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ABSTRACT. Given a von Neumann algebra M we introduce so called central
extension mix(M) of M. We show that mix(M) is a ∗-subalgebra in the al-
gebra LS(M) of all locally measurable operators with respect to M, and this
algebra coincides with LS(M) if and only if M does not admit type II direct
summands. We prove that if M is a properly infinite von Neumann algebra
then every additive derivation on the algebra mix(M) is inner. In particular
each derivation on the algebra LS(M), where M is a type I∞ or a type III von
Neumann algebra, is inner.
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INTRODUCTION

The present paper continues the series of papers [2]-[3] devoted to the study
and a description of derivations on the algebra LS(M) of locally measurable op-
erators affiliated with a von Neumann algebra M and on its various subalgebras.

Let A be an algebra over the field complex numbers. A linear (additive)
operator D : A → A is called a linear (additive) derivation if it satisfies the identity
D(xy) = D(x)y + xD(y) for all x, y ∈ A (Leibniz rule). Each element a ∈ A
defines a linear derivation Da on A given as Da(x) = ax − xa, x ∈ A. Such
derivations Da are said to be inner derivations. If the element a implementing the
derivation Da onA, belongs to a larger algebra B, containingA (as a proper ideal
as usual) then Da is called a spatial derivation.

One of the main problems in the theory of derivations is to prove the auto-
matic continuity, innerness or spatialness of derivations or to show the existence
of noninner and discontinuous derivations on various topological algebras.

On this way A.F. Ber, F.A. Sukochev, V.I. Chilin [5] obtained necessary and
sufficient conditions for the existence of nontrivial derivations on commutative
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regular algebras. In particular they have proved that the algebra L0(0, 1) of all
(classes of equivalence of) complex measurable functions on the interval (0, 1) ad-
mits nontrivial derivations. Independently A.G. Kusraev [9] by means of Boolean-
valued analysis has also proved the existence of nontrivial derivations and auto-
morphisms on L0(0, 1). It is clear that these derivations are discontinuous in the
measure topology, and therefore they are neither inner nor spatial. The present
authors have conjectured that the existence of such pathological examples of
derivations deeply depends on the commutativity of the underlying von Neu-
mann algebra M. In this connection we have initiated the study of the above
problems in the noncommutative case [2]–[3], by considering derivations on the
algebra LS(M) of all locally measurable operators affiliated with a von Neumann
algebra M and on various subalgebras of LS(M). In [1] we have proved that ev-
ery derivation on so called noncommutative Arens algebras affiliated with an
arbitrary von Neumann algebra and a faithful normal semi-finite trace is spatial
and if the trace is finite then all derivations on this algebra are inner. In [2] and
[3] we have proved the mentioned conjecture concerning derivations on LS(M)
for type I von Neumann algebras.

Recently this conjecture was also independently confirmed for the type I
case in the paper of A.F. Ber, B. de Pagter and A.F. Sukochev [6] by means of a
representation of measurable operators as operator valued functions. Another
approach to similar problems in the framework of type I AW∗-algebras has been
outlined in the paper of A.F. Gutman, A.G. Kusraev and S.S. Kutateladze [7].

In [3] we considered derivations on the algebra LS(M) of all locally mea-
surable operators affiliated with a type I von Neumann algebra M, and also on
its subalgebras S(M) — of measurable operators and S(M, τ) of τ-measurable
operators, where τ is a faithful normal semi-finite trace on M. We proved that
an arbitrary derivation D on each of these algebras can be uniquely decomposed
into the sum D = Da + Dδ where the derivation Da is inner (for LS(M), S(M)
and S(M, τ)) while the derivation Dδ is an extension of derivation δ on the center
of the corresponding algebra.

In the present paper we consider additive derivations on the algebra LS(M),
were M is a properly infinite von Neumann algebras.

In Section 1 we introduce the so called central extension mix(M) of a von
Neumann algebra M. We show that mix(M) is a ∗-subalgebra in the algebra
LS(M) and this algebra coincides with whole LS(M) if and only if M does not
contain a direct summand of type II. The center Z(M) of M is an abelian von
Neumann algebra and hence it is ∗-isomorphic to L∞(Ω, Σ, µ) for an appropriate
measure space (Ω, Σ, µ). Therefore the algebra LS(Z(M)) = S(Z(M)) can be
identified with the ring L0(Ω, Σ, µ) of all measurable functions on (Ω, Σ, µ). We
also show that mix(M) is a C∗-algebra over the ring S(Z(M)) ∼= L0(Ω, Σ, µ) in
the sense of [4].

In Section 2 we give some necessary properties of the topology of conver-
gence locally in measure on LS(M).
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Section 3 is devoted to study of derivations on the algebra mix(M). We
prove that if M is a properly infinite von Neumann algebra then every additive
derivation on the algebra mix(M) is inner. In particular every additive deriva-
tion on the algebra LS(M), where M is of type I∞ or III, is inner. The latter result
generalizes Theorem 2.7 from [3] to additive derivations and extends it also for
type III von Neumann algebras.

1. LOCALLY MEASURABLE OPERATORS AFFILIATED WITH VON NEUMANN ALGEBRAS

In this section we consider so called central extensions of von Neumann al-
gebras and prove some auxiliary results concerning their properties. These prop-
erties can be obtained in a shorter way by referring to some general results in
Boolean-valued analysis (see Chapter 8 of [8], but for readers not familiar with
this theory and for the sake of completeness we give a straightforward proof of
our propositions). Nevertheless at the end of the section we outline the proofs in
the framework of Boolean-valued approach.

