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ABSTRACT. Let M be an invariant subspace of the multiplication operators
Mz and Mw on the Hardy or Bergman space on D2 = {(z, w) : |z|, |w| < 1},
and S f = PM⊥M f PM⊥ be the compressions on the quotient module M⊥ of
the multiplication operators M f . We study the Schatten–von Neumann, in
particular trace and weak trace class, properties of commutators [S∗f , S f ], and
we prove the trace formulas for the commutators. Similar trace formulas for
Hankel type operators are also obtained.
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1. INTRODUCTION

Trace formulas for commutators of Toeplitz operators are of much interest
as they are closely related to various subjects such as index theory and complex
analysis. There is a well-known formula for Toeplitz operators on the unit disk.
Consider the Bergman or Hardy space on the unit disk D and the Toeplitz opera-
tor Tf with symbol f . Then for holomorphic function f , the trace of the commu-
tator [T∗f , Tf ] is given by the Dirichlet norm of f ,

tr[T∗f , Tf ] =
∫
D

| f ′(z)|2dm(z);

see e.g. [19]. Actually, it is proved in [4] that the same formula holds with the
Bergman space on the unit disk replaced by the Bergman space on any complex
domain Ω defined by a measure µ (under certain mild assumptions). Some fur-
ther generalization of the trace formula for the commutator [S∗, S] of a subnor-
mal operator S was given in [2]. There is a similar trace formula for the anti-
commutator of the 2n-tuple (T∗, T), where T = (T1, . . . , Tn) is an n-tuple of com-
muting operators, see [19], [12], [24] and [26]. In this paper we will prove trace
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and Dixmier trace formulas for certain Hankel and Toeplitz type operators acting
on function modules over the bidisk.

Let H be the Hardy space or a weighted Bergman space of holomorphic
functions on the unit disk. We consider the Hardy or Bergman space H ⊗ H on
the bidisk D2. For an invariant subspace M generated by homogeneous polyno-
mials, we will study the Schatten–von Neumann Lp properties of the quotient
module M⊥, namely the membership in Lp of the operators [S∗f , S f ] for any poly-

nomial symbol f (z, w), where S f is the compression of M f on M⊥. The classi-
fication of those quotients M⊥ with compact properties has been done in [11],
[8], [20], [17]. We will prove that M⊥ is in L1, i.e., in the trace class, precisely
when M = [p] with p being one of the polynomials (z − αw)n+1, (z − βw),
(w − γz) and (z − βw)(w − γz), for some |α| = 1, |β|, |γ| < 1. Moreover, it
is proved that the trace [S∗f , S f ] is given by the Dirichlet norm of the restriction
of f on the zero set of the polynomial p. Note that the trace formula in [4] is
applicable to our case only when p = (z − αw) for |α| 6 1, since for other
cases the operator Sz is not unitarily equivalent to any Toeplitz operator Tf (or
its dual) as in [4] and is even not hyponormal (or co-hyponormal). We will also
study the Hankel type operator Hz from M⊥ to M. The square of its modulus is
|Hz|2 = H∗z Hz = PM⊥ [M

∗
z , Mz]PM⊥ − [S∗z , Sz] and thus measures the discrepancy

between the compression of the commutator and the commutator of the com-
pressions on M⊥. It turns out that there is a subtle difference between the Hardy
case ν = 1 and the weighted Bergman case ν > 1. The operator H∗z Hz is in the
weak trace class L1,∞ but not the trace class for ν = 1. It is in the trace class for
ν > 1. We prove then that the Dixmier trace of H∗f H f is also given by the Dirichlet
norm. The proof of the Lp-properties involves some rather delicate estimates of
eigenvalues of related operators. For the computation of the trace and Dixmier
trace we use certain Möbius invariance which might be somewhat ad hoc. In-
deed some direct computations instead of invariant arguments are also possible,
and they might provide more insights for the study of general non-homogeneous
modules; see Remark 5.12 for a concrete question.

It is worthwhile to mention that there are several related interesting prob-
lems on submodules of the Hardy space on the unit ball Bd generated by homo-
geneous polynomials. In [6] (see also [5]) Arveson conjectures that the opera-
tor [S∗i , Sj] on the quotient module is always in Lp for p > n. This conjecture
has recently been proved to be true for d = 2, 3 by Guo and Wang [18], [16];
roughly speaking the Toeplitz operators on the quotient modules behave as they
are on the unit ball. Thus there would be no trace formula for a single com-
mutator. However we may still consider the question of trace class property of
the anti-commutators of several operators as in [19]. There is also a formula for
the Dixmier trace of the product of commutators of Toeplitz operators on the
unit ball [13] and the same question makes also sense for the quotients. How-
ever the function theory on the bidisk or polydisks is quite different from that
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on the unit ball, in particular the Toeplitz operators on the bidisk are not essen-
tially commuting, and the above conjecture does not hold generally. Our results
rise a natural question of characterizing those quotient modules of the polydisk
which are 1-essentially normal, namely classifying quotient modules with all the
commutators being in the trace class L1.

2. QUOTIENT MODULES [(z− w)N+1]⊥ AND THEIR REALIZATIONS

Consider the functional Hilbert space H = Hν on the unit disk D with the
reproducing kernel Kw(z) = 1

(1−zw)ν for ν > 1. It is the Hardy space H2(T)

(ν = 1) or the weighted Bergman space L2
a(D, dµν−2) (ν > 1); here T is the unit

circle and dµα = cα(1− |z|2)αdm(z) is the normalized measure on D.
The space H⊗H is then the Hilbert space H2(T2) or L2

a(D2, dµν−2×dµν−2)
on the bidisk D2. Let M f be the multiplication operator on H ⊗ H for f ∈
H∞(D2). For an invariant subspace M of the multiplication operators Mz, Mw
on H ⊗ H, we denote

S f = PM⊥M f PM⊥ , H f = PM M f PM⊥

the compression of M f to the quotient module M⊥ and Hankel type operator,
respectively, where PM and PM⊥ are projections from H onto M and M⊥. When
M is generated by homogenous polynomials, the essentially normal properties
(see Section 3 for the definition) of (Sz, Sw) have been studied in [17]. It is proved
that the problem can be reduced to the special class of modules M generated
by (z − w)j. We consider this case first. The compression S f on the quotient
[(z− w)j]⊥ can be realized as certain block matrix acting on direct sum of usual
weighted Bergman spaces. Let us recall briefly this realization; see [15], [23].

For any j > 0, let Mj be the invariant subspace of the tuple (Mz, Mw) gen-
erated by (z− w)j. We will fix N > 0 in the sequel and consider the submodule

M := MN+1 = [(z− w)N+1].

Equivalently, it is the subspace of holomorphic functions in H ⊗ H which are
vanishing along the diagonal of D2 of degree N + 1. Using the filtration

(2.1) MN+1 ⊂ MN ⊂ · · · ⊂ M1 ⊂ M0 = H ⊗ H,

we find

M⊥N+1 =
N⊕

j=0

(Mj 	Mj+1).

