(η)

defines a representation of Γc(G, r∗A ) induced by π on L2(G ∗s H, ν−1). We call
these representations regular and define the reduced norm on Γc(G, r∗A ) to be

(2.5) ‖ f ‖r := sup{‖ Ind π( f )‖ : π is a C0(G(0))-linear representation of A}.
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REMARK 2.5. This definition is consistent with those given in Definition 2.45
of [17] and p. 82 of [23], but is a priori different from that given in p. 146 of [1].
We suspect that all of these definitions agree, but have yet to prove it. However,
the set of regular representations used in p. 146 of [1] is the subset of the regular
representations defined above such that µπ is a point mass measure. Thus ‖ · ‖r
is greater than or equal to the norm ‖ · ‖red considered in [1] which is enough for
our purposes.

As usual we can define the reduced crossed product of a dynamical system
(A , G, α), denoted A oα,r G, to be the completion of Γc(G, r∗A ) in the norm ‖ · ‖r.

In this paper we will also use the I-norm on Γc(G, r∗A ) given by

‖ f ‖I := max
{

sup
{ ∫
‖ f ‖dλu

}
, sup

{ ∫
‖ f ‖dλu

}}
.

We denote the completion of Γc(G, r∗A ) in this norm by LI(G, r∗A ).
We should note that Ind π( f ) makes sense for f ∈ LI(G, r∗A ), so A oα,r G

is also the completion of LI(G, r∗A ) in ‖ · ‖r.

3. PROPER ACTIONS

3.1. DEFINING PROPER DYNAMICAL SYSYTEMS. The following definition is mod-
eled after Definition 1.2 of [27].

DEFINITION 3.1. Suppose (A , G, α) is a groupoid dynamical system and let
A = Γ0(G(0), A ) be the associated C0(G(0))-algebra. We say that the dynamical
system (A , G, α) is proper if there exists a dense ∗-subalgebra A0 ⊂ A, such that
the following two conditions hold:

(i) For all a, b ∈ A0, the function E〈a, b〉 : γ 7→ a(r(γ))αγ(b(s(γ))∗) is inte-
grable. That is, the function γ 7→ E〈a, b〉(γ) is in LI(G, r∗A ).

(ii) Let

(3.1) M(A0)
α := {d ∈ M(A) : A0d ⊂ A0, αγ(d(s(γ))) = d(r(γ))}.

Then for all a, b ∈ A0, there exists a unique element 〈a, b〉D ∈ M(A0)
α such

that for all c ∈ A0

(3.2) (c · 〈a, b〉D )(u) =
∫
G

c(r(γ))αγ(a∗b(s(γ)))dλu(γ).

For a proper dynamical system, (A , G, α), we denote span{E〈a, b〉 : a, b ∈
A0} by E0. Now since the functions E〈a, b〉 are integrable, E0 ⊂ A oα,r G and we
denote E = E0 in A oα,r G.

REMARK 3.2. One may wonder at first why we chose A0 ⊂ A instead of
A0 ⊂ A . But since condition (i) is a condition about integrability of sections, A0
had to be a subset of the section algebra instead of a subset of the bundle.
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REMARK 3.3. In Section 1 of [27], for a group dynamical system (B, H, β),
Rieffel defines M(B0)

β := {d ∈ M(B) : B0d ⊂ B0, βγ(d) = d}. That is M(B0)
β is

the set of β-invariant elements of M(B) that map B0 to itself. Now, in a groupoid
dynamical system (A , G, α), αγ : A(s(γ)) → A(r(γ)), thus if s(γ) 6= r(γ) then
αγ(c) can not equal c for c ∈ M(A(s(γ))). However, if d ∈ M(A), then d fibres
over G(0) and αγ(d(s(γ))) acts on A(r(γ)). So we will call d ∈ M(A) α-invariant
if αγ(d(s(γ))) = d(r(γ)) for all γ ∈ G. This is how we define it in (3.1).

To see that this is a reasonable definition, first note that if G is a group then
r(γ) = s(γ) = e for all γ ∈ G. Thus αγ(d(s(γ))) = d(r(γ)) reduces to αγ(d) = d,
which is the definition of α-invariant in the group case. Also compare to Lem-
ma 3.1.11 of [1] and consider the following example.

EXAMPLE 3.4. Let A = C0(G(0)), then A is a C0(G(0))-algebra and the as-
sociated upper semicontinuous C∗-bundle is T := G(0) × C (i.e. C0(G(0)) ∼=
Γ0(G(0), T )). Let G act on T by left translation, that is ltγ(s(γ), ξ) = (r(γ), ξ).
Now M(A)∼=Γb(G(0), T )∼=Cb(G(0)), where Γb(G(0), T ) (respectively Cb(G(0)))
denotes the continuous bounded sections (respectively functions) on G(0), so if
d ∈ M(A) is lt-invariant, then

(r(γ), d(r(γ))) = ltγ(s(γ), d(s(γ))) =(r(γ), d(s(γ))).

That is d is constant on orbits and we can view d as a function in Cb(G\G(0)). We
should note that a little work shows C0(G(0))olt,r G ∼= C∗r (G).

EXAMPLE 3.5. Suppose (A, H, β) is a proper group dynamical system with
respect to the subalgebra A0 as in Definition 1.2 of [27]. Then (A, H, β) is a proper
groupoid dynamical system with respect to Definition 3.1 once we make the stan-
dard allowances for the lack of modular function in the groupoid definition.

REMARK 3.6. Definition 1.2 of [27] has an extra condition that we do not
assume in Definition 3.1. He assumes that βs(A0) ⊂ A0 for all s in the group
H where (A, H, β) is a group dynamical system. This assumption allows him to
show that E is an ideal in the reduced crossed product. Unfortunately, we have
not yet been able to find a well defined analogous condition for groupoid dy-
namical systems. This means a group dynamical system can be a proper groupoid
dynamical system without being a proper group dynamical system under Defini-
tion 1.2 of [27].

LEMMA 3.7. If (A , G, α) is a proper dynamical system then the action

(3.3) ( f · c)(u) :=
∫
G

f (γ)αγ(c(s(γ)))dλu(γ),

for f ∈ LI(G, r∗A ) and c ∈ A, and inner product in condition (i) of Definition 3.1
define a pre-Hilbert module structure on E0A0.
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Proof. First note that ‖γ 7→ f (γ)αγ(c(s(γ)))‖ 6 ‖ f ‖I‖c‖ so that the action
is bounded. For a, b, c ∈ A0, equations (3.2) and (3.3) imply that

E〈a, b〉 · c = a〈b, c〉D .

Furthermore, since 〈b, c〉D ∈ M(A0)
α by Definition 3.1, the right hand side is

in A0, therefore E0 · A0 ⊂ A0. The linear and adjoint relations are routine. To
show E0 is a subalgebra of Aoα,r G and the action of E0 commutes with the inner
product, we perform the following computation. For a, b, c, d ∈ A0,

E〈a, b〉 ∗ E〈c, d〉(γ) =
∫
G

E〈a, b〉(η)αη(E〈c, d〉(η−1γ))dλr(γ)(η)

=
∫
G

E〈a, b〉(η)αη(c(s(η))αη−1γ(d(s(γ))
∗))dλr(γ)(η)

=
( ∫

G
E〈a, b〉(η)αη(c(s(η)))dλr(γ)(η)

)
αγ(d(s(γ))∗)

= E〈E〈a, b〉 · c, d〉(γ).

To show the inner product is positive we will use the following lemma.