Let H be a complex Hilbert space and let B(H) be the algebra of all bounded
linear operators on H. Consider a von Neumann algebra M in B(H) with the
operator norm ‖ · ‖M. Denote by P(M) the lattice of projections in M.

A linear subspace D in H is said to be affiliated with M (denoted as DηM),
if u(D) ⊂ D for every unitary u from the commutant

M′ = {y ∈ B(H) : xy = yx, ∀x ∈ M}
of the von Neumann algebra M.

A linear operator x on H with the domain D(x) is said to be affiliated with
M (denoted as xηM) if D(x)ηM and u(x(ξ)) = x(u(ξ)) for all ξ ∈ D(x).

A linear subspace D in H is said to be strongly dense in H with respect to the
von Neumann algebra M, if

(i) DηM;
(ii) there exists a sequence of projections {pn}∞

n=1 in P(M) such that pn ↑ 1,
pn(H)⊂D and p⊥n =1−pn is finite in M for all n∈N, where 1 is the identity in M.

A closed linear operator x acting in the Hilbert space H is said to be mea-
surable with respect to the von Neumann algebra M, if xηM and D(x) is strongly
dense in H. Denote by S(M) the set of all measurable operators with respect to M.

A closed linear operator x in H is said to be locally measurable with respect
to the von Neumann algebra M, if xηM and there exists a sequence {zn}∞

n=1 of
central projections in M such that zn ↑ 1 and znx ∈ S(M) for all n ∈ N.

It is well-known [10] that the set LS(M) of all locally measurable operators
with respect to M is a unital ∗-algebra when equipped with the algebraic opera-
tions of strong addition and multiplication and taking the adjoint of an operator,
and contains S(M) as a solid ∗-subalgebra.
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Let τ be a faithful normal semi-finite trace on M. We recall that a closed
linear operator x is said to be τ-measurable with respect to the von Neumann al-
gebra M, if xηM and D(x) is τ-dense in H, i.e. D(x)ηM and given ε > 0 there
exists a projection p ∈ M such that p(H) ⊂ D(x) and τ(p⊥) < ε. The set S(M, τ)
of all τ-measurable operators with respect to M is a solid ∗-subalgebra in S(M)
(see [12]).

Consider the topology tτ of convergence in measure or measure topology on
S(M, τ), which is defined by the following neighborhoods of zero:

V(ε, δ) = {x ∈ S(M, τ) : ∃e ∈ P(M), τ(e⊥) 6 δ, xe ∈ M, ‖xe‖M 6 ε},

where ε, δ are positive numbers, and ‖ · ‖M denotes the operator norm on M.
It is well-known [12] that S(M, τ) equipped with the measure topology is a

complete metrizable topological ∗-algebra.
Note that if the trace τ is a finite then S(M, τ) = S(M) = LS(M).
Given any family {zi}i∈I of mutually orthogonal central projections in M

with
∨
i∈I

zi = 1 and a family of elements {xi}i∈I in LS(M) there exists a unique

element x ∈ LS(M) such that zix = zixi for all i ∈ I. This element is denoted
by x = ∑

i∈I
zixi and it is called the mixing of {xi}i∈I with respect to {zi}i∈I (see

Proposition 1.1 and further remarks in [3]).
By mix(M) we denote the set of all elements x from LS(M) for which there

exists a sequence of mutually orthogonal central projections {zi}i∈I in M with∨
i∈I

zi = 1, such that zix ∈ M for all i ∈ I, i.e.

mix(M)=
{

x∈LS(M) : ∃zi∈P(Z(M)), zizj =0, i 6= j,
∨
i∈I

zi =1, zix∈M, i∈ I
}

,

where Z(M) is the center of M. In other words mix(M) is the set of all mixings
obtained by families {xi}i∈I taken from M.

PROPOSITION 1.1. Let M be a von Neumann algebras with the center Z(M).
Then

(i) mix(M) is a ∗-subalgebra in LS(M) with the center S(Z(M)), where S(Z(M))
is the algebra of operators measurable with respect to Z(M);

(ii) LS(M) = mix(M) if and only if M does not have direct summands of type II.

Proof. (i) It is clear from the definition that mix(M) is a ∗-subalgebra in
LS(M) and that its center Z(mix(M)) is contained in S(Z(M)) = Z(LS(M)).

Let us show the converse inclusion. Take x ∈ S(Z(M)) and let |x| =
∞∫
0

λ deλ

be the spectral resolution of |x|. Set

z1 = e1 and zn = en − en−1, n > 2.
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Then it clear that {zn}n∈N is a sequence of mutually orthogonal central projec-
tions in M such that

∨
n>1

zn = 1 and znx ∈ Z(M) for all n ∈ N. Therefore

x ∈ mix(M). Since x commutes with each element from LS(M) ⊃ mix(M), we
have that x ∈ Z(mix(M)). Thus Z(mix(M)) = S(Z(M)).