Under this decomposition the operator S = Sz on the quotient is a lower triangu-
lar (N + 1)× (N + 1)-matrix S = (Sij) with

Sij = PiSzPj, 0 6 j, i 6 N,
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where Pj is the projection from H⊗ H onto Mj 	Mj+1 for 0 6 j 6 N. The spaces
Mj 	 Mj+1 as well as the multiplication operators on M⊥ have certain Möbius
group invariance, which we shall also need.

Let

SU(1, 1) =
{

g =

[
α β

β α

]
: |α|2 − |β|2 = 1

}
be the Möbius group acting on the unit disk D by

g : z→ g · z = φ̃g(z) =
αz + β

βz + α
.

It induces a unitary action of g ∈ SU(1, 1) on H via

(2.2) πν(g) : f (z) 7→ f (g−1z)(φ̃−1
g )′(z)ν/2.

(The power (φ̃−1
g )′(z)ν/2 can be properly defined for non-integral values of ν

2 so
that g 7→ πν(g) forms a projective representation.) Its action on H ⊗ H is

(2.3) (πν ⊗ πν)(g) : F(z, w) 7→ F(φ̃−1
g z, g−1w)(φ̃−1

g )′(z)ν/2(φ̃−1
g )′(w)ν/2.

Observing that

(gz− gw)j = (z− w)j(φ̃′g(z))
j/2(φ̃′g(w))j/2,

we see that the filtration (2.1) is invariant under the action (2.3). In particular,
the subspaces Mk 	Mk+1 are also invariant. As a representation of SU(1, 1), it is
equivalent to the space H2ν+2k with the action π2ν+2k. We will need a concrete in-
tertwining operator. Let Tk be the following operator from the space holomorphic
functions of two variables into that of one variable,

(2.4) (TkF)(z) = Ck

k

∑
j=0

(−1)k−j
(

k
j

)
∂

j
z∂

k−j
w F(z, z)

(ν)j(ν)k−j
, Ck =

(ν)k√
k!(2ν− 1 + k)k

,

where (α)k = α(α + 1) · · · (α + k − 1) = Γ(α+k)
Γ(α)

is the generalized Pochhammer
symbol. This operator has been well-studied in classical invariant theory and
representation theory (see e.g. [21], [23], [15] and references therein). We recall
two known results; see e.g. Theorem 1.2 of [15] and references therein.

LEMMA 2.1. The operator Tk is a unitary operator from Mk 	 Mk+1 onto the
Bergman space H2ν+2k and intertwines the action πν ⊗ πν with π2ν+2k on H2ν+2k.

An elementary computation shows that the adjoint T∗k of Tk is given by

(2.5) (T∗k f )(z, w) = Ck(z− w)k
∫
D

f (ξ)
1

(1− zξ)ν+k(1− wξ)ν+k
dµ2ν+2k−2(ξ).

It follows that T∗k maps the standard orthonormal basis

(2.6) Em =

√
(2ν + 2k)m

m!
zm
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of H2ν+2k onto the orthonormal basis, of Mk 	Mk+1:

(2.7) ek
m = Ck

√
m!

(2ν + 2k)m
(z− w)k

m

∑
l=0

(ν + k)l
l!

(ν + k)m−l
(m− l)!

zlwm−l .

LEMMA 2.2. The map

N⊕
k=0

Tk : H ⊗ H →
N⊕

k=0

H2ν+2k

induces a Möbius invariant unitary operator

M⊥ =
N⊕

k=0

(Mk 	Mk+1)→
N⊕

k=0

H2ν+2k.

Under this unitary equivalence, the diagonal components Skk are then the Bergman mul-
tiplication on H2ν+2k.

We shall also need the Gauss summation formula for the hypergeometric
series

(2.8)
∞

∑
j=0

(a)j(b)j

(c)j j!
:= F(a, b; c, 1) =

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

and in particular its special case

(2.9)
k

∑
j=0

(α)j(β)k−j

j!(k− j)!
=

(α + β)k
k!

,

which can also be easily proved by binomial expansions.

3. TRACE FORMULAS

Recall that the Schatten–von Neumann class Lp, p > 0, consists of compact
operators T such that the eigenvalues {µn(|T|)}, µ1(|T|) > µ2(|T|) > · · · , of
|T| = (T∗T)1/2 are in lp. In particular, L2 is the Hilbert–Schmidt class, L1 the
trace class and L∞ compact operators. We shall also need the Macaev class Lp,∞,
or the weak Lp class, (see e.g. Example 2.2 of [22]) which consists of all compact
operators T satisfying

µn(|T|) = O(n−1/p) if p > 1;
n

∑
i=1

µi(|T|) = O(log n), if p = 1.

One may also define the Macaev class Lp,q by using the interpolation between
L∞ and L1,∞; see e.g. [22] and Chapter IV of [9].

For a submodule M of H ⊗ H, we say that M⊥ is (p, q)-essentially normal or
simply M⊥ is L(p,q), if all the cross commutators of the operators {S∗z , S∗w, Sz, Sw}
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are in Lp,q (see e.g. [5], [6] for the case of unit ball). We abbreviate (∞, ∞)-
essentially normal as essentially normal or compact.

We observe that the commutators [Sz, Sw] = 0 and [S∗z , S∗w] = 0, and the
definition is only about the L(p,q) property of [S∗z , Sz], [S∗z , Sw], [S∗w, Sw].

In this section we will show the quotient module M⊥ = [(z − w)N+1]⊥ is
L1 and we shall compute the trace of the commutators. Let us recall first the
following result in Proposition 6 of [15].

LEMMA 3.1. The operator Sji, for j > i, realized as the operator Tj MzT∗i from
H2ν+2i → H2ν+2j is a differentiation operator of degree j− i− 1,

(3.1) (Tj MzT∗i f )(z) =
Ci
Cj

(ν + i)j−i

(2ν + 2i)2j−2i−1

(
− ∂

∂z

)j−i−1
f (z),

where (α)k =
Γ(α+k)

Γ(α)
and Ck =

(ν)k√
k!(2ν−1+k)k

.

We shall need to understand the L(p,q) property of the above differential
operators.

LEMMA 3.2. The k-th differentiation

f 7→
( ∂

∂z

)k
f ,

from Hν to Hσ belongs to the Schatten class Lp for p > 1 if and only if p( σ−ν
2 − k) > 1.

It belongs to the weak trace class L1,∞ if and only if σ−ν
2 − k > 1.

Proof. The functions em =
√

(ν)m
m! zm form an orthonormal basis of Hν. The

differentiation maps the basis {em} to a system of orthogonal vectors. In fact,
writing T = ( ∂

∂z )
k, we have

Tem =

0 if m < k,

m(m− 1) · · · (m− k + 1)
√

(ν)m
(σ)m−k

fm−k if m > k,

where fm =
√

(σ)m
m! zm is the orthonormal basis of Hσ. Therefore, T belongs to Lp

and L1,∞ if and only if

∑
m
‖Tem‖p < ∞ and respectively ∑

m6n
‖Tem‖ = O(log n).

A direct calculation shows the following, leading to desired results:

‖Tem‖ ≈ mkm(1/2)(ν−σ) = m−((1/2)(σ−ν)−k).