LEMMA 3.8. Let (A , G, α) be a groupoid dynamical system and π a (separable)
C0(G(0))-linear representation of A = Γ0(G(0), A ). Decompose π as in (2.2). If a ∈ A0
and h ∈ L2(G ∗s H, ν−1) then

〈Ind π(E〈a, a〉)h, h〉 =
∫

G(0)

〈 ∫
G

πu(α
−1
η−1(a(s(η))∗))h(η−1)dλu(η),

∫
G

πu(α
−1
γ−1(a(s(γ)∗)))h(γ−1)dλu(γ)

〉
H(u)

(γ)dµ(u).(3.4)

Proof. We now compute:

〈Ind π(E〈a, a〉)h, h〉

=
∫
G

〈Ind π(E〈a, a〉)h(γ), h(γ)〉H(s(γ))dν−1(γ)

=
∫
G

∫
G

〈πs(γ)(α
−1
γ (a(r(η))αη(a(s(η))∗)))h(η−1γ), h(γ)〉H(s(γ))dλr(γ)(η)dν−1(γ)

=
∫
G

∫
G

〈πs(γ)(α
−1
η−1γ

(a(s(η))∗))h(η−1γ),

πs(γ)(α
−1
γ (a(r(γ)∗)))h(γ)〉H(s(γ))dλr(γ)(η)dν−1(γ).
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Using the left invariance of the Haar system to replace η with γη the above
becomes

=
∫
G

〈 ∫
G

πs(γ)(α
−1
η−1(a(s(η))∗))h(η−1)dλs(γ)(η),

πs(γ)(α
−1
γ (a(r(γ)∗)))h(γ)

〉
H(s(γ))

dν−1(γ).

But s(γ) = r(η) so the above becomes

=
∫
G

〈 ∫
G

πr(η)(α
−1
η−1(a(s(η))∗))h(η−1)dλs(γ)(η),

πs(γ)(α
−1
γ (a(r(γ)∗)))h(γ)

〉
H(s(γ))

dν−1(γ)

=
∫
G

〈 ∫
G

πr(η)(α
−1
η−1(a(s(η))∗))h(η−1)dλr(γ)(η),

πr(γ)(α
−1
γ−1(a(s(γ)∗)))h(γ−1)

〉
H(r(γ))

dν(γ).

Where ν is the image of ν−1 (see p. 441) under inversion and is hence defined by
ν =

∫
λudµ. By decomposing ν and noticing r(η)= r(γ)=u the above is equal to∫

G(0)

〈 ∫
G

πu(α
−1
η−1(a(s(η))∗))h(η−1)dλu(η),

∫
G

πu(α
−1
γ−1(a(s(γ)∗)))h(γ−1)dλu(γ)

〉
H(u)

(γ)dµ(u).

Now, since µ is a positive measure, Lemma 3.8 gives that Ind π(E〈a, a〉) is
positive. This holds for all induced representations, so E〈a, a〉 is positive as an
element of A oα,r G and hence as an element of E, so that E0A0 is a pre-Hilbert
module and thus completes to a Hilbert E-module.

3.2. MORITA EQUIVALENCE.

THEOREM 3.9. Let (A , G, α) be a proper dynamical system with respect to A0,
D0 = span{〈a, b〉D : a, b ∈ A0}, E0 = span{E〈a, b〉 : a, b ∈ A0}, and E, Aα be the
closures of E0, D0 in A oα G and M(A) respectively. Then A0 equipped with the E0-
action defined in equation (3.3) and inner products defined in Definition 3.1 is a E0−D0
pre-imprimitivity bimodule.

REMARK 3.10. We call Aα the generalized fixed point algebra for the dy-
namical system (A , G, α). So that Theorem 3.9 gives that the generalized fixed
point algebra is Morita equivalent to a subalgebra of the reduced crossed prod-
uct.

Proof of Theorem 3.9. The proof of this theorem follows from Section 1 of [27]
fairly closely. From Lemma 3.7, A0 is a pre-Hilbert E0-module. The goal is to
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show that Aα is the imprimitivity algebra for the resulting Hilbert module. From
the definition of the D0-valued inner product and the definition of the E0-action,
it is easy to see that D0 satisfies the algebraic conditions.

It remains to show that the D0-action is bounded and adjointable, so that
D0 ⊂ L(EA0) and furthermore, that the norm of d ∈ D0 as an element of L(EA0)
coincides with its norm as an element of M(A). The last statement ensures that
A0 completes to an E− Aα-imprimitivity bimodule.

First, we show that the action of M(A0)
α on A0 is bounded. Let π be a

C0(G(0))-linear representation of A, and Ind π be the corresponding representa-
tion of the reduced crossed product. Pick a ∈ A0 and d ∈ M(A0)

α. Using ad in
Lemma 3.8 we get

〈Ind π(E〈ad, ad〉)h, h〉

=
∫

G(0)

〈 ∫
G

πu(α
−1
η−1((ad(s(η)))∗))h(η−1)dλu(η),

∫
G

πu(α
−1
γ−1((ad(s(γ))∗)))h(γ−1)dλu(γ)

〉
H (u)

dµ(u).(3.5)

Using the fact that r(γ) = r(η) = u and αγ(d(s(γ))) = d(r(γ)), (3.5) is equal to

=
∫

G(0)

〈 ∫
G

πu(d(u)∗)πr(η)(α
−1
η−1(a(s(η))∗))h(η−1)dλu(η),

∫
G

πu(d(u)∗)πr(γ)(α
−1
γ−1(a(s(γ))∗))h(γ−1)dλu(γ)

〉
H(u)

dµ(u)

6
∫

G(0)

〈
‖d‖2

M(A)

∫
G

πr(η)(α
−1
η−1(a(s(η))∗))h(η−1)dλu(η),

∫
G

πr(γ)(α
−1
γ−1(a(s(γ))∗))h(γ−1)dλu(γ)

〉
H(u)

dµ(u)

= ‖d‖2
M(A)〈Ind π(E〈a, a〉)h, h〉.

Here the inequality follows from the fact that d∗d 6 ‖d‖2, µ is a positive measure
and the integrand is positive. Since this holds for all induced representations of
A oα,r G we have ‖ad‖A0 6 ‖a‖A0‖d‖M(A).

It is not hard to see that d∗ is the adjoint for d as an element of L(EA0), so
that d extends to an adjointable operator on EA0.

It remains to show the norm of d as an element of M(A) is the same as
the norm of d as an element of L(EA0). We do this by taking a faithful a rep-
resentation π of A and constructing an a ∈ A0 and h ∈ L2(G ∗s H) such that
〈Ind π(E〈ad, ad〉)h, h〉 is close to ‖d‖2

M(A) and 〈Ind π(E〈a, a〉)h, h〉 is close to 1. It

follows that 〈Ind π(E〈ad, ad〉h), h〉 is close to ‖d‖2
M(A)〈Ind π(E〈a, a〉)h, h〉 .
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For a faithful representation π : A → L2(G(0) ∗ H) of A, the idea due to
Rieffel ([27], p. 151) is the following. We first pick v ∈ L2(G(0) ∗H) such that π(d)v
is close to ‖d‖, and find an a ∈ A0 such that π(a)v is close to v. We then let h be
a vector in L2(G ∗s H) that extends v and is supported on a small neighborhood
of G(0). The calculation used to show d is bounded will then also show that
〈Ind π(E〈ad, ad〉)h, h〉 is close to ‖d‖2

M(A) and 〈Ind π(E〈a, a〉)h, h〉 is close to 1. We
are left with checking the technical details.

Let d ∈ M(A0)
α be given and let ε > 0 be small. Suppose that π is a

faithful nondegenerate representation of A. Then π is a faithful nondegenerate
representation of M(A). Thus there exists v ∈ Hπ such that

(3.6) ‖π(d)v‖2 +
ε

6
> ‖d‖2

M(A).

Now there exists a Borel Hilbert bundle G(0) ∗ H and a finite measure µ on G(0)

such that π ∼=
∫

G(0)

⊕
πudµ(u). We identify π with its direct integral and Hπ with

L2(G(0) ∗H) and furthermore we can assume that v under this identification has
compact support Kv.

To justify the above assumption on v, note that since µ is a finite measure
on a second countable locally compact Hausdorff space, it is regular by Theo-
rem 2.18 of [29]. Thus, there exists a compact set K such that µ(X \ K) is small.
Now suppose v′ ∈ L2(G(0) ∗ H), then χK v′ is also in L2(G(0) ∗ H), and has com-
pact support. Furthermore, it is not hard to see that ‖v′ − χK v′‖ is small. Lastly,
an easy computation shows that if ‖v′‖ = 1 and v′′ is close to v′ then the nor-
malization of v′′ is also close to v′. So if v does not have compact support we can
replace v with χK v/‖χK v‖ for some compact set K ⊂ X sufficiently large.