(ii) If M is of type I, then by Proposition 1.6 of [3] we have LS(M) = mix(M).
Let M have type III. Since any nonzero projection in M is infinite it follows

that S(M) = M. Hence by the definitions of the algebras LS(M) and mix(M) we
obtain that LS(M) = mix(M). Thus if M = N ⊕ K where N is a type I and K is a
type III von Neumann algebras, i.e. if M does not have type II direct summands,
then LS(M) = mix(M).

To prove the converse suppose that M is a type II von Neumann algebra.
First assume that M is of type II1 and admits a faithful normal tracial state τ on
M. Let Φ be the canonical center-valued trace on M.

Since M is of type II, then there exists a projection p1 ∈ M such that

p1 ∼ 1− p1.

Then Φ(p1) = Φ(p⊥1 ). From Φ(p1) + Φ(p⊥1 ) = Φ(1) = 1 it follows that

Φ(p1) = Φ(p⊥1 ) =
1
2

1.

Suppose that there exist mutually orthogonal projections p1, p2, . . . , pn in M
such that

Φ(pk) =
1
2k 1, k = 1, n.

Set en =
n
∑

k=1
pk. Then Φ(e⊥n ) =

1
2n 1. Take a projection pn+1 < e⊥n such that pn+1 ∼

e⊥n − pn+1. Then

Φ(pn+1) =
1

2n+1 .

Hence there exists a sequence of mutually orthogonal projections {pn}n∈N
in M such that

Φ(pn) =
1
2n 1, n ∈ N.

Note that τ(pn) =
1

2n . Indeed τ(pn) = τ(Φ(pn)) = τ
( 1

2n 1
)
= 1

2n .
Since

∞

∑
n=1

nτ(pn) =
∞

∑
n=1

n
2n < +∞

it follows that the series
∞
∑

n=1
npn converges in measure in S(M, τ). Therefore there

exists x =
∞
∑

n=1
npn ∈ S(M, τ).
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Let us show that x ∈ LS(M) \mix(M). Suppose that zx ∈ M, where z is
a nonzero central projection. Since any pn is a faithful projection we have that
zpn 6= 0 for all n. Thus

‖zx‖M = 1‖zx‖M1 = ‖pn‖M · ‖zx‖M · ‖pn‖M > ‖zpnxpn‖M = ‖zpnn‖M = n,

i.e.
‖zx‖M > n

for all n ∈ N. From this contradiction it follows that x ∈ LS(M) \mix(M).
For a general type II von Neumann algebra M take a nonzero finite pro-

jection e ∈ M and consider the finite type II von Neumann algebra eMe which
admits a separating family of normal tracial states. Now if f ∈ eMe is the support
projection of some tracial state τ on eMe then f M f is a type II1 von Neumann al-
gebra with a faithful normal tracial state. Hence as above one can construct an
element x ∈ LS(M) \mix(M). Therefore if LS(M) = mix(M) then M can not
have a direct summand of the type II. The proof is complete.

REMARK 1.2. A similar notion (i.e. the algebra mix(A)) for arbitrary ∗-sub-
algebras A ⊂ LS(M) was independently introduced recently by M.A. Muratov
and V.I. Chilin [11]. They denote this algebra by E(A) and called it the central
extension of A. In particular if A = M we have E(M) = mix(M). Therefore
following [11] we shall say that mix(M) is the central extension of M.

An alternative proof of Proposition 1.1 follows also from Proposition 2, The-
orem 1 and Theorem 3 in [11].

Let (Ω, Σ, µ) be a measure space and from now on suppose that the measure
µ has the direct sum property, i.e. there is a family {Ωi}i∈J ⊂ Σ, 0 < µ(Ωi) <
∞, i ∈ J, such that for any A ∈ Σ, µ(A) < ∞, there exist a countable subset J0 ⊂ J
and a set B with zero measure such that A =

⋃
i∈J0

(A ∩Ωi) ∪ B.

We denote by L0(Ω, Σ, µ) the algebra of all (equivalence classes of) complex
measurable functions on (Ω, Σ, µ) equipped with the topology of convergence in
measure.

Consider the algebra S(Z(M)) of operators measurable with respect to the
center Z(M) of the von Neumann algebra M. Since Z(M) is an abelian von
Neumann algebra it is ∗-isomorphic to L∞(Ω, Σ, µ) for an appropriate measure
space (Ω, Σ, µ). Therefore the algebra S(Z(M)) can be identified with the algebra
L0(Ω, Σ, µ) of all measurable functions on (Ω, Σ, µ).

PROPOSITION 1.3. For any x ∈ mix(M) there exists f ∈ S(Z(M)) such that
|x| 6 f .

Proof. Let x = ∑
i∈I

zix ∈ mix(M), zix ∈ M for all i ∈ I. Put

f = ∑
i∈I

zi‖zix‖M ∈ S(Z(M)).
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Then we have the following and the proof is complete:

|x| =
∣∣∣∑

i∈I
zix
∣∣∣ = ∑

i∈I
zi|zix| 6 ∑

i∈I
zi‖zix‖M = f .

Proposition 1.3 implies that for any x ∈ mix(M) there exists the vector-
valued norm

(1.1) ‖x‖ = inf{ f ∈ S(Z(M)) : |x| 6 f }.

By the definition we obtain that:
(i) |x| 6 ‖x‖ for all x ∈ mix(M);

(ii) if x∈mix(M) then ‖x‖= inf{ f ∈S(Z(M)) : f >0, f−1x∈M, ‖ f−1x‖M61};
(iii) if z ∈ M is a central projection then ‖zx‖ = z‖x‖;
(iv) if x ∈ M then ‖x‖M = ‖‖x‖‖M.

