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ABSTRACT. We give an account of the theory of E0-semigroups. We first focus
on Arveson’s contributions to the field and related results. Then we present
the recent development of type II and type III E0-semigroups. We also include
a short note in Appendix, based on Arveson’s observation, on noncommuta-
tive Poisson boundaries.
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1. INTRODUCTION

Arveson opened up new frontiers in several areas in operator algebras, or
more generally noncommutative analysis. He often provided essential ideas at
the very beginning of new subjects, and then generously left further develop-
ment to others, as probably seen from Kenneth Davidson’s article, also in this
volume. One specific example is the theory of E0-semigroups, the main subject of
this article, and the author is one of Arveson’s followers who has luckily obtained
substantial benefit from his ideas. These ideas were summarized as a monograph
[24] by himself, which is the standard reference for E0-semigroups. Two main
subjects of the monograph, among others, are product systems (infinite tensor
product systems of Hilbert spaces) and the dilation theory of semigroups of com-
pletely positive maps, which reflects the importance of these subjects in the field
well. Therefore it is natural for us to discuss them in this article too.

DEFINITION 1.1. An E0-semigroup α = {αt}t>0 is a family of unital normal
∗-endomorphisms of a von Neumann algebra M satisfying the following condi-
tions:

(i) α0 = id;
(ii) αs ◦ αt = αs+t for all s, t > 0;

(iii) for every a ∈ M and every normal functional ϕ ∈ M∗, the function [0, ∞) 3
t 7→ ϕ(αt(a)) ∈ C is continuous.
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Throughout the article, we concentrate on E0-semigroups acting on B(H),
the set of bounded operators of a separable infinite dimensional complex Hilbert
space H. In this particular case the normality condition of αt is redundant (see
Chapter V, Theorem 5.1 of [70]). Since B(H) is believed to be the easiest infinite
dimensional factor, one may wonder if something significant comes out of such
objects. Yet, it turned out that E0-semigroups on B(H) are already rich and diffi-
cult, and they have deep connections with various areas in mathematics such as
probability theory and classical analysis (not to mention functional analysis).

Soon after Powers [56] initiated the systematic analysis of E0-semigroups in
the late 80’s, Arveson [6] introduced the notion of a product system, which is the
key concept for later development of the theory. In particular, it inspired the prob-
abilistic approach of Tsirelson [72]. Arveson [5], [9] showed that there is a one-
to-one correspondence between the cocycle conjugacy classes of E0-semigroups
and the isomorphism classes of product systems, which reduced the classification
problem of the former to that of the latter. Then he completely classified so-called
type I E0-semigroups by an invariant called index, which is the first substantial
classification result in the theory. There are a lot of other important invariants for
E0-semigroups defined via the corresponding product systems now.

In general, it is not so easy to construct new examples of E0-semigroups.
However, it is relatively easy to construct semigroups of unital completely posi-
tive (ucp) maps, and they give rise to E0-semigroups through Bhat’s dilation the-
orem [29]. This approach was extensively developed by Arveson [18] and Powers
[59], [60], and it is one of the most important constructions of E0-semigroups.

For the proofs and related results of the statements we present in this article,
the reader is referred to Arveson’s monograph [24]. Another standard reference
of E0-semigroups is the conference proceedings [64] with several valuable arti-
cles, including Arveson’s survey [23], which appeared at the right time when the
field sufficiently matured. [23] can be read as an introduction to [24].

This article ends with a short note in Appendix on noncommutative Pois-
son boundaries, a notion introduced by the author for normal ucp maps acting on
von Neumann algebras. At the occasion of a workshop taking place at the Fields
Institute in 2007, Arveson briefly mentioned to the author that the noncommu-
tative Poisson boundary of a normal ucp map is identified with the fixed point
algebra of the minimal dilation of the given normal ucp map. This observation
has potentially useful consequences, and we include them.

2. AROUND ARVESON’S WORK

2.1. BASIC EQUIVALENCE RELATIONS. We first introduce two basic equivalence
relations of E0-semigroups, conjugacy and cocycle conjugacy. One of the main
goals in the theory of E0-semigroups is to classify them up to cocycle conjugacy.
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DEFINITION 2.1. Let α and β be E0-semigroups acting on B(H) and B(K)
respectively.

(i) We say that α and β are conjugate if there exists a unitary V from H onto K
satisfying Ad V ◦ αt = βt ◦Ad V for all t > 0, where Ad V(A) = VAV∗.

(ii) We say that a weakly continuous family of unitaries U = {Ut}t>0 in B(H)
is an α-cocycle if they satisfy the 1-cocycle relation Us+t = Usαt(Ut) for all s, t > 0.
When U is an α-cocycle, we have a new E0-semigroup defined by αU = {Ad Ut ◦
αt}t>0, which we call the perturbation of α by U.

(iii) We say that α and β are cocycle conjugate if a cocycle perturbation of α is
conjugate to β.

To see the difference between the two equivalence relations above, we start
with the trivial class, namely the class of E0-semigroups α with αt ∈ Aut(B(H))
for all t > 0. In this case, a classical result due to E. Wigner says that there exists
a (possibly unbounded) self-adjoint operator A, uniquely determined up to ad-
ditive constant, satisfying αt = Ad eitA. Therefore such α is always in the cocycle
conjugacy class of id, the semigroup consisting of only the identity map, while
the classification of such α up to conjugacy is equivalent to the classification of A
up to additive constant and unitary equivalence. Therefore we see that the classi-
fication up to conjugacy is already complicated in the trivial case, and we cannot
expect reasonable classification results for more general classes of E0-semigroups.

There is another reason why cocycle conjugacy is so natural. Let α be an
E0-semigroup acting on B(H). The generator δ of α is defined by the limit

lim
t→+0

1
t
(αt(A)− A),

in the strong operator topology, where the domain of δ is the set of A ∈ B(H)
for which the limit exists. Let D ∈ B(H) be a self-adjoint operator, and let
δ′(A) = δ(A) + i[D, A]. Then δ′ generates an E0-semigroup etδ′ that is a cocy-
cle perturbation of α.

2.2. PRODUCT SYSTEMS. Before introducing a product system, we first discuss
the Hilbert space consisting of the intertwining operators for a unital endomor-
phism ρ of B(H). Recall that H is a separable infinite dimensional complex
Hilbert space. The endomorphism ρ, regarded as a normal representation of
B(H) on H, is unitarily equivalent to a direct sum of copies of the identity rep-
resentation of B(H). This means that there exists an orthogonal decomposition
H =

⊕
i∈I

Hi with ρ(B(H))-invariant closed subspaces Hi ⊂ H such that the restric-

tion of ρ to Hi is unitarily equivalent to the identity representation of B(H). Thus
there exist isometries Vi ∈ B(H) whose range is Hi, satisfying Vi A = ρ(A)Vi for
all A ∈ B(H), and in consequence

(2.1) ρ(A) = ∑
i∈I

Vi AV∗i , ∀A ∈ B(H),
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where the right-hand side converges in the strong operator topology.
LetHρ be the space of intertwining operators between id and ρ, that is

Hρ = {V ∈ B(H); VA = ρ(A)V, ∀A ∈ B(H)}.

For V, W ∈ Hρ, the product W∗V is a scalar as it belongs to the center of B(H).
Equipped with inner product 〈V, W〉Hρ

1 = W∗V, the intertwiner space Hρ is a
Hilbert space with an orthonormal basis {Vi}i∈I . It is easy to see that the right-
hand side of (2.1) does not depend on the choice of the orthonormal basis {Vi}i∈I
of Hρ. In fact for an arbitrary orthonormal system {Vi}i∈I of Hρ, the equation
(2.1) characterizes its completeness.

Now we consider two unital endomorphisms ρ, σ ∈ B(H). Then we have
an inclusion relationHρ · Hσ ⊂ Hρ◦σ, and for V, V′ ∈ Hρ and W, W ′ ∈ Hσ,

〈VW, V′W ′〉Hρ◦σ = W ′∗V′∗VW = 〈V, V′〉Hρ
W ′∗W ′ = 〈V, V′〉Hρ

〈W, W ′〉Hσ

= 〈V ⊗W, V′ ⊗W ′〉Hρ⊗Hσ
.