Now pick a0 close to an approximate unit of A such that

‖π((a0d)∗)v‖2 +
ε

6
> ‖π(d∗)v‖2,(3.7)

‖π(a0)v‖2 +
ε

6‖d‖2 > ‖v‖2 = 1, and(3.8)

‖a0‖ < 1.(3.9)

We will use a constant multiple of a0 as our a. Before we state the next
lemma we need a definition. A subset L of a topological groupoid G is called
s-relatively compact, if L ∩ s−1(K) is relatively compact for every compact subset
K ⊂ G(0). r-relatively compact subsets are defined similarly. A compactness
argument shows the next lemma which we will use to find an appropriate small
neighborhood of G(0).

LEMMA 3.11. Let (A , G, α) be a groupoid dynamical system, and suppose a ∈
Γ0(G(0), A ). Fix ε > 0, then there exists an open neighborhood V of G(0) in G such that
V is both r- and s-relatively compact and ‖αγ(a(s(γ)))− a(r(γ))‖ < ε for all γ ∈ V.
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Using Lemma 3.11 pick a symmetric r, s-relatively compact open neighbor-
hood Vε of G(0) such that for all γ ∈ Vε

(3.10) ‖αγ(a∗0(s(γ)))− a∗0(r(γ))‖ <
ε

12‖d‖2 .

Since Vε is s-relatively compact, s−1(u) ∩Vε is relatively compact. Hence,

λu(Vε) = λu(s
−1(u) ∩Vε) 6 λu(s−1(u) ∩Vε) < ∞.

Furthermore, since Vε is open and u ∈ Vε, we have λu(Vε) 6= 0. Thus

(3.11) h̃(γ) :=
χVε

(γ)v(s(γ))
λs(γ)(Vε)

is defined and less than infinity for all γ ∈ G.

CLAIM 3.12. h̃ ∈ L2(G ∗s H, ν−1).

Proof. Now

‖h̃‖2
2 =

∫
G(0)

∫
G

〈χVε
(γ)v(s(γ))

λs(γ)(Vε)
,

χVε
(γ)v(s(γ))

λs(γ)(Vε)

〉
H(s(γ))

dλu(γ)dµ(u)

=
∫

G(0)

χKv
(u)

(λu(Vε))
〈v(u), v(u)〉H(u)dµ(u).

So to show that h̃ ∈ L2(G ∗s H, ν−1) it suffices to show that χKv
/λu(Vε) ∈

L∞(G(0), µ). Pick ψ ∈ Cc(G) such that ψ|Kv ≡ 1, 0 6 ψ 6 1, and supp(ψ) ⊂ Vε.
Then by the properties of the Haar system the function

λ(ψ) : u 7→
∫
G

ψdλu

is continuous. So λ(ψ)|Kv has a minimum m. Since ψ|Kv ≡ 1,
∫

ψdλu > 0 for
u ∈ Kv so that m > 0. But ψ 6 χVε

, so for u ∈ Kv, we have m 6 λ(ψ)(u) 6 λu(Vε).
Thus χKv /(λu(Vε)) ∈ L∞(G(0), µ), giving h̃ ∈ L2(G ∗s H, ν−1).

For k = ‖h̃‖, define:

h(γ) =
h̃(γ)

k
=

χVε
(γ)v(s(γ))

kλs(γ)(Vε)
and a = ka0.

The next claim uses this h and a to get the estimates we need to complete the
proof.

CLAIM 3.13. For a, d, π, h, v, and ε chosen as above,

|〈Ind π(E〈ad, ad〉)h, h〉 − 〈π((a0d)∗)v, π((a0d)∗)v〉Hπ
| < ε

6
and(3.12)

|〈Ind π(E〈a, a〉)h, h〉 − 〈π((a0)
∗)v, π((a0)

∗)v〉Hπ
| < ε

6‖d‖2 .(3.13)
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Proof. We will compute the estimate for (3.12), the computation for (3.13) is
exactly the same. First note that

〈π((a0d)∗)v, π((a0d)∗)v〉Hπ
=
∫

G(0)

〈
πu((a0d)(u))λu(Vε)πu((a0d)∗(u))

λu(Vε)
v(u)

λu(Vε)
,

v(u)
λu(Vε)

〉
H(u)

dµ(u).(3.14)

Using Lemma 3.8 with ad and h we compute:

〈Indπ(E〈ad, ad〉)h, h〉

=
∫

G(0)

〈 ∫
G

πu(αη−1((ad(r(η)))∗))h(η)dλu(η),

∫
G

πu(αγ−1((ad(r(γ))∗)))h(γ)dλu(γ)
〉
H(u)

dµ(u)

=
∫

G(0)

〈
πu(d∗(u))

∫
Vε

πu(αη−1(a0(r(η))∗))dλu(η)
v(u)

λu(Vε)
,

πu(d∗(u))
∫
Vε

πu(αγ−1(a0(r(γ)∗)))dλu(γ)
v(u)

λu(Vε)

〉
H(u)

dµ(u).

Since πu(αγ−1(a0(r(γ)∗))) ∈ B(H(u)) for all γ, the map

(3.15) γ 7→ πu(αγ−1(a0(r(γ)∗)))

is continuous. This along with the compactness of s−1(u) ∩Vε, implies there ex-
ists an operator L(u) ∈ B(H(u)) such that

L(u) =
∫
Vε

πu(αγ−1(a0(r(γ)∗)))dλu(γ), giving

〈Ind π(E〈ad, ad〉)h, h〉 =
∫

G(0)

〈
L(u)∗πu(dd∗(u))L(u)

v(u)
λu(Vε)

,
v(u)

λu(Vε)

〉
dµ(u).

Thus from (3.14),

|〈Ind π(E〈ad, ad〉)h, h〉 − 〈π((a0d)∗)v, π((a0d)∗)v〉 |

6
∫

G(0)

‖L(u)∗πu(d(u))πu(d∗(u))L(u)− πu(a0dd∗a∗0(u))(λu(Vε))
2‖

·
〈 v(u)

λu(Vε)
,

v(u)
λu(Vε)

〉
H(u)

dµ(u).(3.16)

CLAIM 3.14. With L, πu, a0, d, ε, and Vε as above

‖L(u)∗πu(d(u))πu(d∗(u))L(u)− πu(a0dd∗a∗0(u))(λu(Vε))
2‖ < ε

6
(λu(Vε))

2.



450 JONATHAN HENRY BROWN

Proof. First note that

‖L(u)‖ 6
∫
Vε

‖πu(αγ−1(a0(r(γ)∗)))‖dλu(γ) < λu(Vε)

since ‖a0‖ < 1 from equation (3.9). An unenlightening computation now shows

‖L(u)∗πu(d(u))πu(d∗(u))L(u)− πu(a0dd∗a∗0(u))(λu(Vε))
2‖

6 2‖d‖2λu(Vε)‖L(u)− πu(a∗0(u))λu(Vε)‖.(3.17)

Now,

‖L(u)− πu(a∗0(u))λu(Vε)‖

=
∥∥∥ ∫

Vε

πu(αγ−1(a0(r(γ)∗)))dλu(γ)− πu(a∗0(u))λu(Vε)
∥∥∥

6
∫
Vε

‖πu(αγ−1(a0(r(γ)∗)))− πu(a∗0(u))‖dλu(γ) <
ε

12‖d‖2 λu(Vε)

by equation (3.10). Thus using equation (3.17), we have

‖L(u)∗πu(d(u))πu(d(u)∗)L(u)

− πu(a0dd∗a∗0(u))(λu(Vε))
2‖ < ε

6
(λu(Vε))

2.

Combining Claim 3.14 with (3.16) we get

|〈Ind π(E〈ad, ad〉)h, h〉 − 〈π((a0d)∗)v, π((a0d)∗)v〉 |

<
∫

G(0)

ε

6
(λu(Vε))

2
〈 v(u)

λu(Vε)
,

v(u)
λu(Vε)

〉
H(u)

dµ(u) =
ε

6
,(3.18)

giving equation (3.12).

Thus by combining equations (3.6), (3.7) and (3.12) we get

(3.19) |〈Ind π(E〈ad, ad〉)h, h〉 − ‖d‖2
M(A)| <

ε

2
.

Similarly by combining equations (3.8) and (3.13) we get

(3.20) |〈Ind π(E〈a, a〉)h, h〉 − 1| < ε

2‖d‖2
M(A)

.

Now equations (3.19) and (3.20) give

|〈Ind π(E〈ad, ad〉)h, h〉 − ‖d‖2
M(A)〈Ind π(E〈a, a〉)h, h〉 | < ε.