PROPOSITION 1.4. Let x ∈ M. Then ‖x‖ = 1 if and only if ‖zx‖M = 1 for each
nonzero central projection z ∈ M.

Proof. Let x ∈ M, ‖x‖ = 1. Then ‖zx‖ = z‖x‖ = z for each nonzero central
projection z ∈ M. Thus

‖zx‖M = ‖‖zx‖‖M = ‖z‖M = 1.

Now let ‖zx‖M = 1 for each nonzero central projection z ∈ M, in particular,
‖x‖M = 1. Thus ‖x‖ 6 1. Suppose that ‖x‖ 6= 1. Then there exist a nonzero
central projection z ∈ M and a number 0 < ε < 1 such that z‖x‖ 6 εz. Thus

‖zx‖M 6 ε‖z‖M = ε < 1,

and this contradicts to the equality ‖zx‖M = 1. Hence ‖x‖ = 1. The proof is
complete.

A complex linear space E is said to be normed by L0(Ω, Σ, µ) if there is a
map ‖ · ‖ : E → L0(Ω, Σ, µ) such that for any x, y ∈ E, λ ∈ C, the following
conditions are fulfilled:

(i) ‖x‖ > 0; ‖x‖ = 0⇔ x = 0;
(ii) ‖λx‖ = |λ|‖x‖;

(iii) ‖x + y‖ 6 ‖x‖+ ‖y‖.
The pair (E, ‖ · ‖) is called a lattice-normed space over L0(Ω, Σ, µ). A lattice-

normed space E is called d-decomposable, if for any x ∈ E with ‖x‖ = λ1 + λ2,
λ1, λ2 ∈ L0(Ω, Σ, µ), λ1λ2 = 0, λ1, λ2 > 0, there exist x1, x2 ∈ E such that x =
x1 + x2 and ‖xi‖ = λi, i = 1, 2.

A net (xα) in E is said to be (bo)-convergent to x ∈ E, if the net {‖xα − x‖}
(o)-converges (i.e. almost everywhere converges) to zero in L0(Ω, Σ, µ).

A lattice-normed space E which is d-decomposable and complete with re-
spect to the (bo)-convergence is called a Banach–Kantorovich space.

It is known that every Banach–Kantorovich space E over L0(Ω, Σ, µ) is a
module over L0(Ω, Σ, µ) and ‖λx‖=|λ|‖x‖ for all λ∈L0(Ω, Σ, µ), x∈E (see [8]).
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Let A be an arbitrary Banach–Kantorovich space over L0(Ω, Σ, µ) and let
A be an ∗-algebra such that (λx)∗ = λx∗, (λx)y = λ(xy) = x(λy) for all λ ∈
L0(Ω, Σ, µ), x, y ∈ A. A is called C∗-algebra over L0(Ω, Σ, µ) if ‖xy‖ 6 ‖x‖‖y‖,
‖xx∗‖ = ‖x‖2 for all x, y ∈ A (see [4]).

The main result of this section is the following.

PROPOSITION 1.5. Let M be a von Neumann algebra with the center Z(M) ∼=
L∞(Ω, Σ, µ) and let ‖ · ‖ be the S(Z(M))-valued norm on mix(M) defined by (1.1).
Then (mix(M), ‖ · ‖) is a C∗-algebra over S(Z(M)) ∼= L0(Ω, Σ, µ).

Proof. Let x ∈ mix(M), x 6= 0 and let |x| =
∞∫
0

λ deλ be the spectral resolution

of |x|. Then there exists λ0 > 0 such that eλ0 6= 0. Take an element f ∈ S(Z(M))
such that |x| 6 f . Then

λ0eλ0 6 |x|eλ0 6 f eλ0 , i.e. λ0eλ0 6 f eλ0 .

Thus λ0z(eλ0) 6 f z(eλ0), where z(eλ0) is the central support of the projection eλ0 .
Thus λ0z(eλ0) 6 ‖x‖z(eλ0). This means that ‖x‖ 6= 0.

Let g ∈ S(Z(M)), x ∈ mix(M). We have

‖gx‖ = inf{ f ∈ S(Z(M)) : |gx| 6 f } = inf{|g| f ∈ S(Z(M)) : |x| 6 f }
= |g| inf{ f ∈ S(Z(M)) : |x| 6 f } = |g|‖x‖,

i.e.
‖gx‖ = |g|‖x‖.

Now let x, y ∈ mix(M). By Theorem 2.4.5 of [10] there exist partial isome-
tries u, v ∈ M such that |x + y| 6 u|x|u∗ + v|y|v∗. Thus

|x + y| 6 u|x|u∗ + v|y|v∗ 6 u‖x‖u∗ + v‖y‖v∗ = ‖x‖uu∗ + ‖y‖vv∗ 6 ‖x‖+ ‖y‖,

and therefore ‖x + y‖ 6 ‖x‖+ ‖y‖.
Take x, y ∈ mix(M). We may assume that ‖x‖ = ‖y‖ = 1. Then x, y ∈ M,

‖x‖M = ‖y‖M = 1, and therefore ‖xy‖M 6 1. Hence |xy| 6 1. Thus ‖xy‖ 6 1, i.e.
‖xy‖ 6 ‖x‖‖y‖.