As a consequence, we see that

(3.2) ‖Sije
j
m‖ 6 C

1
m

, 1 6 j < i 6 N, m = 0, 1, 2, . . .
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for some C independent of i, j, N. Therefore, the operator Sij is in the weak trace
class L1,∞, and in particular in any Lp for p > 1.

THEOREM 3.3. The commutators [S∗z , Sz], [S∗w, Sw] and [S∗z , Sw] are of trace class.
Thus, the quotient module M⊥ is in L1.

Proof. We prove first that [S∗z , Sz] is of trace class. Writing S = Sz as a block
lower triangular (N + 1)× (N + 1)-matrix S = (Sij) with Sij = PiSPj, where Pi
is the projection from H ⊗ H onto Mj 	 Mj+1, we have Sij = 0 for i < j. The
(ij)-entry of the self-adjoint operator [S∗, S] is

(3.3) [S∗, S]ij =
N

∑
k=0

(S∗kiSkj − SikS∗jk).

If i = j, all terms except possibly the term S∗iiSii− SiiS∗ii in the sum in (3.3) are trace
class since Ski is in Lp for any p > 1; but Sii is unitarily equivalent to the Bergman
multiplication operator on H2ν+2i and consequently the commutator S∗iiSii− SiiS∗ii
is also trace class.

Suppose i > j. Again all terms in the sum in (3.3) are trace class for Sji = 0
and Ski ∈ L1,∞ if k 6= i, except possibly the terms with k = i, j. In the latter case
the sum is

W := S∗iiSij − SiiS∗ji + S∗jiSjj − SijS∗jj = S∗iiSij − SijS∗jj.

We now compute its action on the orthonormal basis Em = zm

‖zm‖2ν+2j
. We write

( ∂
∂z )

i−j−1zm = p(m)zm−(i−j−1), where p(m) is a polynomial in m of degree i− j−
1 with leading term mi−j−1. By direct computations we have

W(zm) = c(m)zm−1−(i−j−1)

with

c(m) = p(m)
m− (i− j− 1)

2ν + 2i + m− (i− j− 1)− 1)
− p(m− 1)

m
2ν + 2j + m− 1

.

As a rational function of m, it is clear that the leading term mi−j−1 cancels each
other, and c(m) is of lower order mi−j−2,

|c(m)| ≈ mi−j−2.

Observing that ‖zm‖σ ≈ m(1−σ)/2 we get

‖W(Em)‖2ν+2i ≈ m−2,

proving that W is of trace class.
Since the operator Sw is also a lower triangular matrix and the (ij) entries

of it differ only by a factor of (−1)i−j, the same proof works also for [S∗w, Sw] and
[S∗z , Sw].
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For any polynomials F(z, w) and G(z, w) the commutator [S∗F, SG] is then
also trace class, as it can be seen by using

[AB, C] = A[B, C] + [A, C]B.

We prove below a trace formula for [S∗F, SF].

THEOREM 3.4. Let F(z, w) be a polynomial in (z, w) and f (z) = F(z, z) be its
restriction to the diagonal. Then

Tr[S∗F, SF] = (N + 1)
∫
D

| f ′(z)|2dm(z).

We divide the proof into some elementary lemmas.

LEMMA 3.5. Let G(z, w) = (z − w)g(z, w) for some polynomial g. Then the
operators [S∗G, S f ] are of trace class for any polynomial f (z, w) and Tr[S∗G, S f ] = 0.

Proof. The multiplication by G(z, w) = (z− w)g(z, w) maps Mi into Mi+1,
thus SG is a lower triangular matrix with diagonal entries being 0, with the (ij)-
entry Tij being Hilbert–Schmidt, by Proposition 3.3. Denoting S f = (Sjk), the
(ii)-entry of [S∗G, S f ] is

∑
j>i

T∗jiSji −∑
j<i

SijT∗ij ,

where each term is of trace class since both Sij and Tij are Hilbert–Schmidt. Taking
trace and summing over i we see that it is zero due to the anti-symmetry of the
sum.

The following lemma is elementary and known as the uniqueness of Möbius
invariant spaces; see [3]. It can also be proved by elementary computations using
the skew-adjointness of the Lie algebra elements on group-invariant pre-Hilbert
spaces. (A much general form is known as Schur’s lemma [10] for irreducible
representations of semisimple Lie algebra).

LEMMA 3.6. Let ‖ · ‖ be a pre-Hilbert norm on a space of analytic functions, which
includes all polynomials. If ‖ · ‖ is invariant under the action of the Lie group of SU(1, 1)
via change of variables, that is

‖ f (z)‖ = ‖ f (g · z)‖, for g in SU(1, 1), f polynomial,

then it is the Dirichlet norm,

‖ f ‖2 = c
∫
D

| f ′(z)|2dm(z), for f polynomial,

for some constant c > 0.

Now we prove Theorem 3.4.

Proof. Writing f (z) = F(z, z), we claim

Tr[S∗F, SF] = Tr[S∗f , S f ].
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Indeed F(z, w) = f (z) + G(z, w), with G(z, w) = (z− w)g(z, w) for some poly-
nomials g(z, w). By Lemma 3.5,

Tr[S∗F, SF] = Tr[S∗f , S f ] + Tr[S∗f , SG] + Tr[S∗G, S f ] + Tr[S∗G, SG] = Tr[S∗f , S f ].

It follows from the proof of Theorem 3.3 and the invariance of Tr[S∗f , S f ] under

rotations f (z) → f (eiθz) that the trace Tr[S∗f , S f ] is sum of Tr[S∗zn , Szn ] with non-
negative coefficients, and each Tr[S∗zn , Szn ] is nonnegative. Thus the trace defines
an pre-Hilbert norm on the space of all polynomials f (z). Moreover, for any
Möbius transformation φ and g(z) = f (φ(z)), we have that S f and Sg are unitar-
ily equivalent. Thus the trace Tr[S∗f , S f ] is Möbius invariant whenever it exists.
Therefore, according to the previous lemma, [S∗f , S f ] is a constant multiple of the
Dirichlet norm for polynomial f , and the constant can be evaluated by taking
F(z, w) = z.

4. THE TRACE AND DIXMIER TRACE OF HANKEL TYPE OPERATORS

We recall very briefly the Dixmier trace on the weak trace class L1,∞. There
exist ([9], Chapter IV) linear functionals trω : L1,∞ → C, depending on certain
functionals ω on the space of bounded continuous functions over the half line
[1, ∞), called Dixmier traces, which are similar to the usual trace. In particular
for a positive operator T with eigenvalues µn,

(4.1) trω(T) = lim
n→∞

∑n
k=1 µk

log n

whenever the limit exists. It satisfies trω(AB) = trω(BA), and trω(T) = 0 if T is
of trace class.

In this section we will prove that the operator H∗z Hz is in the weak trace class
L1,∞ in the case of the Hardy space (ν = 1), and we shall compute the Dixmier
trace trω H∗f H f and show it is independent of the linear functional ω.

THEOREM 4.1. Suppose ν > 1. For any polynomial f (z) we have

Tr H∗f H f = c
1
π

∫
D

| f ′(z)|2dm(z)

where c =
N
∑

i=0
ci and ci =

∞
∑

m=0
‖PM Mzei

m‖2.