Thus ‖d‖L(EA0)
=‖d‖M(A) as desired. This completes the proof of Theorem 3.9.
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4. FUNDAMENTAL EXAMPLES

PROPOSITION 4.1. Suppose G is a groupoid acting properly on space X, then
(C0(X), G, lt) is a proper groupoid dynamical system with respect to the dense subalgebra
Cc(X). Furthermore, C0(X)lt ∼= C0(G\X).

Before proceeding we should note that if C is the upper semicontinuous
C∗-bundle associated to C0(X), it is not hard to see that the fibres of C are given
by {C0(r−1

X (u))}u∈G(0) . The action lt is then given by ltγ( f )(x) = f (γ−1 · x) for
x ∈ r−1

X (r(γ)) and f ∈ C0(r−1
X (s(γ))). Furthermore, the bundle C is actually a

continuous C∗-bundle by Theorem 3.26 of [32], that is the map from C → C given
by c 7→ ‖c‖ is continuous.

Now to show Proposition 4.1 we need to show:
(i) For all f , g ∈ Cc(X), the function

E〈 f , g〉(γ) := f |r−1
X (r(γ)) ltγ(g∗|r−1

X (s(γ))) = (x ∈ r−1
X (r(γ)) 7→ f (x)g(γ−1 · x))

is integrable;
(ii) If f , g ∈ Cc(X), there exists a function 〈 f , g〉D ∈ Cb(G\X) ⊂ M(Cc(X))lt,

such that for all h ∈ Cc(X)

(4.1) h〈 f , g〉D |r−1
X (u) =

∫
G

h|r−1
X (u) ltγ( f ∗g|r−1

X (s(γ)))dλu(γ).

First we will show that E〈 f , g〉 is integrable for f , g ∈ Cc(X). Consider the
continuous function

G ∗ X → C

(γ, x) 7→ f (x)g(γ−1 · x).
Using the properness of the G-action, it is not hard to see that this function has
compact support and is hence integrable. This gives that E〈 f , g〉 is integrable.

It remains to show property (ii). Given F ∈ Cc(X), it suffices to show there
exists a function d ∈ Cb(G\X) such that

(4.2) h(x)d(x) =
∫
G

h(x)F(γ−1 · x)dλrX(x)(γ) ∀ h ∈ Cc(X), x ∈ X.

Using the properness of the G-action, a compactness argument shows the set L :=
{γ ∈ G : F(γ−1 · x) 6= 0} is relatively compact for a fixed x ∈ X, and hence the
function γ 7→ F(γ−1 · x) is λrX(x)-integrable. So we can define

d(x) :=
∫
G

F(γ−1 · x)dλrX(x)(γ).

This d certainly satisfies equation (4.2). It remains to show that d(x) ∈ Cb(G\X).
For this, we will use the following stronger lemma from [18] which we will restate
here for convenience.
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LEMMA 4.2 ([18], Lemma 2.9). Let G act properly on the left of a locally compact
Hausdorff space X, if f ∈ Cc(X), then

λ( f )([x]) =
∫
G

f (γ−1 · x)dλrX(x)(γ)

defines a map of Cc(X) onto Cc(G\X).

Lemma 4.2 now guarantees that d(x) = λ(F)(x) is in Cc(G\X). So con-
dition (ii) is satisfied and the action of G on C0(X) by left translation is proper.
Furthermore, the onto assertion of Lemma 4.2 gives that the generalized fixed
point algebra, C0(X)lt, is C0(G\X).

REMARK 4.3. Suppose X = G(0) in Proposition 4.1, since rG(0) is the identity
map, the associated bundle C = T = G(0) × C. Furthermore, by Theorem 3.9,
C0(G\G(0)) is Morita equivalent to a subalgebra of C0(G(0))olt,r G ∼= C∗r (G). In
particular if G = H × X is the transformation group groupoid then C0(H\X) is
Morita equivalent to a subalgebra of C0(X)olt,r H.

PROPOSITION 4.4. Let G be a proper groupoid, (A , G, α) a groupoid dynamical
system, and A be the C0(G(0))-algebra corresponding to A . Then (A , G, α) is proper
with respect to the subalgebra A0 = Cc(G(0)) · A.

REMARK 4.5. Notice that the hypotheses and conclusions of Proposition 4.4
are similar to those of Theorem 5.7 in [28].

REMARK 4.6. If G = H×X is a transformation group groupoid, then G acts
properly on its unit space if and only if H acts properly on X.

Proof of Proposition 4.4. First note that Cc(G(0)) · A is dense in A. To show
that the dynamical system (A , G, α) is proper, we first need to show that the
functions

E〈 f · a, g · b〉 : γ 7→ f (r(γ))a(r(γ))αγ(g(s(γ))b∗(s(γ)))

(= f (r(γ))g(s(γ))a(r(γ))αγ(b∗(s(γ))))

are integrable for a, b ∈ A and f , g ∈ Cc(G(0)). Using the properness of the G it
is not hard to see that these functions have compact support. To finish showing
that ‖E〈 f · a, g · b〉‖I < ∞, we use the following lemma.

LEMMA 4.7. Let G be a groupoid, B be an upper semicontinuous C∗-bundle over
G and suppose f ∈ Γc(G, B). Then ‖ f ‖I < ∞.

The proof of Lemma 4.7 relies on the following proposition. The proof of
this proposition is a standard compactness argument which we omit.

PROPOSITION 4.8. Let X be a locally compact Hausdorff space, and f : X → R>0
be an upper semicontinuous function with compact support, then ‖ f ‖∞ < ∞.
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Proof of Lemma 4.7. Let K be the support of f . By Proposition 4.8 we know
that ‖ f ‖∞ < ∞. So∫

G

‖ f (γ)‖dλu(γ) 6
∫
G

χK (γ)‖ f ‖∞dλu(γ) = ‖ f ‖∞λu(K).

Similarly
∫
G
‖ f (γ)‖dλu(γ) 6 ‖ f ‖∞λu(K). Since sup{λu(K), λu(K)} < ∞ we have

‖ f ‖I < ∞.

It remains to show that for f · a, g · b ∈ Cc(G(0)) · A that there exists an
element 〈 f · a, g · b〉D ∈ M(Cc(G(0)) · A)α such that for all h · c ∈ A0,

((h · c)〈 f · a, g · b〉D )([u]) =
∫
G

(h · c)(r(γ))αγ(( f · a)∗(s(γ))(g · b)(s(γ)))dλu(γ).

For this we will follow Lemma 6.17 of [31] and Lemma 3.5 of [9].

REMARK 4.9. Let (A , G, α) be a groupoid dynamical system, and suppose
G acts on the left of a locally compact Hausdorff space X. We can define the pull
back bundle

r∗XA := {(x, a) : rX(x) = pA (a)}
and a continuous action of G on r∗XA via

αrX
γ (x, a) = (γ · x, αγ(a)).

DEFINITION 4.10. Let (A , G, α) be a groupoid dynamical system and sup-
pose that G acts on the left of a locally compact Hausdorff space X. Define

IndG(0)

G (A , α) := { f ∈ Γb(X,r∗XA ) : f (x) = (αrX
γ )−1( f (γ · x))

and ([u] 7→ ‖ f (u)‖) vanishes at ∞}.

To finish the proof of Proposition 4.4, we will show that IndX
G(A , α) ⊂

M(A)α and that for a, b ∈ A0, there exists a d ∈ IndX
G(A , α) satisfying the re-

quired properties in Definition 3.1.

REMARK 4.11. If H is a group and A is a C∗-algebra, IndG(0)

H (A, α) is nor-
mally defined as:

IndX
H(A, α) := { f ∈ Cb(X, A) : f (x) = α−1

s ( f (s · x))
and ([u] 7→ ‖ f (u)‖) ∈ C0(H\X)}.

This definition does not make sense for an upper semicontinuous C∗-bundle,
since the norm is upper semicontinuous. But in the group case, the continuity
of [u] 7→ ‖ f (u)‖ is implied by the condition that f ∈ Cb(X, A). So the im-
portant part of the condition ([u] 7→ ‖ f (u)‖) ∈ C0(H\X) is that the function
[u] 7→ ‖ f (u)‖ vanishes at infinity.
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LEMMA 4.12. Let (A , G, α) be a groupoid dynamical system. For f ∈ Cc(G(0))

and a ∈ A = Γ0(G(0), A ),

(4.3) λ( f · a)(u) :=
∫
G

αγ( f (s(γ)a(s(γ))))dλu(γ)

gives a well-defined element of IndG(0)

G (A , α).