Moreover if {Vi}i∈I and {Wj}j∈J are orthonormal bases of Hρ and Hσ respec-
tively, then {ViWj}i∈I,j∈J is an orthonormal basis ofHρ◦σ as we have

ρ ◦ σ(A) = ∑
i∈I,j∈J

ViWj AW∗j V∗i .

This means that we can identifyHρ◦σ with the Hilbert space tensor productHρ⊗
Hσ under the identification of the product VW in B(H) and the simple tensor
V ⊗W inHρ ⊗Hσ.

We get back to our original situation and consider an E0-semigroup α act-
ing on B(H). Then we have a 1-parameter family of Hilbert spaces Eα(t) := Hαt

for t > 0, with identification Eα(s + t) = Eα(s) ⊗ Eα(t), where the usual prod-
uct in B(H) corresponds to tensor product. Moreover the association (0, ∞) 3
t 7→ Eα(t) should be measurable (or more strongly continuous) in an appropri-
ate sense. Arveson [6] axiomatized this situation and introduced the notion of
product systems.

DEFINITION 2.2. A product system is a family of separable Hilbert spaces
p : E → (0, ∞) over the half-line (0, ∞), with fiber Hilbert spaces E(t) = p−1(t),
endowed with a bilinear associative multiplication E(s)× E(t) 3 (x, y) 7→ xy ∈
E(s + t) satisfying the following conditions:

(i) 〈xu, yv〉 = 〈x, y〉〈u, v〉 for all x, y ∈ E(s), u, v ∈ E(t).
(ii) The linear span of E(s) · E(t) is dense in E(s + t).

(iii) E has the structure of a standard Borel space that is compatible with the
projection p : E→ (0, ∞), multiplication, the vector space operations, and the in-
ner product. Moreover, there exist a separable infinite dimensional Hilbert space
H0 and a Borel isomorphism from E onto (0, ∞)× H0 compatible with the projec-
tion p.
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REMARK 2.3. (i) The measurability condition (iii) is equivalent to the fol-
lowing condition: there exists a countable family of cross sections {ξn(t)}n∈N of
p such that the linear span of {ξn(t)}n∈N is dense in E(t) for all t and the func-
tions (0, ∞) 3 t 7→ 〈ξm(t), ξn(t)〉 and (0, ∞)2 3 (s, t) 7→ 〈ξm(s)ξn(t), ξl(s + t)〉 are
Borel measurable for all m, n, l. See Lemma 7.39 of [47] for the proof.

(ii) V. Liebscher ([47], Corollary 7.16) showed that for a given E satisfying
(i) and (ii), there exists at most one Borel structure satisfying (iii). This justi-
fies the following definition of isomorphisms of product systems: an isomor-
phism θ from E to F is a family {θt}t>0 of unitaries θt : E(t) → F(t) satisfying
θs(x)θt(y) = θs+t(xy) for all x ∈ E(s) and y ∈ E(t).

In what follows, we always consider the Borel structure of B(H) given by
the weak operator topology. Then B(H) is a standard Borel space with this Borel
structure. When α is an E0-semigroup, Arveson [6] showed that

Eα = {(t, T) ∈ (0, ∞)× B(H); T ∈ Eα(t)}

is a product system with p(t, T) = t. We will often identify p−1(t) with Eα(t) and
(t, T) with T.

Cocycle conjugate E0-semigroups give isomorphic product systems. In-
deed, it is obvious that conjugate E0-semigroups give rise to isomorphic product
systems. If U is an α-cocycle and αU is the cocycle perturbation of α by U, then the
family of maps Eα(t) 3 T 7→ UtT ∈ EαU (t) gives an isomorphism of Eα and EαU .

Arveson [6] showed that the converse is also true.

THEOREM 2.4. Two E0-semigroups α and β are cocycle conjugate if and only if
the corresponding product systems Eα and Eβ are isomorphic.

To sketch the proof of the other implication, we assume that both α and β act
on B(H) for simplicity, and assume that Eα and Eβ are isomorphic by θt : Eα(t)→
Eβ(t). We choose an arbitrary orthonormal basis {Vn}∞

n=1 of Eα(t) and set

Ut =
∞

∑
n=1

θt(Vn)V∗n ,

which converges to a unitary operator in the strong operator topology. Then Ut
is independent of the choice of {Vn}∞

n=1, which enables us to show that {Ut}t>0
satisfies the 1-cocycle relation. Moreover the condition (iii) implies that the map
(0, ∞) 3 t 7→ Ut is Borel. Now it follows from a standard trick that {Ut}t>0 is
continuous, and it is an α-cocycle. By construction, we have θt(V) = UtV for all
V ∈ Eα(t) and β is the cocycle perturbation of α by U thanks to (2.1).

More strongly, Arveson [9] showed that the association α 7→ Eα induces a
one-to-one correspondence between the set of cocycle conjugacy classes of E0-
semigroups and the set of isomorphism classes of product systems. The only
issue now is surjectivity of α 7→ Eα.
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THEOREM 2.5. For any product system E, there exists an E0-semigroup α whose
product system Eα is isomorphic to E.

Arveson’s original proof is really involved and it was the only proof for a
while (see [25], [47], [66], [67] for simpler proofs). In order to prove the theo-
rem, Arveson developed the representation theory of product systems, which is
interesting in its own right.

A representation φ of a product system E is a Borel map π : E → B(H)
satisfying φ(x)φ(y) = φ(xy) for all x ∈ E(s), y ∈ E(t), and φ(v)∗φ(u) = 〈u, v〉1
for all u, v ∈ E(t). Arveson constructed the regular representation of E by analogy
with the regular representation of a locally compact group. If φ is a representation
of E, then the following formula with an orthonormal basis {en}∞

n=1 of E(t),

αt(A) =
∞

∑
n=1

φ(en)Aφ(en)
∗, A ∈ B(H),

does not depend on the particular choice of {en}∞
n=1, and α = {αt}t>0 is a semi-

group of endomorphisms of B(H) with appropriate continuity. In order to con-
struct an E0-semigroup whose product system is isomorphic to E, the only prob-
lem is that αt may not be unital. The representations with αt being unital are
called essential representations. As in the case of locally compact groups, Arve-
son introduced the spectral C∗-algebra C∗(E) of E having the universal property
with respect to the representations of E, and then he constructed a state of C∗(E)
giving rise to an essential representation of E through the GNS construction.

Arveson [7] showed that C∗(E) is a nuclear C∗-algebra for any product sys-
tem E. For the structure of C∗(E), see [38], [39], [77], [78].

For attempts to generalize product systems to those for Hilbert W∗ and C∗-
modules, see, for example, [2], [28], [36], [52], [53], [68].

2.3. CCR FLOWS. The most fundamental examples of E0-semigroups are CCR
flows acting on B(H), where H is the symmetric Fock space over the test function
space L2((0, ∞), K).

For a complex Hilbert space G, which will be L2((0, ∞), K) for later use, we
denote by eG the symmetric Fock space

eG =
∞⊕

n=0
Gn,

where Gn is the n-fold symmetric tensor product of G, and G0 is interpreted as
the 1-dimensional space spanned by a unit vector Ω, called the vacuum. The
exponential vector exp( f ) ∈ eG for f ∈ G is defined by

exp( f ) =
∞

∑
n=0

1√
n!

f⊗n,

and we have 〈exp( f ), exp(g)〉 = e〈 f ,g〉. The set of exponential vectors form an
independent and total subset of G.
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When G is decomposed into the direct sum of two closed subspaces G1 and
G2, we have

〈exp( f1 ⊕ f2), exp(g1 ⊕ g2)〉 = e〈 f1⊕ f2,g1⊕g2〉 = e〈 f1,g1〉+〈 f2,g2〉

= 〈exp( f1), exp(g1)〉〈exp( f2), exp(g2)〉
= 〈exp( f1)⊗ exp( f2), exp(g1)⊗ exp(g2)〉,

for f1, g1 ∈ G1 and f2, g2 ∈ G2. This shows that the map

exp( f1 ⊕ f2) 7→ exp( f1)⊗ exp( f2)

extends to a unitary from eG1⊕G2 onto eG1 ⊗ eG2 . Therefore forming the symmetric
Fock space is a functor from the category of Hilbert spaces into itself transforming
direct sums into tensor products. In what follows we always identify eG1⊕G2 with
eG1 ⊗ eG2 .