We consider the case f (z) = z first.

LEMMA 4.2. Suppose ν > 1. The operator H∗z Hz is a trace class operator.



520 KUNYU GUO, KAI WANG AND GENKAI ZHANG

Proof. Since H∗z Hz is a positive operator, we need only to prove that each
Pi H∗z HzPi is a trace class operator, which is equivalent to that the series

(4.2) ci :=
∞

∑
m=0
‖PM Mzei

m‖2 =
∞

∑
m=0

∑
j>i+1

‖Pj Mzei
m‖2

is convergent. In terms of the basis Em =
√

(2ν+2i)m
m! zm of H2ν+2i, we have by

Lemma 3.1

‖Pj Mzei
m‖2 = ‖Tj MzT∗i Em‖2

=
C2

i
C2

j

( (ν + i)j−i

(2ν + 2i)2j−2i−1

)2 (2ν + 2i)m

m!

∥∥∥(− ∂

∂z

)j−i−1
zm
∥∥∥2

2ν+2j
,

with (the norm being computed in H2ν+2j)∥∥∥(− ∂

∂z

)j−i−1
zm
∥∥∥2

2ν+2j
= (m(m− 1) · · · (m− j + i + 2))2 (m− j + i + 1)!

(2ν + 2j)m−j+i+1

=
(m!)2

(m− (j− i− 1))!(2ν + 2j)m−(j−i−1)
,

which is nonzero only for m > j− i− 1. Writing all terms using Gamma function
we find that ‖Pj Mzei

m‖2 is, apart from the constants independent of the summa-
tion index j and m, equal to

j!(2ν− 1 + j)j(ν + i)2
j−im!(2ν + 2i)m

(ν)2
j (2ν + 2i)2

2j−2i−1(m− (j− i− 1))!(2ν + 2j)m−(j−i−1)
.

To sum the double series
∞
∑

m=0
∑

j>i+1
in (4.2) we change variables m = j− i− 1 + p,

with j > i + 1, p > 0 and write it as ∑
j>i+1

∞
∑

p=0
. The factors depending on p are

m!(2ν + 2i)m

(m− j+i+1)!(2ν+2j)m−j+i+1
=(j−i−1)!(2ν+2i)j−i−1

(j− i)p(2ν+ j+i−1)p

p!(2ν + 2j)p

=Γ(j−i)
Γ(2ν+ j+i−1)

Γ(2ν+2i)
(j−i)p(2ν+ j+i−1)p

p!(2ν + 2j)p
.

The sum over p,
∞

∑
p=0

(j− i)p(2ν + j + i− 1)p

p!(2ν + 2j)p

is the hypergeometric series F(j− i, 2ν + j + i− 1; 2ν + 2j; 1), which is convergent
and whose value, again by the Gauss summation formula, is

Γ(2ν + 2j)
Γ(2ν + j + i)Γ(j− i + 1)

.
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The factors
(ν+i)j−i
(ν)j

are bounded and the summation over j is equivalent to

∑
j>n+1

Γ(2ν + 2j)Γ(j + 1)Γ(j− i)Γ(2ν + j + i− 1)
Γ(2ν + 2j− 1)Γ(2ν− 1 + j)Γ(2ν + j + i)Γ(j− i + 1)

= ∑
j>n+1

(2ν + 2j− 1)
(j− i)(2ν + j + i− 1)

Γ(j + 1)
Γ(2ν− 1 + j)

.

Each term can be estimated using the Stirling formula,

(2ν + 2j− 1)
(j− i)(2ν + j + i− 1)

Γ(j + 1)
Γ(2ν− 1 + j)

≈ 1
j2ν−1 ,

and thus the series is convergent if and only if ν > 1.

Now we prove Theorem 4.1. The operator H∗f H f is a trace class operator for
any polynomial f (z). To see this we let, for any bounded holomorphic function
F(z, w),

RF = MF|M, SF = PM⊥MF|M⊥
be the restriction on the submodule M = [(z− w)N+1] and compression on the
quotient M⊥ of MF. An easy matrix computation show that

Hz2 = Rz Hz + HzSz.

Since Hz ∈ L2 from Lemma 4.2 we have Hz2 ∈ L2. Similarity, Hzn ∈ L2 for any
n. This implies that H∗f H f is also a trace class operator for any polynomial f (z).
Therefore,

( f , g)→ Tr H∗g H f

defines an invariant pre-Hilbert norm on the space of all polynomials f (z). For
any Möbius transformation φ and g(z) = f (φ(z)), we have that H f and Hg are
unitarily equivalent. Thus the trace of H∗f H f is Möbius invariant whenever it
exists. Now Theorem 4.1 can be proved by using the same method as that of
Theorem 3.4.

We consider now the case ν = 1. We need some simple facts on the com-
putation of the Dixmier trace. We call an operator T on H sub-diagonal if there
exist an orthonormal basis {ei}∞

i=1 of H and an integer N such that 〈Tei, ej〉 = 0
for |i− j| > N.

LEMMA 4.3. Suppose T is sub-diagonal with the corresponding orthonormal basis
{ei}∞

i=0. If T ∈ L1,∞ and 〈Tei, ei〉 = 0 for any i > 0, then Trω T = 0.

Proof. Since a sub-diagonal operator T is a sum of finitely many unilateral
shift operators, it suffices to consider the case that T is a weighted unilateral
shift satisfying T ∈ L1,∞ with weight {0, a1, 0, a3, 0, . . .}. We have then Trω(T +
T∗) = 0. In fact, a direct computation shows that the eigenvalues of T + T∗ are
{−|a1|, |a1|,−|a3|, |a3|, . . .}. This implies that the positive part (T + T∗)+ and neg-
ative part (T + T∗)_ of T + T∗ have the same eigenvalues distribution. Therefore,
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Trω(T + T∗)+ = Trω(T + T∗)_ and Trω(T + T∗) = 0. A similar argument shows
that Trω

T−T∗
i = 0. Thus Trω T = 0, as desired.

PROPOSITION 4.4. Let ν = 1. The operator H∗z Hz is in the weak trace class L1,∞

but not in L1, and Trω H∗z Hz = (N + 1)2.

Proof. By the definition of the operator ideal Lp,∞, it suffices to show that

the Hankel operator Hz =
N
∑

i=0
PM MzPi ∈ L2,∞. The operator Pi M∗z PM MzPi =

(PM MzPi)
∗(PM MzPi) is diagonal under the orthonormal basis {ei

m} given in (2.7),
and we need only to show that

‖Pi M∗z PM MzPiei
m‖ = ‖PM MzPiei

m‖2 = O
( 1

m

)
.

As Pk MzPl = 0 for k < l we have

PM MzPi = (I − P0 − · · · − PN)MzPi = (I − Pi − Pi+1 − · · · − PN)MzPi

= (I − Pi)MzPi − Si+1,i − · · · − SN,i,

and consequently

(4.3) ‖PM Mzei
m‖2 = ‖(I − Pi)Mzei

m‖2 − ‖Si+1,iei
m‖2 − · · · − ‖SN,iei

m‖2.