The proof of Lemma 4.12 is essentially the same as that of Lemma 6.17 in
[31] with some minor modifications, so we omit it.

CLAIM 4.13. If f ∈ IndG(0)

G (A , α) then

m f : a 7→ (v 7→ f (v)a(v))

is a multiplier of A = Γ0(G(0), A ).

Proof. Note that f (v) ∈ A(v) ⊂ M(A(v)) and for f ∈ Γb(G(0), A ) (contin-
uous bounded sections), a ∈ Γ0(G(0), A ) we have (v 7→ f (v)a(v)) ∈ Γ0(G(0), A ).
Similarly, v 7→ f (v)∗a(v) ∈ Γ0(G(0), A ). So Lemma C.11 of [32] implies that
f ∈ M(A).

Claim 4.13 and Lemma 4.12 give that λ( f · a) ∈ M(A) for all f ∈ Cc(G(0))

and a ∈ A. Furthermore, since A is a C0(G(0))-algebra, Cc(G(0)) ⊂ Z(M(A)), so
if m ∈ M(A), g ∈ Cc(G(0)) and b ∈ A then m(g · a) = g · (ma) ∈ Cc(G(0)) · A.
Thus, λ( f · a)(Cc(G(0)) · A) ⊂ Cc(G(0)) · A and so λ( f · a) ∈ M(Cc(G(0)) · A).

Notice

αη(λ( f · a)(s(η)))=αη

(∫
G

αγ( f · a(s(γ)))dλs(η)(γ)
)
=
∫
G

αηγ( f · a(s(ηγ)))dλs(η)(γ)

=
∫
G

αγ( f · a(s(γ)))dλr(η)(γ) = λ( f · a)(r(η)).

Thus λ( f · a) ∈ M(A0)
α.

Finally, we need to show that for g ∈ Cc(G(0)) and b ∈ A, then

((g · b)λ( f · a))(u) =
∫
G

g(r(γ))b(r(γ))αγ( f · a(s(γ)))dλu(γ).

But this is just a straight forward calculation.
Notice that ( f · a)(g · b) = f g · ab ∈ Cc(G(0)) · A. Thus we can define 〈 f ·

a, g · b〉D := λ(( f · a)∗(g · b)) and from the above argument this 〈 f · a, g · b〉D has
the desired properties, making (A , G, α) a proper dynamical system with respect
to the subalgebra Cc(G(0)) · A.

REMARK 4.14. The subalgebra E ⊂ A oα,r G guaranteed by Proposition 4.4
and Theorem 3.9 is actually an ideal in Aoα,rG. To see this, suppose f∈Γc(G, r∗A ),
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and a, b∈A0 then by a similar calculation to the one given in Lemma 3.8 we get

( f ∗ E〈a, b〉)(γ) = E〈 f · a, b〉(γ).
So to show that E is an ideal in A oα,r G it suffices to show that f · A0 ⊂ A0. Now
suppose G acts properly on its unit space and A0 = Cc(G(0)) · A as in Proposi-
tion 4.4, if a ∈ A0 then

f · a : u 7→
∫
G

f (η)αη(a(s(η)))dλu(η).

But the integrand f (η)αη(a(s(η))) is continuous since f , a and the G action are. It
has compact support since f does. Thus f · a is a continuous compactly supported
section, giving f · a ∈ A0, so f · A0 ⊂ A0 and hence E is an ideal.

A similar argument shows that the subalgebra E ⊂ C0(X)olt,r G (see Propo-
sition 4.1), guaranteed by Theorem 3.9 is also an ideal of the reduced crossed
product.

5. SATURATION

Theorem 3.9 guarantees that if (A , G, α) is a proper dynamical system, then
the generalized fixed point algebra is Morita equivalent to a subalgebra of the
reduced crossed product, A oα,r G. This theorem is most useful when this subal-
gebra is itself an object we would like to study. In particular, we are interested in
when this subalgebra is actually the algebra A oα,r G. So following [27] we make
the following definition.

DEFINITION 5.1. We call a proper dynamical system (A , G, α), saturated if
E0A0D0

completes to a A oα,r G− Aα imprimitivity bimodule in Theorem 3.9.

Saturated dynamical systems are the proper dynamical systems primarily
studied in applications [9], [10], [11], [13]. So it is important to find some condi-
tions which guarantee that a given proper action is saturated.

The goal of this section is to show the following theorem.

THEOREM 5.2. Suppose (A , G, α) is a groupoid dynamical system and let A =

Γ0(G(0), A ) be the associated C0(G(0))-algebra. Suppose further that G is principal and
proper. Then the action of G on A is saturated with respect to the dense subalgebra
Cc(G(0)) · A.

In particular, Theorem 5.2 shows that if A = T and α = lt, then C0(G\G(0))
is Morita equivalent to C∗r (G). This is the content of Theorem 5.9.

5.1. THE SCALAR CASE. In order to prove Theorem 5.2, we will first show that if
G is principal and proper, then the action of G on C0(G(0)) is saturated with re-
spect to the subalgebra Cc(G(0)). Let T = G(0)×C, then Γ0(G(0), T ) ∼= C0(G(0)).
Recall from Proposition 4.1, that the dynamical system (C0(G(0)), G, lt) is proper.
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To show that the action is saturated we need to show spans of elements of the
form

(5.1) E〈 f , g〉(γ) := f (r(γ))g(γ−1 · r(γ)) = f (r(γ))g(s(γ))

are dense in C0(G(0))olt,r G. For this it suffices to show that they are dense in
Γc(G, r∗T ) ∼= Cc(G) in the inductive limit topology. To see this note that regular
representations (see (2.4) or p. 82 of [23]) are clearly continuous with respect to
the inductive limit topology so that density in the inductive limit topology im-
plies density in norm. We will follow the proof in [26] and construct a special
approximate identity. To construct this approximate identity, we need the fol-
lowing key lemma which is the groupoid analogue of Lemma p. 306 of [26]. The
proof follows that given in [26].

LEMMA 5.3. Let G be principal and proper. Then for each u ∈ G(0) and open
neighborhood N ⊂ G of u, there exists an open neighborhood U ⊂ G(0) of u such that
{γ : γ ·U ∩U 6= ∅} ⊂ N.

Proof. By way of contradiction assume there exists an open neighborhood
N ⊂ G of u such that Lemma 5.3 does not hold. Then given an open neighbor-
hood W ⊂ G(0) of u, there exists γW ∈ G and vW ∈ W such that γW /∈ N and
γW · vW ∈ W. For each open neighborhood W ⊂ G(0) pick such a γW ∈ G and
vW ∈W and order the nets {γW} and {vW} by reverse inclusion.

Let K be compact neighborhood of u in G(0). Since (γW · vW , vW) is even-
tually in K × K, it has a convergent subnet. By the properness of G, {γW} has
a convergent subnet γWi → γ. Note that since {γWi} is a subnet, Wi is a fun-
damental system for u, thus (γWi · vWi , vWi ) → (u, u). Hence γ · u = u, but by
assumption {γW} is never in the open neighborhood N of u so γ 6= u. This
contradicts the freeness of the action.

As in p. 307 of [26], we will use Lemma 5.3 to construct an approximate unit
for A, but first we need another lemma.

LEMMA 5.4. Functions of the form γ 7→ g(r(γ))
∫
G

g(s(η))dλr(γ)(η) are dense

in C+
c (G(0)) (the positive, continuous compactly supported functions) for the inductive

limit topology.

Proof. Let f ∈ C+
c (G(0)) and δ > 0 be given. Define F on G\G(0) by

(5.2) F([u]) :=
∫
G

f (s(γ))dλu(γ).

Let C = {u ∈ G(0) : f (u) > δ} and let [C] be the image of C in G\G(0).
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Let m = inf{F([u]) : [u] ∈ [C]}, where [u] denotes the image of u in G\G(0).
Since [C] is compact and F is continuous, F attains its minimum on [C]. Further-
more, since f is continuous, positive and bounded away from zero on C we have
that m > 0.