We denote by W( f ) ∈ B(eG) the Weyl operator for f ∈ G, which is the
unitary operator defined by

W( f ) exp(g) = e−(1/2)‖ f ‖2−〈g, f 〉 exp(g + f ).

The Weyl operators satisfy the canonical commutation relation in the Weyl form

W( f )W(g) = ei=〈 f ,g〉W( f + g),

and their linear span is a dense ∗-subalgebra of B(eG) in the weak operator topol-
ogy.

Now we specify the test function space G to be the set of square integrable
functions L2((0, ∞), K) on the half-line with values in a complex Hilbert space
K, called the multiplicity space. We denote by S = {St}t>0 the (forward) shift
semigroup acting on L2((0, ∞), K):

St f (x) =

{
0 for 0 < x < t,
f (x− t) for t 6 x.

DEFINITION 2.6. There exists a unique E0-semigroup αK acting on B(H)

with H = eL2((0,∞),K) satisfying

αK
t (W( f )) = W(St f ), ∀ f ∈ L2((0, ∞), K).

We call αK the CCR flow of rank dim K.

REMARK 2.7. The CAR flows are defined in the same way except for re-
placing the symmetric Fock space with the antisymmetric Fock space. Powers–
Robinson [63] showed that the CCR flow and CAR flow of the same rank are
conjugate.

Arveson [6] identified the product systems corresponding to the CCR flows.
For 0 6 a < b 6 ∞, we regard L2((a, b), K) as a closed subspace of L2((0, ∞), K)
in a natural way, and eL2((a,b),K) as a closed subspace of H = eL2((0,∞),K) generated
by {exp( f )} f∈L2((a,b),K). We denote by Γ(St) the isometry in B(H) determined
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by Γ(St) exp( f ) = exp(St f ) for all f ∈ L2((0, ∞), K). For t > 0, we set EK(t) =

eL2((0,t),K) ⊂ H. Then

EK = {(t, ξ) ∈ (0, ∞)× H; ξ ∈ EK(t)}

is a product system with p(t, ξ) = t and multiplication

(s, ξ) · (t, η) = (s + t, ξ ⊗ Γ(Ss)η),

where we use the following identification

eL2((0,s+t),K) = eL2((0,s),K)⊕Ss L2((0,t),K) = eL2((0,s),K) ⊗ Γ(Ss)eL2((0,t),K).

We call EK the exponential product system, which is isomorphic to the product
system EαK associated with the CCR flow αK, via the representation φ : EK →
B(H) given by φ((t, ξ))η = ξ ⊗ Γ(St)η for η ∈ H.

REMARK 2.8. The exponential product systems can be interpreted as prod-
uct systems associated with white noise. For simplicity, we consider the case
K = C. Let {Bt}t>0 be the standard Brownian motion defined on the probability
space (Ω,F , W). For 0 6 s < t 6 ∞, we denote by Fs,t the σ-algebra generated
by the increments Bv − Bu for all s 6 u < v 6 t. We may assume F = F0,∞. Then
the well-known Wiener–Ito chaos decomposition (see Chapter IV of [51]) says
that the nested system of subspaces {L2(Fs,t)}06s<t6∞ of L2(Ω,F , W) is identi-
fied with that of subspaces {eL2(s,t)}06s<t6∞ of eL2(0,∞), and the identification goes
along with the tensor product factorizations L2(Fr,t) = L2(Fr,s) ⊗ L2(Fs,t) and
eL2(r,t) = eL2(r,s) ⊗ eL2(s,t) for r < s < t. Moreover, the time shift of the Brownian
motion induces an isometry from L2(F0,∞) onto L2(Ft,∞). Therefore we can com-
pletely describe the exponential product system in terms of so called white noise,
which consists of (Ω,F , W), {Fs,t}06s<t6∞, and the time shift (strictly speaking,
white noise is the two-sided version of it). White noise is only a special exam-
ple of Tsirelson’s notion of noises, and this interpretation opened up Tsirelson’s
probabilistic approach to E0-semigroups (see Section 3).

2.4. INDEX. It is natural to ask whether one can distinguish the CCR flows with
different ranks up to cocycle conjugacy. To answer the question in the positive, we
need an isomorphism invariant for product systems, and the first such invariant
was provided by Arveson [6].

DEFINITION 2.9. Let E be a product system. A unit of E is a non-zero mea-
surable section (0, ∞) 3 t 7→ u(t) ∈ E(t) that is multiplicative,

u(s + t) = u(s)u(t), ∀s, t > 0.

We denote by UE the set of units of E.

For the product system Eα associated with an E0-semigroup α, a unit is noth-
ing but a continuous semigroup V = {Vt}t>0 of isometries, up to normalization,
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satisfying the intertwining property Vt A = αt(A)Vt. We say that α is spatial if
UEα

is not empty.
The multiplicative property of units implies that for u, v ∈ UE, there exists a

unique complex number cE(u, v) satisfying 〈u(t), v(t)〉 = etcE(u,v) for all t > 0. For
each fixed t > 0, the function etcE(u,v) on UE×UE is positive definite by definition,
and the Schoenberg theorem shows that cE is conditionally positive definite. Let
C0UE be the set of functions ξ : UE → C with finite support and ∑

u∈UE

ξ(u) = 0.

Then cE being conditionally positive definite means

∑
u,v

cE(u, v)ξ(u)ξ(v) > 0, ∀ξ ∈ C0UE.

Therefore cE gives a positive semi-definite inner product of C0UE, and we get a
separable Hilbert space, denoted by H(UE, cE), by the usual procedure. The di-
mension of this Hilbert space is an isomorphism invariant of the product system
E. Note that H(UE, cE) = {0} is possible, not as in the case of positive definite
functions. Intuitively dim H(UE, cE) is “ dimUE”− 1.

DEFINITION 2.10. The index of a product system E with UE 6= ∅ is

ind(E) = dim H(UE, cE).

The index of a spatial E0-semigroup α is ind(α) = ind(Eα).

REMARK 2.11. The first attempt to introduce a numerical invariant for E0-
semigroups was made by Powers [56]. To define his index, he constructed what is
now called the boundary representation by an infinitesimal argument. However,
his definition a priori depends on the choice of a normalized unit. Powers–Price
[62] clarified the precise relationship between Arveson’s index and the boundary
representation, and Alevras [1] showed that the boundary representation does
not depend on the choice of a normalized unit.

Arveson [5] showed that the addition formula ind(α⊗ β) = ind(α)+ ind(β)
holds for spatial E0-semigroups α and β. When one of them is non-spatial, so is
α⊗ β.

For a product system with UE 6= ∅, we fix a unit e ∈ UE with normalization
〈e(t), e(t)〉 = 1, and set

U e
E = {u ∈ UE; 〈u(t), e(t)〉 = 1, ∀t > 0}.

Let Lu = δu − δe ∈ C0UE for u ∈ U e
E. Then one can show that 〈Lu, Lv〉 = cE(u, v)

and H(UE, cE) is spanned by {Lu}u∈U e
E
.

For the exponential product systems EK, we set

u(a,ζ)(t) = eat exp(1(0,t) ⊗ ζ) ∈ EK(t),
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for a ∈ C and ζ ∈ K, where 1(0,t) is the indicator function of the interval (0, t).
Then u(a,ζ) is a unit and

cEK (u(a1,ζ1), u(a2,ζ2)) = a1 + a2 + 〈ζ1, ζ2〉.