Let x ∈ M, ‖x‖ = 1. By Proposition 1.4 we obtain ‖zx‖M = 1 for every
nonzero central projection z ∈ M. Thus

‖zxx∗‖M = ‖(zx)(zx)∗‖M = ‖zx‖2
M = 1.

Therefore by Proposition 1.4 we obtain that ‖xx∗‖ = 1, i.e. ‖xx∗‖ = ‖x‖2.
Finally we shall prove the completeness of the space mix(M). First we con-

sider the case where the center S(Z(M)) ∼= L0(Ω, Σ, µ) satisfies the condition
µ(Ω) < ∞.

Let {xn} be a (bo)-fundamental sequence in mix(M), i.e. ‖xn − xm‖ → 0 as
n, m→ ∞. By the inequality

|‖xn‖ − ‖xm‖| 6 ‖xn − xm‖
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we obtain that the sequence {‖xn‖} is (o)-fundamental in S(Z(M)), in particular,
{‖xn‖} is order bounded in S(Z(M)), i.e. there exists c ∈ S(Z(M)) such that
‖xn‖ 6 c for all n ∈ N.

Now replacing xn with (1 + c)−1xn we may assume that xn ∈ M, ‖xn‖ 6 1
and {xn} is (bo)-fundamental.

Since µ(Ω) < ∞ by Egorov’s theorem for any k ∈ N there exists Ak ∈ Σ

with µ(Ω \ Ak) 6 1
k such that ‖χAk (xn − xm)‖M → 0 as n, m → ∞. Since M is

complete, one has that χAk xn → ak as n→ ∞ for an appropriate ak ∈ M.
Put

z1 = χA1 , zk = χAk

∧ ( k−1∨
i=1

zi

)⊥
, k > 2.

Then zi ∧ zj = 0, i 6= j,
∨

k>1
zk = 1. Set

a =
∞

∑
k=1

zkak.

Then xn → a. This means that the space mix(M) is (bo)-complete.
Now we consider the general case for the center S(Z(M)) ∼= L0(Ω, Σ, µ).

There exists a mutually orthogonal system {Ωi : i ∈ I} in Σ such that µ(Ωi) <
∞. As above we have that for every i ∈ I there exists ai ∈ mix(M) such that
χΩi xn → ai. Set

a = ∑
i∈I

χΩi ai.

Then xn → a. This means that the space mix(M) is (bo)-complete. The proof is
complete.

From Propositions 1.1 and 1.5 we obtain the following result.

COROLLARY 1.6. Let M be a von Neumann algebra without direct summands of
type II. Then (LS(M), ‖ · ‖) is a C∗-algebra over S(Z(M)) ∼= L0(Ω, Σ, µ).

REMARK 1.7. The following Boolean-valued approach to central extensions
was kindly suggested by the referee, to whom the authors are deeply indebted.

Let M be a von Neumann algebra and B denotes the Boolean algebra of
central projections in M. In Boolean-valued universe V(B) there exists a von Neu-
mann factorM such that the restricted descentM ⇓ ofM can be identified with
M (see Theorem 8.4.4 (2) of [8]). Unrestricted descentM ↓ ofM can be identi-
fied with the central extension mix(M) (see Theorem 7.5.5 and 8.3.2 of [8]). The
Boolean-valued representation preserves classification into types, thus M andM
are of the same type ([8], Theorem 8.4.6). Moreover it can be easily seen that
LS(M) ↓ can be interpreted as LS(M) ' LS(M ⇓). Now Proposition 1.1(i), 1.4
and 1.5 follow immediately from Theorems 8.3.1 and 8.4.2 of [8].

As to Proposition 1.1(ii), we should interpret in Boolean-valued model V(B)

Theorem 2.5.4 from [10] according to which LS(M) = M if and only if M is a
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factor of type I or III. Since LS(M) ↓' LS(M) andM ↓' mix(M), it follows that
LS(M) = mix(M) if and only if M does not have direct summands of type II.

2. THE TOPOLOGY OF CONVERGENCE LOCALLY IN MEASURE

Let M be an arbitrary commutative von Neumann algebra. Then as we
have mentioned above M is ∗-isomorphic to the ∗-algebra L∞(Ω, Σ, µ), while the
algebra LS(M) = S(M) is ∗-isomorphic to the ∗-algebra L0(Ω, Σ, µ).

The basis of neighborhoods of zero in the topology of convergence locally
in measure on L0(Ω, Σ, µ) consists of the following sets, where ε, δ > 0, A ∈
Σ, µ(A) < +∞ :

W(A, ε, δ) = { f ∈ L0(Ω, Σ, µ) :∃B ∈ Σ, B ⊆ A, µ(A \ B) 6 δ,

f · χB ∈ L∞(Ω, Σ, µ), ‖ f · χB‖L∞(Ω,Σ,µ) 6 ε}.

Recall the definition of the dimension functions on the lattice P(M) of pro-
jection from M (see [10]).

By L+ we denote the set of all measurable functions f : (Ω, Σ, µ) → [0, ∞]
(modulo functions equal to zero almost everywhere ).