Let U = {u : F([u]) > m/2}. By the above argument C ⊂ U. Construct
Q ∈ Cc(G\G(0)) such that 0 6 Q 6 1, Q([v]) = 1 for [v] ∈ [C], and Q([v]) = 0 for
v /∈ U.

Thus Q/
√

F ∈ Cc(G\G(0)). Define g := f Q/
√

F. Then g ∈ C+
c (G(0)) and

supp(g) ⊂ supp( f ). Furthermore, a simple calculation shows∣∣∣ f (u)− g(u)
∫
G

g(s(γ))dλu(γ)
∣∣∣ < δ.

We are now ready to construct a special approximate unit for A.

LEMMA 5.5 (Approximate Identity). Let G be principal and proper. Then there
exists an approximate identity for Cc(G) in the inductive limit topology given by the net
ΦN,D,ε indexed by decreasing neighborhoods N of G(0), increasing compact subsets D of
G(0), and decreasing ε > 0 which satisfies:

(i) ΦN,D,ε(γ) = 0 if γ /∈ N and > 0 otherwise;

(ii)
∣∣∣ ∫

G
ΦN,D,ε(γ)dλu(γ)− 1

∣∣∣ < ε for u ∈ D;

(iii) ΦN,D,ε(γ) = ∑ E〈g
N,D,ε
i , gN,D,ε

i 〉(γ) = ∑ gN,D,ε
i (r(γ))gN,D,ε

i (s(γ)) for some
gN,D,ε

i ∈ Cc(G(0)).

Proof. Let N be a neighborhood of G(0), D be a compact subset of G(0), and
ε > 0 be given. Note that D is also compact in G, so we can choose an open set
V ⊂ G such that D ⊂ V ⊂ V ⊂ N. Then using Lemma 5.3 there exists a finite
open covering {Ui}n

i=0 of D such that for each i,

(5.3) {γ ∈ G : γ ·Ui ∩Ui 6= ∅} ⊂ V.

For each i, pick hi ∈ Cc(Ui) such that h(u) := ∑ hi(u) is strictly positive on
D. Now let

m =
inf(h|D))

2
and g(u) := max{h(u), m}.

Note that m 6= 0 since h actually attains a minimum on the compact set D.
Furthermore, since h is strictly positive on D, this minimum must be bigger than
0. Thus g > 0 on G(0) and g is continuous. Therefore the following is in Cc(Ui):

(5.4) fi(u) :=
hi(u)
g(u)

.

CLAIM 5.6. If f (u) := ∑ fi(u) (= h(u)/g(u)) then 0 6 f 6 1 and f ≡ 1 on D.

Proof. We begin by showing 0 6 f 6 1. Now if h(u) > m then g(u) = h(u)
and thus f (u) = 1. If h(u) 6 m then g(u) = m and so f (u) = h(u)/m 6 m/m =
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1. Thus f 6 1 and since we know each fi is positive and by definition, m 6 h on
D, we get the result.

So to finish the proof of Lemma 5.5, let M = card{Ui}. For each fi defined
in (5.4), use Lemma 5.4 to pick gN,D,ε

i so that

(5.5)
∣∣∣ fi(u)− gN,D,ε

i (u)
∫
G

gN,D,ε
i (s(γ))dλu(γ)

∣∣∣ < ε

M

with supp(gN,D,ε
i ) ⊂ supp( fi). Now define

(5.6) ΦN,D,ε := ∑ E〈 gN,D,ε
i , gN,D,ε

i 〉.
We need to show this ΦN,D,ε satisfies conditions (i) and (ii) from Lemma 5.5.

For condition (i), notice supp(gN,D,ε
i ) ⊂ supp( fi) ⊂ Ui, and by the defini-

tion of Ui (equation (5.3))

supp(E〈 gN,D,ε
i , gN,D,ε

i 〉) ⊂ {γ ∈ G : γ ·Ui ∩Ui 6= ∅} ⊂ V ⊂ N.

Since i was arbitrary we have supp(ΦN,D,ε) ⊂ N as desired.
For property (ii), let u ∈ D, then∣∣∣∫

G

ΦN,D,ε(γ)dλu(γ)−1
∣∣∣=∣∣∣∑ gN,D,ε

i (r(u))
∫
G

gN,D,ε
i (s(γ))dλu(γ)− 1

∣∣∣
6
∣∣∣∑ fi(u)−gN,D,ε

i (r(u))
∫
G

gN,D,ε
i (s(γ))dλu(γ)

∣∣∣+∣∣∣∑ fi(u)−1
∣∣∣

which is less than ε by our assumptions on gi, fi and D.
It is left to show that {ΦN,D,ε} is actually an approximate identity for Cc(G)

in the inductive limit topology.
Let F ∈ Cc(G) be arbitrary. First we will show that supp(ΦN,D,ε) ∗ F is

eventually in some compact set. Now

(ΦN,D,ε ∗ F)(γ) =
∫
G

ΦN,D,ε(η)F(η−1γ)dλu(η).

So for (ΦN,D,ε ∗ F)(γ) 6= 0 there is an η such that η ∈ supp(ΦN,D,ε) ⊂ N and
η−1γ ∈ supp(F). That is γ ∈ N · supp(F), thus

(5.7) supp(ΦN,D,ε ∗ F) ⊂ N · supp(F).

To continue we need a definition: a neighborhood W of G(0) is called di-
agonally compact (respectively conditionally compact) if VW and WV are compact
(respectively relatively compact) for every compact (respectively compact) set V
in G.

Let N0 be some open neighborhood of G(0); then by Lemma 2.7 of [19] there
exists an open symmetric conditionally compact set W0 with W0 diagonally com-
pact, such that G(0) ⊂ W0 ⊂ W0 ⊂ N0. Thus W0 · supp(F) is compact and
supp(ΦN,D,ε ∗ F) ⊂W0 · supp(F) for N ⊂W0.
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We will use W0 to show {ΦN,D,ε ∗ F} → F uniformly. Let δ > 0 be given.
Now compute

|ΦN,D,εF(γ)− F(γ)| =
∣∣∣ ∫

G

ΦN,D,ε(η)F(η−1γ)dλr(γ)(η)− F(γ)
∣∣∣

6
∫
G

|ΦN,D,ε(η)| |F(η−1γ)− F(γ)|dλr(γ)(η)(5.8)

+ ‖F‖∞

∣∣∣χsupp(F)(γ)
∫
G

ΦN,D,ε(η)dλr(γ)(η)− 1
∣∣∣.

Notice if r(supp(F)) ⊂ D then by property (ii) the second term of (5.8) is
less than ‖F‖∞ · ε. So if we choose ε < δ/(2‖F‖∞) the second term of (5.8) is less
than δ/2. It remains to show that the first term is eventually less than δ/2 . By
way of contradiction assume∫

G

|ΦN,D,ε(η)| |F(η−1γ)− F(γ)|dλr(γ)(η) >
δ

2
∀ (N, D, ε).

So, if we choose W0 as above, and if N ⊂ W0 then for γ /∈ (W0 · supp(F) ∪
supp(F)) the first term of (5.8) is 0. Thus we can restrict our attention to when
γ ∈ (W0 · supp(F) ∪ supp(F)), which is compact since it is the union of two
compact sets.

CLAIM 5.7. There exists an open neighborhood N of G(0) such that for γ ∈ (W0 ·
supp(F) ∪ supp(F)), η ∈ N we have |F(η−1γ)− F(γ)| < δ/4.

Proof. By way of contradiction assume the claim is false. Then for each
neighborhood N of G(0) we can choose γN ∈ (W0 · supp(F) ∪ supp(F)) and
ηN ∈ N such that |F(η−1

N
γN ) − F(γN )| > δ/4. Since γN is a net in a compact

set it has a convergent subnet which by relabeling we can assume γN → γ. Also
take the corresponding subnet of ηN .

Pick an r-relatively compact neighborhood (see p. 447) N0 ⊂ W0 of G(0),
and set K = r(W0 · supp(F) ∪ supp(F)). Then r−1(K) ∩ N0 is relatively com-
pact and for N ⊂ N0, r(ηN ) = r(γN ) ∈ K. Thus ηN ∈ r−1(K) ∩ N0 which
is relatively compact by assumption. Thus ηN must have a convergent subnet
ηNi
→ η. By our choice of ηNi

we must have η ∈ G(0). Choose this subnet of
ηN and the corresponding subnet of γN and relabel. Thus η−1

N
γN → η−1γ = γ,

hence |F(η−1
N γN)− F(γN)| → |F(γ)− F(γ)| = 0 a contradiction.