Arveson [6] showed that there are no other units. We can choose e = u(0,0), the
vacuum vector, and in this case U e

EK = {u(0,ζ); ζ ∈ K}. Now the Hilbert space
H(UEK , cEK ) is identified with the multiplicity space K.

THEOREM 2.12. Every unit of the exponential product system EK is of the form
u(a,ζ) for a ∈ C and ζ ∈ K. The correspondence K 3 ζ 7→ δu(0,ζ) − δu(0,0) ∈ H(UEK , cEK )

gives a unitary operator from K onto H(UEK , cEK ). In particular, the index ind(αK) of
the CCR flow αK is dim K.

2.5. TYPE CLASSIFICATION AND THE CLASSIFICATION OF TYPE I PRODUCT SYS-
TEMS. Product systems are classified according to how abundant the set UE is.

DEFINITION 2.13. Let E be a product system.
(i) We say that E is of type I if the linear span of

{u1(t1)u2(t2) · · · un(tm) ∈ E(t); u1, u2, . . . , um ∈ UE, t1 + t2 + · · ·+ tm = t}

is dense in E(t) for all (or equivalently, some) t > 0. Type I product systems are
further divided into type In, n = 1, 2, . . . , ∞, according to the value n = ind(E) of
the index.

(ii) We say that E is of type II if UE 6= ∅ and the condition in (i) is not satis-
fied. Type II product systems are further divided into type IIn, n = 0, 1, . . . , ∞,
according to the value n = ind(E) of the index.

(iii) We say that E is of type III if UE = ∅.
We use the same terms for E0-semigroups α through the product systems Eα.

REMARK 2.14. Since we assume that E(t) is infinite dimensional for each
t > 0, type I0 never occurs while type II0 product systems actually occur and
they form an important subclass of type II product systems. One could define
trivial E0-semigroups (i.e. αt ∈ Aut(B(H))) to be of type I0.

Arveson [6] completely classified type I E0-semigroups.

THEOREM 2.15. Let E be a type I product system, and let K = H(UE, cE). Then
E is isomorphic to the exponential product system EK. In particular, there exists exactly
one cocycle conjugacy class of E0-semigroups of type In for each n = 1, 2, . . . , ∞.

To prove that two given E0-semigroups are cocycle conjugate, in general it
is not so easy to construct a cocycle explicitly, and Arveson’s proof really makes
use of the advantage of introducing the abstract notion of product systems.

We sketch how to construct the isomorphism in Theorem 2.15. For a given
type I product system E, we fix a normalized unit e ∈ UE, and define U e

E and
Lu for u ∈ U e

E as before. Let u1, u2, . . . , um ∈ U e
E, and let t1, t2, . . . , tm > 0 with
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summation t. We set s0 = 0, and si = t1 + t2 + · · ·+ ti. Then the isomorphism in
Theorem 2.15 takes u1(t1)u2(t2) · · · um(tm) ∈ E(t) to

exp
( m

∑
i=1

1(si−1,si)
⊗ Lui

)
∈ eL2((0,t),K).

Theorem 2.15 shows that even if we try more general Lévy processes instead
of the Brownian motion in Remark 2.8, we still get exponential product systems.
To obtain non-type I product systems, we need truly non-classical noises.

Later, Arveson [15] strengthened Theorem 2.15. Let E be a product system.
We say that a non-zero vector x ∈ E(t) is decomposable if for every 0 < s < t,
there exist y ∈ E(s) and z ∈ E(t− s) satisfying x = yz. We denote by D(t) the
set of decomposable vectors in E(t). We say that E is decomposable if D(t) is a
total subset of E(t) for all t > 0. A typical example of a decomposable vector is
the product of units u1(t1)u2(t2) · · · um(tm) as above, and so type I product sys-
tems are decomposable. Arveson [15] showed that every decomposable product
system is of type I, whose proof is much more involved than that of Theorem 2.15.

2.6. GAUGE GROUPS. It is often true that significant information of a mathemat-
ical object is carried by the structure of its automorphism group. For an E0-
semigroup α, the automorphism group Aut(Eα) of the associated product system
Eα is isomorphic to the gauge group.

DEFINITION 2.16. A gauge cocycle of an E0-semigroup α is an α-cocycle U
satisfying αU = α, that is Ut ∈ αt(B(H))′ for all t > 0. We denote by G(α) the
group of gauge cocycles, and call it the gauge group of α.

Since U(H) is a Polish group in the weak operator topology, so is the gauge
group G(α) in the topology of uniform convergence on compact subsets.

For a type I product system, automorphisms are determined by their actions
on units. Arveson [6] completely determined the structure of the gauge groups
of the CCR flows.

THEOREM 2.17. For the CCR flow αK, the gauge group G(αK) is isomorphic to
the central extension of the semi-direct product group K o U(K) by R. More precisely
G(αK) = R× K×U(K) as a topological space, and the group operation is given by

(λ, ξ, U)(µ, η, V) = (λ + µ + ω(ξ, Uη), ξ + Uη, UV),

where ω is the symplectic form ω(ξ, η) = =〈ξ, η〉, ξ, η ∈ K.

Since every type I E0-semigroup is cocycle conjugate to one of the CCR
flows, Theorem 2.17 is often very useful in order to show type I criteria in specific
constructions of E0-semigroups (see, for example, [40], [42], [43]).

2.7. DILATION THEORY. One of the richest sources of E0-semigroups is semi-
groups of unital normal completely positive maps, which are often easier to con-
struct than E0-semigroups.
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DEFINITION 2.18. A CP0-semigroup is a family of unital normal completely
positive maps P = {Pt}t>0 of a von Neumann algebra N satisfying the following
conditions:

(i) P0 = id.
(ii) Ps ◦ Pt = Ps+t for all s, t > 0.

(iii) For every a ∈ N and every normal functional ϕ ∈ N∗, the function [0, ∞) 3
t 7→ ϕ(Pt(a)) ∈ C is continuous.

A corner N of a von Neumann algebra M is a von Neumann subalgebra of
the particular form N = pMp, where p is a projection. The central carrier of p in
M is the smallest projection in the center Z(M) of M dominating p.

DEFINITION 2.19. A dilation of a CP0-semigroup P acting on N consists of a
von Neumann algebra M, a projection p ∈ M, and an E0-semigroup α acting on
M satisfying:

(i) N is the corner pMp of M,
(ii) Pt(a) = pαt(a)p for any a ∈ N and t > 0.

If moreover the following two conditions are satisfied, we say that the dila-
tion is minimal:

(iii) M is generated by
⋃

t>0
αt(N),

(iv) the central carrier c(p) of p in M is 1M.

Note that (ii) implies that {αt(p)}t>0 is an increasing family of projections,
and if (iii) is satisfied, it converges to the unit of M in the strong operator topology
as t tends to ∞. In the case of a minimal dilation, if N is a factor, so is M.

We identify two dilations (M, p, α) and (R, q, β) if there exists an isomor-
phism θ from M onto R such that the restriction of θ to pMp = qRq = N is the
identity map and θ ◦ αt = βt ◦ θ holds for any t > 0.

THEOREM 2.20. There exists a unique minimal dilation for any CP0-semigroup
acting on a von Neumann algebra with separable predual.

Bhat [29] proved Theorem 2.20 in the case of type I factors based on his
previous results [34], [35], and he computed the product systems of the dilations.
The existence in the general case was obtained in [30], [36] (see also [52], [53]).
These works use the fact that the map [0, ∞) 3 t 7→ Pt(a) ∈ N is continuous in
the strong operator topology, which was proved by Markiewicz and Shalit [50]
later. Arveson ([14] and [24], Section 8.9) showed the uniqueness in the general
case. The uniqueness in the non-unital case appears very subtle (see [31]).