Let M be an arbitrary von Neumann algebra with the center Z(M) =
L∞(Ω, Σ, µ). Then there exists a map d : P(M) → L+ with the following proper-
ties:

(i) d(e) is a finite function if only if the projection e is finite;
(ii) d(e + q) = d(e) + d(q) for p, q ∈ P(M), eq = 0;

(iii) d(uu∗) = d(u∗u) for every partial isometry u ∈ M;
(iv) d(ze) = zd(e) for all z ∈ P(Z(M)), e ∈ P(M);
(v) if {eα}α∈J , e ∈ P(M) and eα ↑ e, then

d(e) = sup
α∈J

d(eα).

This map d : P(M)→ L+, is called the dimension functions on P(M).
The basis of neighborhoods of zero in the topology of convergence locally in

measure on LS(M) consists (in the above notations) of the following sets, where
ε, δ > 0, A ∈ Σ, µ(A) < +∞ :

V(A, ε, δ) = {x ∈ LS(M) : ∃p ∈ P(M), ∃z ∈ P(Z(M)), xp ∈ M,

‖xp‖M 6 ε, z⊥ ∈W(A, ε, δ), d(zp⊥) 6 εz}.

We need following assertion from pp. 242, 261, 265 of [10].

PROPOSITION 2.1. Let ε, δ > 0, A ∈ Σ, µ(A) < +∞. Then:
(i) λV(A, ε, δ) = V(A, |λ|ε, δ) for all λ ∈ C, λ 6= 0;

(ii) x ∈ V(A, ε, δ)⇔ |x| ∈ V(A, ε, δ);
(iii) x ∈ V(A, ε, δ)⇒ x∗ ∈ V(A, 2ε, δ);
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(iv) x ∈ V(A, ε, δ), y ∈ M⇒ yx ∈ ‖y‖MV(A, ε, δ);
(v) for each x ∈ LS(M) there exist ε1, δ1 > 0, B ∈ Σ, µ(B) < +∞, such that

x ·V(B, ε1, δ1) ⊆ V(A, ε, δ).

In the next section we shall also use the following properties of the topology
of convergence locally in measure.

LEMMA 2.2. Let ε, δ > 0, A ∈ Σ, µ(A) < +∞, λ ∈ C. If |λ| 6 ε, then λ1 ∈
V(A, ε, δ).

Proof. Put p = 1, z = 1. Then ‖λ1p‖M = |λ| 6 ε, z⊥ = 0 ∈ W(A, ε, δ),
d(zp⊥) = d(0) = 0 6 εz, and therefore λ1 ∈ V(A, ε, δ). The proof is complete.

LEMMA 2.3. Let x ∈ LS(M), ε, δ > 0, A ∈ Σ, µ(A) < +∞. Then there exists
λ0 > 0 such that x ∈ λ0V(A, ε, δ).

Proof. By Proposition 2.1(v) there exist ε1, δ1>0, B∈Σ, µ(B)<+∞, such that

x ·V(B, ε1, δ1) ⊆ V(A, ε, δ).

From Lemma 2.2 it follows that ε11 ∈ V(B, ε1, δ1). Therefore xε11 ∈ V(A, ε, δ), i.e.
x ∈ λ0V(A, ε, δ), where λ0 = ε−1

1 . The proof is complete.

LEMMA 2.4. If x ∈ V(A, ε, δ) and u, v ∈ M are partial isometries, then uxv ∈
V(A, 4ε, δ).

Proof. The case when u = 0 or v = 0 is trivial. Assume that u, v 6= 0. Then
‖u‖M = ‖v‖M = 1. By Proposition 2.1(iv) we obtain that vx ∈ V(A, ε, δ). From
Proposition 2.1(iii) it follows that x∗v∗ = (vx)∗ ∈ V(A, 2ε, δ). Applying Proposi-
tion 2.1(iv) once more we have that v∗x∗u∗ ∈ V(A, 2ε, δ) and uxv = (v∗x∗u∗)∗ ∈
V(A, 4ε, δ). The proof is complete.

LEMMA 2.5. If fi ∈ S(Z(M)), i = 1, 2, | f1| 6 | f2| and f2 ∈ V(A, ε, δ), then
f1 ∈ V(A, ε, δ).

Proof. Let f2 ∈ V(A, ε, δ). Then | f2| ∈ V(A, ε, δ). Therefore there exist p0 ∈
P(M), z0 ∈ P(Z(M)) such that

| f2|p0 ∈ M, ‖| f2|p0‖M 6 ε, z⊥0 ∈W(A, ε, δ), d(z0 p⊥0 ) 6 εz0.

From | f1| 6 | f2|we get p0| f1|p0 6 p0| f2|p0 and | f1|p0 6 | f2|p0. Hence | f1|p0 ∈ M
and ‖| f1|p0‖M 6 ‖| f2|p0‖M 6 ε, i.e. ‖| f1|p0‖M 6 ε. Since z⊥0 ∈ W(A, ε, δ),
d(z0 p⊥0 ) 6 εz0 we see that | f1| ∈ V(A, ε, δ) or f1 ∈ V(A, ε, δ). The proof is com-
plete.

Recall [13] that a von Neumann algebra M is said to be properly infinite, if
any nonzero central projection z in M is infinite.
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LEMMA 2.6. Let M be a properly infinite von Neumann algebra and let ε, δ >
0, A ∈ Σ, δ < µ(A) < +∞, 0 < ε < 1. Then from λ1 ∈ V(A, ε, δ), where λ ∈ C, it
follows that |λ| 6 ε.