Next a simple computation using (5.5) shows that

CLAIM 5.8. For ε < 1, the integral
∫
G
|ΦN,D,ε(η)|dλu(η) < 2.
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Thus if we pick N0 as in Claim 5.7, D = supp(F) and ε = δ/(2‖F‖∞), then
by the discussion after (5.8),

|ΦN,D,ε ∗ F(γ)− F(γ)| <
∫
G

|ΦN,D,ε(η)| |F(η−1γ)− F(γ)|dλr(γ)(η) +
δ

2

<
∫
G

|ΦN,D,ε(η)|
δ

4
dλr(γ)(η) +

δ

2
6 δ

by Claims 5.7 and 5.8 and property (i). Hence ΦN,D,ε is an approximate identity
for A in the inductive limit topology so Lemma 5.5 is proved.

Lemma 5.5 shows span{E〈 f , g〉} is dense in Cc(G) in the inductive limit
topology and thus dense in C∗r (G) = C0(G(0))olt,r G, so combined with Proposi-
tion 4.1 and Theorem 3.9 we have:

THEOREM 5.9. Suppose G is principal and proper. Then the dynamical system
(C0(G(0)), G, lt) is saturated with respect to the dense subalgebra Cc(G(0)), that is
C0(G\G(0)) ∼= C0(G(0))lt is Morita equivalent to C∗r (G).

Note that this theorem implies that the spectrum of C∗r (G) is G\G(0) and
furthermore that C∗r (G) is globally Morita equivalent to C0(G\G(0)). So by apply-
ing Proposition 5.15 of [31] we get the following result.

COROLLARY 5.10. If G is a second countable groupoid acting freely and prop-
erly on its unit space, then C∗r (G) has continuous trace with trivial Dixmier–Douady
invariant.

REMARK 5.11. Since G is principal and proper, Corollary 2.1.17 of [1] im-
plies G is properly amenable. Thus Definition 2.1.13 of [1] and Definition 2.2.2
of [1] show that it is topologically amenable. So by Proposition 3.35 of [1] we
have that G is measure-wise amenable. Thus Proposition 6.1.8 of [1] gives that
C∗(G) = C∗red(G). We use the notation C∗red(G) here because it is a priori differ-
ent from C∗r (G) defined in Section 2.2 and Definition II.2.8 of [23]. In [1], ‖ · ‖red
is defined using only those representations induced by point mass measures on
G(0), therefore

‖ · ‖red 6 ‖ · ‖r 6 ‖ · ‖universal.

Now, Proposition 6.1.8 of [1] implies that ‖ · ‖red is the same as the univer-
sal norm, thus ‖ · ‖r must be the same as the universal norm as well and hence
C∗r (G) = C∗(G). Thus Corollary 5.10 recovers Proposition 2.2 of [19].

REMARK 5.12. If G = H × X is a transformation group groupoid the con-
dition G acts freely and properly on its unit space means that H acts freely and
properly on X. Therefore, Corollary 5.10 and Remark 5.11 give Corollary 15 of [7].

5.2. PROOF OF THEOREM 5.2. We now prove Theorem 5.2, which states that if a
groupoid G acts freely and properly on its unit space then the action of G on any
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upper semicontinuous C∗-bundle is saturated, that is finite linear combinations
of the inner product

E〈 f · a, g · b〉 := γ 7→ f (r(γ))a(r(γ))αγ((g(s(γ))b(sγ))∗)

f , g ∈ Cc(G(0)), a, b ∈ A = Γ0(G(0), A ) are dense in A oα,r G. This proof follows
Appendix C of [11] fairly closely. We proceed in several steps. The first two steps
show that we can consider functions of compact support. Then we cover the
support of the function we want to approximate by small enough neighborhoods,
so that the action on these neighborhoods is almost trivial, and finally we use a
partition of unity to complete the approximation.

Step 1. Show that the span of sections of the form

(5.9) F(γ) = φ(γ) f (r(γ))a(r(γ))g(r(γ))b(r(γ))∗

are dense in Γc(G, r∗A ) in the inductive limit topology, where φ ∈ Cc(G), f , g ∈
Cc(G(0)), and a, b ∈ A = Γ0(G(0), A ).

To see this first note that A2
0 is dense in A. Now from Proposition 1.3 of [30],

we know that

C0(G)⊗C0(G(0)) Γ0(G(0), A ) ∼= Γ0(G, r∗A )

where the isomorphism is given on elementary tensors by

Φ : f ⊗ a 7→ (γ 7→ f (γ)a(r(γ))).

Note that Φ(Cc(G)�A2
0) is a C0(G)-module. Furthermore, since A2

0 is dense
in A we have A2

0(r(γ)) is dense in A(r(γ)). Thus by Proposition C.24 of [32],
Φ(Cc(G) � A2

0) is dense in Γ0(G, r∗A ) and hence in Γc(G, r∗A ) in the uniform
topology.

Given ψ ∈ Γc(G, r∗A ) pick a net ψ′j → ψ uniformly with ψ′j ∈ Φ(Cc(G)�
A2

0). Pick ω ∈ Cc(G) such that 0 6 ω 6 1 and ω ≡ 1 on supp(ψ). Then ψ =
ωψ = lim ωψ′j. Let ψj = ωψ′j then ψj → ψ uniformly and supp(ψj) ⊂ supp(ω)

which is compact. Thus ψj → ψ in the inductive limit topology.
Note that every element of Φ(Cc(G)� A2

0) is of the form (5.9). Thus it suf-
fices to show that elements of the form (5.9) can be approximated by elements of
E in the inductive limit topology.

Step 2. Show that elements of the form

(5.10) γ 7→ φ(γ) f (r(γ))a(r(γ))αγ(g(s(γ))b∗(s(γ)))

are in E with φ ∈ Cc(G), f , g ∈ Cc(G(0)), a, b ∈ A.
By Theorem 5.9, the action of G on C0(G(0)) is saturated with respect to

Cc(G(0)). Thus, given ε > 0, we can find gi, hi ∈ Cc(G(0)) such that

(5.11)
∥∥∥ φ(γ)−∑

i
gi(r(γ))hi(s(γ))

∥∥∥ <
ε

‖ f ‖∞‖a‖‖b‖‖g‖∞
.
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Furthermore, we can arrange it so that if W is a compact neighborhood
of the support of φ, then supp(γ 7→ ∑i gi(r(γ))hi(s(γ))) ⊂ W. Let ai = gi f ·
a and bi = hig · b then∥∥∥ ∑

i
E〈ai, bi〉(γ)− φ(γ) f (r(γ))a(r(γ))αγ(g(s(γ))b∗(s(γ)))

∥∥∥
=
∥∥∥∑

i
gi(r(γ))hi(s(γ))E〈 f · a, g · b〉(γ)− φ(γ)E〈 f · a, g · b〉

∥∥∥
6
∥∥∥∑

i
gi(r(γ))hi(s(γ))− φ(γ)

∥∥∥‖E〈 f · a, g · b〉‖ < ‖ f ‖∞‖a‖‖b‖‖g‖∞ε

‖ f ‖∞‖a‖‖b‖‖g‖∞
= ε.

Since W does not depend on ε and ε is arbitrary, we must have

γ 7→ φ(γ) f (r(γ))a(r(γ))αγ(g(s(γ))b∗(s(γ))) ∈ E.

Step 3. Show that the functions of the form (5.10) can be used to approximate
the functions of the form (5.9) in the inductive limit topology.

REMARK 5.13. At this point in Appendix C of [11], the authors find a neigh-
borhood N of the identity in the group such that ‖b∗ − αs(b∗)‖ is small for s ∈ N.
They then translate this neighborhood to find a finite collection of open sets Nri
such that supp(φ) ⊂ ⋃

Nri. They use this open cover to construct a partition of
unity, {φi}, and define

(5.12) Fi(s) := φ(s)φi(s)( f · a)αsr−1
i
((g · b)∗).