When P is a CP0-semigroup acting on a type I factor, Arveson [17] described
the units of the minimal dilation in terms of P. Answering a question raised in
[29] about the dilations of CP0-semigroups acting on matrix algebras, Arveson
[18] showed the following result (cf. [57]).
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THEOREM 2.21. Let P be a CP0-semigroup acting on B(H0), with H0 possibly
finite dimensional, which is not a semigroup of automorphisms. If the generator L of P
is bounded, then the minimal dilation α of P is an E0-semigroup of type I, and the index
ind(α) is the rank of L.

For the definition of the rank of L, see Chapter 10 of [24].
Arveson [16], [19] applied dilation theory to what is called interaction the-

ory, which, roughly speaking, deals with coupling of two E0-semigroups, one for
the past and the other for the future, with prescribed invariant normal states.

Markiewicz [48] computed the product systems for the minimal dilations
of concrete CP0-semigroups acting on B(L2(R)) arising from a modified Weyl–
Moyal quantization of convolution semigroups of probability measures on R2,
including the CCR heat flow discussed by Arveson [22] as a special case. De-
spite that the generators of these CP0-semigroups are unbounded, the resulting
product systems are still of type I (in fact type I2).

Shalit–Solel [65] and Bhat–Mukherjee [33] recently introduced essentially
the same notion, called subproduct systems in [65], and inclusion systems in [33],
which had been implicitly used in [36], [48], [52]. Their role in product systems is
somewhat similar to the role of CP0-semigroups in E0-semigroups. See [32], [54],
[61], [69] for related results.

3. BEYOND ARVESON: TYPE II CASE

The first example of an E0-semigroup of type II was constructed implicitly
by Tsirelson–Vershik [76] in 1998 via the noise theory, and about the same time
by Powers [58] via the boundary representation. Later on, both Powers [59] and
Tsirelson [72] constructed uncountably many type II0 examples. Thanks to Arve-
son’s addition formula, we have In ⊗ II0 = IIn, and so type IIn examples exist for
n = 0, 1, . . . , ∞.

3.1. TSIRELSON’S PROBABILISTIC METHOD. Tsirelson introduced the following
concept of a noise in probability theory (see [72], [73]).

DEFINITION 3.1. A noise consists of a probability space (Ω,F , P), sub-σ-
fields Fs,t ⊂ F for s, t ∈ R with s < t, and a measure preserving action T of R on
the probability space satisfying:

(i) Fr,s ⊗Fs,t = Fr,t for any r < s < t,
(ii) Th sends Fs,t to Fs+h,t+h,

(iii) F is generated by
⋃

s<t
Fs,t,

(iv) P(A	 T−1
h (A))→ 0 as h→ 0 for any A ∈ F , where A	 B is the symmetric

difference of A and B.
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A typical example of a noise is white noise already discussed in Remark 2.8.
Every noise gives rise to a product system by E(t) = L2(F0,t) and ξ · η = ξ(η ◦
T−s) for ξ ∈ E(s), η ∈ E(t). The resulting product system has at least one
unit given by the constant function 1. Using the factorization L2(F−∞,∞) =
L2(F−∞,0)⊗ L2(F0,∞) and the 1-parameter unitary group {Ut}t∈R arising from
T, we can directly construct the corresponding E0-semigroup α acting on the type
I factor B(F0,∞) by 1⊗ αt(A) = Ut(1⊗ A)U∗t for A ∈ B(L2(F0,∞)).

A noise arising from a Lévy process is called a classical noise, and Tsirelson
showed that every noise contains the maximal classical noise, called the classical
part, which corresponds to the subspaces generated by decomposable vectors in
E(t). A black noise is a noise with trivial classical part, which gives rise to a
product system of type II0. Tsirelson–Vershik [76] showed

THEOREM 3.2. There exists a black noise.

A black noise is a singular object, and is not so easy to construct. Very few
examples are known.

Like the Wiener–Ito chaos decomposition, the space L2(Ω,F , P) has a canon-
ical decomposition. However, subspaces for a finite number of particles do not
generate the whole space unless the noise is classical. From this decomposition,
random sets arise as an invariant of the noise, and it also makes sense as an in-
variant of product systems of type II0. A variant of this invariant adapted to type
II product systems was extensively studied by Liebscher [47]. Among others he
showed that there exists a type IIn product system for each n = 0, 1, . . . , ∞, that
never splits as a tensor product of two product systems.

Tsirelson [72] introduced the notion of homogeneous continuous products
of measure classes (HCPMC), more general objects than noises. This idea orig-
inated from Vershik according to Tsirelson. HCPMCs are more flexible than
noises, and are still good enough to produce E0-semigroups. The main differ-
ence of an HCPMC from a noise is that the independence Fr,s ⊗Fs,t = Fr,s does
not necessarily hold for P, but it is required to hold for a measure equivalent to
P. Typical examples of HCPMCs arise from random sets associated with Markov
processes. Tsirelson [72] showed that they give uncountably many type II0 prod-
uct systems that are not anti-isomorphic to themselves.

Tsirelson [75] recently constructed a type II1 product system, by using the
noise theory, whose automorphism group does not act on the set of normalized
units transitively. This shows that choosing an arbitrary unit is not always justi-
fied in order to define an invariant of product systems.

3.2. POWERS CP-FLOWS. Powers [59], [60] found a systematic way to construct
E0-semigroups of type II by using dilation theory. For simplicity, we assume that
CP-flows are unital in this note, though non-unital ones also play important roles
in Powers’s argument.
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DEFINITION 3.3. Let K be a separable complex Hilbert space, and let H0 =
L2((0, ∞), K). We denote by S = {St}t>0 the shift semigroup acting on H0. A
CP-flow P is a CP0-semigroup acting on B(H0) satisfying St A = Pt(A)St for all
A ∈ B(H0) and t > 0.

The minimal dilation of a CP-flow always has a unit. On the other hand,
any spatial E0-semigroup is cocycle conjugate to an E0-semigroup that is a CP-
flow. Thus it is important to understand the structure of CP-flows. Powers [59]
showed that all of the information of a CP-flow is encoded in its boundary weight
map.

We define Λ : B(K)→ B(H0) by

Λ(A) f (x) = e−x A f (x), f ∈ H0.

For simplicity, we include complete positivity and the unitality condition in the
definition of boundary weight maps.

DEFINITION 3.4. Let A(H0) = (1H0 −Λ(1K))
1/2B(H0)(1H0 −Λ(1K))

1/2. A
boundary weight µ is a linear functional of A(H0) such that the linear functional

B(H0) 3 A 7→ µ((1H0 −Λ(1K))
1/2 A(1H0 −Λ(1K))

1/2) ∈ C,

is bounded and normal. We denote by A(H0)∗ the set of boundary weights. A
boundary weight map ω is a completely positive map ω : B(K)∗ → A(H0)∗
satisfying ω(ρ)(1H0 −Λ(1K)) = ρ(1K) for any ρ ∈ B(K)∗.

For a normal map Φ between von Neumann algebras, we denote by Φ̂ the
map between the preduals induced by Φ. Being a semigroup, a CP-flow P is
determined by its resolvent

RP(A) =

∞∫
0

e−tPt(A)dt.

On the other hand, since we have

Pt(A) = St AS∗t + (1− StS∗t )Pt(A)(1− StS∗t ), A ∈ B(H0),

the first approximation of RP is

Γ(A) =

∞∫
0

e−tSt AS∗t dt.

Our task is to describe the difference RP − Γ, which is a completely positive map.
Powers [59] showed the following.

THEOREM 3.5. Let the notation be as above.
(i) For any CP-flow P, there exists a unique boundary weight map ω satisfying

R̂P(η) = Γ̂(ω(Λ̂η) + η), ∀η ∈ B(H0)∗.

The map ω is called the boundary weight map associated with P.
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(ii) For a boundary weight map ω, we set ωt(ρ)(A) = ω(ρ)(StS∗t AStS∗t ). If
id+Λ̂ωt is invertible and π̂t := ωt ◦ (id+Λ̂ωt)−1 is a completely positive contrac-
tion for any t > 0, then ω is the boundary weight map associated with a CP-flow.