Proof. Let λ1 ∈ V(A, ε, δ). Then there exist p ∈ P(M), z ∈ P(Z(M)) such
that zp⊥ is a finite and ‖λp‖M 6 ε, z⊥ ∈ W(A, ε, δ). Set z = χE, where E ∈ Σ.
Since z⊥ ∈W(A, ε, δ) there exists B ∈ Σ, B ⊂ A such that

µ(A \ B) 6 δ, ‖z⊥χB‖M 6 ε.

Since 0 < ε < 1, from the inequality ‖z⊥χB‖M 6 ε we have that (1− χE)χB = 0.
From µ(A) > δ and µ(A \ B) 6 δ, we get χB 6= 0, and therefore from (1 −
χE)χB = 0 we obtain that χE 6= 0, i.e. z 6= 0. Since zp⊥ is finite and M is properly
infinite, then projection zp is an infinite. Therefore p 6= 0. Thus |λ| = |λ|‖p‖M =
‖λp‖M 6 ε, i.e. |λ| 6 ε. The proof is complete.

3. DERIVATIONS ON THE CENTRAL EXTENSIONS OF PROPERLY
INFINITE VON NEUMANN ALGEBRAS

The following theorem is the main result of this paper.

THEOREM 3.1. Let M be a properly infinite von Neumann algebra. Then every
additive derivation on the algebra mix(M) is inner.

For the proof of the Theorem 3.1 we need several preliminary assertions.
Let A be an algebra and denote by Z(A) its center. If D is an additive

derivation on A and ∆ = D|Z(A) is its restriction on to the center of A, then ∆

maps Z(A) into itself ([3], Remark 1; see also Lemma 4.2 of [6]).
Let M be a commutative von Neumann algebra and let A be an arbitrary

subalgebra of LS(M) = S(M) containing M. Further we shall identify the algebra
LS(M) = S(M) with an appropriate L0(Ω, Σ, µ).

Consider a derivation D : A → S(M) and let us show that D can be ex-
tended to a derivation D̃ on the whole S(M).

Since M is a commutative, for an arbitrary element x ∈ S(M) there exists a
sequence {zn} of mutually orthogonal projections with

∨
n∈N

zn = 1 and znx ∈ M

for all n ∈ N. Set

(3.1) D̃(x) = ∑
n>1

znD(znx).

Since every derivation D : A → S(M) is identically zero on projections of M, the
equality (3.1) gives a well-defined derivation D̃ : S(M)→ S(M) which coincides
with D on A.

Given an arbitrary additive derivation ∆ on S(M)=L0(Ω, Σ, µ) the element

z∆ = inf{π ∈ ∇ : π∆ = ∆}
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is called the support of the derivation ∆, where∇ is the complete Boolean algebra
of all idempotents from L0(Ω, Σ, µ) (i.e. characteristic functions of sets from Σ).

For any nontrivial additive derivation ∆ : L0(Ω, Σ, µ) → L0(Ω, Σ, µ) there
exists a sequence {λn}∞

n=1 in L∞(Ω, Σ, µ) with |λn| 6 1, n ∈ N, such that

|∆(λn)| > nz∆

for all n ∈ N (see Lemma 2.6 of [3]). In [3] this assertion was proved for linear
derivations, but the proof is the same for additive derivations.

LEMMA 3.2. Let M be a properly infinite von Neumann algebra, and let A ⊆
LS(M) be a ∗-subalgebra such that M ⊆ A and suppose that D : A → A is an additive
derivation. Then D|Z(A) ≡ 0, in particular, D is Z(A)-linear.

Proof. Let D be an additive derivation on A, and let ∆ be its restriction onto
Z(A). Since M ⊂ A ⊂ LS(M) it follows that Z(M) ⊂ Z(A) ⊂ S(Z(M)) =
L0(Ω, Σ, µ). Let us extend the derivation ∆ onto whole S(Z(M)) as in (3.1) above,
and denote the extension also by ∆.

Since M is properly infinite there exists a sequence of mutually orthogonal

projections {pn}∞
n=1 in M such that pn ∼ 1 for all n ∈ N, and

∞∨
n=1

pn = 1.

For any bounded sequence Λ = {λn}n∈N in Z(M) define an operator xΛ by

xΛ =
∞

∑
n=1

λn pn.

Then, for all n ∈ N,

(3.2) xΛpn = pnxΛ = λn pn.

Take λ ∈ Z(A) and n ∈ N. From the identity D(λpn) = D(λ)pn + λD(pn)
multiplying it by pn from the both sides we obtain

pnD(λpn)pn = pnD(λ)pn + λpnD(pn)pn.

Since pn is a projection, one has that pnD(pn)pn = 0, and since D(λ) = ∆(λ) ∈
Z(A), we have

(3.3) pnD(λpn)pn = ∆(λ)pn.

Now from the identity D(xΛpn) = D(xΛ)pn + xΛD(pn), in view of (3.2) one
has similarly

pnD(λn pn)pn = pnD(xΛ)pn + λn pnD(pn)pn,

i.e.

(3.4) pnD(λn pn)pn = pnD(xΛ)pn.