The first term above is

‖(I − Pi)Mzei
m‖2 = ‖Mzei

m‖2 − ‖Pi Mzei
m‖2 = 1− ‖Si,iei

m‖2 = 1− m + 1
2 + 2i + m

=
1 + 2i

2 + 2i + m
=

1 + 2i
m

+ O
( 1

m2

)
,

where we have used Lemma 2.2 that Si,i is unitarily equivalent to the multiplica-
tion operator by z on H2+2i, and the fact that Mz is an isometry when ν = 1. The
remaining terms are estimated in (3.2), viz

‖Sk,iei
m‖2 6 C

1
m2 , 0 6 i < k 6 N.

Thus

‖Pi M∗z PM MzPiei
m‖ = ‖PM MzPiei

m‖2 =
1 + 2i

m
+ O

( 1
m2

)
,

and the operator PM MzPi ∈ L2,∞. This completes the proof of the first claim.
Furthermore, by Lemma 4.3 we have the following that complets the proof:

trω H∗z Hz = trω

N

∑
i=0

Pi M∗z PM MzPi =
N

∑
i=0

(1 + 2i) = (N + 1)2.

By similar methods as in the proof of Theorem 4.1 we can prove that H∗f H f

is in L1,∞. To compute its Dixmier trace we observe that

H∗f H f = PM⊥ [M
∗
f , M f ]PM⊥ − [S∗f , S f ],

and thus trω PM⊥ [M
∗
f , M f ]PM⊥= trω H∗f H f , since [S∗f , S f ]∈L1. We have therefore
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THEOREM 4.5. Let ν = 1. For any polynomial f (z) we have

trω H∗f H f = trω PM⊥ [M
∗
f , M f ]PM⊥ = (N + 1)2 1

π

∫
D

| f ′(z)|2dm(z).

5. SUBMODULES OF HARDY SPACES GENERATED BY HOMOGENEOUS POLYNOMIALS

In this section we consider a submodule M of Hν ⊗ Hν generated by ho-
mogeneous polynomials. For computational convenience, we shall only consider
the case ν = 1, i.e., the Hardy space on the bidisk. As is shown in [25], [7], up
to a finite dimensional subspace, M is of the form M = [p] for a single homoge-
neous polynomial p with p = p1 p2, where the zero sets Z(p1) and Z(p2) have the
properties that

(5.1) Z(p1) ∩ ∂D2 = Z(p1) ∩ T2

and respectively

(5.2) Z(p2) ∩ ∂D2 = Z(p2) ∩ (∂D2 \ T2),

where ∂D2 is the topological boundary of D2, so that ∂D2 \ T2 = (T×D) ∪ (D×
T). We recall the following result from [17].

THEOREM 5.1. The quotient module [p]⊥ is compact if and only if p = p1 p2,
with p2 being one of the following polynomials:

1, (z− αw), (w− βz), (z− αw)(w− βz), for |α| < 1, |β| < 1.

We will thus only consider quotient modules classified in the above theorem
and study further their Lp,q properties, in particular their trace class properties.

THEOREM 5.2. Suppose M = [p] with p as in Theorem 5.1.
(i) The quotient module is trace class if and only if p is one of the following polyno-

mials:
(z− α1w)n+1, (z− αw), (w− βz), (z− αw)(w− βz),

with |α1| = 1, |α| < 1, |β| < 1.
(ii) The quotient module is in the weak trace class if and only if p is one of the following

polynomials:
k

∏
j=1

(z− αjw)nk+1, (z− αw), (w− βz), (z− αw)(w− βz),

with |αj| = 1, ∀j, and |α| < 1, |β| < 1.

We divide the proof into several steps. We note that the results in the
previous sections are clearly valid for the submodule M = [p] generated by
p = (z − αw)n+1 for some α with |α| = 1. We consider first the case when
p = z− αw with |α| < 1.
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LEMMA 5.3. Let p = z− αw for some |α| < 1. On the quotient module M⊥ =
[p]⊥, we have that Sz = αSw and Sw is unitarily equivalent to the multiplication operator
Mw on the Bergman space L2

a(D, dµ), where µ is a probability measure defined by

dµ(reiθ) =
1− |α2|

2π

( ∞

∑
j=0
|α2j| δ|α|j(r)

)
× dθ,

where δx is the delta measure supported at x. In particular, the quotient M⊥ ∈ L1.

Proof. By direct computation, the polynomials

(5.3) en,α(z, w) := en(z, w) :=

√
1− |α2|

1− |α2|n+1
(αz)n+1 − wn+1

αz− w

form an orthonormal basis for the space M⊥ (see [17]). The operator Sw on en is a
weighted shift

Swen =

√
1− |α2|n+1

1− |α2|n+2 en+1.

On the other hand the functions {wn} form an orthogonal basis and its norm
square in L2

a(D, dµ) is

‖wn‖2 = (1− |α2|)
∞

∑
j=0
|α2|j|α|2nj = (1− |α2|) 1

1− |α2|n+1 ,

from which it follows that the mapping en 7→ wn

‖wn‖ realizes the unitary equiva-
lence of the operators Sw and Mw.

REMARK 5.4. If M = [z− αw] as above we have

Tr[S∗f (w), S f (w)] =
∫
D

| f ′(w)|2dm(w)

by the general result in [4]. For any polynomial F(z, w) we have

Tr[S∗F, SF] =
∫
D

| f ′(w)|2dm(w), f (w) = F(αw, w)

since Sz = αSw. Also the above results are obviously valid in the case of p =
w− βz for some |β| < 1.

Now we consider the general cases. For the conceptual clarity we introduce
the following; see [17] for the compact case, namely when (p, q) = (∞, ∞).

DEFINITION 5.5. Let N1 and N2 be two closed subspaces of a Hilbert space
N and P1, P2 the corresponding orthogonal projections. They are called (p, q)-
orthogonal if P1P2 ∈ Lp,q.

The definition is clearly independent of the Hilbert space N.
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PROPOSITION 5.6. Let N, N1 and N2 be three quotient modules of H ⊗ H such
that N1 + N2 is dense in N. If N1 and N2 are (p, q)-orthogonal and (p, q)-essentially
normal, then N is also (p, q)-essentially normal.

Proof. Let P1, P2, P denote the projections from H ⊗ H onto N1, N2, N re-
spectively. Then P1P2 ∈ Lp,q. This implies [17] in particular that P1P2 is compact
and hence N1 + N2 is closed and N1 ∩ N2 is of finite dimension. Without loss of
generality we may assume N1 ∩ N2 = 0 and then N = N1+̇N2 is a direct sum
decomposition.

Define Q := P1 + P2 : N → N. Q is then an invertible operator on N.
Moreover,

Q(P−Q) = Q2 −Q = P1P2 + P2P1

is in Lp,q, and so is also P−Q = P− (P1 + P2).
Let SN1

f := PN1 M f |N1 , SN2
f := PN2 M f |N2 , SN

f := PN M f |N be the compres-
sions of the multiplication operator M f with symbol f on N1, N2, N, respectively.
For any polynomial f the commutators

[SN1∗
f , SN1

f ], [SN2∗
f , SN2

f ] ∈ L(p,q)

since N1, N2 is (p, q)-essentially normal. Moreover, since N1, N2 are co-invariant
subspaces and Q− P, P1P2 ∈ L(p,q), we have

SN
f − SN1

f − SN2
f = (PM f P−QM f Q) + (QM f Q− P1M f P1 − P2M f P2)

= (PM f P−QM f Q) + P1M f P2 + P2M f P1

= (PM f P−QM f Q) + P1M f P1P2 + P2M f P2P1 ∈ L(p,q).