When K = C, a boundary weight map ω is identified with the boundary
weight ω(1K), which is a normal semifinite weight of B(H0) satisfying

ω(1K)(1H0 −Λ(1K)) = 1.

The condition in (ii) is automatically satisfied for such a weight. In particular, any
function f with

∞∫
0

| f (x)|2(1− e−x)dx = 1,

gives rise to a CP-flow. Already this case provides uncountably many type II0 E0-
semigroups. More precisely, Powers showed that the resulting E0-semigroup is
of type II0 unless f ∈ L2(0, ∞), and that for any such functions f1, f2 as above, the
resulting E0-semigroups are cocycle conjugate if and only if c1 f1 + c2 f2 ∈ L2(0, ∞)
for some c1, c2 ∈ C \ {0}.

See [3], [44], [45], [46], [49] for recent progress in this approach. There are
several E0-semigroups of type II whose gauge groups are known.

It is desirable to unify the two approaches presented in this section, and we
propose two problems, just to start with.

(i) Compute Tsirelson’s random sets invariant for an E0-semigroup of type II0
arising from a CP-flow in terms of its boundary weight map.

(ii) Give a description of the boundary representation for an E0-semigroup of
type II arising from an HCPMC.

4. BEYOND ARVESON: TYPE III CASE

Powers [55] constructed the first example of a type III E0-semigroup using
the CAR algebra in 1987, just after the theory of E0-semigroups was initiated. It
had been the only example of a non-type I E0-semigroup for a while. Much later,
Tsirelson [72] constructed the first continuous family of type III product systems
using HCPMCs coming from off-white noises.

4.1. CAR CONSTRUCTION. Recall that the CAR flows are conjugate to the CCR
flows, which are necessarily of type I, and they are constructed in the vacuum
representation. To construct the first type III example, Powers used a quasi-free
representation of the CAR algebra instead of the vacuum representation.

Let G := L2((0, ∞),CN). We denote by A the CAR algebra over the test
function space, which is the universal C∗-algebra generated by {a( f ); f ∈ G},
depending linearly on f , and satisfying the CAR relations:

a( f )a(g) + a(g)a( f ) = 0, a( f )a(g)∗ + a(g)∗a( f ) = 〈 f , g〉1.
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Let S = {St}t>0 be the shift semigroup acting on G. Since the CAR relation
involves only the inner product, there exists a continuous semigroup γ of unital
endomorphisms of A given by γt(a( f )) = a(St f ). If π is a type I factor represen-
tation of A such that π ◦ γt is quasi-equivalent to π for all t > 0, then γ extends
to an E0-semigroup acting on π(A)′′. The vacuum representation is an example
of such a representation, giving the CAR/CCR flow of rank N.

A quasi-free state ωA on A associated with a positive contraction A ∈ B(G)
is a unique state determined by the formula

ωA(a( fn) · · · a( f1)a(g1)
∗ · · · a(gm)

∗) = δn,m det(〈A fi, gj〉).
If a positive contraction A satisfies the condition

(4.1) tr(A− A2) < ∞, S∗t ASt = A, ∀t > 0,

the GNS representation for ωA has the desired property, and we can construct an
E0-semigroup.

To present the positive contraction Powers constructed, we need to intro-
duce Toeplitz operators. We regard G as a closed subspace of G̃ := L2(R,CN),
and we denote by P+ the projection from G̃ onto G. For Φ ∈ L∞(R)⊗ MN(C),
we define the corresponding Fourier multiplier CΦ ∈ B(G̃) by

(̂CΦ f )(p) = Φ(p) f̂ (p).

Then the Toeplitz operator TΦ ∈ B(G) with a symbol Φ is defined by TΦ f =
P+CΦ f , f ∈ G.

Powers [55] came up with a mysterious symbol giving a type III example.

THEOREM 4.1. Let N = 2, and let

Φ(p) =
1
2

(
1 eiθ(p)

e−iθ(p) 1

)
, θ(p) = (1 + p2)−1/5.

Then A = TΦ satisfies the condition (4.1), and the quasi-free representation for A = TΦ

gives a type III E0-semigroup.

Arveson ([24], Section 13.3) determined the most general form of a positive
contraction A ∈ B(G) satisfying the condition (4.1), and showed that such an
operator must be a Toeplitz operator TΦ with a symbol Φ satisfying a certain
condition. We call the resulting E0-semigroup the Toeplitz CAR flow arising from
the symbol Φ.

Let Φν be the matrix valued function given by the same formula as the Pow-
ers symbol except for θ(p) = (1+ p2)−ν. Then TΦν satisfies the condition (4.1) for
all ν > 0, and we denote by αν the resulting E0-semigroup. Recently Srinivasan
and the author [43] showed the following.

THEOREM 4.2. Let the notation be as above.
(i) If ν > 1/4, then αν is of type I2.

(ii) If 0 < ν 6 1/4, then αν is of type III.
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(iii) If 0 < ν1 < ν2 6 1/4, then αν1 and αν2 are not cocycle conjugate.

To distinguish αν in the type III region 0 < ν 6 1/4, we used the type I
factorizations of Araki–Woods [4] arising from local von Neumann algebras for
the product systems (see the next subsection). In general Toeplitz CAR flows are
either of type I or of type III.

4.2. OFF-WHITE NOISES AND GENERALIZED CCR FLOWS. Let {Bt}t∈R be the
(two-sided) Brownian motion, and let X(t) be the formal derivative dB(t)/dt.
Then {X(t)}t∈R is a stationary Gaussian generalized (i.e. distribution valued)
random process with correlation function E(X(s)X(t)) = δ(s − t). There is no
relation between the past and the future at all. Let Fs,t be the σ-field generated
by 〈X, f 〉 with test functions f supported in (s, t). Then we get white noise.

An off-white noise is an HCPMC, not really a noise, constructed in the same
way by replacing X(t) with a stationary Gaussian generalized random process
ξ(t) having a slight correlation of the past and the future. The correlation function
C(s − t) = E(ξ(s)ξ(t)) is now a positive definite distribution, whose Fourier
transform Ĉ is a measure. Tsirelson [71], [74] showed that if Ĉ has a density σ(λ)
with respect to the Lebesgue measure dλ, and σ satisfies∫

R2

| log σ(λ1)− log σ(λ2)|2
|λ1 − λ2|2

dλ1dλ2 < ∞,

then we get an HCPMC, which is called an off-white noise. The function σ(λ)
is called the spectral density function of the off-white noise, and all information
about the off-white noise is encoded in it. In the case of white noise, it is a constant
function.

Tsirelson [72] showed the following.

THEOREM 4.3. For r > 0, let σr be a smooth positive even function with σr(λ) =
log−r |λ| for large |λ|. Then σr is a spectral density function of an off-white noise, and
the family {σr(λ)}r>0 gives rise to mutually non-isomorphic type III product systems.

Tsirelson’s construction has many faces. Bhat–Srinivasan [37] systematically
investigated the product systems arising from so-called sum systems by a purely
functional analytic method, which recaptures Tsirelson’s construction as a special
case.

Srinivasan and the author [42] showed that the E0-semigroups correspond-
ing to the product systems arising from sum systems are generalized CCR flows.
Let G be a real Hilbert space, and let S = {St}t>0 and T = {Tt}t>0 be C0-
semigroups acting on G such that T∗t St = 1G and St − Tt is a Hilbert–Schmidt
operator for any t > 0. Then we can construct an E0-semigroup α acting on
B(eG⊗C) by

αt(W( f + ig)) = W(St f + iTtg), f , g ∈ G.
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E0-semigroups constructed in this way are called generalized CCR flows. Gen-
eralized CCR flows are either of type I or of type III (see [37], [41]). In the case
of off-white noises, we can choose G = L2((0, ∞),R) and S to be the shift semi-
group. The author [40] gave the precise relationship between T and the spectral
density function σ in this case. Using this correspondence, Srinivasan and the au-
thor [42] showed that there exists a continuous family of off-white noises whose
spectral density functions converge to 1 at infinity, such that the family still gives
mutually non-isomorphic type III product systems.