Now (3.3) and (3.4) imply

(3.5) pnD(xΛ)pn = ∆(λn)pn.
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If we suppose that ∆ 6= 0 then z∆ 6= 0. By Lemma 2.6 of [3] there exists a
bounded sequence Λ = {λn}n∈N in Z(M) such that, for all n ∈ N,

|∆(λn)| > nz∆.

Replacing the algebra M by the algebra z∆M, and the derivation D by z∆D,
we may assume that z∆ = 1, i.e., for all n ∈ N,

(3.6) |∆(λn)| > n1.

Now take ε, δ > 0, A ∈ Σ, δ < µ(A) < +∞. By Lemma 2.3 there exists a
number λ0 > 0 such that D(xΛ) ∈ λ0V(A, ε, δ). From Lemma 2.4 it follows that
pnD(xΛ)pn ∈ λ0V(A, 4ε, δ) for all n ∈ N. If we combine this with (3.5) we obtain

(3.7) ∆(λn)pn ∈ λ0V(A, 4ε, δ)

for all n ∈ N. Since pn ∼ 1 for each n ∈ N, there exists a sequence of partial
isometries {un}n∈N in M such that unu∗n = pn and u∗nun = 1 for all n ∈ N. Using
(3.7) and Lemma 2.4 we have u∗n∆(λn)pnun ∈ λ0V(A, 16ε, δ) for all n ∈ N. Thus
from the equality u∗n pnun = u∗nunu∗nun = 1, we obtain that ∆(λn) ∈ λ0V(A, 16ε, δ)
for all n ∈ N. Thus by Lemma 2.5 and from the inequality (3.6) we have

(3.8) n1 ∈ λ0V(A, 16ε, δ)

for all n ∈ N. Take the number n0 ∈ N such that n0 > 16λ0ε. From Proposi-
tion 2.1(i) and (3.8) we obtain that

1 ∈ V(A, 16λ0εn−1
0 , δ).

Since δ < µ(A) and 16λ0εn−1
0 < 1, from Lemma 2.6 we get 1 6 16λ0εn−1

0 , which
contradicts the inequality n0 > 16λ0ε. This contradiction implies that ∆ ≡ 0, i.e.
D is identically zero on the center of A, and therefore it is Z(A)-linear. The proof
is complete.

REMARK 3.3. A result similar to Lemma 3.2 for the case of linear derivations
has been announced without proof in Proposition 6.22 of [6].

In the case of linear derivations on the algebras A = S(M) or S(M, τ) a
shorter proof of Lemma 3.2 can be obtained also from the following result.

PROPOSITION 3.4. Let M be a properly infinite von Neumann algebra with the
center Z(M). Then the centers of the algebras S(M) and S(M, τ) coincide with Z(M).

Proof. Suppose that z ∈ S(M), z > 0, is a central element and let z =
∞∫
0

λ deλ

be its spectral resolution. Then eλ ∈ Z(M) for all λ > 0. Assume that e⊥n 6= 0 for
all n ∈ N. Since M is properly infinite, Z(M) does not contain non-zero finite
projections. Thus e⊥n is infinite for all n ∈ N, which contradicts the condition z ∈
S(M). Therefore there exists n0 ∈ N such that e⊥n = 0 for all n > n0, i.e. z 6 n01.
This means that z ∈ Z(M), i.e. Z(S(M)) = Z(M). Similarly Z(S(M, τ)) = Z(M).
The proof is complete.
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Let M be a properly infinite von Neumann algebra with the center Z(M)
and let D be a linear derivation on the algebra A = S(M) or S(M, τ). By Propo-
sition 3.4 it follows that Z(A) = Z(M), and therefore ∆ = D|Z(A) is a linear
derivation on the algebra Z(M). By Lemma 4.1.2 of [13] we obtain that ∆ = 0 as
it was asserted in Lemma 3.2.

Proof of Theorem 3.1. Let D : mix(M) → mix(M) be an additive derivation.
By Lemma 3.2 it follows that D is S(Z(M))-linear. From Proposition 1.5 we have
that mix(M) is a C∗-algebra over S(Z((M)) ∼= L0(Ω, Σ, µ). Since D is S(Z(M))-
linear, by Theorem 5 of [4] we obtain that D is a S(Z(M))-bounded, i.e. there
exists c ∈ S(Z(M)) such that ‖D(x)‖ 6 c‖x‖ for all x ∈ mix(M). Take a sequence
of pairwise orthogonal central projections {zn}n∈N in M with

∨
n>1

zn = 1 such that

znc ∈ Z(M) for all n. Then for any x ∈ M we have

‖D(znx)‖ = zn‖D(x)‖ 6 znc‖x‖,

i.e. ‖D(znx)‖ ∈ Z(M). Thus

znD(x) ∈ zn M.

Therefore the operator znD maps each subalgebra zn M into itself for all n ∈ N.
By Sakai’s theorem ([13], Theorem 4.1.6) there exists an ∈ zn M such that

znD(x) = anx− xan, x ∈ zn M.

Set a = ∑
n>1

znan. Then a ∈ mix(M) and D(x) = ax− xa for all x ∈ mix(M). This

means that D is inner. The proof is complete.

From Theorem 3.1 and Proposition 1.1 we obtain the following which gen-
eralizes and extends Theorem 2.7 from [3].

COROLLARY 3.5. Let M be a direct sum of von Neumann algebras of type I∞ and
III. Then every additive derivation on the algebra LS(M) is inner.
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