This implies that [SN∗
f , SN

f ] ∈ L
(p,q) for any polynomial f . In particular, [SN∗

z , SN
z ],

[SN∗
w , SN

w ] ∈ L(p,q). Furthermore,

[SN∗
z , SN

w ]=
1
4
{[SN∗

z+w, SN
z+w]−[SN∗

z−w, SN
z−w]+i[SN∗

z+i w, SN
z+i w]−i[SN∗

z−i w, SN
z−i w]}∈L(p,q).

Therefore, the quotient module N is L(p,q), as desired.

LEMMA 5.7. (i) The subspaces [(z− αw)n+1]⊥ and [(z− βw)N+1]⊥ are (1, ∞)-
orthogonal if α 6= β, |α| = |β| = 1.

(ii) The subspaces [z− αw]⊥ and [(z− βw)n]⊥ are (2, ∞)-orthogonal if |α|< |β|=1.
(iii) The subspaces [z − αw]⊥ and [(w − βz)]⊥ are p-orthogonal for all p > 0 if
|α|, |β| < 1.

Proof. (i) By the rotational invariance we may assume β = 1. Let P, P′ be
the orthogonal projection onto [(z−w)N+1]⊥, [(z− αw)n+1]⊥, respectively. Then

P =
N

∑
i=0

Pi, P′ =
n

∑
j=0

P′j ,
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where Pi and P′j are the orthogonal projections onto [(z− w)i+1]⊥ 	 [(z− w)i]⊥

and [(z− αw)j+1]⊥ 	 [(z− αw)j]⊥, respectively. Denote {ẽ i
m, m = 0, 1, . . .}N

i=0 the

orthonormal basis [(z − w)N ]⊥ =
N
∑

i=0
[(z − w)i+1]⊥ 	 [(z − w)i]⊥ given in (2.7).

Replacing z by αz we get an orthonormal basis {ej
m, m = 0, 1, . . .}n

j=0 of [(z −
αw)n+1]⊥. Then

(5.4) Pi =
⊕
m>0

ẽ i
m ⊗ ẽ i

m, P′j =
⊕
m>0

ej
m ⊗ ej

m.

Here u⊗ v denotes as usual the rank one operator x → (x, v)u.
We claim that

(5.5) ‖Pem‖ 6 C
1
m

for some C independent of m. This implies then the required result that P′P ∈
L1,∞. In fact, by the rotational invariance and (5.4),

|P′j Pi|2 = PiP′j Pi =
⊕
m>0

Pie
j
m ⊗ Pie

j
m =

⊕
m>0
|〈ẽ i

m+j−i, ej
m〉|2 ẽ i

m+j−i ⊗ ẽ i
m+j−i.

Therefore, |P′j Pi| =
⊕

m>0
|〈ẽ i

m+j−i, ej
m〉| ẽ i

m+j−i⊗ ẽ i
m+j−i. The estimate (5.5) concludes

that |〈ẽ i
m+j−i, ej

m〉| = O( 1
m ). Hence |P′j Pi| ∈ L1,∞ and P′P ∈ L1,∞.

The proof of (5.5) involves some rather delicate computations. To ease the
notation, we will suppress the index k in ek

m since only m is relevant. We write
em as

em = cm

m

∑
l=0

am,l(αz− w)k(αz)lwm−l , m = 0, 1, . . . .

Here

cm =
k!√

k!(1 + k)k

√
m!

(2 + 2k)m
= Cm−(2+2k−1)/2

(
1 + O

( 1
m

))
for some C independent of m, and am,l =

(1+k)l
l!

(1+k)m−l
(m−l)! . We rewrite am,l as

am,l =
1

k!2
(l + 1) · · · (l + k) (m− l + 1) · · · (m− l + k)

=
1

k!2
(lk + c1lk−1 + · · ·+ ck)((m− l)k + c1(m− l)k−1 + · · ·+ ck).

Thus a(m, l) is a linear combination of lk1(m − l)k2 , k1, k2 6 k with coefficients
independent of (m, l). Similarly (αz− w)k is such a linear combination of zk3 wk4

with k3 + k4 = k. Thus the function em above is a linear combination of the
functions

e′m := e′m(k1, k2, k3, k4) := cm

m

∑
l=0

lk1(m− l)k2 αlzk3+lwk4+m−l , m = 0, 1, . . .
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with coefficients dominated by constants independent of m and l. To obtain (5.5),
it suffices to show

‖Pe′m‖ 6 C
1
m

.

Here as well as below C denote any constant independent of (m, l).
By Lemma 2.1 we have

P =
N

∑
j=0

T∗j Tj.

We shall estimate ‖Tje′m‖ and prove that

‖Tje′m‖ 6 C
1
m

,

which then implies the estimates for ‖Pe′m‖ and ‖Pem‖.
By the rotational invariance of Tje′m, we see that Tje′m is a scalar multiple

of zm+k−j in the Bergman space H2+2j. Now Tj is a linear combination of the

differential operators f (z, w) 7→ (∂i
z∂

j−i
w f )(z, z), and each operator maps e′m to

cmdmzm+k−j with

dm =
m

∑
l=0

bm(l) αl ,

here

bm(l) := lk1(l + k3) · · · (l + k3 − i + 1)

× (m− l)k2(m− l + k4) · · · (m− l + k4 − (j− i) + 1)

is a polynomial of l. (To ease notation we have suppressed indexes k1, k2, k3, k4 6
k within dm and bm(l)).

The series dm is a trigonometric series in α with coefficients bm(l). We will
use now the Abel partial summation formula 2k + j times to reduce dm to the

geometric series
m
∑

l=0
αl multiplied by mq with q 6 k + j. To bound the boundary

terms in the Abel partial summation we need to keep track of the evaluations
of discrete differentiation bm(l) as a function of l at the end points l = 0 and
l = m. We write ∂b(l) := b(l)− b(l + 1) for the discrete differentiation. The key
observation is that the differentiations ∂qbm(l) of all degrees q at the point l = 0
and m are all dominated by mk+j, namely

(5.6) |∂qbm(l)| 6 Cmk+j, l = 0, m, q 6 2k + j

with C independent of m. We prove this for the end point l = 0 and the other
end point is exactly the same by changing the variable l to m− l. If q = 0 then
∂qbm(l) = bm(l), and its values at the end point l = 0 are zero unless k1 = 0 in
which case

bm(0)= k3 · · · (k3−i+1)mk2(m + k4) · · · (m + k4− j+i+1)6Cmk2+j−i6Cmk+j,
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and (5.6) is indeed true. For general q 6 2k + j we observe that bm(l) is a poly-
nomial in l of maximum degree 2k + j with coefficients being polynomials of m
of maximum degree k + j. Each discrete differentiation in l reduces the degree of
bm(l) by one whose evaluation at l = 0 is still a polynomial of m of maximum
degree k + j. Repeating the argument we see that (5.6) is true as 2k + j is fixed
and independent of m.