There is a certain similarity between the Toeplitz CAR flows and general-
ized CCR flows (for example, they are never of type II), and it is desirable to
clarify their relationship. As a first step, we propose the following problem: de-
termine the gauge groups of the Toeplitz CAR flows and generalized CCR flows.

Before ending this final section, we emphasize the importance of local von
Neumann algebras associated with product systems in the results discussed in
this section. Let E be a product system. For 0 < s < t < 1, we denote by Us,t,1 the
unitary map determined by

Us,t,1 : E(s)⊗ E(t− s)⊗ E(1− t) 3 x⊗ y⊗ z→ xyz ∈ E(1).

For an interval J = (s, t) ⊂ [0, 1], we define the von Neumann algebra AE(J) ⊂
B(E(1)) associated with J by

AE(J) = Us,t,1(1E(s) ⊗ B(E(t− s))⊗ 1E(1−t))U
∗
s,t,1.

We apply a similar definition in the case with s = 0 or t = 1. Then AE(J) is a
type I subfactor of B(E(1)), and when two intervals J1 and J2 are disjoint, the cor-
responding algebras AE(J1) and AE(J2) commute with each other. For an open
subset O ⊂ [0, 1], we define AE(O) to be the von Neumann algebra generated
by

⋃
J⊂O
AE(J), which may not be of type I. The system of von Neumann algebras

{AE(J)}J⊂[0,1] is an important isomorphism invariant of the product system E,
and it is an analogue of local observable algebras in algebraic quantum field the-
ory. For example, Liebscher [47] showed the following useful theorem, which
Srinivasan and the author used in [43] to obtain a type I criterion.

THEOREM 4.4. Let E and F be product systems. If there exists an isomorphism θ

from B(E(1)) onto B(F(1)) satisfying θ(AE((0, t))) = AF((0, t)) for all 0 < t < 1,
then E and F are isomorphic.

The system of von Neumann algebras {AE(I)}I⊂[0,1] and the isomorphism
classes of von Neumann algebras AE(O) are employed as isomorphism invari-
ants of E in [42], [43], [72] to differentiate continuous families of product systems.
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5. APPENDIX: DILATION THEORY AND NONCOMMUTATIVE POISSON BOUNDARY

The notion of noncommutative Poisson boundaries for normal ucp maps
was introduced by the author [I1]. Let N be a von Neumann algebra, and let L
be a weakly closed operator system in N, i.e. L is a self-adjoint linear subspace
of N including the identity. It is known that if there exists a completely positive
projection E from N onto L, then L is a von Neumann algebra with respect to the
Choi–Effros product x ◦ y = E(xy) (see [CE]).

Let P be a normal ucp map of N. We denote by H∞(N, P) the fixed point
set {x ∈ N; P(x) = x} of P, whose members are called harmonic elements. Then
H∞(N, P) is a weakly closed operator system and it is the image of a completely
positive projection from N. Indeed, we choose a free ultra-filter ω ∈ βN \N and
set

E(x) = w− lim
n→ω

1
n

n−1

∑
k=0

Pk(x), x ∈ N.

Then E is the desired projection. Although E depends on the choice of ω, the
Choi–Effros product of H∞(N, P) does not because an operator system may have
at most one von Neumann algebra structure. Concrete realization of the von
Neumann algebra structure of H∞(N, P) is called the noncommutative Poisson
boundary for P. This notion has proved to be particularly useful to capture struc-
ture that appears only after taking weak closure (see, for example, [I1]).

When I invited Bill Arveson to Kyoto in 2004, he showed his interest in non-
commutative Poisson boundaries. However, he did not seem to be happy about
the fact that the Choi–Effros product is defined after the choice of the ultra-filter
ω is made (even though it does not depend on ω). When we met in 2007 at the
Fields Institute, Bill told me in a brief conversation that the noncommutative Pois-
son boundary for P is nothing but the fixed point algebra of the minimal dilation
of P. It is so natural an idea. In fact, the usual measure theoretical construction
of the Poisson boundary for a Markov operator in the commutative situation es-
sentially uses the corresponding Markov process (see [K]), which is more or less
the minimal dilation of the Markov operator. I felt a little embarrassed because
such an idea had never occurred to me. I include a few consequences of Bill’s
observation here.
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Recall that the minimal dilation of P consists of a von Neumann algebra
M, a projection p ∈ M whose central carrier is 1M, and a unital normal en-
domorphism α of M such that N = pMp, M is generated by

⋃
n>0

αn(N), and

Pn(a) = pαn(a)p for all a ∈ N and n > 1. In this situation {αn(p)}∞
n=0 is an

increasing sequence of projections whose limit is 1M. Without any modification,
Theorem 2.20 holds in the discrete time case too.

THEOREM 5.1. Let Mα = {x ∈ M; α(x) = x} be the fixed point algebra of
α. Then the map θ : Mα 3 x 7→ pxp ∈ H∞(N, P) is a completely positive order
isomorphism between the two operator systems. In particular, the von Neumann algebra
Mα gives a concrete realization of the von Neumann algebra structure of H∞(N, P).

Proof. It suffices to show that θ is a completely positive isometry of Mα onto
H∞(N, P) because the inverse of a unital completely positive isometry between
two operator systems is automatically completely positive. Since the proof does
not change after taking the tensor product with a matrix algebra, and θ is obvi-
ously completely positive, it suffices to show that θ is an isometry onto H∞(N, P).

For x ∈ Mα, we have P(pxp) = pα(pxp)p = pα(p)xα(p)p. Since p 6
α(p), we obtain θ(x) ∈ H∞(N, P). The map θ is obviously a contraction. Since
the sequence {αn(p)}∞

n=1 converges to 1M in the strong operator topology, the
sequence {αn(θ(x))}∞

n=1 converges to x ∈ Mα in the strong operator topology
too, and so θ is an isometry. It remains to show that θ is a surjection. For a ∈
H∞(N, P), we set

an =
1
n

n−1

∑
k=0

αk(a),

and we choose an accumulation point x of the sequence {an}∞
n=1 in the weak

operator topology. Then x ∈ Mα. Since

pan p =
1
n

n−1

∑
k=0

pαk(a)p =
1
n

n−1

∑
k=0

Pk(a) = a,

we obtain θ(x) = a.

Prunaru [P] obtained the same result as above. I would like to thank Orr
Shalit for informing me of this fact.

The following statement is known in concrete examples where the martin-
gale convergence theorem (commutative or noncommutative) is available (see
[I2], [KV]). Thanks to the dilation theory, we are able to prove it in the general
case.

COROLLARY 5.2. For any a, b ∈ H∞(N, P), the sequence {Pn(ab)}∞
n=1 con-

verges to the Choi–Effros product a ◦ b in the strong operator topology.

Proof. Let x = θ−1(a), y = θ−1(b). Then

Pn(ab) = pαn(pxpyp)p = pαn(p)xαn(p)yαn(p)p = pxαn(p)yp,
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which converges to pxyp = θ(xy) in the strong operator topology.

The following example was suggested by Bill. Let H2 be the Hardy space
of the unit disk, and let p be the projection from L2(T) = `2(Z) onto H2. Let
v ∈ B(H2) be the unilateral shift, and let u ∈ B(L2(T)) be the bilateral shift.
We introduce a normal ucp map P of N = B(H2) by P(a) = v∗av. Then the
space of harmonic elements H∞(N, P) consists of the Toeplitz operators Tf , f ∈
L∞(T) (see Theorem 4.2.4 of [A]). The minimal dilation of P is given by (M =
B(L2(T)), p, α = Ad u∗), and the fixed point algebra Mα is L∞(T). In summary,
the map θ : L∞(T) 3 f 7→ Tf ∈ H∞(N, P) is a completely positive order isomor-
phism between the two operator systems, and {v∗nTf Tgvn}∞

n=1 converges to Tf g
in the strong operator topology for any f , g ∈ L∞(T).