This is a fairly standard approximation argument in group crossed prod-
ucts. Unfortunately, this argument does not work for groupoids, since the trans-
lation of an open set in a groupoid by a groupoid element is not necessarily open.
However, the translation UVi of an open set U ⊂ G by an open set Vi ⊂ G is
open in a groupoid. But now we do not have an element ri to plug into an anal-
ogous equation to (5.12). The idea which motivates what follows is to average
αγη−1(g(r(η)) · b(r(η))∗) over η ∈ Vi.

Fix
F(γ) = φ(γ) f (r(γ))a(r(γ))g(r(γ))b(r(γ))∗

as in (5.9) with φ ∈ Cc(G), f , g ∈ Cc(G(0)), a, b ∈ A = Γ0(G(0), A ) and let ε > 0
be given. Define

(5.13) K := supp(φ).

Note that since the norm is upper semicontinuous, the set

(5.14) Nε :=
{

γ : ‖b∗(r(γ))g(r(γ))− αγ(b∗(s(γ))g(s(γ)))‖ < ε

‖φ‖‖ f ‖‖a‖

}
is open. Furthermore, it is nonempty since G(0) ⊂ Nε. Now we need a lemma
whose proof follows easily from the continuity of multiplication in G, so we
omit it.
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LEMMA 5.14. For every η ∈ G, there exists an open neighborhood Uη of η such
that Uη ·U−1

η ⊂ Nε.

Now for η ∈ K = supp(φ), let Uη be an open neighborhood of η as in
Lemma 5.14. Then {Uη}η∈K is an open cover of the compact set K, therefore
there is a finite subcover {Ui}n

i=1. Furthermore, since G is locally compact and
Hausdorff, G is regular. Thus, for all η ∈ K there exists a neighborhood Vη of η

with compact closure such that η ∈ Vη ⊂ Vη ⊂ Ui for some i. Now {Vη}η∈K is
an open cover of the compact set K, therefore there is a finite subcover {Vj}m

j=1.

We have arranged it so that for each j there exists i such that Vj ⊂ Ui. For each
j = 1, . . . , m pick such an i and define

σ : {1, . . . , m} → {1, . . . , n} so that Vj ⊂ Uσ(j).

For each Vj pick a function ψj ∈ C+
c (G) such that 0 6 ψj 6 1, ψj|Vj

≡ 1 and

supp(ψj) ⊂ Uσ(j). Also, pick a partition of unity {φj} ⊂ C+
c (G) subordinate to

the subcover {Vj}m
j=1. That is, supp(φi) ⊂ Vj, 0 6 φj 6 1 , ∑ φj ≡ 1 on K and

∑ φj ≡ 0 off of
⋃

Vj. We will use these functions to ensure that groupoid elements
lie in Nε.

Define

(5.15) ωj(u) :=
∫
G

ψj(γ)dλu(γ).

Now ωj is continuous since ψj ∈ Cc(G) and λu is a (right) Haar system. Further-
more,

γ 7→
φj(γ)

ωj(s(γ))

is continuous, since

supp(φj) ⊂ Vj ⊂ Vj ⊂ supp(ψj) ⊂ supp(wj ◦ s).

Define

f j(γ) := φ(γ)
φj(γ)

ωj(s(γ))
f (r(γ))a(r(γ))

αγ

( ∫
G

ψj(η) αη−1(b∗(r(η))g(r(η)))dλs(γ)(η)
)

.(5.16)

REMARK 5.15. The functions f j are of the form of equation (5.10). To see this
notice γ 7→ φ(γ)(φj(γ))/(ωj(s(γ))) ∈ Cc(G) and that αη−1(b∗(r(η))g(r(η))) ∈
A(s(η)). Thus ∫

G

ψj(η) αη−1(b∗(r(η))g(r(η)))dλu(η) ∈ A(u).
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But ψj(η) αη−1(b∗(r(η))g(r(η))) has compact support since ψj does. Now from
the properties of Haar systems we have that(

u 7→
∫
G

ψj(η) αη−1(b∗(r(η))g(r(η)))dλu(η)
)
∈ Γc(G(0), A )

and thus is of the form h(u)c∗(u) for c ∈ A and h ∈ Cc(G(0)).

REMARK 5.16. If γ ∈ supp( f j) then γ ∈ supp(φj), so that γ ∈ Uσ(j). Now
if the integrand in (5.16) is nonzero, then η ∈ supp(ψj) so that η ∈ Uσ(j). That is
γη−1 ∈ Nε.

REMARK 5.17. Now supp( f j) ⊂ supp(φ) = K, so that supp(∑ f j) ⊂ K.

To finish the proof we compute:∥∥∥F(γ)−∑ ( f j(γ))
∥∥∥ =

∥∥∥∑ (φj(γ)F(γ)− f j(γ))
∥∥∥

(since ∑ φj(γ) ≡ 1 on K ⊃ supp(F) ∩ supp(∑ f j))

=
∥∥∥∑ φ(γ)φj(γ) f (r(γ))a(r(γ))

(
b∗(r(γ))g(r(γ)) · · ·

−
∫
G

ψj(η)

ωj(s(γ))
αγη−1(b∗(r(η))g(r(η)))dλs(γ)(η)

)∥∥∥
6 ‖φ‖∞‖ f ‖∞‖a‖χK (γ)

∥∥∥∑ φj(γ)
(

b∗(r(γ))g(r(γ)) · · ·

−
∫
G

ψj(η)

ωj(s(γ))
αγη−1(b∗(r(η))g(r(η)))dλs(γ)(η)

)∥∥∥
6 ‖φ‖∞‖ f ‖∞‖a‖χK (γ)∑

(
φj(γ)

∥∥∥( ∫
G

ψj(η)

ωj(s(γ))
b∗(r(γ)) · · ·

g(r(γ))dλs(γ)(η)−
∫
G

ψj(η)

ωj(s(γ))
αγη−1(b∗(r(η))g(r(η)))dλs(γ)(η)

)∥∥∥)
(since

∫
G
(ψj(η))/(0ωj(u))dλu(η) ≡ 1 on supp(φj) and b∗(r(γ))g(r(γ)) does not

depend on η)

6 ‖φ‖∞‖ f ‖∞‖a‖χK (γ)∑
(

φj(γ)
∫
G

ψj(η)

ωj(s(γ))

‖ b∗(r(γ))g(r(γ))− αγη−1(b∗(r(η))g(r(η)))‖dλs(γ)(η)
)

.(5.17)

But by Remark 5.16 and equation (5.14), we know that

‖ b∗(r(γ))g(r(γ))− αγη−1(b∗(r(η))g(r(η)))‖ < ε

‖φ‖∞‖ f ‖∞‖a‖
.
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So that (5.17) is less than

‖φ‖∞‖ f ‖∞‖a‖χK (γ)∑
( ε

‖φ‖∞‖ f ‖∞‖a‖
φj(γ)

∫
G

ψj(η)

ωj(s(γ))
dλs(γ)(η)

)
= ‖φ‖∞‖ f ‖∞‖a‖

ε

‖φ‖∞‖ f ‖∞‖a‖
= ε

since
∫
G
(ψj(η))/(ωj(u))dλu(η) ≡ 1 on supp(φj) and ∑ φj(γ) ≡ 1 on K.

Thus we can approximate F by ∑ f j in the inductive limit topology. Now
Steps 1 and 2 along with Remark 5.15 gives the density of span{E〈 f · a, g · b〉 :
f , g ∈ Cc(G(0)), a, b ∈ A} in Γc(G, r∗A ) in the inductive limit topology and hence
span{E〈 f · a, g · b〉 : f , g ∈ Cc(G(0)), a, b ∈ A} is dense in A oα,r G. Thus the
dynamical system (A , G, α) is saturated and we obtain Theorem 5.2.

REMARK 5.18. As in Remark 5.11 for G acting freely and properly on its
unit space, A oα,r G = A oα G using Proposition 6.1.10 of [1] or Theorem 3.6 of
[25]. So that Aα is Morita equivalent to A oα G.

COMMENT. After this paper was accepted we were able to show that if a proper
groupoid dynamical system (A , G, α) with respect to A0 satisfies Cc(G) · A0 ⊂
A0, where the action of Cc(G) on A0 is given by f · a =

∫
G

f (γ)αγ(a(s(γ)))dλu(γ),

then the subalgebra E guaranteed by Theorem 3.9 is an ideal. The details will
appear elsewhere.
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