We perform now the Abel summation. Notice the partial sums of the series

∑
j

α j are 1−α l+1

1−α = 1
1−α −

α
1−α α l , which is again a geometric series apart from the

constant term. Thus for m > 2k + j,

dm =
m−1

∑
l=0

∂bm(l)
1− α l+1

1− α
+ bm(m)

1− α m+1

1− α

=
−α

1− α
d′m +

1
1− α

bm(0) + bm(m)
−α m+1

1− α

with the leading term

d′m :=
m−1

∑
l=0

∂bm(l)α l ,

which is again a trigonometric series of α and its coefficients ∂lbm(l) are polyno-
mials of l of maximum degree 2k + j− 1. Using (5.6) we see that the error term∣∣∣ 1

1− α
bm(0) + bm(m)

−α m+1

1− α

∣∣∣ 6 Cmk+j.

Thus
|dm| 6 |d′m|+ Cmk+j.

Applying the partial summation 2k + j times we see that |dm| 6 Cmk+j. Conse-
quently

|cmdm| 6 Ccmmk+j 6 Cm−(2+2k−1)/2mk+j = Cm−(1/2)+j.

The norm Tjem is then

‖Tje′m‖ = ‖dmzm+k−j‖ 6 Cm−(1/2)+jm−(2j+1)/2 = Cm−1,

completing the proof.
(ii) Using the similar argument as in (i), we see the inner product of em with

em+j,α(z, w) in (5.3) satisfies

|〈em, em+j,α〉| 6 C
1√
m

.

Let P be the orthogonal projection onto |(z− αw)]⊥. Then

‖Pem‖ 6 C
1√
m

,

which implies the desired result by the similar argument as in (i).
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(iii) We may assume 1 > |α| > |β|. The polynomials en in (5.3) and

fn(z, w) =

√
1− |β2|

1− |β2|n+1
(βw)n+1 − zn+1

βw− z

form an normalized basis of the subspaces [z − αw]⊥ and [(w − βz)]⊥, respec-
tively. It is easy to see that

|〈en, fn〉| 6 Cn|α|n

for some constant C independent of n. Thus P2P1 ∈ Lp for any p > 0, where
P1, P2 are the projections of [z− αw]⊥ and [(w− βz)]⊥ respectively.

REMARK 5.8. Let p =
k

∏
j=1

(z − αj w)nj with |αj| 6 1 and P the orthogonal

projection onto [p]⊥. Note that our proof depends only on the estimates of a
trigonometric series. The same proof and its iteration then yield the following
estimate: For the given basis of em of [(z− αw)n], with |α| = 1 and α not being
one of αj,

(5.7) ‖P(M∗z )
a Mb

zem‖ 6 C
1
m

,

if all |αj| = 1;

(5.8) ‖P(M∗z )
a Mb

zem‖ 6 C
1√
m

,

if one of |αj| < 1. Here a, b are non-negative integers.

LEMMA 5.9. Suppose S is a (p, q)-essentially normal operator on N, and N =

N1 ⊕ N2 with N2 being an invariant subspace of S. Write S =
(

S1 0
S21 S2

)
with S1 =

PN1 S|N1 , S2 = S|N2 . If one of the operators S1 and S2 is (p, q)-essentially normal then
so is the other.

Proof. Indeed, [S∗, S] has diagonal entries [S∗1 , S1] + S∗21S21 and [S∗2 , S2] −
S21S∗21, which are all in Lp,q since [S∗, S] is. Thus if one of the commutators, say
[S∗1 , S1] is in the class, then so is S∗21S21, and consequently S21S∗21 and [S∗2 , S2] are
in the same class.

We consider now the module generated by a polynomial with two simple
factors (z− w) and (z− αw).

LEMMA 5.10. Let M = [p], p = (z− w)(z− αw).
(i) If α 6= 1, |α| = 1 then the quotient module M⊥ = [p]⊥ is L1,∞, but not L1-

essentially normal.
(ii) If |α| < 1 then the quotient module M⊥ = [p]⊥ is L2,∞, but not L2-essentially

normal.
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Proof. The positive part of the two claims are consequences of Lemmas 5.3
and 5.7, Proposition 5.6, and the results of Section 3. To prove the negative claim
in (i) we choose the orthonormal basis fn(z, w) = 1√

n+1
zn+1−wn+1

(z−w)
of [(z− w)]⊥,

and en = (αz)n+1−wn+1

(αz−w)
√

n+1
of [(z− αw)]⊥ as before. Let Sz = PM⊥Mz|M⊥ . We compute

the inner product 〈([S∗z , Sz] fn, en,α〉 and find that

〈[S∗z , Sz] fn, en,α〉 =
α− 1

n
+ O

( 1
n2

)
;

we omit the elementary routine computation. Thus, by Theorem 1.4.8 of [27], the
operator [S∗z , Sz] is not in L1 .

The similar argument works also for the negative claim in (ii). Let e′n be the
orthonormal basis of [(z− αw)]⊥ given by (5.3) for |α| < 1. A direct computation
shows that

〈[S∗z , Sz] fn, e′n,α〉 =
(α− 1)

√
1− |α2|√
n

+ O
( 1

n

)
;

Thus [S∗z , Sz] is not in L2.

We prove now Theorem 5.2.

Proof. The sufficiency is a consequence of Theorem 3.3, Lemmas 5.3, Propo-
sition 5.6 and Lemmas 5.7. We prove now the necessity in part (i), and part (ii) is
the same.

Let p = p1 p2 be as in Theorem 5.1. We consider two cases.
Case 1. p2 = 1, that is, p = p1 = (z− α1w)n1 · · · (z− αlw)nl with different

α1, . . . αm and |α1| = · · · = |αl | = 1. We will prove that if S := Sz is 1-essentially
normal then l = 1, i.e., p = (z − α1w)n1 with only one factor of multiplicity
n1. Suppose the contrary, that l > 1. We prove that sub-quotient module [(z−
α1w)(z− α2w)]⊥ is 1-essentially normal, a contradiction to Lemma 5.10(i).

Denote the last factor (z− αlw)nl by (z− αw)k+1, k > 0, and write

p = (z− α1w)n1 · · · (z− αw)k+1 = q(z− αw),

q = (z− α1w)n1 · · · (z− αl−1w)nl−1(z− αlw)k.

We decompose N as

N = [p]⊥ = N1 ⊕ N2, N1 = [q]⊥, N2 = N 	 N1.

Then N2 is an invariant subspace of S and S is a lower triangular matrix under
the above decomposition,

S =

(
S1 0
S21 S2

)
,

where S2 = S|N2 and Sz = PN1 S|N1 . We will prove by using Lemma 5.9 that S2
and thus S1 is 1-essentially normal.
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Let em be the orthonormal basis of [(z− αw)k+1]⊥ 	 [(z− αw)k]⊥ given in
(2.7). We claim that P := PN1 satisfies

(5.9) ‖Pem‖ 6 C
1
m

, ‖PSem‖ 6 C
1
m

, ‖PS∗em‖ 6 C
1
m

.