We end this note with an example coming from random walks on discrete
groups discussed in [I2]. Let G be a discrete group, and let µ be a probability
measure on G whose support S generates G as a semigroup. We define a ucp
map Pµ acting on `∞(G) by the right convolution operator Pµ( f ) = f ∗ µ̌ where
µ̌(g) = µ(g−1). Then Pµ gives rise to a random walk on G with the transition
probability p(g, h) := Pr(Xn+1 = h|Xn = g) given by µ(g−1h). We denote by
H∞(G, µ) the space of bounded harmonic functions for Pµ and by (∂G, ν) the
Poisson boundary with the harmonic measure for Pµ (see [K], [KV]) .

As in [I2], we extend Pµ to N = B(`2(G)) by

Qµ(a) = ∑
g∈G

µ(g)ρgaρ−1
g ,

where ρ is the right regular representation. Then the noncommutative Poisson
boundary for Qµ is the boundary crossed product L∞(∂G, ν)o G (see [I2], [JN]).
Let λ be the left regular representation of G. Then H∞(B(`2(G)),Qµ) is spanned
by H∞(G, µ)λG.

In the rest, we identify the minimal dilation (M, p, α) of P = Qµ, and give
a new description of the boundary crossed product. Let θ : Mα 3 x 7→ pxp ∈
H∞(N, P) be as before. Since λg is a unitary in the multiplicative domain of P, it
is easy to show the following lemma.

LEMMA 5.3. Let ug = θ−1(λg). Then {ug}g∈G is a unitary representation of G
in Mα commuting with p.

We may assume that M = B(H) and p is a projection onto a closed subspace
H0 of H identified with `2(G). By minimality, the Hilbert space H is spanned by

αn(egn ,hn)α
n−1(egn−1,hn−1) · · · α(eg1,h1)δg0 ,

where {eg,h}g,h∈G is the system of matrix units in B(`2(G)) with respect to the
orthonormal basis {δg}g∈G. Thanks to Lemma 5.3 and eg,h = δgλgh−1 , we have
αn(eg,h) = αn(δg)ugh−1 . Thus we see that H is spanned by

ζn(g0, g1, . . . , gn) = αn(δgn)α
n−1(δgn−1) · · · α(δg1)δg0 .



E0-SEMIGROUPS: AROUND AND BEYOND ARVESON’S WORK 361

Direct computation shows

〈ζn(g0, g1, . . . , gn), ζn(h0, h1, . . . , hn)〉

= δgn ,hn〈α
n−1(pα(δgn)p)ζn−1(g0, g1, . . . , gn−1), ζn−1(h0, h1, . . . , hn−1)〉

= δgn ,hn〈α
n−1(δhn−1 P(δgn)δgn−1)ζ

n−2(g0, g1, . . . , gn−2), ζn−2(h0, h1, . . . , hn−2)〉
= δgn ,hn δgn−1,hn−1p(gn−1, gn)

× 〈αn−1(δgn−1)ζ
n−2(g0, g1, . . . , gn−2), ζn−2(h0, h1, . . . , hn−2)〉,

and therefore

〈ζn(g0, g1, . . . , gn), ζn(h0, h1, . . . , hn)〉
= δg0,h0 δg1,h1 · · · δgn ,hn p(g0, g1)p(g1, g2) · · ·p(gn−1, gn).

We also have

ζn(g0, g1, . . . , gn) = ∑
g∈G

ζn+1(g0, g1, . . . , gn, g).

Now we can see that H is identified with the L2-space over the path space G∞.
Let Cn(g0, g1, . . . , gn) be the cylinder set

Cn(g0, g1, . . . , gn) = {(xn)
∞
n=0 ∈ G∞; xi = gi, 0 6 i 6 n},

and let m be the measure on G∞ determined by m(C0(g)) = 1 and

m(Cn(g0, g1, . . . , gn)) = p(g0, g1)p(g1, g2) · · ·p(gn−1, gn).

Then L2(G∞, m) 3 1Cn(g0,g1,...,gn) 7→ ζn(g0, g1, . . . , gn) ∈ H gives a unitary opera-
tor, and we identify the two Hilbert spaces in what follows. Note that δg ∈ H0 is
identified with 1C0(g). Since

ugζn(g0, g1, . . . , gn) = ζn(gg0, gg1, . . . , ggn),

we have ugξ((xn)) = ξ((g−1xn)) for all ξ ∈ L2(G∞, m).
Let Hn be the closed subspace of H spanned by {1Cn(g0,g1,...,gn)}g0,g1,...,gn∈G,

and let pn be the projection onto Hn. Then we have p = p0. Let jk : `∞(G) →
B(H) be the representation of `∞(G) defined by jk( f )ξ((xn)) = f (xk)ξ((xn)).
We identify f ∈ `∞(G) and λg in N with j0( f )p and ug p in M. Then we have
αk(j0( f )p) = jk( f )pk. Since M is generated by

⋃
k>0

αk(N), and N is spanned by

`∞(G)λG, the homomorphism α is determined by the condition α(ug) = ug and
α(jk( f )pk) = jk+1( f )pk+1.

Since α is a unital homomorphism of M = B(H), it is implemented by a
Cuntz algebra representation. Let T : G∞ → G∞ be the time shift (Tx)n = xn+1.
For each g ∈ S, we set

Sgξ((xn)) =
δx0g,x1√

µ(g)
ξ ◦ T((xn)), ξ ∈ L2(G∞, m).
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Then Sg ∈ B(H) is an isometry with the adjoint operator given by

S∗gξ((xn)) =
√

µ(g)ξ(x0g−1, x0, x1, . . .), ξ ∈ L2(G∞, m),

and so we have SgS∗gξ((xn)) = δx0g,x1 ξ((xn)). The range projections {SgS∗g}g∈S
are mutually orthogonal, and the summation converges to 1M. Thus {Sg}g∈S
satisfy the Cuntz algebra On relation with n = #S. Let

β(x) = ∑
g∈S

SgxS∗g, x ∈ M.

Then it is easy to see β(ug) = ug, β(η) = η ◦ T for η ∈ L∞(G∞, m), and β(pk) =
pk+1. Thus we get α = β.

The above argument shows that the fixed point algebra Mα is the commu-
tant of the Cuntz algebra On = C∗{Sg}g∈S. We specify a state of On giving this
representation. We claim that 1C0(e) is a separating vector for Mα. Recall that
H∞(N, P) is spanned by H∞(G, µ)λG. For f ∈ H∞(G, µ), we have

〈θ−1( f λg)1C0(e), 1C0(e)〉 = lim
k→∞
〈αk(j0( f )p)ug1C0(e), 1C0(e)〉

= lim
k→∞
〈jk( f )pk1C0(g), 1C0(e)〉 = δg,0 lim

k→∞
〈jk( f )1C0(e), 1C0(e)〉

= δg,0 lim
k→∞

∑
h∈G

p(k)(e, h) f (h) = δg,0 f (e),

where p(k)(e, g) is the k-step transition probability. This shows that 1C0(e) induces
a faithful normal state of the boundary crossed product L∞(∂G, ν) o G corre-
sponding to the harmonic measure ν (see [I2]), and so the claim is proved. In
consequence 1C0(e) is cyclic for On = C∗{Sg}g∈S. We denote by ωµ the state of
On given by 1C0(e). Note that we have S∗g1C0(h) =

√
µ(g)1C0(hg).

COROLLARY 5.4. There exists a state ωµ of the Cuntz algebra On = C∗{Sg}g∈S
given by

ωµ(Sg1 Sg2 · · · Sgk S∗hl
S∗hl−1

· · · S∗h1
) =

k

∏
i=1

µ(gi)
1/2

l

∏
j=1

µ(hj)
1/2δg1g2···gk ,h1h2···hl

,

and the boundary crossed product L∞(∂G, ν)oG is isomorphic to πωµ(On)′, where πωµ

is the GNS representation of ωµ.
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