We factorize q further as

q = q1(z− αw)k, q1 := (z− α1w)n1 · · · (z− αl−1w)nl−1 .

Thus M1 := [(z− αw)k]⊥, and M2 := [q1]
⊥ are two subspaces of N1 and N1 =

M1 + M2; M1 and M2 are L1,∞ orthogonal, by Lemma 5.7, and the sum P1 + P2 of
the corresponding projections P1 := PM1 and P2 := PM1 is then invertible on N1.
Thus there exists an operator T such that

(5.10) T(P1 + P2) = P.

Moreover, by (3.2), we have that

(5.11) P1em = 0, P1Sem = 0, ‖P1S∗em‖ 6 C
1
m

.

Recall the formula (5.7) that,

(5.12) ‖P2em‖ 6 C
1
m

, ‖P2Sem‖ 6 C
1
m

, ‖P2S∗em‖ 6 C
1
m

.

The claim (5.9) follows immediately from the formulas (5.10), (5.11), and (5.12).
Let e′m = cm(em − Pem) be the normalized projection of em on the subspace

N2, where cm = 1
‖em−Pem‖ . It is easy to show that {e′m}∞

m=0 is an orthonormal basis
of N2; the orthogonality followed by the different homogeneous degrees of em
and the invariance of P under the circle action. The operator S is then a weighted
shift on N2, i.e,

S2e′m = 〈S2e′m, e′m+1〉e′m+1 = 〈Se′m, e′m+1〉e′m+1

with

〈Se′m, e′m+1〉= cmcm+1〈S(em − Pem), em+1 − Pem+1〉
= cmcm+1(〈Sem, em+1〉−〈Sem, Pem+1〉−〈SPem, em+1〉+〈SPem, Pem+1〉).

The first term 〈Sem, em+1〉 above, by Lemma 2.2, is

〈Sem, em+1〉 = 〈Mzem, em+1〉 =
√

m + 1
1 + 2k + m

= 1 +
1
m

+ O
( 1

m2

)
.

since the compression of S acting on {em} is the Bergman shift Mz in the space
H2+2k. The remaining terms are all of order O( 1

m2 ) in view of (5.9) and the
Schwartz inequality. The normalization constant cm = (1− ‖Pem‖2)−1/2 = 1 +

O( 1
m2 ) by the estimate (5.5). Putting those computations together we have proved

S2e′m =
(

1 +
1
m

+ O
( 1

m2

))
e′m+1,
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and that [S∗2 , S2] is of trace class. From Lemma 5.9, S1 = PN1 SPN1 = P[q]⊥MzP[q]⊥
is also 1-essentially normal.

By continuing this procedure of restricting the action of S on sub-quotient
modules, we prove that [(z− α1w)(z− α2w)] is 1-essentially normal, contradict-
ing to Lemma 5.10(i).

Case 2. p2 = z− αw or (z− αw)(w− βz). This can be treated by the same
method and we omit the details here. (Actually one can prove that the corre-
sponding quotient [p]⊥, p = p1 p2, is in L2,∞, but not in L2, in particular not
L1.)

In what follows, we will consider trace formulas in quotient modules. In
the case of p = (z− αw)n+1 with |α| = 1, the trace formula of [S∗F, SF] is treated in
Theorem 3.4. For more general cases, we have the following result. The formula
in (ii) is shown in Remark 5.4. The other cases are much the same and we omit it.

THEOREM 5.11. Let F(z, w) be a polynomial.
(i) If p = (z− αw)N+1 for some |α| = 1, then

Tr[S∗F, SF] = (N + 1)
∫
D

| f ′(w)|2dm(w), f (w) = F(αw, w).

(ii) If p = z− αw for some |α| < 1, then

Tr[S∗F, SF] =
∫
D

| f ′(w)|2dm(w), f (w) = F(αw, w).

(iii) If p = (z− αw)(w− βz) for some |α| < 1, |β| < 1, then

Tr[S∗F, SF] =
∫
D

| f ′1(w)|2dm(w) +
∫
D

| f ′2(z)|2dm(z),

where f1(w) = F(αw, w), f2(z) = F(z, βz).

We may also consider the Dixmier trace of the related operators. In the case

of p =
k

∏
j=1

(z− αjw)nj , |αj| = 1 (equivalently, when p has the property (5.1)), then

[S∗z , Sz] is of weak trace class from Theorem 5.2(ii). However, using the compu-
tations in the proof of Theorem 5.2, we find that Trω [S∗z , Sz] = 0, giving a trivial
quantity.

REMARK 5.12. We note that an algebraic variety Z with the property (5.1) is
called a distinguished variety and it has been studied by Agler–McCarthy [1]. We
may thus ask the following question: Is a (non-homogeneous) module M = [p]
with property (5.1) always in the weak trace class? We consider an example of
quasi-homogeneous module where the answer is indeed positive.

EXAMPLE 5.13. Let k, l > 1 be two co-prime positive integers. We consider
the quotient module [zk − wl ]⊥ of the Hardy space H2(D2). The rotation group
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acts unitarily on H2 and on the quotient by f (z, w) → f (eilθz, eikθw). Denote
K(z, w; ξ, η) = (1− zξ)−1(1− wη)−1 the reproducing kernel of H2. We observe
first that the restrictions K(z, w; λl , λk) of K on the zero set of ξk − ηl are in the
quotient [zk − wl ]⊥ and generate a dense subset. Indeed suppose f in the quo-
tient is orthogonal to all K(z, w; λl , λk). Write f as an orthogonal sum ∑

n
fn, where

fn is the quasi-homogeneous component of f defined by the circle group action.
Clearly fn are polynomials in the quotient and orthogonal to all K(z, w; λl , λk).
Thus fn(λl , λk) = 0, namely fn is vanishing on the zero set of zk − wl . But the
ideal (zk −wl) is prime so that fn(z, w) is in the ideal, thus is zero. The reproduc-
ing kernel K(·, ·; λl , λk) on the zero set has an expansion

K(zl , zk; λl , λk) =
∞

∑
s=0

zsλ
sNs

where Ns = #{(m, n); m, n > 0, s = ml + nk}. We thus define a Hilbert space
Hk,l(D) of holomorphic functions, a posterior, on D, such that

‖zs‖2 =
1

Ns

for those s with Ns 6= 0. The restriction operator f (z, w) 7→ f (zl , zk) on H2 in-
duces then a unitary operator R from the quotient to Hk,l(D), so that Sz and Sw
on the quotient are unitarily equivalent to Mzl and Mzk on Hk,l(D). Thus T = Mzk

is a shift operator

T
( zs
√

Ns

)
=

√
Ns+k
Ns

( zs+k√
Ns+k

)
,

and [T∗, T] is a diagonal operator with diagonal entries

Ns

Ns+k
− Ns−k

Ns
.

As Ns is approximately linear in s we have [T∗, T] is of weak trace class. Choosing
s = klj, we have Ns = j + 1 and the above is 1− j−1

j+1 = 2
j+1 , and [T∗, T] is not of

trace class.
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